51
|
Wu K, Tang H, Lin R, Carr SG, Wang Z, Babicheva A, Ayon RJ, Jain PP, Xiong M, Rodriguez M, Rahimi S, Balistrieri F, Rahimi S, Valdez-Jasso D, Simonson TS, Desai AA, Garcia JG, Shyy JYJ, Thistlethwaite PA, Wang J, Makino A, Yuan JXJ. Endothelial platelet-derived growth factor-mediated activation of smooth muscle platelet-derived growth factor receptors in pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020948470. [PMID: 33294172 PMCID: PMC7707860 DOI: 10.1177/2045894020948470] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Platelet-derived growth factor is one of the major growth factors found in human and mammalian serum and tissues. Abnormal activation of platelet-derived growth factor signaling pathway through platelet-derived growth factor receptors may contribute to the development and progression of pulmonary vascular remodeling and obliterative vascular lesions in patients with pulmonary arterial hypertension. In this study, we examined the expression of platelet-derived growth factor receptor isoforms in pulmonary arterial smooth muscle and pulmonary arterial endothelial cells and investigated whether platelet-derived growth factor secreted from pulmonary arterial smooth muscle cell or pulmonary arterial endothelial cell promotes pulmonary arterial smooth muscle cell proliferation. Our results showed that the protein expression of platelet-derived growth factor receptor α and platelet-derived growth factor receptor β in pulmonary arterial smooth muscle cell was upregulated in patients with idiopathic pulmonary arterial hypertension compared to normal subjects. Platelet-derived growth factor activated platelet-derived growth factor receptor α and platelet-derived growth factor receptor β in pulmonary arterial smooth muscle cell, as determined by phosphorylation of platelet-derived growth factor receptor α and platelet-derived growth factor receptor β. The platelet-derived growth factor-mediated activation of platelet-derived growth factor receptor α/platelet-derived growth factor receptor β was enhanced in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal cells. Expression level of platelet-derived growth factor-AA and platelet-derived growth factor-BB was greater in the conditioned media collected from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell than from normal pulmonary arterial endothelial cell. Furthermore, incubation of idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell with conditioned culture media from normal pulmonary arterial endothelial cell induced more platelet-derived growth factor receptor α activation than in normal pulmonary arterial smooth muscle cell. Accordingly, the conditioned media from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell resulted in more pulmonary arterial smooth muscle cell proliferation than the media from normal pulmonary arterial endothelial cell. These data indicate that (a) the expression and activity of platelet-derived growth factor receptor are increased in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell compared to normal pulmonary arterial smooth muscle cell, and (b) pulmonary arterial endothelial cell from idiopathic pulmonary arterial hypertension patients secretes higher level of platelet-derived growth factor than pulmonary arterial endothelial cell from normal subjects. The enhanced secretion (and production) of platelet-derived growth factor from idiopathic pulmonary arterial hypertension-pulmonary arterial endothelial cell and upregulated platelet-derived growth factor receptor expression (and function) in idiopathic pulmonary arterial hypertension-pulmonary arterial smooth muscle cell may contribute to enhancing platelet-derived growth factor/platelet-derived growth factor receptor-associated pulmonary vascular remodeling in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Kang Wu
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Haiyang Tang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Ruizhu Lin
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Genetics and
Endocrinology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical
University, Guangzhou, China
| | - Shane G. Carr
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
| | - Ziyi Wang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Aleksandra Babicheva
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ramon J. Ayon
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Molecular Physiology and
Biological Physics, University of Virginia, Charlottesville, USA
| | - Pritesh P. Jain
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Mingmei Xiong
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
- Department of Critical Medicine, The
Third Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
| | - Marisela Rodriguez
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Shamin Rahimi
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Francesca Balistrieri
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Shayan Rahimi
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Daniela Valdez-Jasso
- Department of Bioengineering, University
of California, San Diego, La Jolla, USA
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ankit A. Desai
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Department of Medicine, Indiana
University, Indinappolis, IN, USA
| | - Joe G.N. Garcia
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine,
University of California, San Diego, La Jolla, USA
| | | | - Jian Wang
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- State Key Laboratory of Respiratory
Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical
University, Guangzhou, China
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| | - Ayako Makino
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Endocrinology
and Metabolism, Department of Medicine, University of California, San Diego, La
Jolla, USA
| | - Jason X.-J. Yuan
- Departments of Medicine and Physiology,
The University of Arizona, Tucson, USA
- Division of Pulmonary, Critical Care and
Sleep Medicine (Section of Physiology), University of California, San Diego, La
Jolla, USA
| |
Collapse
|
52
|
Chen Y, Kuang M, Liu S, Hou C, Duan X, Yang K, He W, Liao J, Zheng Q, Zou G, Chen H, Yan H, Chen J, Li Y, Zhou Y, Luo X, Jiang Q, Tang H, Lu W, Wang J. A novel rat model of pulmonary hypertension induced by mono treatment with SU5416. Hypertens Res 2020; 43:754-764. [PMID: 32472112 DOI: 10.1038/s41440-020-0457-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
Abstract
Pulmonary hypertension (PH) is responsible for premature death caused by progressive and severe heart failure. A simple, feasible, and reproducible animal model of PH is essential for the investigation of the pathogenesis and treatment of this condition. Previous studies have demonstrated that the vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitor SU5416 combined with hypoxia could establish an animal model of PH. Here, we investigated whether SU5416 itself could induce PH in rats. The effects of SU5416 treatment followed by 5 weeks of normoxia were examined. Hemodynamic measurements and histological assessments of the pulmonary vasculature and the heart were conducted to evaluate the physiological and pathophysiological characteristics of PH. Compared with the control rats, the SU5416-treated rats showed significantly increased right ventricle systolic pressure, right ventricle mass, total pulmonary vascular resistance, and total pulmonary vascular resistance index, while the cardiac output and cardiac index were substantially decreased. Moreover, the degree of occlusion and the muscularization levels of the distal small pulmonary vessels and the medial wall thickness of larger vessels (OD > 50 μm) simultaneously increased. SU5416 inhibited pulmonary vascular endothelial cell apoptosis in rats, as shown by immunostaining of cleaved caspase-3. Furthermore, changes in the right ventricle, myocardial hypertrophy, myocardial edema, myocardial necrosis, striated muscle cell atrophy, vessel muscularization, neointimal occlusion, and increased collagen deposition were observed in the SU5416 group compared with the control group. Thus, treatment with SU5416 alone plus 5 weeks of normoxia could be sufficient to induce PH in rats, which may provide a good and convenient model for future investigation of PH.
Collapse
Affiliation(s)
- Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meidan Kuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xin Duan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guofa Zou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Han Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Guangdong General Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China. .,Department of Medicine, University of California, San Diego, La Jolla, California, USA. .,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China.
| |
Collapse
|
53
|
Chen Y, Lu W, Yang K, Duan X, Li M, Chen X, Zhang J, Kuang M, Liu S, Wu X, Zou G, Liu C, Hong C, He W, Liao J, Hou C, Zhang Z, Zheng Q, Chen J, Zhang N, Tang H, Vanderpool RR, Desai AA, Rischard F, Black SM, Garcia JGN, Makino A, Yuan JXJ, Zhong N, Wang J. Tetramethylpyrazine: A promising drug for the treatment of pulmonary hypertension. Br J Pharmacol 2020; 177:2743-2764. [PMID: 31976548 DOI: 10.1111/bph.15000] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Tetramethylpyrazine (TMP) was originally isolated from the traditional Chinese herb ligusticum and the fermented Japanese food natto and has since been synthesized. TMP has a long history of beneficial effects in the treatment of many cardiovascular diseases. Here we have evaluated the therapeutic effects of TMP on pulmonary hypertension (PH) in animal models and in patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH). EXPERIMENTAL APPROACH Three well-defined models of PH -chronic hypoxia (10% O2 )-induced PH (HPH), monocrotaline-induced PH (MCT-PH) and Sugen 5416/hypoxia-induced PH (SuHx-PH) - were used in Sprague-Dawley rats, and assessed by echocardiography, along with haemodynamic and histological techniques. Primary cultures of rat distal pulmonary arterial smooth muscle cells (PASMCs) were used to study intracellular calcium levels. Western blots and RT-qPCR assays were also used. In the clinical cohort, patients with PAH or CTEPH were recruited. The effects of TMP were evaluated in all systems. KEY RESULTS TMP (100 mg·kg-1 ·day-1 ) prevented rats from developing experimental PH and ameliorated three models of established PH: HPH, MCT-PH and SuHx-PH. The therapeutic effects of TMP were accompanied by inhibition of intracellular calcium homeostasis in PASMCs. In a small cohort of patients with PAH or CTEPH, oral administration of TMP (100 mg, t.i.d. for 16 weeks) increased the 6-min walk distance and improved the 1-min heart rate recovery. CONCLUSION AND IMPLICATIONS Our results suggest that TMP is a novel and inexpensive medication for treatment of PH. Clinical trial is registered with www.chictr.org.cn (ChiCTR-IPR-14005379).
Collapse
Affiliation(s)
- Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Duan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengxi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuqing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meidan Kuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiongting Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guofa Zou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zhe Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nuofu Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Rebecca R Vanderpool
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Ankit A Desai
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Franz Rischard
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Stephen M Black
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, China.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
54
|
Dasgupta A, Wu D, Tian L, Xiong PY, Dunham-Snary KJ, Chen KH, Alizadeh E, Motamed M, Potus F, Hindmarch CCT, Archer SL. Mitochondria in the Pulmonary Vasculature in Health and Disease: Oxygen-Sensing, Metabolism, and Dynamics. Compr Physiol 2020; 10:713-765. [PMID: 32163206 DOI: 10.1002/cphy.c190027] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In lung vascular cells, mitochondria serve a canonical metabolic role, governing energy homeostasis. In addition, mitochondria exist in dynamic networks, which serve noncanonical functions, including regulation of redox signaling, cell cycle, apoptosis, and mitochondrial quality control. Mitochondria in pulmonary artery smooth muscle cells (PASMC) are oxygen sensors and initiate hypoxic pulmonary vasoconstriction. Acquired dysfunction of mitochondrial metabolism and dynamics contribute to a cancer-like phenotype in pulmonary arterial hypertension (PAH). Acquired mitochondrial abnormalities, such as increased pyruvate dehydrogenase kinase (PDK) and pyruvate kinase muscle isoform 2 (PKM2) expression, which increase uncoupled glycolysis (the Warburg phenomenon), are implicated in PAH. Warburg metabolism sustains energy homeostasis by the inhibition of oxidative metabolism that reduces mitochondrial apoptosis, allowing unchecked cell accumulation. Warburg metabolism is initiated by the induction of a pseudohypoxic state, in which DNA methyltransferase (DNMT)-mediated changes in redox signaling cause normoxic activation of HIF-1α and increase PDK expression. Furthermore, mitochondrial division is coordinated with nuclear division through a process called mitotic fission. Increased mitotic fission in PAH, driven by increased fission and reduced fusion favors rapid cell cycle progression and apoptosis resistance. Downregulation of the mitochondrial calcium uniporter complex (MCUC) occurs in PAH and is one potential unifying mechanism linking Warburg metabolism and mitochondrial fission. Mitochondrial metabolic and dynamic disorders combine to promote the hyperproliferative, apoptosis-resistant, phenotype in PAH PASMC, endothelial cells, and fibroblasts. Understanding the molecular mechanism regulating mitochondrial metabolism and dynamics has permitted identification of new biomarkers, nuclear and CT imaging modalities, and new therapeutic targets for PAH. © 2020 American Physiological Society. Compr Physiol 10:713-765, 2020.
