51
|
Al-Obaidi MMJ, Bahadoran A, Har LS, Mui WS, Rajarajeswaran J, Zandi K, Manikam R, Sekaran SD. Japanese encephalitis virus disrupts blood-brain barrier and modulates apoptosis proteins in THBMEC cells. Virus Res 2017; 233:17-28. [DOI: 10.1016/j.virusres.2017.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/25/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|
52
|
Masciantonio MG, Lee CKS, Arpino V, Mehta S, Gill SE. The Balance Between Metalloproteinases and TIMPs: Critical Regulator of Microvascular Endothelial Cell Function in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:101-131. [PMID: 28413026 DOI: 10.1016/bs.pmbts.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells (EC), especially the microvascular EC (MVEC), have critical functions in health and disease. For example, healthy MVEC provide a barrier between the fluid and protein found within the blood, and the surrounding tissue. Following tissue injury or infection, the microvascular barrier is often disrupted due to activation and dysfunction of the MVEC. Multiple mechanisms promote MVEC activation and dysfunction, including stimulation by cytokines, mechanical interaction with activated leukocytes, and exposure to harmful leukocyte-derived molecules, which collectively result in a loss of MVEC barrier function. However, MVEC activation is also critical to facilitate recruitment of inflammatory cells, such as neutrophils (PMNs) and monocytes, into the injured or infected tissue. Metalloproteinases, including the matrix metalloproteinases (MMPs) and the closely related, a disintegrin and metalloproteinases (ADAMs), have been implicated in regulating both MVEC barrier function, through cleavage of adherens and tight junctions proteins between adjacent MVEC and through degradation of the extracellular matrix, as well as PMN-MVEC interaction, through shedding of cell surface PMN receptors. Moreover, the tissue inhibitors of metalloproteinases (TIMPs), which collectively inhibit most MMPs and ADAMs, are critical regulators of MVEC activation and dysfunction through their ability to inhibit metalloproteinases and thereby promote MVEC stability. However, TIMPs have been also found to modulate MVEC function through metalloproteinase-independent mechanisms, such as regulation of vascular endothelial growth factor signaling. This chapter is focused on examining the role of the metalloproteinases and TIMPs in regulation of MVEC function in both health and disease.
Collapse
Affiliation(s)
- Marcello G Masciantonio
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher K S Lee
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
53
|
Galkin II, Pletjushkina OY, Zinovkin RA, Zakharova VV, Chernyak BV, Popova EN. Mitochondria-Targeted Antioxidant SkQR1 Reduces TNF-Induced Endothelial Permeability in vitro. BIOCHEMISTRY (MOSCOW) 2017; 81:1188-1197. [PMID: 27908243 DOI: 10.1134/s0006297916100163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Prolonged or excessive increase in the circulatory level of proinflammatory tumor necrosis factor (TNF) leads to abnormal activation and subsequent damage to endothelium. TNF at high concentrations causes apoptosis of endothelial cells. Previously, using mitochondria-targeted antioxidants of SkQ family, we have shown that apoptosis of endothelial cells is dependent on the production of reactive oxygen species (ROS) in mitochondria (mito-ROS). Now we have found that TNF at low concentrations does not cause cell death but activates caspase-3 and caspase-dependent increase in endothelial permeability in vitro. This effect is probably due to the cleavage of β-catenin - an adherent junction protein localized in the cytoplasm. We have also shown that extracellular matrix metalloprotease 9 (MMP9) VE-cadherin shedding plays a major role in the TNF-induced endothelial permeability. The mechanisms of the caspase-3 and MMP9 activation are probably not related to each other since caspase inhibition did not affect VE-cadherin cleavage and MMP9 inhibition had no effect on the caspase-3 activation. Mitochondria-targeted antioxidant SkQR1 inhibited TNF-induced increase in endothelial permeability. SkQR1 also inhibited caspase-3 activation, β-catenin cleavage, and MMP9-dependent VE-cadherin shedding. The data suggest that mito-ROS are involved in the increase in endothelial permeability due to the activation of both caspase-dependent cleavage of intracellular proteins and of MMP9-dependent cleavage of the transmembrane cell-to-cell contact proteins.
Collapse
Affiliation(s)
- I I Galkin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
54
|
Banse C, Polena H, Stidder B, Khalil-Mgharbel A, Houivet E, Lequerré T, Fardellone P, Le-Loët X, Philippe P, Marcelli C, Vittecoq O, Vilgrain I. Soluble vascular endothelial (VE) cadherin and autoantibodies to VE-cadherin in rheumatoid arthritis patients treated with etanercept or adalimumab. Joint Bone Spine 2016; 84:685-691. [PMID: 28011155 DOI: 10.1016/j.jbspin.2016.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/31/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the clinical value of sVE and anti-vascular endothelial-cadherin antibodies (AAVE) in RA treated with etanercept or adalimumab combined with methotrexate. METHODS This was an 18-month prospective multicenter study in which patients had active RA, requiring TNF antagonist. sVE rates and AAVE titers were measured respectively by dot blot and ELISA. The relationship of these biomarkers with parameters reflecting articular or systemic disease activity, progression of structural damage, and response or remission to treatment was analyzed. RESULTS Forty-eight patients received TNF blocking agents. Variation of sVE rates were significantly correlated with that of C-reactive protein (CRP) levels at weeks 6, 12, 26 and 52. A significant decrease in sVE levels was observed in the group of patients exhibiting a decrease in CRP levels as compared to the patient group with unmodified CRP. AAVE at baseline were correlated with rheumatoid factor. Kinetics analysis of sVE levels and AAVE titers showed that their level were not associated with disease activity score and to methotrexate/adalimumab or etanercept response. CONCLUSIONS sVE is a biomarker associated with systemic RA activity under anti-TNF. AAVE are related to autoantibodies usually associated to RA.
