51
|
Christiansen CB, Trammell SAJ, Wewer Albrechtsen NJ, Schoonjans K, Albrechtsen R, Gillum MP, Kuhre RE, Holst JJ. Bile acids drive colonic secretion of glucagon-like-peptide 1 and peptide-YY in rodents. Am J Physiol Gastrointest Liver Physiol 2019; 316:G574-G584. [PMID: 30767682 DOI: 10.1152/ajpgi.00010.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A large number of glucagon-like-peptide-1 (GLP-1)- and peptide-YY (PYY)-producing L cells are located in the colon, but little is known about their contribution to whole body metabolism. Since bile acids (BAs) increase GLP-1 and PYY release, and since BAs spill over from the ileum to the colon, we decided to investigate the ability of BAs to stimulate colonic GLP-1 and PYY secretion. Using isolated perfused rat/mouse colon as well as stimulation of the rat colon in vivo, we demonstrate that BAs significantly enhance secretion of GLP-1 and PYY from the colon with average increases of 3.5- and 2.9-fold, respectively. Furthermore, we find that responses depend on BA absorption followed by basolateral activation of the BA-receptor Takeda-G protein-coupled-receptor 5. Surprisingly, the apical sodium-dependent BA transporter, which serves to absorb conjugated BAs, was not required for colonic conjugated BA absorption or conjugated BA-induced peptide secretion. In conclusion, we demonstrate that BAs represent a major physiological stimulus for colonic L-cell secretion. NEW & NOTEWORTHY By the use of isolated perfused rodent colon preparations we show that bile acids are potent and direct promoters of colonic glucagon-like-peptide 1 and peptide-YY secretion. The study provides convincing evidence that basolateral Takeda-G protein-coupled-receptor 5 activation is mediating the effects of bile acids in the colon and thus add to the existing literature described for L cells in the ileum.
Collapse
Affiliation(s)
- Charlotte Bayer Christiansen
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Samuel Addison Jack Trammell
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Nicolai Jacob Wewer Albrechtsen
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Copenhagen , Denmark.,Clinical Proteomics, Novo Nordic Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Kristina Schoonjans
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne , Switzerland
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Matthew Paul Gillum
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Rune Ehrenreich Kuhre
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jens Juul Holst
- Novo Nordic Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
52
|
Pinyo J, Hira T, Hara H. Continuous feeding of a combined high-fat and high-sucrose diet, rather than an individual high-fat or high-sucrose diet, rapidly enhances the glucagon-like peptide-1 secretory response to meal ingestion in diet-induced obese rats. Nutrition 2019; 62:122-130. [PMID: 30878816 DOI: 10.1016/j.nut.2019.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Glucagon-like peptide-1 (GLP-1) is secreted by enteroendocrine L-cells in response to nutrient ingestion. To date, GLP-1 secretion in diet-induced obesity is not well characterized. We aimed to examine GLP-1 secretion in response to meal ingestion during the progression of diet-induced obesity and determinewhether a combined high-fat and high-sucrose (HFS) diet, an individual high-fat (HiFat), or a high-sucrose (HiSuc) diet affect adaptive changes in the postprandial GLP-1 response. METHODS Rats were fed a control, HiFat diet (30% weight), HiSuc diet (40% weight), or HFS (30% fat and 40% sucrose) diet for 5 wk. Meal tolerance tests were conducted to determine postprandial glucose, insulin, and GLP-1 responses to standard (control) diet ingestion every 2 wk. RESULTS After 5 wk, body weight gain of the HiFat (232.3 ± 7.8 g; P = 0.021) and HFS groups (228.0 ± 7.8; P = 0.039), but not the HiSuc group (220.3 ± 7.9; P = 0.244), were significantly higher than that of the control group (200.7 ± 5.4 g). In meal tolerance tests after 2 wk, GLP-1 concentration was significantly elevated in the HFS group only (17.2 ± 2.6 pM; P < 0.001) in response to meal ingestions, but the HiFat group (16.6 ± 3.7 pM; P = 0.156) had a similar response as the HFS group. After 4 wk, GLP-1 concentrations were similarly elevated at 15min in the HFS (14.1 ± 4.4; P = 0.010), HiFat (13.2 ± 2.0; P < 0.001), and HiSuc (13.0 ± 3.3; P = 0.016) groups, but the HFS (9.8 ± 1.0; P = 0.019) and HiFat (8.3 ± 1.5; P = 0.010) groups also had significant elevation at 30min. CONCLUSIONS These results demonstrate that the continuous ingestion of excessive fat and sucrose rapidly enhances the GLP-1 secretory response to luminal nutrients, and the HiFat diet may have a potent effect compared with the HiSuc diet on GLP-1 secretory responses. The increment of postprandial GLP-1 and insulinsecretion may have a role in normalizing postprandial glycaemia and slowing the establishment of glucose intolerance.
Collapse
Affiliation(s)
- Jukkrapong Pinyo
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tohru Hira
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | - Hiroshi Hara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan; Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
53
|
Foley JE. Insights Into GLP-1 and GIP Actions Emerging From Vildagliptin Mechanism Studies in Man. Front Endocrinol (Lausanne) 2019; 10:780. [PMID: 31781045 PMCID: PMC6856791 DOI: 10.3389/fendo.2019.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/25/2019] [Indexed: 01/16/2023] Open
Abstract
Vildagliptin blocks glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) inactivation of the meal induced increases in GLP-1 and GIP so that elevated GLP-1 and GIP levels are maintained over 24 h. The primary insulin secretion effect of vildagliptin is to improve the impaired sensitivity of the β-cells to glucose in subjects with impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) and in patients with type 2 diabetes mellitus (T2DM); this effect was seen acutely and maintained over at least 2 years in patients with T2DM. Vildagliptin was also associated with improved β-cell function that is likely secondary to the improved metabolic state. Although there was no evidence of restoration of β-cell mass, the preponderance of the vildagliptin data does indicate that for at least 2 years β-cell function was maintained in vildagliptin treated patients but not in the untreated patients. Vildagliptin suppressed an inappropriate glucagon response to an oral glucose challenge in patients with T2DM, to a mixed meal challenge in patients with T2DM and type 1 diabetes mellitus, and to a mixed meal challenge in subjects with IGT and IFG. The improved glucagon response was maintained for at least 2 years in patients with T2DM and there was no change in the glucagon response in normoglycemic individuals. Vildagliptin lowered glucose levels into the normal range without increasing hypoglycemia. These hypoglycemic benefits appear to be secondary in large part to the improved sensitivity of both the β and α-cell to glucose. In the case of the α-cell, if glucose levels are high, GLP-1 attenuates the glucagon levels and if glucose levels are low, GIP increases glucagon levels. Vildagliptin reduces fatty acid flux from the adipocyte leading to reduced liver fat which in turn leads to increased glucose utilization. The reduced glycosuria and reduced lipo-toxicity associated with vildagliptin therapy does not lead to weight gain presumably due to increased fat mobilization and oxidation during meals and to reduced fat extraction from the gut.
Collapse
|
54
|
Tura A, Pacini G, Yamada Y, Seino Y, Ahrén B. Glucagon and insulin secretion, insulin clearance, and fasting glucose in GIP receptor and GLP-1 receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 2019; 316:R27-R37. [DOI: 10.1152/ajpregu.00288.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not known whether GIP receptor and GLP-1 receptor knockout (KO) mice have perturbations in glucagon secretion or insulin clearance, and studies on impact on fasting glycemia have previously been inconsistent in these mice. We therefore studied glucagon secretion after oral whey protein (60 mg) and intravenous arginine (6.25 mg), insulin clearance after intravenous glucose (0.35 g/kg) and fasting glucose, insulin, and glucagon levels after standardized 5-h fasting in female GIP receptor and GLP-1 receptor KO mice and their wild-type (WT) littermates. Compared with WT controls, GIP receptor KO mice had normal glucagon responses to oral protein and intravenous arginine, except for an enhanced 1-min response to arginine, whereas glucagon levels after oral protein and intravenous arginine were enhanced in GLP-1 receptor KO mice. Furthermore, the intravenous glucose test revealed normal insulin clearance in both GIP receptor and GLP-1 receptor KO mice, whereas β-cell glucose sensitivity was enhanced in GIP receptor KO mice and reduced in GLP-1 receptor KO mice. Finally, GIP receptor KO mice had reduced fasting glucose (6.7 ± 0.1, n = 56, vs. 7.4 ± 0.1 mmol/l, n = 59, P = 0.001), whereas GLP-1 receptor KO mice had increased fasting glucose (9.1 ± 0.2, n = 44, vs. 7.7 ± 0.1 mmol/l, n = 41, P < 0.001). We therefore suggest that GIP has a limited role for glucagon secretion in mice, whereas GLP-1 is of importance for glucagon regulation, that GIP and GLP-1 are of importance for the regulation of β-cell function beyond their role as incretin hormones, and that they are both of importance for fasting glucose.
Collapse
Affiliation(s)
- Andrea Tura
- Metabolic Unit, National Research Council Institute of Neuroscience, Padua, Italy
| | - Giovanni Pacini
- Metabolic Unit, National Research Council Institute of Neuroscience, Padua, Italy
| | - Yuchiro Yamada
- Department of Endocrinology, Diabetes and Geriatric Medicine, Graduate School of Medicine, Akita University, Akita, Japan
| | | | - Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
55
|
Giezenaar C, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Acute Effects of Substitution, and Addition, of Carbohydrates and Fat to Protein on Gastric Emptying, Blood Glucose, Gut Hormones, Appetite, and Energy Intake. Nutrients 2018; 10:nu10101451. [PMID: 30301241 PMCID: PMC6213197 DOI: 10.3390/nu10101451] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/10/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Whey protein, when ingested on its own, load-dependently slows gastric emptying and stimulates gut hormone concentrations in healthy young men. The aim of this study was to determine the effects of substitution, and addition, of carbohydrate (dextrose) and fat (olive oil) to whey protein. In randomized, double-blind order, 13 healthy young men (age: 23 ± 1 years, body mass index: 24 ± 1 kg/m²) ingested a control drink (450 mL; ~2 kcal/'control') or iso-volumetric drinks containing protein/carbohydrate/fat: (i) 14 g/28 g/12.4 g (280 kcal/'M280'), (ii) 70 g/28 g/12.4 g (504kcal/'M504'), and (iii) 70 g/0 g/0 g (280 kcal/'P280'), on 4 separate study days. Gastric emptying (n = 11, 3D-ultrasonography), blood glucose, plasma insulin, ghrelin, cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) concentrations (0⁻180 min), appetite (visual analogue scales), and ad-libitum buffet-meal energy intake (180⁻210 min) were determined. Substitution of protein with carbohydrate and fat was associated with faster gastric emptying (lower 50% emptying time (T50)), reduced suppression of ghrelin, and stimulation of GLP-1 (all P < 0.001); while the addition of carbohydrate and fat to protein did not affect gastric emptying or gut hormone responses significantly. Total energy intake (i.e., drink plus meal) was greater after all caloric drinks than control (P < 0.001). In conclusion, substitution of whey protein with dextrose and olive oil accelerated gastric emptying. Higher protein content of a mixed macronutrient drink increased gut hormone and insulin responses.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
| | - Kylie Lange
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Karen L Jones
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
| | - Michael Horowitz
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
- Royal Adelaide Hospital, Adelaide 5000, Australia.
| | - Ian Chapman
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
- Royal Adelaide Hospital, Adelaide 5000, Australia.
| | - Stijn Soenen
- Adelaide Medical School and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence (CRE) in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide 5000, Australia.
- Royal Adelaide Hospital, Adelaide 5000, Australia.
| |
Collapse
|
56
|
Abstract
The regulation of energy and glucose balance contributes to whole-body metabolic homeostasis, and such metabolic regulation is disrupted in obesity and diabetes. Metabolic homeostasis is orchestrated partly in response to nutrient and vagal-dependent gut-initiated functions. Specifically, the sensory and motor fibres of the vagus nerve transmit intestinal signals to the central nervous system and exert biological and physiological responses. In the past decade, the understanding of the regulation of vagal afferent signals and of the associated metabolic effect on whole-body energy and glucose balance has progressed. This Review highlights the contributions made to the understanding of the vagal afferent system and examines the integrative role of the vagal afferent in gastrointestinal regulation of appetite and glucose homeostasis. Investigating the integrative and metabolic role of vagal afferent signalling represents a potential strategy to discover novel therapeutic targets to restore energy and glucose balance in diabetes and obesity.