Collapse
Affiliation(s)
- Asish Dasgupta
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Lian Tian
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ping Yu Xiong
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Kuang-Hueih Chen
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Elahe Alizadeh
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Mehras Motamed
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - François Potus
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Department of Medicine, Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada.,Kingston Health Sciences Centre, Kingston, Ontario, Canada.,Providence Care Hospital, Kingston, Ontario, Canada
| |
Collapse
|
55
|
Liu B, Wang D, Luo E, Hou J, Qiao Y, Yan G, Wang Q, Tang C. Role of TG2-Mediated SERCA2 Serotonylation on Hypoxic Pulmonary Vein Remodeling. Front Pharmacol 2020; 10:1611. [PMID: 32116663 PMCID: PMC7026497 DOI: 10.3389/fphar.2019.01611] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pumps take up Ca2+ from the cytoplasm to maintain the balance of intracellular Ca2+. A decline in expression or activity of SERCA results in persistent store-operated calcium entry (SOCE). In cardiomyocytes as well as vascular smooth muscle cells (SMCs), SERCA2 acts as an important regulator of calcium cycling. The purpose of this study is to identify and better understand the role of transglutaminases2 (TG2) as a key factor involved in SERCA2 serotonination (s-SERCA2) and to elucidate the underlying mechanism of action. Human pulmonary venous smooth muscle cell in normal pulmonary lobe were isolated and cultured in vitro. Establishment of hypoxic pulmonary hypertension model in wild type and TG2 knockout mice. SERCA2 serotonylation was analyzed by co-(immunoprecipitation) IP when the TG2 gene silenced or overexpressed under normoxia and hypoxia in vivo and in vitro. Intracellular calcium ion was measured by using Fluo-4AM probe under normoxia and hypoxia. Real-time (RT)-PCR and Western blot analyzed expression of TG2, TRPC1, and TRPC6 under normoxia and hypoxia. Bioactivity of cells were analyzed by using Cell Counting Kit (CCK)-8, flow cytometry, wound healing, RT-PCR, and Western blot under PST-2744 and cyclopiazonic acid. We confirmed that 1) hypoxia enhanced the expression and activity of TG2, and 2) hypoxia increased the basal intracellular Ca2+ concentration ([Ca2+]i) and SOCE through activating TRPC6 on human pulmonary vein smooth muscle cells (hPVSMC). Then, we investigated the effects of overexpression and downregulation of the TG2 gene on the activity of SERCA2, s-SERCA2, basal [Ca2+]i, and SOCE under normoxia and hypoxia in vitro, and investigated the activity of SERCA2 and s-SERCA2 in vivo, respectively. We confirmed that SERCA2 serotonylation inhibited the activity of SERCA2 and increased the Ca2+ influx, and that hypoxia induced TG2-mediated SERCA2 serotonylation both in vivo and in vitro. Furthermore, we investigated the effect of TG2 activity on the biological behavior of hPVSMC by using an inhibitor and agonist of SERCA2, respectively. Finally, we confirmed that chronic hypoxia cannot increase vessel wall thickness, the right ventricular systolic pressure (RVSP), and right ventricular hypertrophy index (RVHI) of vascular smooth muscle-specific Tgm2−/− mice. These results indicated that hypoxia promoted TG2-mediated SERCA2 serotonylation, thereby leading to inhibition of SERCA2 activity, which further increased the calcium influx through the TRPC6 channel. Furthermore, tissue-specific conditional TG2 knockout mice prevents the development of pulmonary hypertension caused by hypoxia. In summary, we uncovered a new target (TG2) for treatment of chronic hypoxic pulmonary hypertension (CHPH).
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Erfei Luo
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jiantong Hou
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Qingjie Wang
- Department of Cardiology, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
56
|
Han L, Song N, Hu X, Zhu A, Wei X, Liu J, Yuan S, Mao W, Chen X. Inhibition of RELM-β prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline. Life Sci 2020; 246:117419. [PMID: 32045592 DOI: 10.1016/j.lfs.2020.117419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 02/09/2023]
Abstract
AIMS Although resistin-like molecule β (RELM-β) is involved in the pathological processes of various lung diseases, such as pulmonary inflammation, asthma and fibrosis, its potential roles in hypoxic pulmonary arterial hypertension (PAH) remain largely unknown. The study aims to investigate whether RELM-β contributes to hypoxia-induced excessive proliferation of human pulmonary artery smooth muscle cells (PASMCs) and to explore the potential mechanisms of this process. MAIN METHODS Human PASMCs were exposed to normoxia or hypoxia (1% O2) for 24 h. siRNA targeting RELM-β was transfected into cells. Protein levels of KCNK3, RELM-β, pSTAT3 and STAT3 were determined by immunoblotting. The translocation of NFATc2 and expression of KCNK3 were visualized by immunofluorescence. 5-ethynyl-2'-deoxyuridine assays and cell counting kit-8 assays were performed to assess the proliferation of PASMCs. KEY FINDINGS (1) Chronic hypoxia significantly decreased KCNK3 protein levels while upregulating RELM-β protein levels in human PASMCs, which was accompanied by excessive proliferation of cells. (2) RELM-β could promote human PASMCs proliferation and activate the STAT3/NFAT axis by downregulating KCNK3 protein under normoxia. (3) Inhibition of RELM-β expression effectively prevented KCNK3-mediated cell proliferation under hypoxia. (4) Phospholipase C (PLC) inhibitor U-73122 could not only prevent the hypoxia/RELM-β-induced decrease in KCNK3 protein, but also inhibit the enhanced cell viability caused by hypoxia/RELM-β. (5) Both hypoxia and RELM-β could downregulate membrane KCNK3 protein levels by enhancing endocytosis. SIGNIFICANCE RELM-β activation is responsible for hypoxia-induced excessive proliferation of human PASMCs. Interfering with RELM-β may alleviate the progression of hypoxic PAH by upregulating PLC-dependent KCNK3 expression.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Nannan Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaomin Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Afang Zhu
- Department of Anesthesiology, Peking Union Medical College Hospital, CAMS&PUMC, Beijing, China
| | - Xin Wei
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinmin Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
57
|
Wu X, Lu W, He M, Chen H, Chen Y, Duan X, Zheng Q, Li Y, Chen J, Liu S, Liao J, Kuang M, Lin Z, Yang K, Wang J. Structural and functional definition of the pulmonary vein system in a chronic hypoxia-induced pulmonary hypertension rat model. Am J Physiol Cell Physiol 2020; 318:C555-C569. [PMID: 31940248 DOI: 10.1152/ajpcell.00289.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unlike the pulmonary artery (PA), the pathophysiological changes of the pulmonary vein (PV) in the development of pulmonary hypertension (PH) remain largely unknown. In this study, we comprehensively investigated the structural and functional changes in the PV isolated from the chronic hypoxia (CH; 10% O2, 21 days)-induced PH rat model (CHPH). Results showed that CH caused an increase in right ventricular pressure but did not affect the mean pulmonary venous pressure and the left atrial pressure. Similar to the PA, vascular lumen stenosis and medial thickening were also observed in the intrapulmonary veins isolated from the CHPH rats. Notably, CH induced more severe loss in the endothelium of intrapulmonary veins than the arteries. Then, the contractile response to 5-HT and U46619 was significantly greater in the intrapulmonary small veins (ISPV) and arteries (ISPA) isolated from CHPH rats than those from normoxic rats but not in the extrapulmonary and intrapulmonary large veins. Treatment with nifedipine (Nif), SKF96365 (SKF), or ryanodine and caffeine either partially attenuated (Nif) or dramatically abolished (SKF or ryanodine and caffeine) 5-HT-induced maximal contraction in ISPV from both normoxic and CHPH rats. Because of the severe loss of endothelium in the PV of CHPH rats, the decrease in acetylcholine (ACh)-induced endothelium-dependent relaxation was significantly larger in ISPV than ISPA, whereas the sodium nitroprusside-induced endothelium-independent relaxation was not altered in both ISPA and ISPV. In conclusion, our results provide fundamental data to comprehensively define the PV system in CHPH rat model.
Collapse
Affiliation(s)
- Xiongting Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mengzhang He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Duan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meidan Kuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziying Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Division of Translational and Regenerative Medicine, Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
58
|
Babicheva A, Ayon RJ, Zhao T, Ek Vitorin JF, Pohl NM, Yamamura A, Yamamura H, Quinton BA, Ba M, Wu L, Ravellette KS, Rahimi S, Balistrieri F, Harrington A, Vanderpool RR, Thistlethwaite PA, Makino A, Yuan JXJ. MicroRNA-mediated downregulation of K + channels in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L10-L26. [PMID: 31553627 PMCID: PMC6985878 DOI: 10.1152/ajplung.00010.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/19/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
Downregulated expression of K+ channels and decreased K+ currents in pulmonary artery smooth muscle cells (PASMC) have been implicated in the development of sustained pulmonary vasoconstriction and vascular remodeling in patients with idiopathic pulmonary arterial hypertension (IPAH). However, it is unclear exactly how K+ channels are downregulated in IPAH-PASMC. MicroRNAs (miRNAs) are small non-coding RNAs that are capable of posttranscriptionally regulating gene expression by binding to the 3'-untranslated regions of their targeted mRNAs. Here, we report that specific miRNAs are responsible for the decreased K+ channel expression and function in IPAH-PASMC. We identified 3 miRNAs (miR-29b, miR-138, and miR-222) that were highly expressed in IPAH-PASMC in comparison to normal PASMC (>2.5-fold difference). Selectively upregulated miRNAs are correlated with the decreased expression and attenuated activity of K+ channels. Overexpression of miR-29b, miR-138, or miR-222 in normal PASMC significantly decreased whole cell K+ currents and downregulated voltage-gated K+ channel 1.5 (KV1.5/KCNA5) in normal PASMC. Inhibition of miR-29b in IPAH-PASMC completely recovered K+ channel function and KV1.5 expression, while miR-138 and miR-222 had a partial or no effect. Luciferase assays further revealed that KV1.5 is a direct target of miR-29b. Additionally, overexpression of miR-29b in normal PASMC decreased large-conductance Ca2+-activated K+ (BKCa) channel currents and downregulated BKCa channel β1 subunit (BKCaβ1 or KCNMB1) expression, while inhibition of miR-29b in IPAH-PASMC increased BKCa channel activity and BKCaβ1 levels. These data indicate upregulated miR-29b contributes at least partially to the attenuated function and expression of KV and BKCa channels in PASMC from patients with IPAH.
Collapse
Affiliation(s)
- Aleksandra Babicheva
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Ramon J Ayon
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Tengteng Zhao
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Jose F Ek Vitorin
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Nicole M Pohl
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan
| | - Hisao Yamamura
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Brooke A Quinton
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Manqing Ba
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Linda Wu
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Keeley S Ravellette
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Shamin Rahimi
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Francesca Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Angela Harrington
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
| | - Rebecca R Vanderpool
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | | | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, California
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
59
|
Novelli D, Fumagalli F, Staszewsky L, Ristagno G, Olivari D, Masson S, De Giorgio D, Ceriani S, Affatato R, De Logu F, Nassini R, Milioli M, Facchinetti F, Cantoni S, Trevisani M, Letizia T, Russo I, Salio M, Latini R. Monocrotaline-induced pulmonary arterial hypertension: Time-course of injury and comparative evaluation of macitentan and Y-27632, a Rho kinase inhibitor. Eur J Pharmacol 2019; 865:172777. [PMID: 31697933 DOI: 10.1016/j.ejphar.2019.172777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Novel pharmacological approaches are needed to improve outcomes of patients with idiopathic pulmonary hypertension. Rho-associated protein kinase (ROCK) inhibitors have shown beneficial effects in preclinical models of pulmonary arterial hypertension (PAH), because of their role in the regulation of pulmonary artery vasoconstrictor tone and remodeling. We compared a ROCK inhibitor, Y-27632, for the first time with the dual endothelin receptor antagonist, macitentan, in a monocrotaline-induced rat pulmonary hypertension model. Different methods (echocardiography, hemodynamics, histology of right ventricle and pulmonary vessels, and circulating biomarkers) showed consistently that 100 mg/kg daily of Y-27632 and 10 mg/kg daily of macitentan slowed the progression of PAH both at the functional and structural levels. Treatments started on day 14 after monocrotaline injection and lasted 14 days. The findings of all experimental methods show that the selective ROCK inhibitor Y-27632 has more pronounced effects than macitentan, but a major limitation to its use is its marked peripheral vasodilating action.