Collapse
Affiliation(s)
- Christopher Banse
- Rheumatology Department, Rouen University Hospital, Inserm U905, CIC/CRB 1404, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76000 Rouen, France.
| | - Helena Polena
- Inserm, Unit 1036, Biology of Cancer and Infection, 38054 Grenoble, France; UJF-Grenoble 1, Biology of Cancer and Infection, 38054 Grenoble, France; CEA Comission at Atomic Energy and Alternative Energies, DRF/B(2)IG direction de la recherche fondamentale/BioScience and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| | - Barry Stidder
- Inserm, Unit 1036, Biology of Cancer and Infection, 38054 Grenoble, France; UJF-Grenoble 1, Biology of Cancer and Infection, 38054 Grenoble, France; CEA Comission at Atomic Energy and Alternative Energies, DRF/B(2)IG direction de la recherche fondamentale/BioScience and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| | - Abir Khalil-Mgharbel
- Inserm, Unit 1036, Biology of Cancer and Infection, 38054 Grenoble, France; UJF-Grenoble 1, Biology of Cancer and Infection, 38054 Grenoble, France; CEA Comission at Atomic Energy and Alternative Energies, DRF/B(2)IG direction de la recherche fondamentale/BioScience and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| | - Estelle Houivet
- Department of Biostatistics, Rouen University Hospital, IRIB, University of Rouen, 76031 Rouen, France
| | - Thierry Lequerré
- Rheumatology Department, Rouen University Hospital, Inserm U905, CIC/CRB 1404, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76000 Rouen, France
| | - Patrice Fardellone
- Rheumatology Department, Amiens University Hospital, Inserm U1088, University of Picardie Jules Verne, 80054 Amiens, France
| | - Xavier Le-Loët
- Rheumatology Department, Rouen University Hospital, Inserm U905, CIC/CRB 1404, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76000 Rouen, France
| | - Peggy Philippe
- Rheumatology Department, Roger Salengro Hospital, University of Lille 2, 59037 Lille Cedex, France
| | | | - Olivier Vittecoq
- Rheumatology Department, Rouen University Hospital, Inserm U905, CIC/CRB 1404, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76000 Rouen, France
| | - Isabelle Vilgrain
- Inserm, Unit 1036, Biology of Cancer and Infection, 38054 Grenoble, France; UJF-Grenoble 1, Biology of Cancer and Infection, 38054 Grenoble, France; CEA Comission at Atomic Energy and Alternative Energies, DRF/B(2)IG direction de la recherche fondamentale/BioScience and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| |
Collapse
|
55
|
Cruz Hernández SIDL, Puerta-Guardo HN, Flores Aguilar H, González Mateos S, López Martinez I, Ortiz-Navarrete V, Ludert JE, Angel RMD. Primary dengue virus infections induce differential cytokine production in Mexican patients. Mem Inst Oswaldo Cruz 2016; 111:161-7. [PMID: 27008374 PMCID: PMC4804498 DOI: 10.1590/0074-02760150359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Severe dengue pathogenesis is not fully understood, but high levels of
proinflammatory cytokines have been associated with dengue disease severity. In this
study, the cytokine levels in 171 sera from Mexican patients with primary dengue
fever (DF) and dengue haemorrhagic fever (DHF) from dengue virus (DENV) 1 (n = 116)
or 2 (n = 55) were compared. DF and DHF were defined according to the patient’s
clinical condition, the primary infections as indicated by IgG enzymatic immunoassay
negative results, and the infecting serotype as assessed by real-time reverse
transcription-polymerase chain reaction. Samples were analysed for circulating levels
of interleukin (IL)-12p70, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IL-6,
and IL-8 using a commercial cytometric bead array. Significantly higher IFN-γ levels
were found in patients with DHF than those with DF. However, significantly higher
IL-12p70, TNF-α, and IL-6 levels were associated with DHF only in patients who were
infected with DENV2 but not with DENV1. Moreover, patients with DF who were infected
with DENV1 showed higher levels of IL-12p70, TNF-α, and IL-6 than patients with DHF
early after-fever onset. The IL-8 levels were similar in all cases regardless of the
clinical condition or infection serotype. These results suggest that the association
between high proinflammatory cytokine levels and dengue disease severity does not
always stand, and it once again highlights the complex nature of DHF
pathogenesis.