Collapse
|
57
|
The insulinotropic effect of a high-protein nutrient preload is mediated by the increase of plasma amino acids in type 2 diabetes. Eur J Nutr 2018; 58:2253-2261. [PMID: 30008106 DOI: 10.1007/s00394-018-1778-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/07/2018] [Indexed: 01/24/2023]
Abstract
AIMS Eating protein before carbohydrate reduces postprandial glucose excursions by enhancing insulin and glucagon-like peptide-1 (GLP-1) secretion in type 2 diabetes (T2D). We tested the hypothesis that this insulinotropic effect depends on the elevation of plasma amino acids (AA) after the digestion of food protein. METHODS In 16 T2D patients, we measured plasma AA levels through the course of two 75-g oral glucose tolerance tests (OGTT) preceded by either 500-ml water or a high-protein nutrient preload (50-g Parmesan cheese, one boiled egg, and 300-ml water). Changes in beta cell function were evaluated by measuring and modelling plasma glucose, insulin, and C-peptide through the OGTT. Changes in incretin hormone secretion were assessed by measuring plasma GLP-1. RESULTS Plasma AA levels were 24% higher after the nutrient preload (p < 0.0001). This increment was directly proportional to both the enhancement of beta cell function (r = 0.58, p = 0.02) and the plasma GLP-1 gradients (r = 0.57, p = 0.02) produced by the nutrient preload. Among single AA, glutamine showed the strongest correlation with changes in beta cell function (r = 0.61, p = 0.01), while leucine showed the strongest correlation with GLP-1 responses (r = 0.74, p = 0.001). CONCLUSIONS The elevation of circulating AA that occurs after a high-protein nutrient preload is associated with an enhancement of beta cell function and GLP-1 secretion in T2D. Manipulating the meal sequence of nutrient ingestion may reduce postprandial hyperglycaemia through a direct and GLP-1-mediated stimulation of insulin secretion by plasma AA. TRIAL REGISTRATION NUMBER NCT02342834.
Collapse
|
58
|
Giezenaar C, van der Burgh Y, Lange K, Hatzinikolas S, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Effects of Substitution, and Adding of Carbohydrate and Fat to Whey-Protein on Energy Intake, Appetite, Gastric Emptying, Glucose, Insulin, Ghrelin, CCK and GLP-1 in Healthy Older Men-A Randomized Controlled Trial. Nutrients 2018; 10:nu10020113. [PMID: 29360778 PMCID: PMC5852689 DOI: 10.3390/nu10020113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used widely for the management of malnutrition in the elderly. We reported previously that the suppression of energy intake by whey protein is less in older than younger adults. The aim was to determine the effects of substitution, and adding of carbohydrate and fat to whey protein, on ad libitum energy intake from a buffet meal (180-210 min), gastric emptying (3D-ultrasonography), plasma gut hormone concentrations (0-180 min) and appetite (visual analogue scales), in healthy older men. In a randomized, double-blind order, 13 older men (75 ± 2 years) ingested drinks (~450 mL) containing: (i) 70 g whey protein (280 kcal; 'P280'); (ii) 14 g protein, 28 g carbohydrate, 12.4 g fat (280 kcal; 'M280'); (iii) 70 g protein, 28 g carbohydrate, 12.4 g fat (504 kcal; 'M504'); or (iv) control (~2 kcal). The caloric drinks, compared to a control, did not suppress appetite or energy intake; there was an increase in total energy intake (drink + meal, p < 0.05), which was increased most by the M504-drink. P280- and M504-drink ingestion were associated with slower a gastric-emptying time (n = 9), lower ghrelin, and higher cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) than M280 (p < 0.05). Glucose and insulin were increased most by the mixed-macronutrient drinks (p < 0.05). In conclusion, energy intake was not suppressed, compared to a control, and particularly whey protein, affected gastric emptying and gut hormone responses.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Yonta van der Burgh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Kylie Lange
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Seva Hatzinikolas
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Trygve Hausken
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway.
| | - Karen L Jones
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, Adelaide, SA 5000, Australia.
| |
Collapse
|
59
|
Mandøe MJ, Hansen KB, Windeløv JA, Knop FK, Rehfeld JF, Rosenkilde MM, Holst JJ, Hansen HS. Comparing olive oil and C4-dietary oil, a prodrug for the GPR119 agonist, 2-oleoyl glycerol, less energy intake of the latter is needed to stimulate incretin hormone secretion in overweight subjects with type 2 diabetes. Nutr Diabetes 2018; 8:2. [PMID: 29330461 PMCID: PMC6199285 DOI: 10.1038/s41387-017-0011-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 08/01/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023] Open
Abstract
Background/objective After digestion, dietary triacylglycerol stimulates incretin release in humans, mainly through generation of 2-monoacylglycerol, an agonist for the intestinal G protein-coupled receptor 119 (GPR119). Enhanced incretin release may have beneficial metabolic effects. However, dietary fat may promote weight gain and should therefore be restricted in obesity. We designed C4-dietary oil (1,3-di-butyryl-2-oleoyl glycerol) as a 2-oleoyl glycerol (2-OG)-generating fat type, which would stimulate incretin release to the same extent while providing less calories than equimolar amounts of common triglycerides, e.g., olive oil. Subjects and methods We studied the effect over 180 min of (a) 19 g olive oil plus 200 g carrot, (b) 10.7 g C4 dietary oil plus 200 g carrot and (c) 200 g carrot, respectively, on plasma responses of gut and pancreatic hormones in 13 overweight patients with type 2 diabetes (T2D). Theoretically, both oil meals result in formation of 7.7 g 2-OG during digestion. Results Both olive oil and C4-dietary oil resulted in greater postprandial (P ≤ 0.01) glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) responses (incremental area under curve (iAUC)): iAUCGLP−1: 645 ± 194 and 702 ± 97 pM × min; iAUCGIP: 4,338 ± 764 and 2,894 ± 601 pM × min) compared to the carrot meal (iAUCGLP−1: 7 ± 103 pM × min; iAUCGIP: 266 ± 234 pM × min). iAUC for GLP-1 and GIP were similar for C4-dietary oil and olive oil, although olive oil resulted in a higher peak value for GIP than C4-dietary oil. Conclusion C4-dietary oil enhanced secretion of GLP-1 and GIP to almost the same extent as olive oil, in spite of liberation of both 2-OG and oleic acid, which also may stimulate incretin secretion, from olive oil. Thus, C4-dietary oil is more effective as incretin releaser than olive oil per unit of energy and may be useful for dietary intervention.
Collapse
Affiliation(s)
- Mette Johannsen Mandøe
- The Novo Nordisk Foundation Center for Basal Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology and Nuclear Medicine, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Katrine Bagge Hansen
- The Novo Nordisk Foundation Center for Basal Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology and Nuclear Medicine, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark
| | - Johanne Agerlin Windeløv
- The Novo Nordisk Foundation Center for Basal Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip Krag Knop
- The Novo Nordisk Foundation Center for Basal Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- The Novo Nordisk Foundation Center for Basal Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Harald Severin Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
60
|
Ferreira MC, da Silva MER, Fukui RT, Arruda-Marques MDC, dos Santos RF. TCF7L2 correlation in both insulin secretion and postprandial insulin sensitivity. Diabetol Metab Syndr 2018; 10:37. [PMID: 29736187 PMCID: PMC5922313 DOI: 10.1186/s13098-018-0338-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/17/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The TCF7L2 rs7903146 variant is strongly associated with type 2 diabetes mellitus (T2DM). However, the mechanisms involved in this association remain unknown and may include extrapancreatic effects. The aim of this study was to perform a metabolic characterization of T2DM patients with and without the TCF7L2 rs7903146 risk T allele and analyze some influences of the TCF7L2 genotype on glucose metabolism. METHODS Patients with T2DM (n = 162) were genotyped for the TCF7L2 rs7903146 single nucleotide polymorphism. Individuals with CT/TT and CC genotypes were compared regarding basal serum levels of glucose, glycosylated hemoglobin A1C, HDL, uric acid, insulin, and C-peptide. A subset of 56 individuals was evaluated during a 500-calorie mixed-meal test with measurements of glucose, insulin, proinsulin, C-peptide and glucagon. Additional secondary assessments included determination of insulinogenic index (IGI30), and insulin sensitivity (%S) and resistance (IR) by Homeostatic model assessment (HOMA). RESULTS Patients with the CT/TT genotype showed lower baseline plasma concentrations of C-peptide when compared with those with the CC genotype. Of the 56 individuals who participated in the mixed-meal test, 26 and 30 had the CC and CT/TT genotypes, respectively. CT/TT subjects, compared with CC individuals, had higher post prandial plasma levels of insulin and C-peptide at 30-120 min (p < 0.05) and proinsulin at 45-240 min (p < 0.05). Interestingly CT/TT individuals presented at baseline higher %S (p = 0.021), and lower IR (p = 0.020) than CC individuals. No significant differences in IGI30 values were observed between groups. CONCLUSIONS The T2DM individuals carrying the rs7903146 T allele of the TCF7L2 gene presented higher IR pattern in response to a mix-meal test, different of beta cell function at baseline assessed by C-peptide levels which was lower, and Homa-IR was lower when comparing with non-carriers.
Collapse
Affiliation(s)
- Mari Cassol Ferreira
- Laboratory of Medical Investigation LIM-18, Division of Endocrinology, School of Medicine, University of Sao Paulo, Av Dr Arnaldo, 455 room 3324, Sao Paulo, SP 01246903 Brazil
- School of Medicine of Unochapecó University, Bairro Efapi, Chapecó, SC 89809-900 Brazil
| | - Maria Elizabeth Rossi da Silva
- Laboratory of Medical Investigation LIM-18, Division of Endocrinology, School of Medicine, University of Sao Paulo, Av Dr Arnaldo, 455 room 3324, Sao Paulo, SP 01246903 Brazil
| | - Rosa Tsuneshiro Fukui
- Laboratory of Medical Investigation LIM-18, Division of Endocrinology, School of Medicine, University of Sao Paulo, Av Dr Arnaldo, 455 room 3324, Sao Paulo, SP 01246903 Brazil
| | - Maria do Carmo Arruda-Marques
- Laboratory of Medical Investigation LIM-18, Division of Endocrinology, School of Medicine, University of Sao Paulo, Av Dr Arnaldo, 455 room 3324, Sao Paulo, SP 01246903 Brazil
| | - Rosa Ferreira dos Santos
- Laboratory of Medical Investigation LIM-18, Division of Endocrinology, School of Medicine, University of Sao Paulo, Av Dr Arnaldo, 455 room 3324, Sao Paulo, SP 01246903 Brazil
| |
Collapse
|
61
|
Meng H, Matthan NR, Ausman LM, Lichtenstein AH. Effect of prior meal macronutrient composition on postprandial glycemic responses and glycemic index and glycemic load value determinations. Am J Clin Nutr 2017; 106:1246-1256. [PMID: 28903959 PMCID: PMC5657290 DOI: 10.3945/ajcn.117.162727] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
Background: The potential impact of prior meal composition on the postprandial glycemic response and glycemic index (GI) and glycemic load (GL) value determinations remains unclear.Objective: We determined the effect of meals that varied in macronutrient composition on the glycemic response and determination of GI and GL values of a subsequent standard test food.Design: Twenty healthy participants underwent 6 test sessions within 12 wk. The subjects received each of 3 isocaloric breakfast meals (i.e., high carbohydrate, high fat, or high protein) on separate days in a random order, which was followed by a standard set of challenges (i.e., white bread and a glucose drink) that were tested on separate days in a random order 4 h thereafter. Each challenge provided 50 g available carbohydrate. Arterialized venous blood was sampled throughout the 2-h postchallenge period. GI, GL, and insulin index (II) values were calculated with the use of the incremental area under the curve (AUCi) method, and serum lipids were determined with the use of standard assays.Results: The consumption of the high-protein breakfast before the white-bread challenge attenuated the rise in the postprandial serum glucose response (P < 0.0001) and resulted in lower glucose AUCi (P < 0.0001), GI (P = 0.0096), and GL (P = 0.0101) values than did the high-carbohydrate and high-fat breakfasts. The high-protein breakfast resulted in a lower insulin AUCi (P = 0.0146) for white bread than did the high-fat breakfast and a lower II value (P = 0.0285) than did the high-carbohydrate breakfast. The 3 breakfasts resulted in similar serum lipid responses to the white-bread challenge.Conclusions: These data indicate that the macronutrient composition of the prior meal influences the glycemic response and the determination of GI and GL values for white bread. Future studies are needed to determine whether the background food macronutrient composition influences mean dietary GI and GL values that are calculated for eating patterns, which may alter the interpretation of the associations between these values and chronic disease risk. This trial was registered at clinicaltrials.gov as NCT01023646.
Collapse
Affiliation(s)
- Huicui Meng
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Lynne M Ausman
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
| |
Collapse
|
62
|
Hauge M, Ekberg JP, Engelstoft MS, Timshel P, Madsen AN, Schwartz TW. Gq and Gs signaling acting in synergy to control GLP-1 secretion. Mol Cell Endocrinol 2017; 449:64-73. [PMID: 27908836 DOI: 10.1016/j.mce.2016.11.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/24/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023]
Abstract
GPR40 is generally known to signal through Gq. However, in transfected cells, certain synthetic agonists can make the receptor signal also through Gs and cAMP (Hauge et al., 2015). Here we find that, in colonic crypt cultures, the GLP-1 secretion induced by such Gq + Gs GPR40 agonists is indeed inhibited by blockers of both Gq and Gs and is eliminated by combining these. This in contrast to Gq-only GPR40 agonists which only are affected by the Gq inhibitor. Importantly, Gq-only GPR40 agonists in combination with low doses of selective synthetic agonists for Gs coupled receptors, e.g. GPR119 and TGR5 provide more than additive GLP-1 secretion both ex vivo and in vivo in mice. It is concluded that under physiological circumstances triglyceride metabolites, i.e. long chain fatty acids and 2-monoacyl glycerol plus bile acids, act synergistically through their respective receptors, GPR40, GPR119 and TGR5 to stimulate GLP-1 secretion robustly by combining Gq and Gs signaling pathways.