Collapse
Affiliation(s)
- Deborah Novelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Francesca Fumagalli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Lidia Staszewsky
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Giuseppe Ristagno
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Davide Olivari
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Serge Masson
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Daria De Giorgio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Sabina Ceriani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Roberta Affatato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139, Florence, Italy
| | - Marco Milioli
- Chiesi Farmaceutici S.p.A, Corporate Pre-Clinical R&D, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Fabrizio Facchinetti
- Chiesi Farmaceutici S.p.A, Corporate Pre-Clinical R&D, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Silvia Cantoni
- Chiesi Farmaceutici S.p.A, Corporate Pre-Clinical R&D, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Marcello Trevisani
- Chiesi Farmaceutici S.p.A, Corporate Pre-Clinical R&D, Largo F. Belloli 11/A, 43122, Parma, Italy
| | - Teresa Letizia
- Endocrinology Laboratory, Luigi Sacco Hospital, Via Giovanni Battista Grassi 74, 20157, Milan, Italy
| | - Ilaria Russo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Monica Salio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy
| | - Roberto Latini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milan, Italy.
| |
Collapse
|
60
|
Alruwaili N, Kandhi S, Sun D, Wolin MS. Metabolism and Redox in Pulmonary Vascular Physiology and Pathophysiology. Antioxid Redox Signal 2019; 31:752-769. [PMID: 30403147 PMCID: PMC6708269 DOI: 10.1089/ars.2018.7657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: This review considers how some systems controlling pulmonary vascular function are potentially regulated by redox processes to examine how and why conditions such as prolonged hypoxia, pathological mediators, and other factors promoting vascular remodeling contribute to the development of pulmonary hypertension (PH). Recent Advances and Critical Issues: Aspects of vascular remodeling induction mechanisms described are associated with shifts in glucose metabolism through the pentose phosphate pathway and increased cytosolic NADPH generation by glucose-6-phosphate dehydrogenase, increased glycolysis generation of cytosolic NADH and lactate, mitochondrial dysfunction associated with superoxide dismutase-2 depletion, changes in reactive oxygen species and iron metabolism, and redox signaling. Future Directions: The regulation and impact of hypoxia-inducible factor and the function of cGMP-dependent and redox regulation of protein kinase G are considered for their potential roles as key sensors and coordinators of redox and metabolic processes controlling the progression of vascular pathophysiology in PH, and how modulating aspects of metabolic and redox regulatory systems potentially function in beneficial therapeutic approaches.
Collapse
Affiliation(s)
- Norah Alruwaili
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sharath Kandhi
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Michael S Wolin
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
61
|
Dong F, Zhang J. Inactivation of carboxyl terminus of Hsc70-interacting protein prevents hypoxia-induced pulmonary arterial smooth muscle cells proliferation by reducing intracellular Ca 2+ concentration. Pulm Circ 2019; 9:2045894019875343. [PMID: 31523420 DOI: 10.1177/2045894019875343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022] Open
Abstract
Carboxyl terminus of Hsc70-interacting protein (CHIP) is a 35-kDa cytoplasmic protein expressed in human striated muscle, brain, aortic smooth muscle, endothelial cells, and other tissues. Studies have confirmed that CHIP regulates cell growth, apoptosis, cell phenotype, metabolism, neurodegeneration, etc. However, whether CHIP is involved in pulmonary artery smooth muscle cell (PASMC) proliferation, a vital contributor to chronic hypoxia-induced pulmonary hypertension (CHPH), remains unknown. In this study, we first evaluated CHIP expression in the pulmonary arteries (PAs) of CHPH model rats. Subsequently, by silencing CHIP, we investigated the effect of CHIP on hypoxia-induced PASMC proliferation and the underlying mechanism. Our results showed that CHIP expression was upregulated in the PAs of CHPH model rats. Silencing CHIP significantly suppressed the hypoxia-triggered promotion of proliferation, [Ca2+]i, store-operated Ca2+ entry (SOCE), and some regulators of SOCE such as TRPC1 and TRPC6 in cultured PASMCs. These results indicate that CHIP likely contributes to hypoxia-induced PASMC proliferation by targeting the SOCE-[Ca2+]i pathway through the regulation of TRPC1 and TRPC6 in the PASMCs. In conclusion, the findings of the current study clarify the role of CHIP in hypoxia-induced PASMC proliferation.
Collapse
Affiliation(s)
- Fang Dong
- College of Medicine and Health, Lishui University, Lishui, Zhejiang, People's Republic of China
| | - Jun Zhang
- College of Medicine and Health, Lishui University, Lishui, Zhejiang, People's Republic of China
| |
Collapse
|
62
|
Affiliation(s)
- Aleksandra Babicheva
- From the Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, School of Medicine, San Diego, CA
| | - Tengteng Zhao
- From the Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, School of Medicine, San Diego, CA
| | - Jason X-J Yuan
- From the Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California, School of Medicine, San Diego, CA
| |
Collapse
|
63
|
Multiscale modeling of ventricular–vascular dysfunction in pulmonary arterial hypertension. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
64
|
Papp R, Nagaraj C, Zabini D, Nagy BM, Lengyel M, Skofic Maurer D, Sharma N, Egemnazarov B, Kovacs G, Kwapiszewska G, Marsh LM, Hrzenjak A, Höfler G, Didiasova M, Wygrecka M, Sievers LK, Szucs P, Enyedi P, Ghanim B, Klepetko W, Olschewski H, Olschewski A. Targeting TMEM16A to reverse vasoconstriction and remodelling in idiopathic pulmonary arterial hypertension. Eur Respir J 2019; 53:13993003.00965-2018. [PMID: 31023847 DOI: 10.1183/13993003.00965-2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/21/2019] [Indexed: 12/27/2022]
Abstract
Our systematic analysis of anion channels and transporters in idiopathic pulmonary arterial hypertension (IPAH) showed marked upregulation of the Cl- channel TMEM16A gene. We hypothesised that TMEM16A overexpression might represent a novel vicious circle in the molecular pathways causing pulmonary arterial hypertension (PAH).We investigated healthy donor lungs (n=40) and recipient lungs with IPAH (n=38) for the expression of anion channel and transporter genes in small pulmonary arteries and pulmonary artery smooth muscle cells (PASMCs).In IPAH, TMEM16A was strongly upregulated and patch-clamp recordings confirmed an increased Cl- current in PASMCs (n=9-10). These cells were depolarised and could be repolarised by TMEM16A inhibitors or knock-down experiments (n=6-10). Inhibition/knock-down of TMEM16A reduced the proliferation of IPAH-PASMCs (n=6). Conversely, overexpression of TMEM16A in healthy donor PASMCs produced an IPAH-like phenotype. Chronic application of benzbromarone in two independent animal models significantly decreased right ventricular pressure and reversed remodelling of established pulmonary hypertension.Our findings suggest that increased TMEM16A expression and activity comprise an important pathologic mechanism underlying the vasoconstriction and remodelling of pulmonary arteries in PAH. Inhibition of TMEM16A represents a novel therapeutic approach to reverse remodelling in PAH.
Collapse
Affiliation(s)
- Rita Papp
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Contributed equally
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Contributed equally
| | - Diana Zabini
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Dept of Physiology, Medical University of Graz, Graz, Austria
| | - Bence M Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Miklós Lengyel
- Dept of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | - Neha Sharma
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | | | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Dept of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Andelko Hrzenjak
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Pulmonology, Dept of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gerald Höfler
- Dept of Pathology, Medical University of Graz, Graz, Austria
| | - Miroslava Didiasova
- Dept of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Malgorzata Wygrecka
- Dept of Biochemistry, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Laura K Sievers
- Medical Clinic D, University Clinic of Münster, Münster, Germany
| | - Peter Szucs
- Dept of Anatomy, Histology and Embryology, University of Debrecen, Debrecen, Hungary
| | - Péter Enyedi
- Dept of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Bahil Ghanim
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Division of Thoracic Surgery, Dept of Surgery, Medical University of Vienna, Vienna, Austria
| | - Horst Olschewski
- Division of Pulmonology, Dept of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria .,Dept of Physiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
65
|
Dysregulation of miR-135a-5p promotes the development of rat pulmonary arterial hypertension in vivo and in vitro. Acta Pharmacol Sin 2019; 40:477-485. [PMID: 30038339 DOI: 10.1038/s41401-018-0076-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/20/2018] [Indexed: 11/08/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is the most common form of pulmonary hypertension. Pulmonary arterial remodeling is closely related to the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs), which leads to the thickening of the medial layer of muscular arteries and then results in the narrowing or occlusion of the precapillary arterioles and PAH. However, the mechanisms underlying the abnormal proliferation of PASMCs remain unclear. In this study, we established rat primary PAH models using monocrotaline (MCT) injection or hypoxic exposure, then investigated the expression patterns of seven miRNAs associated with multiple pathogenic pathways central to pulmonary hypertension, and further explored the roles and the possible mechanisms of miR-135a during the development of PAH. In the rat primary PAH models, we observed that the expression of miR-135a-5p in lungs was drastically decreased at the initial stage of PAH development after MCT administration or hypoxic exposure, but it increased by 12-fold or 10-fold at the later stage. In vitro study in PASMCs showed a similar pattern of miR-135a-5p expression, with downregulation at 6 h but upregulation at 18, 24, and 48 h after hypoxic exposure. Early, but not late, administration of a miR-135a-5p mimic inhibited hypoxia-induced proliferation of PASMCs. The protective role of early miR-135a-5p agomir in the PAH rat model further supported the hypothesis that the early decrease in the expression of miR-135a-5p contributes to the proliferation of PASMCs and development of PAH, as early administration of miR-135a-5p agomir (10 nM, i.v.) reversed the elevated mean pulmonary arterial pressure and pulmonary vascular remodeling in MCT-treated rats. We revealed that miR-135a-5p directly bound to the 3'-UTR sequence of rat transient receptor potential channel 1 (TRPC1) mRNA and decreased TRPC1 protein expression, thus inhibiting PASMC proliferation. Collectively, our data suggest that dysregulation of miR-135a-5p in PASMCs contributes to the abnormal proliferation of PASMCs and the pathogenesis of PAH. Increasing miR-135a-5p expression at the early stage of PAH is a potential new avenue to prevent PAH development.