Collapse
Affiliation(s)
| | - Henry Nelson Puerta-Guardo
- Departamento de Infectómica y Patogénesis Molecular, Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México, DF, México
| | - Hilario Flores Aguilar
- Departamento de Inmunología e Inmunogenética, Instituto de Diagnóstico y Referencia Epidemiológicos, México, DF, México
| | - Silvia González Mateos
- Departamento de Virología, Instituto de Diagnóstico y Referencia Epidemiológicos, México, DF, México
| | - Irma López Martinez
- Departamento de Virología, Instituto de Diagnóstico y Referencia Epidemiológicos, México, DF, México
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina, Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados, México, DF, México
| | - Juan E Ludert
- Departamento de Infectómica y Patogénesis Molecular, Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México, DF, México
| | - Rosa María del Angel
- Departamento de Infectómica y Patogénesis Molecular, Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, México, DF, México
| |
Collapse
|
56
|
Adam AP, Lowery AM, Martino N, Alsaffar H, Vincent PA. Src Family Kinases Modulate the Loss of Endothelial Barrier Function in Response to TNF-α: Crosstalk with p38 Signaling. PLoS One 2016; 11:e0161975. [PMID: 27603666 PMCID: PMC5014308 DOI: 10.1371/journal.pone.0161975] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/15/2016] [Indexed: 01/23/2023] Open
Abstract
Activation of Src Family Kinase (SFK) signaling is required for the increase in endothelial permeability induced by a variety of cytokines and growth factors. However, we previously demonstrated that activation of endogenous SFKs by expression of dominant negative C-terminal Src Kinase (DN-Csk) is not sufficient to decrease endothelial adherens junction integrity. Basal SFK activity has been observed in normal venular endothelia and was not associated with increased basal permeability. The basal SFK activity however was found to contribute to increased sensitivity of the venular endothelium to inflammatory mediator-induced leakage. How SFK activation achieves this is still not well understood. Here, we show that SFK activation renders human dermal microvascular endothelial cells susceptible to low doses of TNF-α. Treatment of DN-Csk-expressing cells with 50 pg/ml TNF-α induced a loss of TEER as well as drastic changes in the actin cytoskeleton and focal adhesion proteins. This synergistic effect was independent of ROCK or NF-κB activity. TNF-α-induced p38 signaling was required for the synergistic effect on barrier function, and activation of the p38 MAPK alone was also able to induce changes in permeability only in monolayers with active SFKs. These results suggest that the activation of endogenous levels of SFK renders the endothelial barrier more susceptible to low, physiologic doses of TNF-α through activation of p38 which leads to a loss of endothelial tight junctions.
Collapse
Affiliation(s)
- Alejandro P. Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
- Department of Ophthalmology, Albany Medical College, Albany, New York, United States of America
- * E-mail: (PAV); (APA)
| | - Anthony M. Lowery
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Hiba Alsaffar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
- * E-mail: (PAV); (APA)
| |
Collapse
|
57
|
Endothelial tyrosine kinase receptor B prevents VE-cadherin cleavage and protects against atherosclerotic lesion development in ApoE-/- mice. Oncotarget 2016; 6:30640-9. [PMID: 26431274 PMCID: PMC4741558 DOI: 10.18632/oncotarget.5855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/06/2015] [Indexed: 11/30/2022] Open
Abstract
Tyrosine kinase receptor B (TrkB) is a high-affinity receptor for brain-derived neurotrophic factor (BDNF). In addition to its nervous system functions, TrkB is also expressed in the aortic endothelium. However, the effects of endothelial TrkB signaling on atherosclerosis remained unknown. Immunofluorescence analysis revealed that TrkB expression is downregulated in the endothelium of atherosclerotic lesions from ApoE−/− mice compared with the atheroma-free aorta of WT mice. Endothelial TrkB knockdown led to increased lesion size, lipid deposition and inflammatory responses in the atherosclerotic lesions of the ApoE−/− mice compared with the control mice. Mechanistic studies showed that TrkB activation prevented VE-cadherin shedding by enhancing the interaction between vascular endothelial protein tyrosine phosphatase and VE-cadherin, maintaining VE-cadherin in a dephosphorylated state. Our data demonstrate that TrkB is an endothelial injury-response molecule in atherogenesis. Endothelial BDNF/TrkB signaling reduces VE-cadherin shedding and protects against atherosclerotic lesion development in ApoE−/− mice.