Collapse
Affiliation(s)
- Maria Hauge
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Jeppe Pio Ekberg
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Maja Storm Engelstoft
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Pascal Timshel
- NNF Center for Basic Metabolic Research, Section of Metabolic Genomics, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Andreas N Madsen
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Thue W Schwartz
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark.
| |
Collapse
|
63
|
Harris LALS, Smith GI, Patterson BW, Ramaswamy RS, Okunade AL, Kelly SC, Porter LC, Klein S, Yoshino J, Mittendorfer B. Alterations in 3-Hydroxyisobutyrate and FGF21 Metabolism Are Associated With Protein Ingestion-Induced Insulin Resistance. Diabetes 2017; 66:1871-1878. [PMID: 28473464 PMCID: PMC5482083 DOI: 10.2337/db16-1475] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/24/2017] [Indexed: 12/17/2022]
Abstract
Systemic hyperaminoacidemia, induced by either intravenous amino acid infusion or protein ingestion, reduces insulin-stimulated glucose disposal. Studies of mice suggest that the valine metabolite 3-hydroxyisobutyrate (3-HIB), fibroblast growth factor 21 (FGF21), adiponectin, and nonesterified fatty acids (NEFAs) may be involved in amino acid-mediated insulin resistance. We therefore measured in 30 women the rate of glucose disposal, and plasma 3-HIB, FGF21, adiponectin, and NEFA concentrations, under basal conditions and during a hyperinsulinemic-euglycemic clamp procedure (HECP), with and without concomitant ingestion of protein (n = 15) or an amount of leucine that matched the amount of protein (n = 15). We found that during the HECP without protein or leucine ingestion, the grand mean ± SEM plasma 3-HIB concentration decreased (from 35 ± 2 to 14 ± 1 µmol/L) and the grand median [quartiles] FGF21 concentration increased (from 178 [116, 217] to 509 [340, 648] pg/mL). Ingestion of protein, but not leucine, decreased insulin-stimulated glucose disposal (P < 0.05) and prevented both the HECP-mediated decrease in 3-HIB and increase in FGF21 concentration in plasma. Neither protein nor leucine ingestion altered plasma adiponectin or NEFA concentrations. These findings suggest that 3-HIB and FGF21 might be involved in protein-mediated insulin resistance in humans.
Collapse
Affiliation(s)
- Lydia-Ann L S Harris
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Gordon I Smith
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Bruce W Patterson
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Raja S Ramaswamy
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Adewole L Okunade
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Shannon C Kelly
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Lane C Porter
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Samuel Klein
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Jun Yoshino
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| | - Bettina Mittendorfer
- Center for Human Nutrition and Atkins Center of Excellence in Obesity Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
64
|
Gojda J, Straková R, Plíhalová A, Tůma P, Potočková J, Polák J, Anděl M. Increased Incretin But Not Insulin Response after Oral versus Intravenous Branched Chain Amino Acids. ANNALS OF NUTRITION AND METABOLISM 2017; 70:293-302. [PMID: 28595189 DOI: 10.1159/000475604] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 04/07/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIMS Branched chain amino acids (BCAAs) are known to exert an insulinotropic effect. Whether this effect is mediated by incretins (glucagon like peptide 1 [GLP-1] or glucose-dependent insulinotropic peptide [GIP]) is not known. The aim of this study was to show whether an equivalent dose of BCAA elicits a greater insulin and incretin response when administered orally than intravenously (IV). METHODS Eighteen healthy, male subjects participated in 3 tests: IV application of BCAA solution, oral ingestion of BCAA and placebo in an equivalent dose (30.7 ± 1.1 g). Glucose, insulin, C-peptide, glucagon, GLP-1, GIP, valine, leucine and isoleucine concentrations were measured. RESULTS Rise in serum BCAA was achieved in both BCAA tests, with incremental areas under the curve (iAUC) being 2.1 times greater for IV BCAA compared with those of the oral BCAA test (p < 0.0001). Oral and IV BCAA induced comparable insulin response greater than placebo (240 min insulin iAUC: oral 3,411 ± 577 vs. IV 2,361 ± 384 vs. placebo 961.2 ± 175 pmol/L, p = 0.0006). Oral BCAA induced higher GLP-1 (p < 0.0001) and GIP response (p < 0.0001) compared with the IV or placebo. Glucose levels declined significantly (p < 0.001) in the same pattern during both BCAA tests with no change in the placebo group. CONCLUSIONS An equivalent dose of BCAA elicited a comparable insulin and greater incretin response when administered orally and not when administered through IV. We conclude that insulinotropic effects of BCAA are partially incretin dependent.
Collapse
Affiliation(s)
- Jan Gojda
- Centre for Research on Diabetes, Metabolism and Nutrition of Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
65
|
Kwon EY, Lee J, Kim YJ, Do A, Choi JY, Cho SJ, Jung UJ, Lee MK, Park YB, Choi MS. Seabuckthorn Leaves Extract and Flavonoid Glycosides Extract from Seabuckthorn Leaves Ameliorates Adiposity, Hepatic Steatosis, Insulin Resistance, and Inflammation in Diet-Induced Obesity. Nutrients 2017; 9:nu9060569. [PMID: 28574484 PMCID: PMC5490548 DOI: 10.3390/nu9060569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/31/2022] Open
Abstract
The aim of the current study was to elucidate the effect of seabuckthorn leaves (SL) extract and flavonoid glycosides extract from seabuckthorn leaves (SLG) on diet-induced obesity and related metabolic disturbances, and additionally, to identify whether flavonoid glycosides and other components in SL can exert a possible interaction for the prevention of metabolic diseases by comparing the effect of SL and SLG. C57BL/6J mice were fed a normal diet (ND, AIN-93G purified diet), high-fat diet (HFD, 60 kcal% fat), HFD + 1.8% (w/w) SL (SL), and HFD + 0.04% (w/w) SLG (SLG) for 12 weeks. In high fat-fed mice, SL and SLG decreased the adiposity by suppressing lipogenesis in adipose tissue, while increasing the energy expenditure. SL and SLG also improved hepatic steatosis by suppressing hepatic lipogenesis and lipid absorption, whilst also enhancing hepatic fatty acid oxidation, which may be linked to the improvement in dyslipidemia. Moreover, SL and SLG improved insulin sensitivity by suppressing the levels of plasma GIP that were modulated by secreted resistin and pro-inflammatory cytokine, and hepatic glucogenic enzyme activities. SL, especially its flavonoid glycosides (SLG), can protect against the deleterious effects of diet-induced obesity (DIO) and its metabolic complications such as adiposity, dyslipidemia, inflammation, hepatic steatosis, and insulin resistance.
Collapse
Affiliation(s)
- Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Jeonghyeon Lee
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Ye Jin Kim
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Ara Do
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Ji-Young Choi
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Su-Jung Cho
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 608-737, Korea.
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon 540-950, Korea.
| | - Yong Bok Park
- School of Life Sciences and Biotechnology, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
- Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong Puk-Ku, Daegu 41566, Korea.
| |
Collapse
|
66
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
67
|
Ekberg JP, Hauge M, Kristensen LV, Madsen AN, Engelstoft MS, Husted AS, Sichlau R, Egerod K, Kowalski T, Gribble FM, Reimann F, Hansen HS, Howard AD, Holst B, Schwartz TW. GPR119, a Major Enteroendocrine Sensor of Dietary Triglyceride Metabolites Coacting in Synergy With FFA1 (GPR40). Endocrinology 2016; 157:4561-4569. [PMID: 27779915 PMCID: PMC7212052 DOI: 10.1210/en.2016-1334] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Triglycerides (TGs) are among the most efficacious stimulators of incretin secretion; however, the relative importance of FFA1 (G Protein-coupled Receptor [GPR] 40), FFA4 (GPR120), and GPR119, which all recognize TG metabolites, ie, long-chain fatty acid and 2-monoacylglycerol, respectively, is still unclear. Here, we find all 3 receptors to be highly expressed and highly enriched in fluorescence-activated cell sorting-purified GLP-1 and GIP cells isolated from transgenic reporter mice. In vivo, the TG-induced increase in plasma GIP was significantly reduced in FFA1-deficient mice (to 34%, mean of 4 experiments each with 8-10 animals), in GPR119-deficient mice (to 24%) and in FFA1/FFA4 double deficient mice (to 15%) but not in FFA4-deficient mice. The TG-induced increase in plasma GLP-1 was only significantly reduced in the GPR119-deficient and the FFA1/FFA4 double deficient mice, but not in the FFA1, and FFA4-deficient mice. In mouse colonic crypt cultures the synthetic FFA1 agonists, TAK-875 stimulated GLP-1 secretion to a similar extent as the prototype GLP-1 secretagogue neuromedin C; this, however, only corresponded to approximately half the maximal efficiency of the GPR119 agonist AR231453, whereas the GPR120 agonist Metabolex-209 had no effect. Importantly, when the FFA1 agonist was administered on top of appropriately low doses of the GPR119 agonist, a clear synergistic, ie, more than additive, effect was observed. It is concluded that the 2-monoacylglycerol receptor GPR119 is at least as important as the long-chain fatty acid receptor FFA1 in mediating the TG-induced secretion of incretins and that the 2 receptors act in synergy, whereas FFA4 plays a minor if any role.
Collapse
Affiliation(s)
- Jeppe P. Ekberg
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Maria Hauge
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Line V. Kristensen
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Andreas N. Madsen
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Maja S. Engelstoft
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Danish Diabetes Academy, Sdr Boulevard 29, 5000 Odense, Denmark
| | - Anna-Sofie Husted
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Rasmus Sichlau
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kristoffer Egerod
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Timothy Kowalski
- Merck Research Laboratories, Galloping Hills Road, Kenilworth, New Jersey, USA
| | - Fiona M. Gribble
- Cambridge Institute for Medical Research and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Frank Reimann
- Cambridge Institute for Medical Research and MRC Metabolic Diseases Unit, University of Cambridge, Cambridge, United Kingdom
| | - Harald S. Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK- 2100 Copenhagen, Denmark
| | | | - Birgitte Holst
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Thue W. Schwartz
- NNF Center for Basic Metabolic Research, Section for Metabolic Receptology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
68
|
Hassing HA, Engelstoft MS, Sichlau RM, Madsen AN, Rehfeld JF, Pedersen J, Jones RM, Holst JJ, Schwartz TW, Rosenkilde MM, Hansen HS. Oral 2-oleyl glyceryl ether improves glucose tolerance in mice through the GPR119 receptor. Biofactors 2016; 42:665-673. [PMID: 27297962 DOI: 10.1002/biof.1303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 05/01/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022]
Abstract
The intestinal G protein-coupled receptor GPR119 is a novel metabolic target involving glucagon-like peptide-1 (GLP-1)-derived insulin-regulated glucose homeostasis. Endogenous and diet-derived lipids, including N-acylethanolamines and 2-monoacylglycerols (2-MAG) activate GPR119. The purpose of this work is to evaluate whether 2-oleoyl glycerol (2-OG) improves glucose tolerance through GPR119, using wild type (WT) and GPR 119 knock out (KO) mice. We here show that GPR119 is essential for 2-OG-mediated release of GLP-1 and CCK from GLUTag cells, since a GPR119 specific antagonist completely abolished the hormone release. Similarly, in isolated primary colonic crypt cultures from WT mice, GPR119 was required for 2-OG-stimulated GLP-1 release while there was no response in crypts from KO mice. In vivo, gavage with 2-oleyl glyceryl ether ((2-OG ether), a stable 2-OG analog with a potency of 5.3 µM for GPR119 with respect to cAMP formation as compared to 2.3 µM for 2-OG), significantly (P < 0.05) improved glucose clearance in WT littermates, but not in GPR119 KO mice. Finally, deletion of GPR119 in mice resulted in lower glucagon levels, whereas the levels of insulin and GIP were unchanged. In the present study we show that 2-OG stimulates GLP-1 secretion through GPR119 activation in vitro, and that fat-derived 2-MAGs are potent candidates for mediating fat-induced GLP-1 release through GPR119 in vivo. © 2016 BioFactors, 42(6):665-673, 2016.