Collapse
|
66
|
Yamamura A, Nayeem MJ, Al Mamun A, Takahashi R, Hayashi H, Sato M. Platelet-derived growth factor up-regulates Ca 2+-sensing receptors in idiopathic pulmonary arterial hypertension. FASEB J 2019; 33:7363-7374. [PMID: 30865840 DOI: 10.1096/fj.201802620r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease associated with remodeling of the pulmonary artery. We previously reported that the Ca2+-sensing receptor (CaSR) is up-regulated in pulmonary arterial smooth muscle cells (PASMCs) from patients with idiopathic PAH (IPAH) and contributes to enhanced Ca2+ responses and excessive cell proliferation. However, the mechanisms underlying the up-regulation of CaSR have not yet been elucidated. We herein examined involvement of platelet-derived growth factor (PDGF) on CaSR expression, Ca2+ responses, and proliferation in PASMCs. The expression of PDGF receptors was higher in PASMCs from patients with IPAH than in PASMCs from normal subjects. In addition, PDGF-induced activation of PDGF receptors and their downstream molecules [ERK1/2, p38, protein kinase B, and signal transducer and activator of transcription (STAT) 1/3] were sustained longer in PASMCs from patients with IPAH. The PDGF-induced CaSR up-regulation was attenuated by small interfering RNA knockdown of PDGF receptors and STAT1/3, and by the treatment with imatinib. In monocrotaline-induced pulmonary hypertensive rats, the up-regulation of CaSR was reduced by imatinib. The combination of NPS2143 and imatinib additively inhibited the development of pulmonary hypertension. These results suggest that enhanced PDGF signaling is involved in CaSR up-regulation, leading to excessive PASMC proliferation and vascular remodeling in patients with IPAH. The linkage between CaSR and PDGF signals is a novel pathophysiological mechanism contributing to the development of PAH.-Yamamura, A., Nayeem, M. J., Al Mamun, A., Takahashi, R., Hayashi, H., Sato, M. Platelet-derived growth factor up-regulates Ca2+-sensing receptors in idiopathic pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | | | | | - Rie Takahashi
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Hisaki Hayashi
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
67
|
Muraki Y, Naito T, Tohyama K, Shibata S, Kuniyeda K, Nio Y, Hazama M, Matsuo T. Improvement of pulmonary arterial hypertension, inflammatory response, and epithelium injury by dual activation of cAMP/cGMP pathway in a rat model of monocrotaline-induced pulmonary hypertension. Biosci Biotechnol Biochem 2019; 83:1000-1010. [PMID: 30835622 DOI: 10.1080/09168451.2019.1584520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pulmonary hypertension (PH) is a life-threatening lung disease. PH with concomitant lung diseases, e.g., idiopathic pulmonary fibrosis, is associated with poor prognosis. Development of novel therapeutic vasodilators for treatment of these patients is a key imperative. We evaluated the efficacy of dual activation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) using an active, small-molecule phosphodiesterase (PDE4)/PDE5 dual inhibitor (Compound A). Compound A increased both cAMP and cGMP levels in WI-38 lung fibroblasts and suppressed the expressions of type-1 collagen α1 chain and fibronectin. Additionally, compound A reduced right ventricular weight/left ventricular weight+septal weight ratio, brain natriuretic peptide expression levels in right ventricle, C─C motif chemokine ligand 2 expression levels in lung, and plasma surfactant protein D. Our data indicate that dual activation of cAMP/cGMP pathways may be a novel treatment strategy for PH.
Collapse
Affiliation(s)
- Yo Muraki
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Takako Naito
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Kimio Tohyama
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Sachio Shibata
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Kanako Kuniyeda
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Yasunori Nio
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Masatoshi Hazama
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| | - Takanori Matsuo
- a Pharmaceutical Research Division , Takeda Pharmaceutical Company Limited , Fujisawa , Kanagawa , Japan
| |
Collapse
|
68
|
Rode B, Bailey MA, Marthan R, Beech DJ, Guibert C. ORAI Channels as Potential Therapeutic Targets in Pulmonary Hypertension. Physiology (Bethesda) 2019; 33:261-268. [PMID: 29897302 DOI: 10.1152/physiol.00016.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension is a complex and fatal disease that lacks treatments. Its pathophysiology involves pulmonary artery hyperreactivity, endothelial dysfunction, wall remodelling, inflammation, and thrombosis, which could all depend on ORAI Ca2+ channels. We review the knowledge about ORAI channels in pulmonary artery and discuss the interest to target them in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Baptiste Rode
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Marc A Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Univ. of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,CHU de Bordeaux, Pôle Cardio-Thoracique, Bordeaux , France
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds , Leeds , United Kingdom
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France.,Univ. of Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux , Bordeaux , France
| |
Collapse
|
69
|
Tang H, Wu K, Wang J, Vinjamuri S, Gu Y, Song S, Wang Z, Zhang Q, Balistrieri A, Ayon RJ, Rischard F, Vanderpool R, Chen J, Zhou G, Desai AA, Black SM, Garcia JGN, Yuan JXJ, Makino A. Pathogenic Role of mTORC1 and mTORC2 in Pulmonary Hypertension. JACC Basic Transl Sci 2018; 3:744-762. [PMID: 30623134 PMCID: PMC6314964 DOI: 10.1016/j.jacbts.2018.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/23/2018] [Accepted: 08/16/2018] [Indexed: 01/07/2023]
Abstract
G protein-coupled receptors and tyrosine kinase receptors signal through the phosphoinositide 3-kinase/Akt/mTOR pathway to induce cell proliferation, survival, and growth. mTOR is a kinase present in 2 functionally distinct complexes, mTORC1 and mTORC2. Functional disruption of mTORC1 by knockout of Raptor (regulatory associated protein of mammalian target of rapamycin) in smooth muscle cells ameliorated the development of experimental PH. Functional disruption of mTORC2 by knockout of Rictor (rapamycin insensitive companion of mammalian target of rapamycin) caused spontaneous PH by up-regulating platelet-derived growth factor receptors. Use of mTOR inhibitors (e.g., rapamycin) to treat PH should be accompanied by inhibitors of platelet-derived growth factor receptors (e.g., imatinib).
Concentric lung vascular wall thickening due to enhanced proliferation of pulmonary arterial smooth muscle cells is an important pathological cause for the elevated pulmonary vascular resistance reported in patients with pulmonary arterial hypertension. We identified a differential role of mammalian target of rapamycin (mTOR) complex 1 and complex 2, two functionally distinct mTOR complexes, in the development of pulmonary hypertension (PH). Inhibition of mTOR complex 1 attenuated the development of PH; however, inhibition of mTOR complex 2 caused spontaneous PH, potentially due to up-regulation of platelet-derived growth factor receptors in pulmonary arterial smooth muscle cells, and compromised the therapeutic effect of the mTOR inhibitors on PH. In addition, we describe a promising therapeutic strategy using combination treatment with the mTOR inhibitors and the platelet-derived growth factor receptor inhibitors on PH and right ventricular hypertrophy. The data from this study provide an important mechanism-based perspective for developing novel therapies for patients with pulmonary arterial hypertension and right heart failure.
Collapse
Key Words
- EC, endothelial cell
- FOXO3a, Forkhead box O3a
- GPCR, G protein-coupled receptor
- HPH, hypoxia-induced pulmonary hypertension
- PA, pulmonary artery
- PAEC, pulmonary arterial endothelial cell
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary arterial smooth muscle cell
- PDGF, platelet-derived growth factor
- PDGFR, platelet-derived growth factor receptor
- PH, pulmonary hypertension
- PI3K, phosphoinositide 3-kinase
- PTEN, phosphatase and tensin homolog
- PVR, pulmonary vascular resistance
- RVH, right ventricular hypertrophy
- RVSP, right ventricular systolic pressure
- Raptor
- Raptor, regulatory associated protein of mammalian target of rapamycin
- Rictor
- Rictor, rapamycin insensitive companion of mammalian target of rapamycin
- SM, smooth muscle
- TKR, tyrosine kinase receptor
- WT, wild-type
- mTOR
- mTORC1, mammalian target of rapamycin complex 1
- mTORC2, mammalian target of rapamycin complex 2
- pAKT, phosphorylated AKT
- pulmonary hypertension
- right ventricle
Collapse
Affiliation(s)
- Haiyang Tang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kang Wu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sujana Vinjamuri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Yali Gu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ziyi Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Zhang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Angela Balistrieri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Franz Rischard
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Rebecca Vanderpool
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jiwang Chen
- Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois
| | - Guofei Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pediatrics, University of Illinois College of Medicine, Chicago, Illinois
| | - Ankit A Desai
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Division of Cardiology, Department of Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Joe G N Garcia
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
70
|
Type 2 inositol 1,4,5-trisphosphate receptor inhibits the progression of pulmonary arterial hypertension via calcium signaling and apoptosis. Heart Vessels 2018; 34:724-734. [PMID: 30460575 DOI: 10.1007/s00380-018-1304-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease associated with vasoconstriction and remodeling. Intracellular Ca2+ signaling regulates the contraction of pulmonary arteries and the proliferation of pulmonary arterial smooth muscle cells (PASMCs); however, it is not clear which molecules related to Ca2+ signaling contribute to the progression of PAH. In this study, we found the specific expression of type 2 inositol 1,4,5-trisphosphate receptor (IP3R2), which is an intracellular Ca2+ release channel, on the sarco/endoplasmic reticulum in mouse PASMCs, and demonstrated its inhibitory role in the progression of PAH using a chronic hypoxia-induced PAH mouse model. After chronic hypoxia exposure, IP3R2-/- mice exhibited the significant aggravation of PAH, as determined by echocardiography and right ventricular hypertrophy, with significantly greater medial wall thickness by immunohistochemistry than that of wild-type mice. In IP3R2-/- murine PASMCs with chronic hypoxia, a TUNEL assay revealed the significant suppression of apoptosis, whereas there was no significant change in proliferation. Thapsigargin-induced store-operated Ca2+ entry (SOCE) was significantly enhanced in IP3R2-/- PASMCs in both normoxia and hypoxia based on in vitro fluorescent Ca2+ imaging. Furthermore, the enhancement of SOCE in IP3R2-/- PASMCs was remarkably suppressed by the addition of DPB162-AE, an inhibitor of the stromal-interacting molecule (STIM)-Orai complex which is about 100 times more potent than 2-APB. Our results indicate that IP3R2 may inhibit the progression of PAH by promoting apoptosis and inhibiting SOCE via the STIM-Orai pathway in PASMCs. These findings suggest a previously undetermined role of IP3R in the development of PAH and may contribute to the development of targeted therapies.
Collapse
|
71
|
Lambert M, Capuano V, Olschewski A, Sabourin J, Nagaraj C, Girerd B, Weatherald J, Humbert M, Antigny F. Ion Channels in Pulmonary Hypertension: A Therapeutic Interest? Int J Mol Sci 2018; 19:ijms19103162. [PMID: 30322215 PMCID: PMC6214085 DOI: 10.3390/ijms19103162] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/25/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial and severe disease without curative therapies. PAH pathobiology involves altered pulmonary arterial tone, endothelial dysfunction, distal pulmonary vessel remodeling, and inflammation, which could all depend on ion channel activities (K⁺, Ca2+, Na⁺ and Cl-). This review focuses on ion channels in the pulmonary vasculature and discusses their pathophysiological contribution to PAH as well as their therapeutic potential in PAH.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Véronique Capuano
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, Graz 8010, Austria.
- Department of Physiology, Medical University Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria.
| | - Jessica Sabourin
- Signalisation et Physiopathologie Cardiovasculaire, UMRS 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, Graz 8010, Austria.
| | - Barbara Girerd
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Jason Weatherald
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
- Division of Respirology, Department of Medicine, University of Calgary, Calgary, AB T1Y 6J4, Canada.
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB T1Y 6J4, Canada.
| | - Marc Humbert
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, 94270 Kremlin-Bicêtre, France.
- AP-HP, Centre de Référence de l'Hypertension Pulmonaire Sévère, Département Hospitalo-Universitaire (DHU) Thorax Innovation, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre, France.
- UMRS 999, INSERM and Univ. Paris⁻Sud, Laboratoire d'Excellence (LabEx) en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Hôpital-Marie-Lannelongue, 92350 Le Plessis Robinson, France.
| |
Collapse
|
72
|
Watanabe S, Ishikawa K, Plataki M, Bikou O, Kohlbrenner E, Aguero J, Hadri L, Zarragoikoetxea I, Fish K, Leopold JA, Hajjar RJ. Safety and long-term efficacy of AAV1.SERCA2a using nebulizer delivery in a pig model of pulmonary hypertension. Pulm Circ 2018; 8:2045894018799738. [PMID: 30129881 PMCID: PMC6146327 DOI: 10.1177/2045894018799738] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Nebulization delivery of adeno-associated virus serotype 1 encoding sarcoplasmic reticulum Ca2+-ATPase2a (AAV1.SERCA2a) gene was examined in a Yukatan miniature swine model of chronic pulmonary hypertension (n = 13). Nebulization of AAV1.SERCA2a resulted in homogenous distribution of vectors, lower pulmonary vascular resistance, and a trend towards better long-term survival compared to control animals.