Collapse
|
58
|
Bo L, Jiang S, Xie Y, Kan H, Song W, Zhao J. Effect of Vitamin E and Omega-3 Fatty Acids on Protecting Ambient PM2.5-Induced Inflammatory Response and Oxidative Stress in Vascular Endothelial Cells. PLoS One 2016; 11:e0152216. [PMID: 27007186 PMCID: PMC4805161 DOI: 10.1371/journal.pone.0152216] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
Although the mechanisms linking cardiopulmonary diseases to ambient fine particles (PM2.5) are still unclear, inflammation and oxidative stress play important roles in PM2.5-induced injury. It is well known that inflammation and oxidative stress could be restricted by vitamin E (Ve) or omega-3 fatty acids (Ω-3 FA) consumption. This study investigated the effects of Ve and Ω-3 FA on PM2.5-induced inflammation and oxidative stress in vascular endothelial cells. The underlying mechanisms linking PM2.5 to vascular endothelial injury were also explored. Human umbilical vein endothelial cells (HUVECs) were treated with 50 μg/mL PM2.5 in the presence or absence of different concentrations of Ve and Ω-3 FA. The inflammatory cytokines and oxidative stress markers were determined. The results showed that Ve induced a significant decrease in PM2.5-induced inflammation and oxidative stress. Malondialdehyde (MDA) in supernatant and reactive oxygen species (ROS) in cytoplasm decreased by Ve, while the superoxide dismutase (SOD) activity elevated. The inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) also reduced by Ve. Moreover, Ω-3 FA played the same role on decreasing the inflammation and oxidative stress. IL-6 and TNF-α expressions were significantly lower in combined Ve with Ω-3 FA than treatment with Ve or Ω-3 FA alone. The Ve and Ω-3 FA intervention might abolish the PM2.5-induced oxidative stress and inflammation in vascular endothelial cells. There might be an additive effect of these two nutrients in mediating the PM2.5-induced injury in vascular endothelial cells. The results suggested that inflammation and oxidative stress might be parts of the mechanisms linking PM2.5 to vascular endothelial injury.
Collapse
Affiliation(s)
- Liang Bo
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai 200032, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai 200032, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200092 China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai 200032, China
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai 200032, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai 200032, China
- * E-mail:
| |
Collapse
|
59
|
Nelin LD, White HA, Jin Y, Trittmann JK, Chen B, Liu Y. The Src family tyrosine kinases src and yes have differential effects on inflammation-induced apoptosis in human pulmonary microvascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L880-8. [PMID: 26919896 DOI: 10.1152/ajplung.00306.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/19/2016] [Indexed: 01/11/2023] Open
Abstract
Endothelial cells are essential for normal lung function: they sense and respond to circulating factors and hemodynamic alterations. In inflammatory lung diseases such as acute respiratory distress syndrome, endothelial cell apoptosis is an inciting event in pathogenesis and a prominent pathological feature. Endothelial cell apoptosis is mediated by circulating inflammatory factors, which bind to receptors on the cell surface, activating signal transduction pathways, leading to caspase-3-mediated apoptosis. We hypothesized that yes and src have differential effects on caspase-3 activation in human pulmonary microvascular endothelial cells (hPMVEC) due to differential downstream signaling effects. To test this hypothesis, hPMVEC were treated with siRNA against src (siRNAsrc), siRNA against yes (siRNAyes), or their respective scramble controls. After recovery, the hPMVEC were treated with cytomix (LPS, IL-1β, TNF-α, and IFN-γ). Treatment with cytomix induced activation of the extracellular signal-regulated kinase (ERK) pathway and caspase-3-mediated apoptosis. Treatment with siRNAsrc blunted cytomix-induced ERK activation and enhanced cleaved caspase-3 levels, while treatment with siRNAyes enhanced cytomix-induced ERK activation and attenuated levels of cleaved caspase-3. Inhibition of the ERK pathway using U0126 enhanced cytomix-induced caspase-3 activity. Treatment of hPMVEC with cytomix induced Akt activation, which was inhibited by siRNAsrc. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway using LY294002 prevented cytomix-induced ERK activation and augmented cytomix-induced caspase-3 cleavage. Together, our data demonstrate that, in hPMVEC, yes activation blunts the ERK cascade in response to cytomix, resulting in greater apoptosis, while cytomix-induced src activation induces the phosphatidylinositol 3-kinase pathway, which leads to activation of Akt and ERK and attenuation of apoptosis.
Collapse
Affiliation(s)
- Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Hilary A White
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yusen Liu
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
60
|
Pichler Hefti J, Leichtle A, Stutz M, Hefti U, Geiser T, Huber AR, Merz TM. Increased endothelial microparticles and oxidative stress at extreme altitude. Eur J Appl Physiol 2016; 116:739-48. [DOI: 10.1007/s00421-015-3309-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
|
61
|
Timmerman I, Daniel AE, Kroon J, van Buul JD. Leukocytes Crossing the Endothelium: A Matter of Communication. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:281-329. [PMID: 26940521 DOI: 10.1016/bs.ircmb.2015.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Leukocytes cross the endothelial vessel wall in a process called transendothelial migration (TEM). The purpose of leukocyte TEM is to clear the causing agents of inflammation in underlying tissues, for example, bacteria and viruses. During TEM, endothelial cells initiate signals that attract and guide leukocytes to sites of tissue damage. Leukocytes react by attaching to these sites and signal their readiness to move back to endothelial cells. Endothelial cells in turn respond by facilitating the passage of leukocytes while retaining overall integrity. In this review, we present recent findings in the field and we have endeavored to synthesize a coherent picture of the intricate interplay between endothelial cells and leukocytes during TEM.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Anna E Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jeffrey Kroon
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