Collapse
Affiliation(s)
- H A Hassing
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - M S Engelstoft
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Metabolic Research, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - R M Sichlau
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Metabolic Research, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - A N Madsen
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - J F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej, Copenhagen, Denmark
| | - J Pedersen
- Department of Biomedical Science, Endocrinology Research Section, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - R M Jones
- Arena Pharmaceutical Inc, San Diego, CA, 92121, USA
| | - J J Holst
- Department of Biomedical Science, Endocrinology Research Section, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Section for Translational Physiology, Novo Nordisk Foundation Center for Metabolic Research, Panum Institute, Blegdamsvej 3, Copenhagen, Denmark
| | - T W Schwartz
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
- Section for Metabolic Receptology and Enteroendocrinology, Novo Nordisk Foundation Center for Metabolic Research, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark
| | - M M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, Copenhagen, Denmark
| | - H S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| |
Collapse
|
69
|
Wolever TM, van Klinken BJW, Bordenave N, Kaczmarczyk M, Jenkins AL, Chu Y, Harkness L. Reformulating cereal bars: high resistant starch reduces in vitro digestibility but not in vivo glucose or insulin response; whey protein reduces glucose but disproportionately increases insulin. Am J Clin Nutr 2016; 104:995-1003. [PMID: 27581470 DOI: 10.3945/ajcn.116.132431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/22/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Resistant starch (RS) and whey protein are thought to be effective nutrients for reducing glycemic responses. OBJECTIVE We aimed to determine the effect of varying the sucrose, RS, and whey protein content of cereal bars on glucose and insulin responses. DESIGN Twelve healthy subjects [mean ± SD age: 36 ± 12 y; mean ± SD body mass index (in kg/m2): 24.9 ± 2.7] consumed 40 g available-carbohydrate (avCHO) portions of 5 whole-grain cereal bars that contained varying amounts of RS and whey protein concentrate [WPC; 70% protein; RS:WPC, %wt:wt: 15:0 (Bar15/0); 15:0, low in sucrose (Bar15/0LS); 15:5 (Bar15/5); 10:5 (Bar10/5); and 10:10 (Bar10/10)] and 2 portion sizes of a control bar low in whole grains, protein, and RS [control 1 contained 40 g avCHO (Control1); control 2 contained total carbohydrate equal to Bar15/0LS (Control2)] on separate days by using a randomized crossover design. Glucose and insulin responses in vivo and carbohydrate digestibility in vitro were measured over 3 h. RESULTS Incremental area under the curve (iAUC) over 0-3 h for glucose (min × mmol/L) differed significantly between treatments (P < 0.001) [Bar15/0LS (mean ± SEM), 169 ± 14; Control2, 164 ± 20; Bar15/0, 144 ± 15; Control1, 140 ± 17; Bar10/5, 117 ± 12; Bar15/5, 116 ± 9; and Bar10/10, 100 ± 9; Tukey's least significant difference = 42, P < 0.05], but insulin iAUC did not differ significantly. Higher protein content was associated with a lower glucose iAUC (P = 0.028) and a higher insulin-to-glucose iAUC ratio (P = 0.002) All 5 RS-containing bars were digested in vitro ∼30% more slowly than the control bars (P < 0.05); however, in vivo responses were not related to digestibility in vitro. Glucose and insulin responses elicited by high-RS, whey protein-free bars were similar to those elicited from control bars. CONCLUSIONS The inclusion of RS in cereal bar formulations did not reduce glycemic responses despite slower starch digestion in vitro. Thus, caution is required when extrapolating in vitro starch digestibility to in vivo glycemic response. The inclusion of whey protein in cereal bar formulations to reduce glycemic response requires caution because this may be associated with a disproportionate increase in insulin as judged by an increased insulin-to-glucose iAUC ratio. This trial was registered at clinicaltrials.gov as NCT02537587.
Collapse
Affiliation(s)
| | | | | | - Melissa Kaczmarczyk
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, IL; and
| | | | - YiFang Chu
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, IL; and
| | - Laura Harkness
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, IL; and
| |
Collapse
|
70
|
Protein/amino-acid modulation of bone cell function. BONEKEY REPORTS 2016; 5:827. [PMID: 28149508 PMCID: PMC5238414 DOI: 10.1038/bonekey.2016.58] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 06/24/2016] [Indexed: 01/07/2023]
Abstract
Nutrients (protein, carbohydrates and fats) have traditionally been thought of as fuels simply providing the energy for cellular metabolic activity. According to the classic view, if nutrients are available, then anabolic pathways are activated, and if nutrients are not available, catabolic pathways are activated. However, it is becoming increasingly clear that nutrient effects on bone cells (stem cells, osteoblasts and osteoclasts) are complex, some nutrients promote bone formation, whereas others interfere with bone formation or actually promote bone break down. At an organ level, nutrient intake can suppress bone breakdown and modulate the activity of the calcium/vitamin D/parathyroid hormone axis. At a cellular level, nutrient intake can impact cellular energetics either through a direct mechanism (binding or uptake of the nutrient into the cell) or indirect (by elevating nutrient-related hormones such as insulin, insulin-like growth factor 1 or incretin hormones). It is also becoming clear that within a nutrient class (for example, protein), individual components (that is, amino acids) can have markedly different effects on cell function and impact bone formation. The focus of this review will be on one nutrient class in particular, dietary protein. As the prevalence of inadequate dietary protein intake increases with age, these findings may have translational implications as to the optimal dietary protein content in the setting of age-associated bone loss.
Collapse
|
71
|
Comerford KB, Pasin G. Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods. Nutrients 2016; 8:nu8080446. [PMID: 27455320 PMCID: PMC4997361 DOI: 10.3390/nu8080446] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/13/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023] Open
Abstract
Observational studies provide evidence that a higher intake of protein from plant-based foods and certain animal-based foods is associated with a lower risk for type 2 diabetes. However, there are few distinguishable differences between the glucoregulatory qualities of the proteins in plant-based foods, and it is likely their numerous non-protein components (e.g., fibers and phytochemicals) that drive the relationship with type 2 diabetes risk reduction. Conversely, the glucoregulatory qualities of the proteins in animal-based foods are extremely divergent, with a higher intake of certain animal-based protein foods showing negative effects, and others showing neutral or positive effects on type 2 diabetes risk. Among the various types of animal-based protein foods, a higher intake of dairy products (such as milk, yogurt, cheese and whey protein) consistently shows a beneficial relationship with glucose regulation and/or type 2 diabetes risk reduction. Intervention studies provide evidence that dairy proteins have more potent effects on insulin and incretin secretion compared to other commonly consumed animal proteins. In addition to their protein components, such as insulinogenic amino acids and bioactive peptides, dairy products also contain a food matrix rich in calcium, magnesium, potassium, trans-palmitoleic fatty acids, and low-glycemic index sugars-all of which have been shown to have beneficial effects on aspects of glucose control, insulin secretion, insulin sensitivity and/or type 2 diabetes risk. Furthermore, fermentation and fortification of dairy products with probiotics and vitamin D may improve a dairy product's glucoregulatory effects.
Collapse
Affiliation(s)
- Kevin B Comerford
- California Dairy Research Foundation (CDRF), 501 G Street, Ste. 203, Davis, CA 95616, USA.
| | - Gonca Pasin
- California Dairy Research Foundation (CDRF), 501 G Street, Ste. 203, Davis, CA 95616, USA.
| |
Collapse
|
72
|
Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol 2016; 4:525-36. [PMID: 26876794 DOI: 10.1016/s2213-8587(15)00482-9] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022]
Abstract
The incretin effect describes the phenomenon whereby oral glucose elicits higher insulin secretory responses than does intravenous glucose, despite inducing similar levels of glycaemia, in healthy individuals. This effect, which is uniformly defective in patients with type 2 diabetes, is mediated by the gut-derived incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). The importance of the incretin effect for the maintenance of glucose homoeostasis is clearly established, and incretin-based therapies are among the most promising new therapies for type 2 diabetes. However, despite the effectiveness of these therapies in many patients, the idea that they restore the incretin effect is a common misconception. In type 2 diabetes, the endocrine pancreas remains responsive to GLP-1 but is no longer responsive to GIP, which is the most likely reason for a reduced or absent incretin effect. Incretin-based drugs, including GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors, stimulate GLP-1 receptors and thus augment insulin secretion in response to both oral and intravenous glucose stimulation, thereby abolishing any potential difference in the responses to these stimuli. These drugs therefore do not restore the defective incretin effect in patients. By contrast, some bariatric surgical procedures enhance GLP-1 responses and also restore the incretin effect in obese individuals with type 2 diabetes. Thus, not all biological actions elicited by the stimulation of GLP-1 receptors lead to quantitative changes to the incretin effect.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Department of Medicine I, St Josef Hospital (Ruhr-University Bochum), Bochum, Germany.
| | - Juris J Meier
- Diabetes Division, Department of Medicine I, St Josef Hospital (Ruhr-University Bochum), Bochum, Germany
| |
Collapse
|
73
|
Hodge RJ, Paulik MA, Walker A, Boucheron JA, McMullen SL, Gillmor DS, Nunez DJ. Weight and Glucose Reduction Observed with a Combination of Nutritional Agents in Rodent Models Does Not Translate to Humans in a Randomized Clinical Trial with Healthy Volunteers and Subjects with Type 2 Diabetes. PLoS One 2016; 11:e0153151. [PMID: 27093610 PMCID: PMC4836696 DOI: 10.1371/journal.pone.0153151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/23/2016] [Indexed: 01/19/2023] Open
Abstract
Background Nutritional agents have modest efficacy in reducing weight and blood glucose in animal models and humans, but combinations are less well characterized. GSK2890457 (GSK457) is a combination of 4 nutritional agents, discovered by the systematic assessment of 16 potential components using the diet-induced obese mouse model, which was subsequently evaluated in a human study. Nonclinical Results In the diet-induced obese mouse model, GSK457 (15% w/w in chow) given with a long-acting glucagon-like peptide -1 receptor agonist, exendin-4 AlbudAb, produced weight loss of 30.8% after 28 days of treatment. In db/db mice, a model of diabetes, GSK457 (10% w/w) combined with the exendin-4 AlbudAb reduced glucose by 217 mg/dL and HbA1c by 1.2% after 14 days. Clinical Results GSK457 was evaluated in a 6 week randomized, placebo-controlled study that enrolled healthy subjects and subjects with type 2 diabetes to investigate changes in weight and glucose. In healthy subjects, GSK457 well tolerated when titrated up to 40 g/day, and it reduced systemic exposure of metformin by ~ 30%. In subjects with diabetes taking liraglutide 1.8 mg/day, GSK457 did not reduce weight, but it slightly decreased mean glucose by 0.356 mmol/L (95% CI: -1.409, 0.698) and HbAlc by 0.065% (95% CI: -0.495, 0.365), compared to placebo. In subjects with diabetes taking metformin, weight increased in the GSK457-treated group [adjusted mean % increase from baseline: 1.26% (95% CI: -0.24, 2.75)], and mean glucose and HbA1c were decreased slightly compared to placebo [adjusted mean glucose change from baseline: -1.22 mmol/L (95% CI: -2.45, 0.01); adjusted mean HbA1c change from baseline: -0.219% (95% CI: -0.910, 0.472)]. Conclusions Our data demonstrate remarkable effects of GSK457 in rodent models of obesity and diabetes, but a marked lack of translation to humans. Caution should be exercised with nutritional agents when predicting human efficacy from rodent models of obesity and diabetes. Trial Registration ClinicalTrials.gov NCT01725126
Collapse
Affiliation(s)
- Rebecca J. Hodge
- Discovery Medicine, Metabolic Pathways Cardiovascular Unit, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Mark A. Paulik
- Biology, Metabolic Pathways Cardiovascular Unit, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Ann Walker
- Quantitative Sciences - Clinical Statistics, R&D Projects Clinical Platforms and Sciences, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Joyce A. Boucheron
- Biology, Metabolic Pathways Cardiovascular Unit, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Susan L. McMullen
- Clinical Pharmacology Science and Study Operations, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Dawn S. Gillmor
- Clinical Pharmacology Science and Study Operations, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Derek J. Nunez
- Discovery Medicine, Metabolic Pathways Cardiovascular Unit, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
74
|
Abstract
Glucagon-like peptide-1 (GLP-1) is a peptide hormone, released from intestinal L-cells in response to hormonal, neural and nutrient stimuli. In addition to potentiation of meal-stimulated insulin secretion, GLP-1 signalling exerts numerous pleiotropic effects on various tissues, regulating energy absorption and disposal, as well as cell proliferation and survival. In Type 2 Diabetes (T2D) reduced plasma levels of GLP-1 have been observed, and plasma levels of GLP-1, as well as reduced numbers of GLP-1 producing cells, have been correlated to obesity and insulin resistance. Increasing endogenous secretion of GLP-1 by selective targeting of the molecular mechanisms regulating secretion from the L-cell has been the focus of much recent research. An additional and promising strategy for enhancing endogenous secretion may be to increase the L-cell mass in the intestinal epithelium, but the mechanisms that regulate the growth, survival and function of these cells are largely unknown. We recently showed that prolonged exposure to high concentrations of the fatty acid palmitate induced lipotoxic effects, similar to those operative in insulin-producing cells, in an in vitro model of GLP-1-producing cells. The mechanisms inducing this lipototoxicity involved increased production of reactive oxygen species (ROS). In this review, regulation of GLP-1-secreting cells is discussed, with a focus on the mechanisms underlying GLP-1 secretion, long-term regulation of growth, differentiation and survival under normal as well as diabetic conditions of hypernutrition.