Collapse
Affiliation(s)
- Shin Watanabe
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Plataki
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Weill Cornell Medicine, Pulmonary & Critical Care Medicine, New York, NY, USA
| | - Olympia Bikou
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaume Aguero
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iratxe Zarragoikoetxea
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Kenneth Fish
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jane A. Leopold
- Cardiovascular Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Roger J. Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
73
|
Severe, Rapidly Reversible Hypoxemia in the Early Period after Bilateral Lung Transplantation. Ann Am Thorac Soc 2018; 13:979-85. [PMID: 27295160 DOI: 10.1513/annalsats.201602-107cc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
74
|
Dieffenbach PB, Maracle M, Tschumperlin DJ, Fredenburgh LE. Mechanobiological Feedback in Pulmonary Vascular Disease. Front Physiol 2018; 9:951. [PMID: 30090065 PMCID: PMC6068271 DOI: 10.3389/fphys.2018.00951] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/28/2018] [Indexed: 01/06/2023] Open
Abstract
Vascular stiffening in the pulmonary arterial bed is increasingly recognized as an early disease marker and contributor to right ventricular workload in pulmonary hypertension. Changes in pulmonary artery stiffness throughout the pulmonary vascular tree lead to physiologic alterations in pressure and flow characteristics that may contribute to disease progression. These findings have led to a greater focus on the potential contributions of extracellular matrix remodeling and mechanical signaling to pulmonary hypertension pathogenesis. Several recent studies have demonstrated that the cellular response to vascular stiffness includes upregulation of signaling pathways that precipitate further vascular remodeling, a process known as mechanobiological feedback. The extracellular matrix modifiers, mechanosensors, and mechanotransducers responsible for this process have become increasingly well-recognized. In this review, we discuss the impact of vascular stiffening on pulmonary hypertension morbidity and mortality, evidence in favor of mechanobiological feedback in pulmonary hypertension pathogenesis, and the major contributors to mechanical signaling in the pulmonary vasculature.
Collapse
Affiliation(s)
- Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Marcy Maracle
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
75
|
Reyes RV, Castillo-Galán S, Hernandez I, Herrera EA, Ebensperger G, Llanos AJ. Revisiting the Role of TRP, Orai, and ASIC Channels in the Pulmonary Arterial Response to Hypoxia. Front Physiol 2018; 9:486. [PMID: 29867539 PMCID: PMC5949889 DOI: 10.3389/fphys.2018.00486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary arteries are exquisitely responsive to oxygen changes. They rapidly and proportionally contract as arterial PO2 decrease, and they relax as arterial PO2 is re-established. The hypoxic pulmonary vasoconstriction (HPV) is intrinsic since it does not require neural or endocrine factors, as evidenced in isolated vessels. On the other hand, pulmonary arteries also respond to sustained hypoxia with structural and functional remodeling, involving growth of smooth muscle medial layer and later recruitment of adventitial fibroblasts, secreted mitogens from endothelium and changes in the response to vasoconstrictor and vasodilator stimuli. Hypoxic pulmonary arterial vasoconstriction and remodeling are relevant biological responses both under physiological and pathological conditions, to explain matching between ventilation and perfusion, fetal to neonatal transition of pulmonary circulation and pulmonary artery over-constriction and thickening in pulmonary hypertension. Store operated channels (SOC) and receptor operated channels (ROC) are plasma membrane cationic channels that mediate calcium influx in response to depletion of internal calcium stores or receptor activation, respectively. They are involved in both HPV and pathological remodeling since their pharmacological blockade or genetic suppression of several of the Stim, Orai, TRP, or ASIC proteins in SOC or ROC complexes attenuate the calcium increase, the tension development, the pulmonary artery smooth muscle proliferation, and pulmonary arterial hypertension. In this Mini Review, we discussed the evidence obtained in in vivo animal models, at the level of isolated organ or cells of pulmonary arteries, and we identified and discussed the questions for future research needed to validate these signaling complexes as targets against pulmonary hypertension.
Collapse
Affiliation(s)
- Roberto V Reyes
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Sebastián Castillo-Galán
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ismael Hernandez
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Germán Ebensperger
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Aníbal J Llanos
- Unidad de Fisiología y Fisiopatología Perinatal, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
76
|
Kosaki R, Ono H, Terashima H, Kosaki K. Timothy syndrome-like condition with syndactyly but without prolongation of the QT interval. Am J Med Genet A 2018; 176:1657-1661. [PMID: 29736926 DOI: 10.1002/ajmg.a.38833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/18/2018] [Accepted: 04/17/2018] [Indexed: 01/03/2023]
Abstract
Timothy syndrome is characterized by a unique combination of a prolongation of the corrected QT interval of the electrocardiogram and bilateral cutaneous syndactyly of the fingers and the toes and is caused by heterozygous mutations in CACNA1C, a gene encoding a calcium channel. After the discovery of the CACNA1C gene as the causative gene for Timothy syndrome, patients with CACNA1C mutations with QT prolongation but without syndactyly were described. Here, we report a 5-year-old female patient with cutaneous syndactyly, developmental delay, and pulmonary hypertension. Exome analysis showed a previously undescribed de novo heterozygous mutation in the CACNA1C gene, p.Arg1024Gly. To our knowledge, this patient is the first to exhibit syndactyly and to carry a CACNA1C mutation but to not have QT prolongation, which has long been considered an obligatory feature of Timothy syndrome.
Collapse
Affiliation(s)
- Rika Kosaki
- Division of Medical Genetics, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroshi Ono
- Division of Cardiology, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroshi Terashima
- Division of Neulorogy, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
77
|
Mu YP, Lin DC, Zheng SY, Jiao HX, Sham JSK, Lin MJ. Transient Receptor Potential Melastatin-8 Activation Induces Relaxation of Pulmonary Artery by Inhibition of Store-Operated Calcium Entry in Normoxic and Chronic Hypoxic Pulmonary Hypertensive Rats. J Pharmacol Exp Ther 2018; 365:544-555. [PMID: 29622593 DOI: 10.1124/jpet.117.247320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by enhanced vasoconstriction and vascular remodeling, which are attributable to the alteration of Ca2+ homeostasis in pulmonary arterial smooth muscle cells (PASMCs). It is well established that store-operated Ca2+ entry (SOCE) is augmented in PASMCs during PH and that it plays a crucial role in PH development. Our previous studies showed that the melastatin-related transient receptor potential 8 (TRPM8) is down-regulated in PASMCs of PH animal models, and activation of TRPM8 causes relaxation of pulmonary arteries (PAs). However, the mechanism of TRPM8-induced PA relaxation is unclear. Here we examined the interaction of TRPM8 and SOCE in PAs and PASMCs of normoxic and chronic hypoxic pulmonary hypertensive (CHPH) rats, a model of human group 3 PH. We found that TRPM8 was down-regulated and TRPM8-mediated cation entry was reduced in CHPH-PASMCs. Activation of TRPM8 with icilin caused concentration-dependent relaxation of cyclopiazonic acid (CPA) and endothelin-1 contracted endothelium-denuded PAs, and the effect was abolished by the SOCE antagonist Gd3+ Application of icilin to PASMCs suppressed CPA-induced Mn2+ quenching and Ca2+ entry, which was reversed by the TRPM8 antagonist N-(3-aminopropyl)-2-([(3-methylphenyl)methyl])-oxy-N-(2-thienylmethyl)benzamide hydrochloride salt (AMTB). Moreover, the inhibitory effects of icilin on SOCE in PA and PASMCs of CHPH rats were significantly augmented due to enhanced SOCE activity in PH. Our results, therefore, demonstrated a novel mechanism of TRPM8-mediated inhibition of SOCE in pulmonary vasculature. Because SOCE is important for vascular remodeling and enhanced vasoconstriction, down-regulation of TRPM8 in PASMCs of CHPH rats may minimize its inhibitory influence to allow unimpeded SOCE activity for PH development.
Collapse
Affiliation(s)
- Yun-Ping Mu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Da-Cen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Si-Yi Zheng
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Hai-Xia Jiao
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - James S K Sham
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., J.S.K.S., M.-J.L.) and Department of Physiology and Pathophysiology (Y.-P.M., D.-C.L., S.-Y.Z., H.-X.J., M.-J.L.), School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China; and Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland (Y.-P.M., J.S.K.S.)
| |
Collapse
|
78
|
Zhu L, Zhang J, Zhou J, Lu Y, Huang S, Xiao R, Yu X, Zeng X, Liu B, Liu F, Sun M, Dai M, Hao Q, Li J, Wang T, Li T, Hu Q. Mitochondrial transplantation attenuates hypoxic pulmonary hypertension. Oncotarget 2018; 7:48925-48940. [PMID: 27419637 PMCID: PMC5226481 DOI: 10.18632/oncotarget.10596] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/30/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are essential for the onset of hypoxia-induced pulmonary vasoconstriction and pulmonary vascular-remodeling, two major aspects underlying the development of pulmonary hypertension, an incurable disease. However, hypoxia induces relaxation of systemic arteries such as femoral arteries and mitochondrial heterogeneity controls the distinct responses of pulmonary versus femoral artery smooth muscle cells to hypoxia in vitro. The aim of this study was to determine whether mitochondrial heterogeneity can be experimentally exploited in vivo for a potential treatment against pulmonary hypertension. The intact mitochondria were transplanted into Sprague-Dawley rat pulmonary artery smooth muscle cells in vivo via intravenous administration. The immune-florescent staining and ultrastructural examinations on pulmonary arteries confirmed the intracellular distribution of exogenous mitochondria and revealed the possible mitochondrial transfer from pulmonary artery endothelial cells into smooth muscle cells in part through their intercellular space and intercellular junctions. The transplantation of mitochondria derived from femoral artery smooth muscle cells inhibited acute hypoxia-triggered pulmonary vasoconstriction, attenuated chronic hypoxia-induced pulmonary vascular remodeling, and thus prevented the development of pulmonary hypertension or cured the established pulmonary hypertension in rats exposed to chronic hypoxia. Our findings suggest that mitochondrial transplantation possesses potential implications for exploring a novel therapeutic and preventive strategy against pulmonary hypertension.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Department of Pathology, Union Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Juan Zhou
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Current address: Department of Clinical Laboratory of Xuzhou Central Hospital, Xuzhou, China
| | - Yankai Lu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Songling Huang
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xiangyuan Yu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xianqin Zeng
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Bingxun Liu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Fangbo Liu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Mengxiang Sun
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Mao Dai
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Qiang Hao
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Jiansha Li
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Department of Pathology, Tongji Hospital, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Tongfei Li
- Department of Pathology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| |
Collapse
|
79
|
Increased CaSR and TRPC6 pulmonary vascular expression in the nitrofen-induced model of congenital diaphragmatic hernia. Pediatr Surg Int 2018; 34:211-215. [PMID: 28983729 DOI: 10.1007/s00383-017-4191-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 11/27/2022]
Abstract
AIMS AND OBJECTIVES The high morbidity and mortality rates in congenital diaphragmatic hernia (CDH) are attributed primarily to severe lung hypoplasia and/or persistent pulmonary hypertension (PPH). PPH in CDH is characterized by abnormal vascular remodeling with thickening of medial and adventitial layers and extension of smooth muscle into previously nonmuscularized arteries. Excessive proliferation of pulmonary arterial smooth muscle cells (PASMC) is an important contributor to the concentric pulmonary arterial remodeling. An increase in cytosolic-free Ca2+ concentration in PASMC is a major trigger for pulmonary vasoconstriction and a key stimulus for PASMC proliferation and migration. Calcium-sensing receptor (CaSR), a member of the G-protein coupled receptor family, is activated by cations (e.g., Ca2+, Mg2+) and polyamines. Under normal physiological conditions, the expression levels of CaSR in the pulmonary vasculature are very low. Canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degree of Ca2+ selectivity. TRPC6 has been reported to play a crucial role in the regulation of neo-muscularization, vasoreactivity, and vasomotor tone in the pulmonary vasculature. We hypothesized that CaSR and TRPC6 expression is upregulated in the pulmonary vasculature of nitrofen-induced CDH rats. MATERIALS AND METHODS Following ethical approval (REC1103), time-pregnant Sprague Dawley rats received nitrofen or vehicle on gestational day (D) 9. D21 fetuses were divided into CDH and control (n = 12). Quantitative real-time polymerase chain reaction (QRT-PCR), western blotting, and confocal-immunofluorescence microscopy were performed to detect lung gene and protein expression of CaSR and TRPC6. RESULTS QRT-PCR and western blot analysis revealed that CaSR and TPRC6 expression was significantly increased in the CDH group compared to controls (p < 0.05). Confocal-immunofluorescence microscopy revealed that CaSR and TRPC6 lung expression was markedly increased in CDH group compared to controls. CONCLUSION Increased CaSR and TRPC6 expression in CDH lung suggests that CaSR interacting with TRPC6 may contribute to abnormal vascular remodeling resulting in pulmonary vasoconstriction and development of PPH.