62
|
Chen J, Wang J, Su C, Qian W, Sun L, Sun H, Chen J, Zhang H, Zhang J. Urinary trypsin inhibitor attenuates LPS-induced endothelial barrier dysfunction by upregulation of vascular endothelial-cadherin expression. Inflamm Res 2015; 65:213-24. [PMID: 26681130 DOI: 10.1007/s00011-015-0907-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 11/07/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Urinary trypsin inhibitor (UTI) decreases inflammatory cytokine levels and mortality in experimental animal models of inflammation. Here, we observed the effect of UTI on lipopolysaccharide (LPS)-induced hyperpermeability in human umbilical vein endothelial cells (HUVECs) and explored the role of vascular endothelial-cadherin (VE-cadherin) in its effect. METHODS The effect of UTI on endothelial barrier hyperpermeability was detected by an electrical cell-substrate impedance sensing (ECIS) system and a transwell chamber system. The expression of VE-cadherin in HUVECs was examined by real-time PCR and western blot. RESULTS We demonstrated that the alleviation of LPS-induced barrier dysfunction could be achieved by pretreatment with 3000 U/mL of UTI. VE-cadherin monoclonal antibody (mAb) could inhibit the protective effects. UTI maintained VE-cadherin expression by increasing protein stability at both the transcriptional and post-transcriptional levels. Meanwhile, VE-cadherin expression on the cell surface increased when the cells were pretreated with UTI. Furthermore, pretreatment with UTI decreased the phosphorylation of VE-cadherin at Tyr658 but not Tyr731. CONCLUSIONS Our data show that prophylactic UTI maintains the endothelial barrier function, increases VE-cadherin expression, and inhibits the phosphorylation of VE-cadherin at Tyr658 under inflammatory conditions. It suggests a scientific and potential clinical therapeutic importance of UTI in treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Jie Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Jun Wang
- The Laboratory of Neurotoxicology, School of Public Health, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chenglei Su
- Department of Emergency, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221000, People's Republic of China
| | - Wenyi Qian
- The Laboratory of Neurotoxicology, School of Public Health, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Li Sun
- Department of Basic Medical College, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Hao Sun
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Junjie Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Huazhong Zhang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Jinsong Zhang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
63
|
Xu C, Wu X, Hack BK, Bao L, Cunningham PN. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism. Physiol Rep 2015; 3:3/12/e12636. [PMID: 26634902 PMCID: PMC4760430 DOI: 10.14814/phy2.12636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A key function of the endothelium is to serve as a regulated barrier between tissue compartments. We have previously shown that tumor necrosis factor (TNF) plays a crucial role in lipopolysaccharide (LPS)‐induced acute kidney injury, in part by causing injury to the renal endothelium through its receptor TNFR1. Here, we report that TNF increased permeability to albumin in primary culture mouse renal endothelial cells, as well as human glomerular endothelial cells. This process occurred in association with changes in the actin cytoskeleton and was associated with gaps between previously confluent cells in culture and decreases in the tight junction protein occludin. This process was dependent on myosin light chain activation, as seen by its prevention with Rho‐associated kinase and myosin light chain kinase (MLCK) inhibitors. Surprisingly, permeability was not blocked by inhibition of apoptosis with caspase inhibitors. Additionally, we found that the renal glycocalyx, which plays an important role in barrier function, was also degraded by TNF in a Rho and MLCK dependent fashion. TNF treatment caused a decrease in the size of endothelial fenestrae, dependent on Rho and MLCK, although the relevance of this to changes in permeability is uncertain. In summary, TNF‐induced barrier dysfunction in renal endothelial cells is crucially dependent upon the Rho/MLCK signaling pathway.
Collapse
Affiliation(s)
- Chang Xu
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Xiaoyan Wu
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Bradley K Hack
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Lihua Bao
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Patrick N Cunningham
- Section of Nephrology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
64
|
Benn A, Bredow C, Casanova I, Vukičević S, Knaus P. VE-cadherin facilitates BMP-induced endothelial cell permeability and signaling. J Cell Sci 2015; 129:206-18. [PMID: 26598555 PMCID: PMC4732303 DOI: 10.1242/jcs.179960] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
Several vascular disorders, such as aberrant angiogenesis, atherosclerosis and pulmonary hypertension, have been linked to dysfunctional BMP signaling. Vascular hyperpermeability via distortion of endothelial cell adherens junctions is a common feature of these diseases, but the role of BMPs in this process has not been investigated. BMP signaling is initiated by binding of ligand to, and activation of, BMP type I (BMPRI) and type II (BMPRII) receptors. Internalization of VE-cadherin as well as c-Src kinase-dependent phosphorylation have been implicated in the loosening of cell–cell contacts, thereby modulating vascular permeability. Here we demonstrate that BMP6 induces hyperpermeabilization of human endothelial cells by inducing internalization and c-Src-dependent phosphorylation of VE-cadherin. Furthermore, we show BMP-dependent physical interaction of VE-cadherin with the BMP receptor ALK2 (BMPRI) and BMPRII, resulting in stabilization of the BMP receptor complex and, thereby, the support of BMP6-Smad signaling. Our results provide first insights into the molecular mechanism of BMP-induced vascular permeability, a hallmark of various vascular diseases, and provide the basis for further investigations of BMPs as regulators of vascular integrity, both under physiological and pathophysiological conditions. Summary: We reveal the molecular mechanism by which BMP6 induces hyperpermeabilization of the endothelium. This provides first insights into the mechanism of BMP-dependent vascular integrity in normal physiology and disease.