Collapse
|
75
|
Matikainen N, Björnson E, Söderlund S, Borén C, Eliasson B, Pietiläinen KH, Bogl LH, Hakkarainen A, Lundbom N, Rivellese A, Riccardi G, Després JP, Alméras N, Holst JJ, Deacon CF, Borén J, Taskinen MR. Minor Contribution of Endogenous GLP-1 and GLP-2 to Postprandial Lipemia in Obese Men. PLoS One 2016; 11:e0145890. [PMID: 26752550 PMCID: PMC4709062 DOI: 10.1371/journal.pone.0145890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/09/2015] [Indexed: 11/28/2022] Open
Abstract
Context Glucose and lipids stimulate the gut-hormones glucagon-like peptide (GLP)-1, GLP-2 and glucose-dependent insulinotropic polypeptide (GIP) but the effect of these on human postprandial lipid metabolism is not fully clarified. Objective To explore the responses of GLP-1, GLP-2 and GIP after a fat-rich meal compared to the same responses after an oral glucose tolerance test (OGTT) and to investigate possible relationships between incretin response and triglyceride-rich lipoprotein (TRL) response to a fat-rich meal. Design Glucose, insulin, GLP-1, GLP-2 and GIP were measured after an OGTT and after a fat-rich meal in 65 healthy obese (BMI 26.5–40.2 kg/m2) male subjects. Triglycerides (TG), apoB48 and apoB100 in TG-rich lipoproteins (chylomicrons, VLDL1 and VLDL2) were measured after the fat-rich meal. Main Outcome Measures Postprandial responses (area under the curve, AUC) for glucose, insulin, GLP-1, GLP-2, GIP in plasma, and TG, apoB48 and apoB100 in plasma and TG-rich lipoproteins. Results The GLP-1, GLP-2 and GIP responses after the fat-rich meal and after the OGTT correlated strongly (r = 0.73, p<0.0001; r = 0.46, p<0.001 and r = 0.69, p<0.001, respectively). Glucose and insulin AUCs were lower, but the AUCs for GLP-1, GLP-2 and GIP were significantly higher after the fat-rich meal than after the OGTT. The peak value for all hormones appeared at 120 minutes after the fat-rich meal, compared to 30 minutes after the OGTT. After the fat-rich meal, the AUCs for GLP-1, GLP-2 and GIP correlated significantly with plasma TG- and apoB48 AUCs but the contribution was very modest. Conclusions In obese males, GLP-1, GLP-2 and GIP responses to a fat-rich meal are greater than following an OGTT. However, the most important explanatory variable for postprandial TG excursion was fasting triglycerides. The contribution of endogenous GLP-1, GLP-2 and GIP to explaining the variance in postprandial TG excursion was minor.
Collapse
Affiliation(s)
- Niina Matikainen
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sanni Söderlund
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Christofer Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Björn Eliasson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kirsi H. Pietiläinen
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
- Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Leonie H. Bogl
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Angela Rivellese
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Jean-Pierre Després
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Natalie Alméras
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Jens Juul Holst
- NNF Centre for Basic Metabolic Research, and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolyn F. Deacon
- NNF Centre for Basic Metabolic Research, and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| | - Marja-Riitta Taskinen
- Research programs Unit, Diabetes and Obesity, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
76
|
Alsalim W, Tura A, Pacini G, Omar B, Bizzotto R, Mari A, Ahrén B. Mixed meal ingestion diminishes glucose excursion in comparison with glucose ingestion via several adaptive mechanisms in people with and without type 2 diabetes. Diabetes Obes Metab 2016; 18:24-33. [PMID: 26354383 DOI: 10.1111/dom.12570] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/09/2015] [Accepted: 08/28/2015] [Indexed: 12/24/2022]
Abstract
AIMS To study the integrative impact of macronutrients on postprandial glycaemia, β-cell function, glucagon and incretin hormones in humans. METHODS Macronutrients were ingested alone (glucose 330 kcal, protein 110 kcal or fat 110 kcal) or together (550 kcal) by healthy subjects (n = 18) and by subjects with drug-naïve type 2 diabetes (T2D; n = 18). β-cell function and insulin clearance were estimated by modelling glucose, insulin and C-peptide data. Secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) were measured, and paracetamol was administered to estimate gastric emptying. RESULTS In both groups, the mixed-meal challenge diminished glucose excursion compared with glucose challenge alone, and insulin levels, but not C-peptide levels, rose more than after the mixed meal than after glucose alone. β-cell function was augmented, insulin clearance was reduced and glucagon levels were higher after the mixed meal compared with glucose alone. GLP-1 and GIP levels increased after all challenges and GIP secretion was markedly higher after the mixed meal than after glucose alone. The appearance of paracetamol was delayed after the mixed-meal challenge compared with glucose alone. CONCLUSIONS Adding protein and fat macronutrients to glucose in a mixed meal diminished glucose excursion. This occurred in association with increased β-cell function, reduced insulin clearance, delayed gastric emptying and augmented glucagon and GIP secretion. This suggests that the macronutrient composition regulates glycaemia through both islet and extra-islet mechanisms in both healthy subjects and in subjects with T2D.
Collapse
Affiliation(s)
- W Alsalim
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - A Tura
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - G Pacini
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - B Omar
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - R Bizzotto
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - A Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - B Ahrén
- Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
77
|
ZEMÁNKOVÁ K, MRÁZKOVÁ J, PIŤHA J, KOVÁŘ J. The Effect of Glucose When Added to a Fat Load on the Response of Glucagon-Like Peptide-1 (GLP-1) and Apolipoprotein B-48 in the Postprandial Phase. Physiol Res 2015; 64:S363-9. [DOI: 10.33549/physiolres.933180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased and prolonged postprandial lipemia has been identified as a risk factor of cardiovascular disease. However, there is no consensus on how to test postprandial lipemia, especially with respect to the composition of an experimental meal. To address this question of how glucose, when added to a fat load, affects the selected parameters of postprandial lipemia, we carried out a study in 30 healthy male volunteers. Men consumed an experimental meal containing either 75 g of fat + 25 g of glucose (F+G meal) or 75 g of fat (F meal) in a control experiment. Blood was taken before the meal and at selected time points within the following 8 h. Glucose, when added to a fat load, induced an increase of glycemia and insulinemia and, surprisingly, a 20 % reduction in the response of both total and active glucagon-like peptide-1 (GLP-1) concentration. The addition of glucose did not affect the magnitude of postprandial triglyceridemia and TRL-C and TRL-TG concentrations but stimulated a faster response of chylomicrons to the test meal, evaluated by changes in apolipoprotein B-48 concentrations. The addition of glucose induced the physiological response of insulin and the lower response of GLP-1 to the test meal during the early postprandial phase, but had no effect on changes of TRL-cholesterol and TRL-TG within 8 h after the meal.
Collapse
Affiliation(s)
- K. ZEMÁNKOVÁ
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | |
Collapse
|
78
|
Tricò D, Baldi S, Tulipani A, Frascerra S, Macedo MP, Mari A, Ferrannini E, Natali A. Mechanisms through which a small protein and lipid preload improves glucose tolerance. Diabetologia 2015. [PMID: 26224101 DOI: 10.1007/s00125-015-3710-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AIMS/HYPOTHESIS Small protein or lipid preloads are able to improve glucose tolerance to a different extent and through different and poorly defined mechanisms. We aimed at quantifying the effect of a mixed protein and lipid preload and at evaluating the underlying mechanisms. METHODS Volunteers with normal (NGT, n = 12) or impaired (IGT, n = 13) glucose tolerance and patients with type 2 diabetes (n = 10) underwent two OGTTs coupled to the double glucose tracer protocol, preceded by either 50 g of parmesan cheese, a boiled egg and 300 ml of water, or 500 ml of water. We measured plasma glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), pancreatic polypeptide (PP), NEFA and glucose tracers, and calculated glucose fluxes, beta cell function variables, insulin sensitivity and clearance. RESULTS After the nutrient preload, the OGTT-induced rise of plasma glucose was lower than after water alone in each study group. This reduction—more pronounced across classes of glucose tolerance (NGT -32%, IGT -37%, type 2 diabetes -49%; p < 0.002)—was the result of different combinations of slower exogenous glucose rate of appearance, improved beta cell function and reduced insulin clearance, in this order of relevance, which were associated with an only mild stimulation of GIP and GLP-1. CONCLUSIONS/INTERPRETATION After a non-glucidic nutrient preload, glucose tolerance improved in proportion to the degree of its baseline deterioration through mechanisms that appear particularly effective in type 2 diabetes. Exploiting the physiological responses to nutrient ingestion might reveal, at least in the first stages of the diabetic disease, a potent tool to improve daily life glycaemic control. TRIAL REGISTRATION ClinicalTrials.gov NCT02342834 FUNDING: This work was supported by grants from the University of Pisa (Fondi di Ateneo) and by FCT grant (PIC/IC/82956/2007).
Collapse
Affiliation(s)
- Domenico Tricò
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, Pisa, 56100, Italy.
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| | - Simona Baldi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, Pisa, 56100, Italy
| | - Alberto Tulipani
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, Pisa, 56100, Italy
| | - Silvia Frascerra
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, Pisa, 56100, Italy
| | - Maria Paula Macedo
- CEDOC, NOVA Medical School/Faculdade de Ciencias Medicas (NMS/FCM), Universidade Nova de Lisboa, Lisboa, Portugal
- APDP-Diabetes Portugal, Education and Research Centre (APDP-ERC), Lisboa, Portugal
| | - Andrea Mari
- National Research Council, Institute of Neuroscience, Padua, Italy
| | - Ele Ferrannini
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, Pisa, 56100, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 57, Pisa, 56100, Italy
| |
Collapse
|
79
|
Christensen LW, Kuhre RE, Janus C, Svendsen B, Holst JJ. Vascular, but not luminal, activation of FFAR1 (GPR40) stimulates GLP-1 secretion from isolated perfused rat small intestine. Physiol Rep 2015; 3:e12551. [PMID: 26381015 PMCID: PMC4600392 DOI: 10.14814/phy2.12551] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/25/2015] [Accepted: 08/29/2015] [Indexed: 12/23/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) plays a central role in modern treatment of type 2 diabetes (T2DM) in the form of GLP-1 enhancers and GLP-1 mimetics. An alternative treatment strategy is to stimulate endogenous GLP-1 secretion from enteroendocrine L cells using a targeted approach. The G-protein-coupled receptor, FFAR1 (previously GPR40), expressed on L cells and activated by long-chain fatty acids (LCFAs) is a potential target. A link between FFAR1 activation and GLP-1 secretion has been demonstrated in cellular models and small-molecule FFAR1 agonists have been developed. In this study, we examined the effect of FFAR1 activation on GLP-1 secretion using isolated, perfused small intestines from rats, a physiologically relevant model allowing distinction between direct and indirect effects of FFAR1 activation. The endogenous FFAR1 ligand, linoleic acid (LA), and four synthetic FFAR1 agonists (TAK-875, AMG 837, AM-1638, and AM-5262) were administered through intraluminal and intra-arterial routes, respectively, and dynamic changes in GLP-1 secretion were evaluated. Vascular administration of 10 μmol/L TAK-875, 10 μmol/L AMG 837, 1 μmol/L and 0.1 μmol/L AM-1638, 1 μmol/L AM-6252, and 1 mmol/L LA, all significantly increased GLP-1 secretion compared to basal levels (P < 0.05), whereas luminal administration of LA and FFAR1 agonists was ineffective. Thus, both natural and small-molecule agonists of the FFAR1 receptor appear to require absorption prior to stimulating GLP-1 secretion, indicating that therapies based on activation of nutrient sensing may be more complex than hitherto expected.
Collapse
Affiliation(s)
- Louise W Christensen
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| | - Rune E Kuhre
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Janus
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| | - Berit Svendsen
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum Institute University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
80
|
Mandøe MJ, Hansen KB, Hartmann B, Rehfeld JF, Holst JJ, Hansen HS. The 2-monoacylglycerol moiety of dietary fat appears to be responsible for the fat-induced release of GLP-1 in humans. Am J Clin Nutr 2015; 102:548-55. [PMID: 26178726 DOI: 10.3945/ajcn.115.106799] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dietary triglycerides can, after digestion, stimulate the intestinal release of incretin hormones through activation of G protein-coupled receptor (GPR) 119 by 2-monoacylglycerol and by the activation of fatty acid receptors for long- and short-chain fatty acids. Medium-chain fatty acids do not stimulate the release of intestinal hormones. OBJECTIVE To dissect the mechanism of fat-induced glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) release in humans, we compared the effects of tributyrin (containing short-chain fatty acids; i.e., butyric acid), olive oil [containing long-chain fatty acids; e.g., oleic acid plus 2-oleoyl glycerol (2-OG)], and 1,3-dioctanoyl-2-oleoyl glycerol (C8-dietary oil), which is digested to form medium-chain fatty acids : i.e., octanoic acid : and 2-OG. DESIGN In a randomized, single-blinded crossover study, 12 healthy white men [mean age: 24 y; BMI (in kg/m(2)): 22] were given the following 4 meals on 4 different days: 200 g carrots + 6.53 g tributyrin, 200 g carrots + 13.15 g C8-dietary oil, 200 g carrots + 19 g olive oil, or 200 g carrots. All of the lipids totaled 0.0216 mol. Main outcome measures were incremental areas under the curve for total GLP-1, GIP, and cholecystokinin (CCK) in plasma. RESULTS C8-dietary oil and olive oil showed the same GLP-1 response [583 ± 101 and 538 ± 71 (pmol/L) × 120 min; P = 0.733], whereas the GIP response was higher for olive oil than for C8-dietary oil [3293 ± 404 and 1674 ± 270 (pmol/L) × 120 min; P = 0.002]. Tributyrin and carrots alone resulted in no increase in any of the measured hormones. Peptide YY (PYY) and neurotensin responses resembled those of GLP-1. Only olive oil stimulated CCK release. CONCLUSIONS Under our study conditions, 2-OG and GPR119 activation can fully explain the olive oil-induced secretion of GLP-1, PYY, and neurotensin. In contrast, both oleic acid and 2-OG contributed to the GIP response. Dietary butyrate did not stimulate gut hormone secretion. Olive oil-derived oleic acid seems to be fully responsible for olive oil-induced CCK secretion. This trial was registered at clinicaltrials.gov as NCT02264951.