Collapse
|
80
|
Jiang Y, Zhou Y, Peng G, Tian H, Pan D, Liu L, Yang X, Li C, Li W, Chen L, Ran P, Dai A. Two-pore channels mediated receptor-operated Ca 2+ entry in pulmonary artery smooth muscle cells in response to hypoxia. Int J Biochem Cell Biol 2018; 97:28-35. [PMID: 29355755 DOI: 10.1016/j.biocel.2018.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/26/2023]
Abstract
The aim of this study was to investigate the influence of two-pore channels mediated receptor-operated Ca2+ entry on pulmonary arterial smooth muscle cell (PASMC) under hypoxia conditions. PASMCs were separated using the direct adherent culture method. The cultured cells were observed under optic microscope and the phenotypes of cells were identified by immunohistochemistry. The expression of NAADP was examined by ELISA. CaN, TPC1, TPC2 and NFATc3 protein levels were examined using Western blotting. Real-time PCR was utilized to detect the level of TPC1 and TPC2 mRNA. Fluorescent probe technique was used to explore the [Ca2+]i in PASMCs. Proliferation and migration of PASMCs were examined by MTT assay and Transwell, respectively. The results showed that cells displayed a typical "peak-valley" growth pattern and positive for α-actin staining. Expression of NAADP, CaN, NFATc3, TPC1 and TPC2 under PASMCs exposed to hypoxia after 24 h and 48 h were higher than control, however, cells treated with Ned-19 were significantly decreased compared with control. Levels of CaN and NFATc3 protein collected from RPASMCs transfected with TPCs siRNA were observably decreased than scrambled siRNA. Under hypoxia condition for 12 h, 24 h and 48 h, TPC1 and TPC2 mRNA levels were higher in PASMCs compared as control. The [Ca2+]i evoked by hypoxia significantly increased than normoxia group. Nevertheless, the [Ca2+]i of the groups treated with Ned-19 and transfected with TPCs siRNA were markedly lower compared with control. In conclusion, the TPCs influence on function of pulmonary artery smooth muscle cells by mediated Ca2+ Signals under hypoxia condition.
Collapse
Affiliation(s)
- Yongliang Jiang
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Yumin Zhou
- State Key Lab of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, PR China
| | - Gongyong Peng
- State Key Lab of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, PR China
| | - Heshen Tian
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Dan Pan
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Lei Liu
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Xing Yang
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Chao Li
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Wen Li
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Ling Chen
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Pixin Ran
- State Key Lab of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, PR China.
| | - Aiguo Dai
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China; Institute of Respiratory Medicine, Changsha Medical College, Changsha 410219, PR China.
| |
Collapse
|
81
|
He X, Song S, Ayon RJ, Balisterieri A, Black SM, Makino A, Wier WG, Zang WJ, Yuan JXJ. Hypoxia selectively upregulates cation channels and increases cytosolic [Ca 2+] in pulmonary, but not coronary, arterial smooth muscle cells. Am J Physiol Cell Physiol 2018; 314:C504-C517. [PMID: 29351410 DOI: 10.1152/ajpcell.00272.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ca2+ signaling, particularly the mechanism via store-operated Ca2+ entry (SOCE) and receptor-operated Ca2+ entry (ROCE), plays a critical role in the development of acute hypoxia-induced pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension. This study aimed to test the hypothesis that chronic hypoxia differentially regulates the expression of proteins that mediate SOCE and ROCE [stromal interacting molecule (STIM), Orai, and canonical transient receptor potential channel TRPC6] in pulmonary (PASMC) and coronary (CASMC) artery smooth muscle cells. The resting cytosolic [Ca2+] ([Ca2+]cyt) and the stored [Ca2+] in the sarcoplasmic reticulum were not different in CASMC and PASMC. Seahorse measurement showed a similar level of mitochondrial bioenergetics (basal respiration and ATP production) between CASMC and PASMC. Glycolysis was significantly higher in PASMC than in CASMC. The amplitudes of cyclopiazonic acid-induced SOCE and OAG-induced ROCE in CASMC are slightly, but significantly, greater than in PASMC. The frequency and the area under the curve of Ca2+ oscillations induced by ATP and histamine were also larger in CASMC than in PASMC. Na+/Ca2+ exchanger-mediated increases in [Ca2+]cyt did not differ significantly between CASMC and PASMC. The basal protein expression levels of STIM1/2, Orai1/2, and TRPC6 were higher in CASMC than in PASMC, but hypoxia (3% O2 for 72 h) significantly upregulated protein expression levels of STIM1/STIM2, Orai1/Orai2, and TRPC6 and increased the resting [Ca2+]cyt only in PASMC, but not in CASMC. The different response of essential components of store-operated and receptor-operated Ca2+ channels to hypoxia is a unique intrinsic property of PASMC, which is likely one of the important explanations why hypoxia causes pulmonary vasoconstriction and induces pulmonary vascular remodeling, but causes coronary vasodilation.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China.,Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Angela Balisterieri
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - W Gil Wier
- Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| | - Wei-Jin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, Shannxi Province, China
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine , Tucson, Arizona.,Department of Physiology, The University of Arizona College of Medicine , Tucson, Arizona
| |
Collapse
|
82
|
Abstract
Transcriptome analysis is a powerful tool in the study of pulmonary vascular disease and pulmonary hypertension. Pulmonary hypertension is a disease process that consists of several unique pathologies sharing a common clinical definition, that of elevated pressure within the pulmonary circulation. As such, it has become increasingly important to identify both similarities and differences among the different classes of pulmonary hypertension. Transcriptome analysis has been an invaluable tool both in the basic science research on animal models as well as clinical research among the various different groups of pulmonary hypertension. This work has identified new potential candidate genes, implicated numerous biochemical and molecular pathways in diseased onset and progression, developed gene signatures to appropriately classify types of pulmonary hypertension and severity of illness, and identified novel gene mutations leading to hereditary forms of the disease.
Collapse
Affiliation(s)
- Dustin R Fraidenburg
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
83
|
Mechanisms underlying the impact of exercise training in pulmonary arterial hypertension. Respir Med 2018; 134:70-78. [DOI: 10.1016/j.rmed.2017.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/10/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022]
|
84
|
Xiong PY, Potus F, Chan W, Archer SL. Models and Molecular Mechanisms of World Health Organization Group 2 to 4 Pulmonary Hypertension. Hypertension 2018; 71:34-55. [PMID: 29158355 PMCID: PMC5777609 DOI: 10.1161/hypertensionaha.117.08824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yu Xiong
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada
| | - Francois Potus
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada
| | - Winnie Chan
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- From the Department of Medicine and Queen's Cardiopulmonary Unit (QCPU) (P.Y.X., F.P., W.C., S.L.A.) and Biomedical and Molecular Sciences (P.Y.X.), Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
85
|
Zhou J, Zhang J, Lu Y, Huang S, Xiao R, Zeng X, Zhang X, Li J, Wang T, Li T, Zhu L, Hu Q. Mitochondrial transplantation attenuates hypoxic pulmonary vasoconstriction. Oncotarget 2017; 7:31284-98. [PMID: 27121314 PMCID: PMC5058756 DOI: 10.18632/oncotarget.8893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/02/2016] [Indexed: 01/15/2023] Open
Abstract
Hypoxia triggers pulmonary vasoconstriction, however induces relaxation of systemic arteries such as femoral arteries. Mitochondria are functionally and structurally heterogeneous between different cell types. The aim of this study was to reveal whether mitochondrial heterogeneity controls the distinct responses of pulmonary versus systemic artery smooth muscle cells to hypoxia. Intact mitochondria were transplanted into Sprague-Dawley rat pulmonary artery smooth muscle cells in culture and pulmonary arteries in vitro. Mitochondria retained functional after transplantation. The cross transplantation of mitochondria between pulmonary and femoral artery smooth muscle cells reversed acute hypoxia-induced alterations in cell membrane potential, [Ca2+]i signaling in smooth muscle cells and constriction or relaxation of arteries. Furthermore, the high or low amount of reactive oxygen species generation from mitochondria and their divergent (dis-)abilities in activating extracellular Ca2+-sensing receptor in smooth muscle cells were found to cause cell membrane potential depolarization, [Ca2+]i elevation and constriction of pulmonary arteries versus cell membrane potential hyperpolarization, [Ca2+]i decline and relaxation of femoral arteries in response to hypoxia, respectively. Our findings suggest that mitochondria necessarily determine the behaviors of vascular smooth muscle cells in response to hypoxia.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Current address: Department of Clinical Laboratory of Xuzhou Central Hospital, Xuzhou 221009, China
| | - Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yankai Lu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Songling Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianqin Zeng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuyun Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiansha Li
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Wang
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongfei Li
- Department of Pathology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
86
|
Gupte SA, Wolin MS. Mitochondrial Calcium Transport: A Potentially Prominent, Therapeutically Targetable Contributor to Pulmonary Arterial Hypertension Progression. Am J Respir Crit Care Med 2017; 195:420-421. [PMID: 28199162 DOI: 10.1164/rccm.201609-1896ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sachin A Gupte
- 1 Translational Center for Pulmonary Hypertension New York Medical College Valhalla, New York
| | - Michael S Wolin
- 1 Translational Center for Pulmonary Hypertension New York Medical College Valhalla, New York
| |
Collapse
|
87
|
Tang H, Desai AA, Yuan JXJ. Genetic Insights into Pulmonary Arterial Hypertension. Application of Whole-Exome Sequencing to the Study of Pathogenic Mechanisms. Am J Respir Crit Care Med 2017; 194:393-7. [PMID: 27525458 DOI: 10.1164/rccm.201603-0577ed] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Haiyang Tang
- 1 Department of Medicine University of Arizona College of Medicine Tucson, Arizona
| | - Ankit A Desai
- 1 Department of Medicine University of Arizona College of Medicine Tucson, Arizona
| | - Jason X-J Yuan
- 1 Department of Medicine University of Arizona College of Medicine Tucson, Arizona
| |
Collapse
|
88
|
Wu K, Zhang Q, Wu X, Lu W, Tang H, Liang Z, Gu Y, Song S, Ayon RJ, Wang Z, McDermott KM, Balistrieri A, Wang C, Black SM, Garcia JGN, Makino A, Yuan JXJ, Wang J. Chloroquine is a potent pulmonary vasodilator that attenuates hypoxia-induced pulmonary hypertension. Br J Pharmacol 2017; 174:4155-4172. [PMID: 28849593 DOI: 10.1111/bph.13990] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Sustained pulmonary vasoconstriction and excessive pulmonary vascular remodelling are two major causes of elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension. The purpose of this study was to investigate whether chloroquine induced relaxation in the pulmonary artery (PA) and attenuates hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH Isometric tension was measured in rat PA rings pre-constricted with phenylephrine or high K+ solution. PA pressure was measured in mouse isolated, perfused and ventilated lungs. Fura-2 fluorescence microscopy was used to measure cytosolic free Ca2+ concentration levels in PA smooth muscle cells (PASMCs). Patch-clamp experiments were performed to assess the activity of voltage-dependent Ca2+ channels (VDCCs) in PASMC. Rats exposed to hypoxia (10% O2 ) for 3 weeks were used as the model of HPH or Sugen5416/hypoxia (SuHx) for in vivo experiments. KEY RESULTS Chloroquine attenuated agonist-induced and high K+ -induced contraction in isolated rat PA. Pretreatment with l-NAME or indomethacin and functional removal of endothelium failed to inhibit chloroquine-induced PA relaxation. In PASMC, extracellular application of chloroquine attenuated store-operated Ca2+ entry and ATP-induced Ca2+ entry. Furthermore, chloroquine also inhibited whole-cell Ba2+ currents through VDCC in PASMC. In vivo experiments demonstrated that chloroquine treatment ameliorated the HPH and SuHx models. CONCLUSIONS AND IMPLICATIONS Chloroquine is a potent pulmonary vasodilator that may directly or indirectly block VDCC, store-operated Ca2+ channels and receptor-operated Ca2+ channels in PASMC. The therapeutic potential of chloroquine in pulmonary hypertension is probably due to the combination of its vasodilator, anti-proliferative and anti-autophagic effects.