Collapse
Affiliation(s)
- Andreas Benn
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany DFG Graduate School 1093 Berlin School of Integrative Oncology, Berlin 13353, Germany DFG Graduate School 203 Berlin-Brandenburg School for Regenerative Therapies, Berlin 13353, Germany
| | - Clara Bredow
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Isabel Casanova
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Slobodan Vukičević
- Center for Translational and Clinical Research, University of Zagreb, Zagreb 10000, Croatia
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany DFG Graduate School 1093 Berlin School of Integrative Oncology, Berlin 13353, Germany DFG Graduate School 203 Berlin-Brandenburg School for Regenerative Therapies, Berlin 13353, Germany
| |
Collapse
|
65
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
66
|
Melgar-Lesmes P, Edelman ER. Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol 2015; 63:917-25. [PMID: 26022689 PMCID: PMC4575901 DOI: 10.1016/j.jhep.2015.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Regeneration of the hepatic mass is crucial to liver repair. Proliferation of hepatic parenchyma is intimately dependent on angiogenesis and resident macrophage-derived cytokines. However the role of circulating monocyte interactions in vascular and hepatic regeneration is not well-defined. We investigated the role of these interactions in regeneration in the presence and absence of intact monocyte adhesion. METHODS Partial hepatectomy was performed in wild-type mice and those lacking the monocyte adhesion molecule CD11b. Vascular architecture, angiogenesis and macrophage location were analyzed in the whole livers using simultaneous angiography and macrophage staining with fluorescent multiphoton microscopy. Monocyte adhesion molecule expression and sprouting-related pathways were evaluated. RESULTS Resident macrophages (Kupffer cells) did not migrate to interact with vessels whereas infiltrating monocytes were found adjacent to sprouting points. Infiltrated monocytes colocalized with Wnt5a, angiopoietin 1 and Notch-1 in contact points and commensurate with phosphorylation and disruption of VE-cadherin. Mice deficient in CD11b showed a severe reduction in angiogenesis, liver mass regeneration and survival following partial hepatectomy, and developed unstable and leaky vessels that eventually produced an aberrant hepatic vascular network and Kupffer cell distribution. CONCLUSIONS Direct vascular interactions of infiltrating monocytes are required for an ordered vascular growth and liver regeneration. These outcomes provide insight into hepatic repair and new strategies for hepatic regeneration.
Collapse
Affiliation(s)
- Pedro Melgar-Lesmes
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, US,Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, US
| |
Collapse
|
67
|
Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun 2015; 21:827-46. [DOI: 10.1177/1753425915606525] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/11/2015] [Indexed: 12/20/2022] Open
Abstract
The endothelium forms a vast network that dynamically regulates vascular barrier function, coagulation pathways and vasomotor tone. Microvascular endothelial cells are uniquely situated to play key roles during infection and injury, owing to their widespread distribution throughout the body and their constant interaction with circulating blood. While not viewed as classical immune cells, endothelial cells express innate immune receptors, including the Toll-like receptors (TLRs), which activate intracellular inflammatory pathways mediated through NF-κB and the MAP kinases. TLR agonists, including LPS and bacterial lipopeptides, directly upregulate microvascular endothelial cell expression of inflammatory mediators. Intriguingly, TLR activation also modulates microvascular endothelial cell permeability and the expression of coagulation pathway intermediaries. Microvascular thrombi have been hypothesized to trap microorganisms thereby limiting the spread of infection. However, dysregulated activation of endothelial inflammatory pathways is also believed to lead to coagulopathy and increased vascular permeability, which together promote sepsis-induced organ failure. This article reviews vascular endothelial cell innate immune pathways mediated through the TLRs as they pertain to sepsis, highlighting links between TLRs and coagulation and permeability pathways, and their role in healthy and pathologic responses to infection and sepsis.
Collapse
Affiliation(s)
- Samira Khakpour
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| | - Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
- Biomedical Sciences and Immunology Programs, University of California, San Francisco, CA, USA
| |
Collapse
|
68
|
Gu C, Liu M, Zhao T, Wang D, Wang Y. Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury. Respir Res 2015; 16:58. [PMID: 25986488 PMCID: PMC4489357 DOI: 10.1186/s12931-015-0217-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ventilator-induced lung injury (VILI) is one of the most common complications for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Although p120 is an important protein in the regulation of cell junctions, further mechanisms should be explored for prevention and treatment of VILI. METHODS Mouse lung epithelial cells (MLE-12), which were transfected with p120 small interfering (si)RNA, p120 cDNA, wild-type E-cadherin juxtamembrane domain or a K83R mutant juxtamembrane domain (K83R-JMD), were subjected to 20% cyclic stretches for 2 or 4 h. Furthermore, MLE-12 cells and mice, which were pretreated with the c-Src inhibitor PP2 or RhoA inhibitor Y27632, underwent 20% cyclic stretches or mechanical stretching, respectively. Moreover, wild-type C57BL/6 mice were transfected with p120 siRNA-liposome complexes before mechanical ventilation. Cell lysates and lung tissues were then analyzed to detect lung injury. RESULTS cyclic stretches of 20% actived c-Src, which induced degradation of E-cadherin, p120 and occludin. However, loss of p120 increased the degradation and endocytosis of E-cadherin. Immunoprecipitation and Immunofluorescence results showed a decrease in the association between p120 and E-cadherin, while gap formation increased in p120 siRNA and K83R-JMD groups after 20% cyclic stretches. Loss of p120 also reduced the occludin level and decreased the association of occludin and ZO-1 by enhancing RhoA activity. However, the altered levels of occludin and E-cadherin were reversed by PP2 or Y27632 treatments compared with the cyclic stretch group. Consistently, the expression, redistribution and disassociation of junction proteins were all restored in the p120 overexpression group after 20% cyclic stretches. Moreover, the role of p120 in VILI was confirmed by increased wet/dry weigh ratio and enhanced production of cytokines (tumor necrosis factor-α and interleukin-six) in p120-depleted mice under mechanical ventilation. CONCLUSIONS p120 protected against VILI by regulating both adherens and tight junctions. p120 inhibited E-cadherin endocytosis by increasing the association between p120 and juxtamembrane domain of E-cadherin. Furthermore, p120 reduced the degradation of occludin by inhibiting RhoA activity. These findings illustrated further mechanisms of p120 in the prevention of VILI, especially for patients with ALI or ARDS.