Collapse
Affiliation(s)
- Mette J Mandøe
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, and Department of Clinical Physiology and Nuclear Medicine, Glostrup Hospital, Glostrup, Denmark; and
| | - Katrine B Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, and Department of Clinical Physiology and Nuclear Medicine, Glostrup Hospital, Glostrup, Denmark; and
| | | | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Denmark
| | - Jens J Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, Faculty of Health Sciences, and
| | - Harald S Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
81
|
Cross-linking of sodium caseinate-structured emulsion with transglutaminase alters postprandial metabolic and appetite responses in healthy young individuals. Br J Nutr 2015; 114:418-29. [DOI: 10.1017/s0007114515001737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The physico-chemical and interfacial properties of fat emulsions influence lipid digestion and may affect postprandial responses. The aim of the present study was to determine the effects of the modification of the interfacial layer of a fat emulsion by cross-linking on postprandial metabolic and appetite responses. A total of fifteen healthy individuals (26·5 (sem6·9) years and BMI 21·9 (sem2·0) kg/m2) participated in a cross-over design experiment in which they consumed two isoenergetic (1924 kJ (460 kcal)) and isovolumic (250 g) emulsions stabilised with either sodium caseinate (Cas) or transglutaminase-cross-linked sodium caseinate (Cas-TG) in a randomised order. Blood samples were collected from the individuals at baseline and for 6 h postprandially for the determination of serum TAG and plasma NEFA, cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), glucose and insulin responses. Appetite was assessed using visual analogue scales. Postprandial TAG and NEFA responses and gastric emptying (GE) rates were comparable between the emulsions. CCK increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0·05), while GLP-1 responses did not differ between the two test emulsions. Glucose and insulin profiles were lower after consuming Cas-TG than after consuming Cas (P< 0·05). The overall insulin, glucose and CCK responses, expressed as areas above/under the curve, did not differ significantly between the Cas and Cas-TG meal conditions. Satiety ratings were reduced and hunger, desire to eat and thirst ratings increased more after the ingestion of Cas-TG than after the ingestion of Cas (P< 0·05). The present results suggest that even a subtle structural modification of the interfacial layer of a fat emulsion can alter the early postprandial profiles of glucose, insulin, CCK, appetite and satiety through decreased protein digestion without affecting significantly on GE or overall lipid digestion.
Collapse
|
82
|
Godinho R, Mega C, Teixeira-de-Lemos E, Carvalho E, Teixeira F, Fernandes R, Reis F. The Place of Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes Therapeutics: A "Me Too" or "the Special One" Antidiabetic Class? J Diabetes Res 2015; 2015:806979. [PMID: 26075286 PMCID: PMC4449938 DOI: 10.1155/2015/806979] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 12/12/2022] Open
Abstract
Incretin-based therapies, the most recent therapeutic options for type 2 diabetes mellitus (T2DM) management, can modify various elements of the disease, including hypersecretion of glucagon, abnormal gastric emptying, postprandial hyperglycaemia, and, possibly, pancreatic β cell dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) increase glucagon-like peptide-1 (GLP-1) availability and correct the "incretin defect" seen in T2DM patients. Clinical studies have shown good glycaemic control with minimal risk of hypoglycaemia or any other adverse effects, despite the reports of pancreatitis, whose association remains to be proved. Recent studies have been focusing on the putative ability of DPP-4 inhibitors to preserve pancreas function, in particular due to the inhibition of apoptotic pathways and stimulation of β cell proliferation. In addition, other cytoprotective effects on other organs/tissues that are involved in serious T2DM complications, including the heart, kidney, and retina, have been increasingly reported. This review outlines the therapeutic potential of DPP-4 inhibitors for the treatment of T2DM, focusing on their main features, clinical applications, and risks, and discusses the major challenges for the future, in particular the possibility of becoming the preferred therapy for T2DM due to their ability to modify the natural history of the disease and ameliorate nephropathy, retinopathy, and cardiovascular complications.
Collapse
Affiliation(s)
- Ricardo Godinho
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
| | - Cristina Mega
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Edite Teixeira-de-Lemos
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- ESAV, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
- The Portuguese Diabetes Association (APDP), 1250-189 Lisbon, Portugal
| | - Frederico Teixeira
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
| | - Rosa Fernandes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, Coimbra University, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
83
|
Park YM, Heden TD, Liu Y, Nyhoff LM, Thyfault JP, Leidy HJ, Kanaley JA. A high-protein breakfast induces greater insulin and glucose-dependent insulinotropic peptide responses to a subsequent lunch meal in individuals with type 2 diabetes. J Nutr 2015; 145:452-8. [PMID: 25733459 PMCID: PMC6619673 DOI: 10.3945/jn.114.202549] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The previous meal modulates the postprandial glycemic responses to a subsequent meal; this is termed the second-meal phenomenon. OBJECTIVE This study examined the effects of high-protein vs. high-carbohydrate breakfast meals on the metabolic and incretin responses after the breakfast and lunch meals. METHODS Twelve type 2 diabetic men and women [age: 21-55 y; body mass index (BMI): 30-40 kg/m(2)] completed two 7-d breakfast conditions consisting of 500-kcal breakfast meals as protein (35% protein/45% carbohydrate) or carbohydrate (15% protein/65% carbohydrate). On day 7, subjects completed an 8-h testing day. After an overnight fast, the subjects consumed their respective breakfast followed by a standard 500-kcal high-carbohydrate lunch meal 4 h later. Blood samples were taken throughout the day for assessment of 4-h postbreakfast and 4-h postlunch total area under the curve (AUC) for glucose, insulin, C-peptide, glucagon, glucose-dependent insulinotropic peptide (GIP), and glucagon-like peptide 1 (GLP-1). RESULTS Postbreakfast glucose and GIP AUCs were lower after the protein (17%) vs. after the carbohydrate (23%) condition (P < 0.05), whereas postbreakfast insulin, C-peptide, glucagon, and GLP-1 AUCs were not different between conditions. A protein-rich breakfast may reduce the consequences of hyperglycemia in this population. Postlunch insulin, C-peptide, and GIP AUCs were greater after the protein condition vs. after the carbohydrate condition (second-meal phenomenon; all, P < 0.05), but postlunch AUCs were not different between conditions. The overall glucose, glucagon, and GLP-1 responses (e.g., 8 h) were greater after the protein condition vs. after the carbohydrate condition (all, P < 0.05). CONCLUSIONS In type 2 diabetic individuals, compared with a high-carbohydrate breakfast, the consumption of a high-protein breakfast meal attenuates the postprandial glucose response and does not magnify the response to the second meal. Insulin, C-peptide, and GIP concentrations demonstrate the second-meal phenomenon and most likely aid in keeping the glucose concentrations controlled in response to the subsequent meal. The trial was registered at www.clinicaltrials.gov/ct2/show/NCT02180646 as NCT02180646.
Collapse
Affiliation(s)
- Young-Min Park
- Department of Nutrition and Exercise Physiology, Division of
Gastroenterology and Hepatology, University of Missouri, Columbia, MO
| | - Timothy D Heden
- Department of Nutrition and Exercise Physiology, Division of
Gastroenterology and Hepatology, University of Missouri, Columbia, MO
| | - Ying Liu
- Department of Nutrition and Exercise Physiology, Division of
Gastroenterology and Hepatology, University of Missouri, Columbia, MO
| | - Lauryn M Nyhoff
- Department of Nutrition and Exercise Physiology, Division of
Gastroenterology and Hepatology, University of Missouri, Columbia, MO
| | - John P Thyfault
- Department of Nutrition and Exercise Physiology, Division of
Gastroenterology and Hepatology, University of Missouri, Columbia, MO,Department of Medicine, Division of Gastroenterology and Hepatology,
University of Missouri, Columbia, MO
| | - Heather J Leidy
- Department of Nutrition and Exercise Physiology, Division of
Gastroenterology and Hepatology, University of Missouri, Columbia, MO
| | | |
Collapse
|
84
|
Abstract
Incretin-based therapy has clearly emerged as one of the most sought out strategy in managing type 2 diabetes, primarily because they generally do not causes hypoglycemia and possess weight-neutral or weight losing properties. Efficacy-wise too, these agents, are more or less similar to commonly used drugs metformin and sulfonylureas. Interestingly, some studies recently suggested that glycemic response to these incretin-based therapies could also differ ethnicity-wise. Subsequently, meta-analysis from these studies also suggested that Asians may have better response to these incretin-based therapies. This review will be an attempt to critically analyze those studies available in literature and to address as to why East-Asians and South-Asians may have different incretin response compared to non-Asians.
Collapse
Affiliation(s)
- Awadhesh Kumar Singh
- Consultant Endocrinologist, G.D. Diabetes Hospital, Kolkata, West Bengal, and Sun Valley Diabetes Hospital, Guwahati, Assam, India
| |
Collapse
|
85
|
Wang X, Liu H, Chen J, Li Y, Qu S. Multiple Factors Related to the Secretion of Glucagon-Like Peptide-1. Int J Endocrinol 2015; 2015:651757. [PMID: 26366173 PMCID: PMC4558455 DOI: 10.1155/2015/651757] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/02/2015] [Accepted: 08/03/2015] [Indexed: 12/15/2022] Open
Abstract
The glucagon-like peptide-1 is secreted by intestinal L cells in response to nutrient ingestion. It regulates the secretion and sensitivity of insulin while suppressing glucagon secretion and decreasing postprandial glucose levels. It also improves beta-cell proliferation and prevents beta-cell apoptosis induced by cytotoxic agents. Additionally, glucagon-like peptide-1 delays gastric emptying and suppresses appetite. The impaired secretion of glucagon-like peptide-1 has negative influence on diabetes, hyperlipidemia, and insulin resistance related diseases. Thus, glucagon-like peptide-1-based therapies (glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors) are now well accepted in the management of type 2 diabetes. The levels of glucagon-like peptide-1 are influenced by multiple factors including a variety of nutrients. The component of a meal acts as potent stimulants of glucagon-like peptide-1 secretion. The levels of its secretion change with the intake of different nutrients. Some drugs also have influence on GLP-1 secretion. Bariatric surgery may improve metabolism through the action on GLP-1 levels. In recent years, there has been a great interest in developing effective methods to regulate glucagon-like peptide-1 secretion. This review summarizes the literature on glucagon-like peptide-1 and related factors affecting its levels.
Collapse
Affiliation(s)
- XingChun Wang
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
| | - Huan Liu
- Department of Urology, Zhenjiang First People's Hospital, Zhenjiang, Jiangsu 212002, China
| | - Jiaqi Chen
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
- Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Li
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
- Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai 10th People's Hospital, Tongji University, Shanghai 200072, China
- Nanjing Medical University, Nanjing, Jiangsu 210029, China
- *Shen Qu:
| |
Collapse
|
86
|
Abstract
Although GLP-1 (glucagon like peptide-1) based therapies (GLP-1 agonists and dipeptidyl peptidase-4 inhibitors) is currently playing a cornerstone role in the treatment of type 2 diabetes, dilemma does exist about some of its basic physiology. So far, we know that GLP-1 is secreted by the direct actions of luminal contents on the L cells in distal jejunum and proximal ileum. However, there is growing evidence now, which suggest that other mechanism via "neural" or "upper gut" signals may be playing a second fiddle and could stimulate GLP-1 secretion even before the luminal contents have reached into the proximities of L cells. Therefore, the contribution of direct and indirect mechanism to GLP-1 secretion remains elusive. Furthermore, no clear consensus exists about the pattern of GLP-1 secretion, although many believe it is monophasic. One of the most exciting issues in incretin science is GLP-1 level and GLP-1 responsiveness. It is not exactly known as to what happens to endogenous GLP-1 with progressive worsening of dysglycemia from normal glucose tolerance to impaired glucose to frank diabetes and furthermore with increasing duration of diabetes. Although, conventional wisdom suggests that there may be a decrease in endogenous GLP-1 level with the worsening of dysglycemia, literature showed discordant results. Furthermore, there is emerging evidence to suggest that GLP-1 response can vary with ethnicity. This mini review is an attempt to put a brief perspective on all these issues.