Collapse
Affiliation(s)
- Kang Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Qian Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Xiongting Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Zhihao Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yali Gu
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Shanshan Song
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ziyi Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Kimberly M McDermott
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Angela Balistrieri
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Christina Wang
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Joe G N Garcia
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ayako Makino
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Physiology, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.,Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
89
|
Xiao X, Liu HX, Shen K, Cao W, Li XQ. Canonical Transient Receptor Potential Channels and Their Link with Cardio/Cerebro-Vascular Diseases. Biomol Ther (Seoul) 2017; 25:471-481. [PMID: 28274093 PMCID: PMC5590790 DOI: 10.4062/biomolther.2016.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 12/29/2022] Open
Abstract
The canonical transient receptor potential channels (TRPCs) constitute a series of nonselective cation channels with variable degrees of Ca2+ selectivity. TRPCs consist of seven mammalian members, TRPC1, TRPC2, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7, which are further divided into four subtypes, TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7. These channels take charge of various essential cell functions such as contraction, relaxation, proliferation, and dysfunction. This review, organized into seven main sections, will provide an overview of current knowledge about the underlying pathogenesis of TRPCs in cardio/cerebrovascular diseases, including hypertension, pulmonary arterial hypertension, cardiac hypertrophy, atherosclerosis, arrhythmia, and cerebrovascular ischemia reperfusion injury. Collectively, TRPCs could become a group of drug targets with important physiological functions for the therapy of human cardio/cerebro-vascular diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.,Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Shen
- Cadet Brigade, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Cao
- Department of Natural Medicine & Institute of Materia Medica, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Qiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
90
|
Diagnostic Approach to Pulmonary Hypertension in Premature Neonates. CHILDREN-BASEL 2017; 4:children4090075. [PMID: 28837121 PMCID: PMC5615265 DOI: 10.3390/children4090075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 02/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease in premature infants following respiratory distress at birth. With increasing survival of extremely low birth weight infants, alveolar simplification is the defining lung characteristic of infants with BPD, and along with pulmonary hypertension, increasingly contributes to both respiratory morbidity and mortality in these infants. Growth restricted infants, infants born to mothers with oligohydramnios or following prolonged preterm rupture of membranes are at particular risk for early onset pulmonary hypertension. Altered vascular and alveolar growth particularly in canalicular and early saccular stages of lung development following mechanical ventilation and oxygen therapy, results in developmental lung arrest leading to BPD with pulmonary hypertension (PH). Early recognition of PH in infants with risk factors is important for optimal management of these infants. Screening tools for early diagnosis of PH are evolving; however, echocardiography is the mainstay for non-invasive diagnosis of PH in infants. Cardiac computed tomography (CT) and magnetic resonance are being used as imaging modalities, however their role in improving outcomes in these patients is uncertain. Follow-up of infants at risk for PH will help not only in early diagnosis, but also in appropriate management of these infants. Aggressive management of lung disease, avoidance of hypoxemic episodes, and optimal nutrition determine the progression of PH, as epigenetic factors may have significant effects, particularly in growth-restricted infants. Infants with diagnosis of PH are managed with pulmonary vasodilators and those resistant to therapy need to be worked up for the presence of cardio-vascular anomalies. The management of infants and toddlers with PH, especially following premature birth is an emerging field. Nonetheless, combination therapies in a multi-disciplinary setting improves outcomes for these infants.
Collapse
|
91
|
Abstract
Pulmonary arterial hypertension (PAH) remains a mysterious killer that, like cancer, is characterized by tremendous complexity. PAH development occurs under sustained and persistent environmental stress, such as inflammation, shear stress, pseudo-hypoxia, and more. After inducing an initial death of the endothelial cells, these environmental stresses contribute with time to the development of hyper-proliferative and apoptotic resistant clone of cells including pulmonary artery smooth muscle cells, fibroblasts, and even pulmonary artery endothelial cells allowing vascular remodeling and PAH development. Molecularly, these cells exhibit many features common to cancer cells offering the opportunity to exploit therapeutic strategies used in cancer to treat PAH. In this review, we outline the signaling pathways and mechanisms described in cancer that drive PAH cells' survival and proliferation and discuss the therapeutic potential of antineoplastic drugs in PAH.
Collapse
Affiliation(s)
- Olivier Boucherat
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Geraldine Vitry
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Isabelle Trinh
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Department of Medicine, Québec, Canada
| |
Collapse
|
92
|
Dumas de la Roque E, Smeralda G, Quignard JF, Freund-Michel V, Courtois A, Marthan R, Muller B, Guibert C, Dubois M. Altered vasoreactivity in neonatal rats with pulmonary hypertension associated with bronchopulmonary dysplasia: Implication of both eNOS phosphorylation and calcium signaling. PLoS One 2017; 12:e0173044. [PMID: 28235094 PMCID: PMC5325597 DOI: 10.1371/journal.pone.0173044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) consists of an arrest of pulmonary vascular and alveolar growth, with persistent hypoplasia of the pulmonary microvasculature and alveolar simplification. In 25 to 40% of the cases, BPD is complicated by pulmonary hypertension (BPD-PH) that significantly increases the risk of morbidity. In vivo studies suggest that increased pulmonary vascular tone could contribute to late PH in BPD. Nevertheless, an alteration in vasoreactivity as well as the mechanisms involved remain to be confirmed. The purpose of this study was thus to assess changes in pulmonary vascular reactivity in a murine model of BPD-PH. Newborn Wistar rats were exposed to either room air (normoxia) or 90% O2 (hyperoxia) for 14 days. Exposure to hyperoxia induced the well-known features of BPD-PH such as elevated right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling and decreased pulmonary vascular density. Intrapulmonary arteries from hyperoxic pups showed decreased endothelium-dependent relaxation to acetylcholine without any alteration of relaxation to the NO-donor sodium nitroprusside. This functional alteration was associated with a decrease of lung eNOS phosphorylation at the Ser1177 activating site. In pups exposed to hyperoxia, serotonin and phenylephrine induced exacerbated contractile responses of intrapulmonary arteries as well as intracellular calcium response in pulmonary arterial smooth muscle cells (PASMC). Moreover, the amplitude of the store-operated Ca2+ entry (SOCE), induced by store depletion using a SERCA inhibitor, was significantly greater in PASMC from hyperoxic pups. Altogether, hyperoxia-induced BPD-PH alters the pulmonary arterial reactivity, with effects on both endothelial and smooth muscle functions. Reduced activating eNOS phosphorylation and enhanced Ca2+ signaling likely account for alterations of pulmonary arterial reactivity.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Animals, Newborn
- Bronchopulmonary Dysplasia/physiopathology
- Calcium Signaling
- Cells, Cultured
- Female
- Hyperoxia/physiopathology
- Hypertension, Pulmonary/physiopathology
- Lung/blood supply
- Lung/enzymology
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphorylation
- Protein Processing, Post-Translational
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats, Wistar
- Vasodilation
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Eric Dumas de la Roque
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Services de Réanimation Néonatale et Exploration Fonctionnelle Respiratoire, Centre d’Investigation Clinique (CIC 0005), Bordeaux, France
| | - Gwladys Smeralda
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Jean-François Quignard
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Véronique Freund-Michel
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Arnaud Courtois
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Roger Marthan
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux, Services de Réanimation Néonatale et Exploration Fonctionnelle Respiratoire, Centre d’Investigation Clinique (CIC 0005), Bordeaux, France
| | - Bernard Muller
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Christelle Guibert
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
| | - Mathilde Dubois
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- * E-mail:
| |
Collapse
|
93
|
Hayabuchi Y. The Action of Smooth Muscle Cell Potassium Channels in the Pathology of Pulmonary Arterial Hypertension. Pediatr Cardiol 2017; 38:1-14. [PMID: 27826710 DOI: 10.1007/s00246-016-1491-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
Many different types of potassium channels with various functions exist in pulmonary artery smooth muscle cells, contributing to many physiological actions and pathological conditions. The deep involvement of these channels in the onset and exacerbation of pulmonary arterial hypertension (PAH) also continues to be revealed. In 2013, KCNK3 (TASK1), which encodes a type of two-pore domain potassium channel, was shown to be a predisposing gene for PAH by genetic mutation, and it was added to the PAH classification at the Fifth World Symposium on Pulmonary Hypertension (Nice International Conference). Decreased expression and inhibited activity of voltage-gated potassium channels, particularly KCNA5 (Kv1.5), are also seen in PAH, regardless of the cause, and facilitation of pulmonary arterial contraction and vascular remodeling has been shown. The calcium-activated potassium channels seen in smooth muscle cells also change from BKca (Kca1.1) to IKca (Kca3.1) predominance in PAH due to transformation and have effects including the facilitation of smooth muscle cell migration, enhancement of proliferation, and inhibition of apoptosis. Elucidation of these roles for potassium channels in pulmonary vasoconstriction and remodeling may help bring new therapeutic strategies into view.
Collapse
Affiliation(s)
- Yasunobu Hayabuchi
- Department of Pediatrics, Tokushima University, Kuramoto-cho-3, Tokushima, 770-8503, Japan.
| |
Collapse
|
94
|
Xu X, Hu H, Wang X, Ye W, Su H, Hu Y, Dong L, Zhang R, Ying K. Involvement of CapG in proliferation and apoptosis of pulmonary arterial smooth muscle cells and in hypoxia-induced pulmonary hypertension rat model. Exp Lung Res 2016; 42:142-53. [PMID: 27093378 DOI: 10.3109/01902148.2016.1160304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Actin-binding protein capping protein gelsolin-like (CapG) was preferentially expressed in human pulmonary arterial smooth muscle cells (PASMCs) under hypoxia, and reduced CapG expression was accompanied by impaired migration ability in vitro. We intended to investigate the effects of CapG on rat PASMCs and hypoxia-induced pulmonary hypertension (HPH) rat model. MATERIALS AND METHODS We investigated the effect of RNA interference-medicated down-regulation of CapG expression in rat PASMCs as well as in HPH rat model. The proliferation, apoptosis and cell cycle of PASMCs were evaluated. The HPH rat model was established by intratracheal instillation of lentiviral vector and subsequent hypoxia exposure for four weeks. Right ventricular systolic pressure, right ventricular hypertrophy and the percentage of medial wall thickness were measured to evaluate the development of HPH. RESULTS Knock-down CapG in PASMCs resulted in decreased proliferation, increased apoptosis and induced cell cycle inhibition. Down-regulation of CapG expression locally could attenuate pulmonary hypertension, pulmonary vascular remodeling and right ventricular hypertrophy in HPH rat model. CONCLUSIONS Our study indicated that CapG participated in the pathogenesis of pulmonary vascular remodeling in HPH rats, which was probably mediated by promoting the proliferation and inhibiting the apoptosis of PASMCs. We proposed CapG modulating protective effects of pulmonary hypertension.