Collapse
Affiliation(s)
- Changping Gu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Mengjie Liu
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Tao Zhao
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Dong Wang
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| | - Yuelan Wang
- Department of Anesthesiology, Qianfoshan Hospital, Shandong University, No. 16766 Jingshi Road, Jinan, 250014, Shandong Province, China.
| |
Collapse
|
69
|
Baumgartner W, Weth A, Gutberlet J, Harms G, Groschner K. Localization of VE-cadherin in plasmalemmal cholesterol rich microdomains and the effects of cholesterol depletion on VE-cadherin mediated cell–cell adhesion. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1725-32. [DOI: 10.1016/j.bbalip.2014.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/01/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
|
70
|
Haines RJ, Beard RS, Wu MH. Protein tyrosine kinase 6 mediates TNFα-induced endothelial barrier dysfunction. Biochem Biophys Res Commun 2014; 456:190-6. [PMID: 25446122 DOI: 10.1016/j.bbrc.2014.11.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/13/2014] [Indexed: 11/28/2022]
Abstract
A key event in the progression of systemic inflammation resulting from severe trauma or shock involves microvascular hyperpermeability, which leads to excessive plasma fluid and proteins accumulating in extravascular space resulting in tissue edema. The precise molecular mechanism of the hyperpermeability response is not completely understood. Protein tyrosine kinase 6 (PTK6, also known as breast tumor kinase BRK) is a non-receptor tyrosine kinase related to Src-family proteins. Although it has also been shown that PTK6 participates in regulating epithelial barrier function, the role of PTK6 in endothelial barrier function has not been reported. In this study, we hypothesized that PTK6 is (1) expressed in vascular endothelial cells, and (2) contributes to vascular endothelial hyperpermeability in response to TNFα. Results showed that PTK6 was detected in mouse endothelial cells at the level of protein and mRNA. In addition, PTK6 knockdown attenuated TNFα induced decrease in endothelial barrier function as measured by electric cell-substrate impedance sensing (ECIS) and in vitro transwell albumin-flux assays. Furthermore, we showed that TNFα treatment of endothelial cells increased active PTK6 association with p120-catenin at endothelial cell-cell junctions. Further analysis using immunocytochemistry and immunoprecipitation demonstrated that PTK6 knockdown attenuated TNFα induced VE-cadherin internalization as well as promoting its association with p120-catenin. Our study demonstrates a novel role of PTK6 in mediating endothelial barrier dysfunction.
Collapse
Affiliation(s)
- R J Haines
- Department of Surgery, University of South Florida, Morsani College of Medicine, United States
| | - R S Beard
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, United States
| | - M H Wu
- Department of Surgery, University of South Florida, Morsani College of Medicine, United States.
| |
Collapse
|
71
|
Miranda-Ribera A, Passaniti A, Ceciliani F, Goldblum SE. α1-acid glycoprotein disrupts capillary-like tube formation of human lung microvascular endothelia. Exp Lung Res 2014; 40:507-19. [PMID: 25322067 DOI: 10.3109/01902148.2014.956945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE The acute phase protein, α1-acid glycoprotein, is expressed in the lung, and influences endothelial cell function. We asked whether it might regulate angiogenesis in human lung microvascular endothelia. MATERIALS AND METHODS α1-acid glycoprotein was isolated from human serum by HPLC ion exchange chromatography. Its effects on endothelial cell functions including capillary-like tube formation on Matrigel, migration in a wounding assay, chemotaxis in a modified Boyden chamber, adhesion, and transendothelial flux of the permeability tracer, (14)C-albumin, were tested. RESULTS α1-acid glycoprotein dose-dependently inhibited capillary-like tube formation without loss of cell viability. At ≥0.50 mg/mL, it inhibited tube formation >70%, and at 0.75 mg/mL, >97%. α1-acid glycoprotein dose- and time-dependently restrained EC migration into a wound as early as 2 hours, and in washout studies, did so reversibly. It was inhibitory against vascular endothelial growth factor-A and fibroblast growth factor-2-driven migration but failed to inhibit chemotactic responsiveness. When α1-acid glycoprotein was added to preformed tubes, it provoked their almost immediate disassembly. As early as 15 minutes, it induced tube network collapse without endothelial cell-cell disruption. It exerted a biphasic effect on cell adhesion to the Matrigel substrate. At lower concentrations (0.05-0.25 mg/mL), it increased cell adhesion, whereas at higher concentrations (≥0.75 mg/mL) decreased adhesion. In contrast, it had no effect on transendothelial (14)C-albumin flux. CONCLUSION α1-acid glycoprotein, at concentrations found under physiological conditions, rapidly inhibits endothelial cell capillary-like tube formation that may be explained through diminished cell adhesion to the underlying matrix and/or reversibly decreased cell migration.