Collapse
Affiliation(s)
- Awadhesh Kumar Singh
- Senior Consultant Endocrinologist, G.D Diabetes Hospital, Kolkata, West Bengal, India
- Sun Valley Diabetes Hospital, Guwahati, Assam, India
| |
Collapse
|
87
|
Heruc GA, Horowitz M, Deacon CF, Feinle-Bisset C, Rayner CK, Luscombe-Marsh N, Little TJ. Effects of dipeptidyl peptidase IV inhibition on glycemic, gut hormone, triglyceride, energy expenditure, and energy intake responses to fat in healthy males. Am J Physiol Endocrinol Metab 2014; 307:E830-7. [PMID: 25231186 DOI: 10.1152/ajpendo.00370.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fat is the most potent stimulus for glucagon-like peptide-1 (GLP-1) secretion. The aims of this study were to determine whether dipeptidyl peptidase IV (DPP-IV) inhibition would enhance plasma active incretin [glucose-dependent insulinotropic polypeptide (GIP), GLP-1] concentrations and modulate the glycemic, gut hormone, triglyceride, energy expenditure, and energy intake responses to intraduodenal fat infusion. In a double-blind, randomized, placebo-controlled crossover design, 16 healthy lean males received 50 mg vildagliptin (V), or matched placebo (P), before intraduodenal fat infusion (2 kcal/min, 120 min). Blood glucose, plasma insulin, glucagon, active GLP-1, and GIP and peptide YY (PYY)-(3-36) concentrations; resting energy expenditure; and energy intake at a subsequent buffet meal (time = 120-150 min) were quantified. Data are presented as areas under the curve (0-120 min, means ± SE). Vildagliptin decreased glycemia (P: 598 ± 8 vs. V: 573 ± 9 mmol·l⁻¹·min⁻¹, P < 0.05) during intraduodenal lipid. This was associated with increased insulin (P: 15,964 ± 1,193 vs. V: 18,243 ± 1,257 pmol·l⁻¹·min⁻¹, P < 0.05), reduced glucagon (P: 1,008 ± 52 vs. V: 902 ± 46 pmol·l⁻¹·min⁻¹, P < 0.05), enhanced active GLP-1 (P: 294 ± 40 vs. V: 694 ± 78 pmol·l⁻¹·min⁻¹) and GIP (P: 2,748 ± 77 vs. V: 4,256 ± 157 pmol·l⁻¹·min⁻¹), and reduced PYY-(3-36) (P: 9,527 ± 754 vs. V: 4,469 ± 431 pM/min) concentrations compared with placebo (P < 0.05, for all). Vildagliptin increased resting energy expenditure (P: 1,821 ± 54 vs. V: 1,896 ± 65 kcal/day, P < 0.05) without effecting energy intake. Vildagliptin 1) modulates the effects of intraduodenal fat to enhance active GLP-1 and GIP, stimulate insulin, and suppress glucagon, thereby reducing glycemia and 2) increases energy expenditure. These observations suggest that the fat content of a meal, by enhancing GLP-1 and GIP secretion, may contribute to the response to DPP-IV inhibition.
Collapse
Affiliation(s)
- Gabriella A Heruc
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Carolyn F Deacon
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Christopher K Rayner
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Natalie Luscombe-Marsh
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| | - Tanya J Little
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia; National Health and Medical Research Council Centre for Research Excellence in Translating Nutritional Science to Good Health, Adelaide, South Australia, Australia; and
| |
Collapse
|
88
|
Sonne DP, Rehfeld JF, Holst JJ, Vilsbøll T, Knop FK. Postprandial gallbladder emptying in patients with type 2 diabetes: potential implications for bile-induced secretion of glucagon-like peptide 1. Eur J Endocrinol 2014; 171:407-19. [PMID: 24986531 DOI: 10.1530/eje-14-0309] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Recent preclinical work has suggested that postprandial flow of bile acids into the small intestine potentiates nutrient-induced glucagon-like peptide 1 (GLP1(GCG)) secretion via bile acid-induced activation of the G protein-coupled receptor TGR5 in intestinal L cells. The notion of bile-induced GLP1 secretion combined with the findings of reduced postprandial gallbladder emptying in patients with type 2 diabetes (T2DM) led us to speculate whether reduced postprandial GLP1 responses in some patients with T2DM arise as a consequence of diabetic gallbladder dysmotility. DESIGN AND METHODS In a randomised design, 15 patients with long-standing T2DM and 15 healthy age-, gender- and BMI-matched control subjects were studied during 75-g oral glucose tolerance test (OGTT) and three isocaloric (500 kcal) and isovolaemic (350 ml) liquid meals: i) 2.5 g fat, 107 g carbohydrate and 13 g protein; ii) 10 g fat, 93 g carbohydrate and 11 g protein; and iii) 40 g fat, 32 g carbohydrate and 3 g protein. Basal and postprandial plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP1, glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin and gastrin were measured. Furthermore, gallbladder emptying and gastric emptying were examined. RESULTS Gallbladder emptying increased with increasing meal fat content, but no intergroup differences were demonstrated. GIP and GLP1 responses were comparable among the groups with GIP levels being higher following high-fat meals, whereas GLP1 secretion was similar after both OGTT and meals. CONCLUSIONS In conclusion, patients with T2DM exhibited normal gallbladder emptying to meals with a wide range of fat content. Incretin responses were similar to that in controls, and an association with postprandial gallbladder contraction could not be demonstrated.
Collapse
Affiliation(s)
- David P Sonne
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkThe NNF Center for Basic Metabolic ResearchDepartment of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, DenmarkDepartment of Clinical BiochemistryCopenhagen University Hospital Rigshospitalet, Copenhagen, Denmark Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkThe NNF Center for Basic Metabolic ResearchDepartment of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, DenmarkDepartment of Clinical BiochemistryCopenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens F Rehfeld
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkThe NNF Center for Basic Metabolic ResearchDepartment of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, DenmarkDepartment of Clinical BiochemistryCopenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens J Holst
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkThe NNF Center for Basic Metabolic ResearchDepartment of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, DenmarkDepartment of Clinical BiochemistryCopenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Tina Vilsbøll
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkThe NNF Center for Basic Metabolic ResearchDepartment of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, DenmarkDepartment of Clinical BiochemistryCopenhagen University Hospital Rigshospitalet, Copenhagen, Denmark Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkThe NNF Center for Basic Metabolic ResearchDepartment of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, DenmarkDepartment of Clinical BiochemistryCopenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Filip K Knop
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkThe NNF Center for Basic Metabolic ResearchDepartment of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, DenmarkDepartment of Clinical BiochemistryCopenhagen University Hospital Rigshospitalet, Copenhagen, Denmark Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, University of Copenhagen, Niels Andersens Vej 65, DK-2900 Hellerup, DenmarkThe NNF Center for Basic Metabolic ResearchDepartment of Biomedical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, DenmarkDepartment of Clinical BiochemistryCopenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
89
|
Differential acute postprandial effects of processed meat and isocaloric vegan meals on the gastrointestinal hormone response in subjects suffering from type 2 diabetes and healthy controls: a randomized crossover study. PLoS One 2014; 9:e107561. [PMID: 25222490 PMCID: PMC4164634 DOI: 10.1371/journal.pone.0107561] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 08/08/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The intake of meat, particularly processed meat, is a dietary risk factor for diabetes. Meat intake impairs insulin sensitivity and leads to increased oxidative stress. However, its effect on postprandial gastrointestinal hormone (GIH) secretion is unclear. We aimed to investigate the acute effects of two standardized isocaloric meals: a processed hamburger meat meal rich in protein and saturated fat (M-meal) and a vegan meal rich in carbohydrates (V-meal). We hypothesized that the meat meal would lead to abnormal postprandial increases in plasma lipids and oxidative stress markers and impaired GIH responses. METHODS In a randomized crossover study, 50 patients suffering from type 2 diabetes (T2D) and 50 healthy subjects underwent two 3-h meal tolerance tests. For statistical analyses, repeated-measures ANOVA was performed. RESULTS The M-meal resulted in a higher postprandial increase in lipids in both groups (p<0.001) and persistent postprandial hyperinsulinemia in patients with diabetes (p<0.001). The plasma glucose levels were significantly higher after the V-meal only at the peak level. The plasma concentrations of glucose-dependent insulinotropic peptide (GIP), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP) were higher (p<0.05, p<0.001, p<0.001, respectively) and the ghrelin concentration was lower (p<0.001) after the M-meal in healthy subjects. In contrast, the concentrations of GIP, PYY and PP were significantly lower after the M-meal in T2D patients (p<0.001). Compared with the V-meal, the M-meal was associated with a larger increase in lipoperoxidation in T2D patients (p<0.05). CONCLUSION/INTERPRETATION Our results suggest that the diet composition and the energy content, rather than the carbohydrate count, should be important considerations for dietary management and demonstrate that processed meat consumption is accompanied by impaired GIH responses and increased oxidative stress marker levels in diabetic patients. TRIAL REGISTRATION ClinicalTrials.gov NCT01572402.
Collapse
|
90
|
Sonne DP, Hansen M, Knop FK. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol 2014; 171:R47-65. [PMID: 24760535 DOI: 10.1530/eje-14-0154] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, thereby lowering cholesterol concentrations in the circulation. In the early 1990s, it was observed that bile acid sequestrants improved glycaemic control in patients with type 2 diabetes. Subsequently, several studies confirmed the finding and recently - despite elusive mechanisms of action - bile acid sequestrants have been approved in the USA for the treatment of type 2 diabetes. Nowadays, bile acids are no longer labelled as simple detergents necessary for lipid digestion and absorption, but are increasingly recognised as metabolic regulators. They are potent hormones, work as signalling molecules on nuclear receptors and G protein-coupled receptors and trigger a myriad of signalling pathways in many target organs. The most described and well-known receptors activated by bile acids are the farnesoid X receptor (nuclear receptor) and the G protein-coupled cell membrane receptor TGR5. Besides controlling bile acid metabolism, these receptors are implicated in lipid, glucose and energy metabolism. Interestingly, activation of TGR5 on enteroendocrine L cells has been suggested to affect secretion of incretin hormones, particularly glucagon-like peptide 1 (GLP1 (GCG)). This review discusses the role of bile acid sequestrants in the treatment of type 2 diabetes, the possible mechanism of action and the role of bile acid-induced secretion of GLP1 via activation of TGR5.
Collapse
Affiliation(s)
- David P Sonne
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| | - Morten Hansen
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| | - Filip K Knop
- Diabetes Research DivisionDepartment of Medicine, Gentofte Hospital, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
| |
Collapse
|
91
|
Incretin response to a standard test meal in a rat model of sleeve gastrectomy with diet-induced obesity. Obes Surg 2014; 24:95-101. [PMID: 23934273 DOI: 10.1007/s11695-013-1056-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Currently, the most effective treatment for obesity is bariatric surgery. Gastroduodenal bypass surgery produces sustained weight loss and improves glycemic control and insulin sensitivity. Previous studies have shown that sleeve gastrectomy (SG) produces similar results and implicate changes in incretin hormone release in these effects. METHODS Male Sprague-Dawley rats were divided into four groups; lean control (lean), diet-induced obesity (DIO), DIO animals that had undergone SG (SG), and DIO animals that had undergone a sham operation (sham). RESULTS After a 2-week recovery period, the incretin response to a standard test meal was measured. Blood sampling was performed in free-moving rats at various time points using chronic vascular access to the right jugular vein. There was a significant increase in the bodyweight of DIO animals fed a high-fat/high-sugar diet compared with the lean animals, which was reversed by SG. DIO caused an impairment of the GLP-1 response to a standard test meal, but not the GIP response. SG resulted in a dramatic increase in the GLP-1 response to a standard test meal but had no effect on the GIP response. CONCLUSIONS A rapid rise in blood sugar was observed in the SG group following a standard test meal that was followed by reactive hypoglycemia. SG dramatically increases the GLP-1 response to a standard test meal but has no effect on GIP in a rat model of DIO.
Collapse
|
92
|
Rietman A, Schwarz J, Tomé D, Kok FJ, Mensink M. High dietary protein intake, reducing or eliciting insulin resistance? Eur J Clin Nutr 2014; 68:973-9. [DOI: 10.1038/ejcn.2014.123] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023]
|
93
|
Idorn T, Knop FK, Jørgensen MB, Christensen M, Holst JJ, Hornum M, Feldt-Rasmussen B. Elimination and degradation of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with end-stage renal disease. J Clin Endocrinol Metab 2014; 99:2457-66. [PMID: 24712563 DOI: 10.1210/jc.2013-3809] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT The affect of the kidneys in elimination and degradation of intact incretin hormones and their truncated metabolites is unclear. OBJECTIVE To evaluate elimination and degradation of glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) in patients with dialysis-dependent kidney failure. SETTING AND DESIGN Twelve non-diabetic patients treated with chronic hemodialysis and 12 control subjects were examined in a double-blind, randomized, matched observational study at the Department of Nephrology, Rigshospitalet, University of Copenhagen, Denmark. Over 4 separate study days, synthetic human GIP or GLP-1 was infused with or without concurrent inhibition of dipeptidyl peptidase 4 using sitagliptin or placebo. Plasma concentrations of glucose, insulin, glucagon, and intact and total forms of GLP-1 or GIP were measured repeatedly. Plasma half-life (T1/2), metabolic clearance rate (MCR), area under curve, and volume of distribution for intact and metabolite levels of GLP-1 and GIP were calculated. RESULTS Fasting concentrations of intact GLP-1 and GIP were increased in dialysis patients (P < .001) whereas fasting levels of GLP-1 and GIP metabolites did not differ between groups (P > .738). MCRs of intact GLP-1 and GIP, and the GLP-1 metabolite were reduced in dialysis patients on the placebo day (P < .009), and T1/2 of intact and metabolite forms of GLP-1 and GIP were comparable between groups (P > .121). CONCLUSIONS Unexpectedly, degradation and elimination of the intact and metabolite forms of GLP-1 and GIP seemed preserved, although reduced, in patients with dialysis-dependent kidney failure.