Collapse
Affiliation(s)
- Xiaoling Xu
- a Department of Respiratory Medicine , Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Huihui Hu
- a Department of Respiratory Medicine , Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Xiaohua Wang
- a Department of Respiratory Medicine , Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Wu Ye
- a Department of Respiratory Medicine , Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Hua Su
- a Department of Respiratory Medicine , Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Yanjie Hu
- a Department of Respiratory Medicine , Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Liangliang Dong
- a Department of Respiratory Medicine , Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Ruifeng Zhang
- a Department of Respiratory Medicine , Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| | - Kejing Ying
- a Department of Respiratory Medicine , Sir Run Run Shaw Hospital , Zhejiang University School of Medicine , Hangzhou, Zhejiang , China
| |
Collapse
|
95
|
Maron BA, Machado RF, Shimoda L. Pulmonary vascular and ventricular dysfunction in the susceptible patient (2015 Grover Conference series). Pulm Circ 2016; 6:426-438. [PMID: 28090285 PMCID: PMC5210067 DOI: 10.1086/688315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Pulmonary blood vessel structure and tone are maintained by a complex interplay between endogenous vasoactive factors and oxygen-sensing intermediaries. Under physiological conditions, these signaling networks function as an adaptive interface between the pulmonary circulation and environmental or acquired perturbations to preserve oxygenation and maintain systemic delivery of oxygen-rich hemoglobin. Chronic exposure to hypoxia, however, triggers a range of pathogenetic mechanisms that include hypoxia-inducible factor 1α (HIF-1α)-dependent upregulation of the vasoconstrictor peptide endothelin 1 in pulmonary endothelial cells. In pulmonary arterial smooth muscle cells, chronic hypoxia induces HIF-1α-mediated upregulation of canonical transient receptor potential proteins, as well as increased Rho kinase-Ca2+ signaling and pulmonary arteriole synthesis of the profibrotic hormone aldosterone. Collectively, these mechanisms contribute to a contractile or hypertrophic pulmonary vascular phenotype. Genetically inherited disorders in hemoglobin structure are also an important etiology of abnormal pulmonary vasoreactivity. In sickle cell anemia, for example, consumption of the vasodilator and antimitogenic molecule nitric oxide by cell-free hemoglobin is an important mechanism underpinning pulmonary hypertension. Contemporary genomic and transcriptomic analytic methods have also allowed for the discovery of novel risk factors relevant to sickle cell disease, including GALNT13 gene variants. In this report, we review cutting-edge observations characterizing these and other pathobiological mechanisms that contribute to pulmonary vascular and right ventricular vulnerability.
Collapse
Affiliation(s)
- Bradley A. Maron
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA; and Department of Cardiology, Boston Veterans Affairs Healthcare System, Boston, Massachusetts, USA
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Larissa Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
96
|
Yan L, Gao H, Li C, Han X, Qi X. Effect of miR-23a on anoxia-induced phenotypic transformation of smooth muscle cells of rat pulmonary arteries and regulatory mechanism. Oncol Lett 2016; 13:89-98. [PMID: 28123527 PMCID: PMC5245139 DOI: 10.3892/ol.2016.5440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022] Open
Abstract
We investigated the possible implication of miR-23a in anoxia-induced phenotypic transformation of the pulmonary arterial smooth muscle and studied the mechanism of upregulation of miR-23a expression in anoxia. The collagenase digestion method was used for preparing rat primary pulmonary artery smooth muscle cell (PASMC) culture. SM-MHC, SM-α-actin, calponin-1 and SM22α protein expression levels were evaluated using western blot analysis after the ASMCs were subjected to anoxia treatment (3% O2). Transfection with miR-23a mimics were conducted when PASMCs were under normoxia and anoxia conditions. EdU staining was used to detect the proliferative activity of PASMCs. Cells were transfected with HIF-1α specific siRNA under anoxia condition. RT-qPCR was used to detect miR-23a expression in PASMCs. Chromatin immunoprecipitation method was employed to verify the binding sites of HIF-1α. The dual-luciferase reporter gene was used to study the role of HIF-1 and its binding sites. Rat hypoxic pulmonary hypertension models were established to study the expression of miR-23a using RT-qPCR method and to verify the expression of miR-23a in the arteriole of the rat pulmonary. Our results showed that compared with normoxia condition, under anoxia condition (3% O2), the expression levels of the contractile phenotype marker proteins decreased significantly after 24 and 48 h. The positive rate of the EdU staining increased significantly and the expression of miR-23a increased. Transfection with miR-23a-mimic downregulated the expression of contractile marker proteins and improved the positive rate of the EdU staining under normoxia. Anoxia and transfection with HIF-1α enhanced the activity of the wild-type Luc-miR-23a-1 (WT) reporter gene. We concluded that miR-23a participated in the anoxia-induced phenotypic transformation of PASMCs. Increased expression of miR-23a under anoxia may primarily be due to miR-23a-1 and miR-23a-3 upregulation. The anoxia-induced upregulation of miR-23a was regulated by HIF-1.
Collapse
Affiliation(s)
- Li Yan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Haixiang Gao
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Chunzhi Li
- Department of Infectious Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaowen Han
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Xiaoyong Qi
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China; Department of Heart Disease Center, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
97
|
Smith KA, Ayon RJ, Tang H, Makino A, Yuan JXJ. Calcium-Sensing Receptor Regulates Cytosolic [Ca 2+ ] and Plays a Major Role in the Development of Pulmonary Hypertension. Front Physiol 2016; 7:517. [PMID: 27867361 PMCID: PMC5095111 DOI: 10.3389/fphys.2016.00517] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary vascular resistance (PVR) leading to right heart failure and premature death. The increased PVR results in part from pulmonary vascular remodeling and sustained pulmonary vasoconstriction. Excessive pulmonary vascular remodeling stems from increased pulmonary arterial smooth muscle cell (PASMC) proliferation and decreased PASMC apoptosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in PASMC is a major trigger for pulmonary vasoconstriction and a key stimulus for PASMC proliferation and migration, both contributing to the development of pulmonary vascular remodeling. PASMC from patients with idiopathic PAH (IPAH) have increased resting [Ca2+]cyt and enhanced Ca2+ influx. Enhanced Ca2+ entry into PASMC due to upregulation of membrane receptors and/or Ca2+ channels may contribute to PASMC contraction and proliferation and to pulmonary vasoconstriction and pulmonary vascular remodeling. We have shown that the extracellular Ca2+-sensing receptor (CaSR), which is a member of G protein-coupled receptor (GPCR) subfamily C, is upregulated, and the extracellular Ca2+-induced increase in [Ca2+]cyt is enhanced in PASMC from patients with IPAH in comparison to PASMC from normal subjects. Pharmacologically blockade of CaSR significantly attenuate the development and progression of experimental pulmonary hypertension in animals. Additionally, we have demonstrated that dihydropyridine Ca2+ channel blockers (e.g., nifedipine), which are used to treat PAH patients but are only effective in 15–20% of patients, activate CaSR resulting in an increase in [Ca2+]cyt in IPAH-PASMC, but not normal PASMC. Our data indicate that CaSR functionally couples with transient receptor potential canonical (TRPC) channels to mediate extracellular Ca2+-induced Ca2+ influx and increase in [Ca2+]cyt in IPAH-PASMC. Upregulated CaSR is necessary for the enhanced extracellular Ca2+-induced increase in [Ca2+]cyt and the augmented proliferation of PASMC in patients with IPAH. This review will highlight the pathogenic role of CaSR in the development and progression of PAH.
Collapse
Affiliation(s)
- Kimberly A Smith
- Department of Pediatrics, Northwestern University Chicago, IL, USA
| | - Ramon J Ayon
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Tucson, AZ, USA
| | - Haiyang Tang
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Tucson, AZ, USA
| | - Ayako Makino
- Department of Physiology, The University of Arizona Tucson, AZ, USA
| | - Jason X-J Yuan
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of ArizonaTucson, AZ, USA; Department of Physiology, The University of ArizonaTucson, AZ, USA
| |
Collapse
|
98
|
Yamamura A. Upregulation/downregulation of ion channels in pulmonary hypertension. Nihon Yakurigaku Zasshi 2016; 148:226-230. [PMID: 27803434 DOI: 10.1254/fpj.148.226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
99
|
Jang SP, Oh JG, Kang DH, Kang JY, Kang SW, Hajjar RJ, Park WJ. A Decoy Peptide Targeted to Protein Phosphatase 1 Attenuates Degradation of SERCA2a in Vascular Smooth Muscle Cells. PLoS One 2016; 11:e0165569. [PMID: 27792751 PMCID: PMC5085086 DOI: 10.1371/journal.pone.0165569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/13/2016] [Indexed: 01/14/2023] Open
Abstract
Neointimal growth in the injured vasculature is largely facilitated by the proliferation of vascular smooth muscle cells (VSMC), which associates with reduced sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) activity. The gene transfer-mediated restoration of the SERCA2a level thus attenuates neointimal growth and VSMC proliferation. We previously reported that a peptide targeted to protein phosphatase 1, ψPLB-SE, normalizes SERCA2a activity in cardiomyocytes. In this study, we found that ψPLB-SE attenuated neointimal growth in balloon-injured rat carotid arteries, and the proliferation and migration of VSMC cultured in high-serum media (synthetic conditions). In parallel, ψPLB-SE inhibited the degradation of SERCA2a in the injured carotid arteries and VSMC under synthetic conditions. The calpain inhibitor MDL28170 also attenuated SERCA2a degradation and VSMC proliferation under synthetic conditions, indicating that calpain degrades SERCA2a. The Ca2+ ionophore A23187 induced SERCA2a degradation in VSMC, which was blocked by either ψPLB-SE or MDL28170. Additionally, ψPLB-SE normalized the cytosolic Ca2+ level in VSMC that was increased by either A23187 or synthetic stimulation. Collectively, these data indicate that ψPLB-SE corrects the abnormal Ca2+ handling by activating SERCA2a, which further protects SERCA2a from calpain-dependent degradation in VSMC. We conclude that ψPLB-SE may form the basis of a therapeutic strategy for vascular proliferative disorders.
Collapse
Affiliation(s)
- Seung Pil Jang
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States of America
| | - Dong Hoon Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Ju Young Kang
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Sang Won Kang
- Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Roger J. Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States of America
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea
- * E-mail:
| |
Collapse
|
100
|
Jin H, Liu M, Zhang X, Pan J, Han J, Wang Y, Lei H, Ding Y, Yuan Y. Grape seed procyanidin extract attenuates hypoxic pulmonary hypertension by inhibiting oxidative stress and pulmonary arterial smooth muscle cells proliferation. J Nutr Biochem 2016; 36:81-88. [DOI: 10.1016/j.jnutbio.2016.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/25/2016] [Accepted: 07/05/2016] [Indexed: 01/19/2023]
|