Collapse
Affiliation(s)
- Thomas Idorn
- Department of Nephrology (T.I., M.B.J., M.H., B.F.-R.), Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; Diabetes Research Division, Department of Internal Medicine (F.K.K., M.C.), Gentofte Hospital, University of Copenhagen, DK-2900 Hellerup, Denmark; and The NNF Center for Basic Metabolic Research, Department of Biomedical Sciences (F.K.K., J.J.H.), the Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Gastric inhibitory polypeptide (GIP) and glucagon‐like peptide‐1 (GLP‐1) are the two primary incretin hormones secreted from the intestine on ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP‐1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP‐1 receptor (GLP‐1R), which belong to the G‐protein coupled receptor family. Receptor binding activates and increases the level of intracellular cyclic adenosine monophosphate in pancreatic β cells, thereby stimulating insulin secretion glucose‐dependently. In addition to their insulinotropic effects, GIP and GLP‐1 play critical roles in various biological processes in different tissues and organs that express GIPR and GLP‐1R, including the pancreas, fat, bone and the brain. Within the pancreas, GIP and GLP‐1 together promote β cell proliferation and inhibit apoptosis, thereby expanding pancreatic β cell mass, while GIP enhances postprandial glucagon response and GLP‐1 suppresses it. In adipose tissues, GIP but not GLP‐1 facilitates fat deposition. In bone, GIP promotes bone formation while GLP‐1 inhibits bone absorption. In the brain, both GIP and GLP‐1 are thought to be involved in memory formation as well as the control of appetite. In addition to these differences, secretion of GIP and GLP‐1 and their insulinotropic effects on β cells have been shown to differ in patients with type 2 diabetes compared to healthy subjects. We summarize here the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic action on pancreatic β cells, and their non‐insulinotropic effects, and discuss their potential in treatment of type 2 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00022.x, 2010)
Collapse
Affiliation(s)
- Yutaka Seino
- The Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Mitsuo Fukushima
- The Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka ; The Department of Nutritional Science, Okayama Prefectural University, Okayama, Japan
| | - Daisuke Yabe
- The Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| |
Collapse
|
95
|
Yabe D, Kuroe A, Lee S, Watanabe K, Hyo T, Hishizawa M, Kurose T, Deacon CF, Holst JJ, Hirano T, Inagaki N, Seino Y. Little enhancement of meal-induced glucagon-like peptide 1 secretion in Japanese: Comparison of type 2 diabetes patients and healthy controls. J Diabetes Investig 2014; 1:56-9. [PMID: 24843409 PMCID: PMC4020678 DOI: 10.1111/j.2040-1124.2010.00010.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although glucose-dependent insulinotropic polypeptide (GIP) levels have been characterized previously, GLP-1 levels in Asians remain unclear. Here, we investigate total and intact levels of GLP-1, as well as GIP during oral glucose and meal tolerance tests (OGTT and MTT) in Japanese patients with or without type 2 diabetes (T2DM). Seventeen Japanese healthy controls and 18 age-matched and untreated patients with T2DM of short duration participated in the present study. Fasting levels of total GPL-1 were similar between the two groups (approximately 15 pM), and intact GLP-1 levels were considerably low in both groups (less than 1 pM). In both groups, total GLP-1 reached a peak 30 min after glucose ingestion (30-40 pM), whereas intact GLP-1 levels remained low with no significant peak. In MTT, total and intact GLP-1 showed no obvious peak. The current data indicate that intact GLP-1 levels are considerably low in the Japanese and that meal-induced enhancement of GLP-1 secretion is negligible in the Japanese. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00010.x, 2010).
Collapse
Affiliation(s)
- Daisuke Yabe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Akira Kuroe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Soushou Lee
- Department of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Koin Watanabe
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Takanori Hyo
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Masahiro Hishizawa
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Takeshi Kurose
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| | - Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tsutomu Hirano
- Department of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Nobuya Inagaki
- Department of Diabetes and Clinical Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Seino
- Division of Diabetes, Clinical Nutrition and Endocrinology, Kansai Electric Power Hospital, Osaka
| |
Collapse
|
96
|
Christensen MB, Calanna S, Holst JJ, Vilsbøll T, Knop FK. Glucose-dependent insulinotropic polypeptide: blood glucose stabilizing effects in patients with type 2 diabetes. J Clin Endocrinol Metab 2014; 99:E418-26. [PMID: 24423311 DOI: 10.1210/jc.2013-3644] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CONTEXT Patients with type 2 diabetes mellitus (T2DM) have clinically relevant disturbances in the effects of the hormone glucose-dependent insulinotropic polypeptide (GIP). OBJECTIVE We aimed to evaluate the importance of the prevailing plasma glucose levels for the effect of GIP on responses of glucagon and insulin and glucose disposal in patients with T2DM. DESIGN AND SETTING We performed a single center, placebo-controlled, cross-over, experimental study. PATIENTS We studied twelve patients with T2DM (age: 62 ± 1 years [mean ± SEM], body mass index: 29 ± 1 kg/m(2); glycosylated hemoglobin A1c: 6.5 ± 0.1% [48 ± 2 mmol/mol]). INTERVENTION We infused physiological amounts of GIP (2 pmol × kg(-1) × min(-1)) or saline. MAIN OUTCOME MEASURES We measured plasma concentrations of glucagon, glucose, insulin, C-peptide, intact GIP, and amounts of glucose needed to maintain glucose clamps. RESULTS During fasting glycemia (plasma glucose ∼8 mmol/L), GIP elicited significant increments in both insulin and glucagon levels, resulting in neutral effects on plasma glucose. During insulin-induced hypoglycemia (plasma glucose ∼3 mmol/L), GIP elicited a minor early-phase insulin response and increased glucagon levels during the initial 30 minutes, resulting in less glucose needed to be infused to maintain the clamp (29 ± 8 vs 49 ± 12 mg × kg(-1), P < .03). During hyperglycemia (1.5 × fasting plasma glucose ∼12 mmol/L), GIP augmented insulin secretion throughout the clamp, with slightly less glucagon suppression compared with saline, resulting in more glucose needed to maintain the clamp during GIP infusions (265 ± 21 vs 213 ± 13 mg × kg(-1), P < .001). CONCLUSIONS In patients with T2DM, GIP counteracts insulin-induced hypoglycemia, most likely through a predominant glucagonotropic effect. In contrast, during hyperglycemia, GIP increases glucose disposal through a predominant effect on insulin release.
Collapse
Affiliation(s)
- Mikkel B Christensen
- Diabetes Research Division (M.B.C., S.C., T.V., F.K.K.), Department of Medicine, Copenhagen University Hospital Gentofte, Hellerup DK-2900, Denmark; Department of Biomedical Sciences (J.J.H., M.B.C., F.K.K.), the Panum Institute; University of Copenhagen, DK-2100 Copenhagen, Denmark; and Department of Clinical and Molecular Biomedicine (S.C.), University of Catania, 95124 Catania, Italy
| | | | | | | | | |
Collapse
|
97
|
Ohlsson L, Kohan AB, Tso P, Ahrén B. GLP-1 released to the mesenteric lymph duct in mice: effects of glucose and fat. ACTA ACUST UNITED AC 2014; 189:40-5. [PMID: 24583245 DOI: 10.1016/j.regpep.2014.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 11/19/2022]
Abstract
Using a newly developed in vivo model measuring glucagon-like peptide-1 (GLP-1) in gut lymphatics in mice, we quantified GLP-1 secretion in vivo after glucose versus fat ingestion with and without concomitant DPP-4 inhibition. The mesenteric lymphatic duct was cannulated in anesthetized C57BL6/J mice and lymph was collected in 30 min intervals. Glucose or fat emulsion (Intralipid®) (0.03, 0.1 or 0.3 kcal) with or without DPP-4-inhibition (NVP DPP728; 10 μmol/kg) was administered by gastric gavage. Basal intact GLP-1 levels were 0.37±0.04 pmol/l (n=61) in lymph compared to 0.07±0.03 in plasma (n=6; P=0.04) and basal DPP-4 activity was 4.7±0.3 pmol/min/μl in lymph (n=23) compared to 22.3±0.9 pmol/min/μl in plasma (n=8; P<0.001). Lymph flow increased from 1.2±0.1 μl/min to 2.3±02μl/min at 30 min after glucose and fat administration, with no difference between type of challenge or dose (n=81). Lymph GLP-1 levels increased calorie-dependently after both glucose and fat but with different time courses in that glucose induced a transient increase which had returned to baseline after 90 min whereas the lipid induced a sustained increase which was still elevated above baseline after 210 min. Lymph GLP-1 appearance during 210 min was two to three-fold higher after glucose (7.4±2.3 fmol at 0.3 kcal) than after isocaloric fat (2.9±0.8 fmol at 0.3 kcal; P<0.001). The slope between caloric load and lymph GLP-1 appearance was, however, identical after glucose and fat. We conclude that lymph GLP-1 is higher than plasma GLP-1 whereas lymph DPP-4 activity is lower than plasma DPP-4 activity and that both glucose and fat clearly stimulate GLP-1 secretion calorie-dependently in vivo but with different time courses.
Collapse
Affiliation(s)
- Lena Ohlsson
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Alison B Kohan
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
98
|
Effects of consumption of main and side dishes with white rice on postprandial glucose, insulin, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 responses in healthy Japanese men. Br J Nutr 2014; 111:1632-40. [DOI: 10.1017/s0007114513004194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The co-ingestion of protein, fat and fibre with carbohydrate reportedly affects postprandial glucose, insulin and incretin (glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)) responses. However, the effects of combination dishes with carbohydrate-rich foods at typically eaten amounts remain unclear. The objective of the present study was to evaluate the effects of consuming recommended amounts of side dishes with boiled white rice in the same meal on postprandial plasma glucose, insulin and incretin hormone responses. A total of nine healthy male volunteers consumed four different meals in a random order on separate days. The test meals were as follows: S, white rice; SM, addition of protein-rich main dishes to the S meal; SMF, addition of a fat-rich food item to the SM meal; SMFV, addition of vegetables to the SMF meal. Plasma glucose, GIP and GLP-1 and serum insulin concentrations were determined during a 3 h period after consumption of these meals. Postprandial glucose responses were lower after SMFV meal consumption than after consumption of the other meals. The incremental AUC for GIP (0–180 min) were largest after consumption of the SMF and SMFV meals, followed by that after SM meal consumption, and was smallest after S meal consumption (P< 0·05). Furthermore, we found GIP concentrations to be dose dependently increased by the fat content of meals of ordinary size, despite the amount of additional fat being small. In conclusion, the combination of recommended amounts of main and vegetable side dishes with boiled white rice is beneficial for lowering postprandial glucose concentrations, with an increased incretin response, when compared with white rice alone.
Collapse
|
99
|
Manning S, Batterham RL. The Role of Gut Hormone Peptide YY in Energy and Glucose Homeostasis: Twelve Years On. Annu Rev Physiol 2014; 76:585-608. [DOI: 10.1146/annurev-physiol-021113-170404] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sean Manning
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College London, London WC1E 6JJ, United Kingdom; ,
| | - Rachel L. Batterham
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College London, London WC1E 6JJ, United Kingdom; ,
| |
Collapse
|
100
|
Monir MM, Hiramatsu K, Matsumoto S, Nishimura K, Takemoto C, Shioji T, Watanabe T, Kita K, Yonekura S, Roh SG. Influences of protein ingestion on glucagon-like peptide (GLP)-1-immunoreactive endocrine cells in the chicken ileum. Anim Sci J 2014; 85:581-7. [PMID: 24506838 DOI: 10.1111/asj.12177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/15/2013] [Indexed: 11/30/2022]
Abstract
Influences of a specific dietary nutrient on glucagon-like peptide (GLP)-1-containing cells in the chicken intestine are not yet clear. Significance of dietary protein level on GLP-1-containing cells in the chicken ileum was investigated. Chickens fed control or experimental diets of varying protein levels were examined using immunohistochemical and morphometrical techniques. We show that the protein ingestion had an impact on the activities of GLP-1-immunoreactive cells in the chicken ileum. Weight gains declined with decreasing dietary crude protein (CP) levels, but no significant differences were detected in the daily feed intake and villous height. GLP-1-immunoreactive cells with a round or oval shape were frequently observed in the lower CP level groups (4.5% and 0%). Frequencies of occurrence of GLP-1-immunoreactive cells were 41.1 ± 4.1, 38.5 ± 4, 34.8 ± 3.1 and 34.3 ± 3.7 (cells/mm(2) , mean ± SD) for dietary CP level of 18%, 9%, 4.5% and 0% groups, respectively and significant differences were recognized between the control and lower CP level groups (P<0.05). Multiple regression analysis indicated a significant correlation between the daily protein intake and frequencies of occurrence of GLP-1-immunoreactive cells. The protein ingestion is one of the signals that influence GLP-1-containing cells in the chicken small intestine.
Collapse
Affiliation(s)
- Mohammad M Monir
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Kami-ina, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|