Collapse
Affiliation(s)
- Alba Miranda-Ribera
- 1Department of Medicine, Division of Infectious Diseases, University of Maryland, Baltimore, and the VA Maryland Health Care System, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
72
|
Marcos-Ramiro B, García-Weber D, Millán J. TNF-induced endothelial barrier disruption: beyond actin and Rho. Thromb Haemost 2014; 112:1088-102. [PMID: 25078148 DOI: 10.1160/th14-04-0299] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/16/2014] [Indexed: 11/05/2022]
Abstract
The decrease of endothelial barrier function is central to the long-term inflammatory response. A pathological alteration of the ability of endothelial cells to modulate the passage of cells and solutes across the vessel underlies the development of inflammatory diseases such as atherosclerosis and multiple sclerosis. The inflammatory cytokine tumour necrosis factor (TNF) mediates changes in the barrier properties of the endothelium. TNF activates different Rho GTPases, increases filamentous actin and remodels endothelial cell morphology. However, inhibition of actin-mediated remodelling is insufficient to prevent endothelial barrier disruption in response to TNF, suggesting that additional molecular mechanisms are involved. Here we discuss, first, the pivotal role of Rac-mediated generation of reactive oxygen species (ROS) to regulate the integrity of endothelial cell-cell junctions and, second, the ability of endothelial adhesion receptors such as ICAM-1, VCAM-1 and PECAM-1, involved in leukocyte transendothelial migration, to control endothelial permeability to small molecules, often through ROS generation. These adhesion receptors regulate endothelial barrier function in ways both dependent on and independent of their engagement by immune cells, and orchestrate the crosstalk between leukocyte transendothelial migration and endothelial permeability during inflammation.
Collapse
Affiliation(s)
| | | | - J Millán
- Jaime Millán, Centro de Biología Molecular Severo Ochoa, C/ Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain, Tel.: +34 911964713, Fax: +34 911964420, E-mail:
| |
Collapse
|
73
|
Mishra R, Singh SK. HIV-1 Tat C phosphorylates VE-cadherin complex and increases human brain microvascular endothelial cell permeability. BMC Neurosci 2014; 15:80. [PMID: 24965120 PMCID: PMC4230799 DOI: 10.1186/1471-2202-15-80] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Human brain microvascular endothelial cells (hBMVECs) are integral part of the blood brain barrier. Post-translational modifications of adherens junction proteins regulate the permeability of human brain microvascular endothelial cells. Pro-inflammatory signals can induce tyrosine phosphorylation of adherens junction proteins. The primary objective of this work is to provide a molecular model; how the HIV-1 Tat protein can compromise the BBB integrity and eventually lead to neurological consequences. We exposed hBMVECs to recombinant HIV-1 clade C Tat protein to study the effect of HIV-1 Tat C on permeability of hBMVECs. Trans-endothelial electrical resistance and fluorescent dye migration assay have been used to check the permeability of hBMVECs. DCFDA staining has been used for intracellular reactive oxygen species (ROS) detection. Western blotting has been used to study the expression levels and co-immunoprecipitation has been used to study the interactions among adherens junction proteins. Results HIV-1 Tat C protein induced NOX2 and NOX4 expression level and increased intracellular ROS level. Redox-sensitive kinase; PYK2 activation led to increased tyrosine phosphorylation of VE-cadherin and β-catenin, leading to disruption of junctional assembly. The dissociation of tyrosine phosphatases VE-PTP and SHP2 from cadherin complex resulted into increased tyrosine phosphorylation of VE-cadherin and β-catenin in HIV-1 Tat C treated hBMVECs. Conclusion Unrestricted phosphorylation of junctional proteins in hBMVECs, in response to HIV-1 Tat C protein; leads to the disruption of junctional complexes and increased endothelial permeability.
Collapse
Affiliation(s)
| | - Sunit Kumar Singh
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
74
|
Kim JY, Choi JS, Song SH, Im JE, Kim JM, Kim K, Kwon S, Shin HK, Joo CK, Lee BH, Suh W. Stem cell factor is a potent endothelial permeability factor. Arterioscler Thromb Vasc Biol 2014; 34:1459-67. [PMID: 24790137 DOI: 10.1161/atvbaha.114.303575] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Although stem cell factor (SCF) has been shown to play a critical role in hematopoiesis, gametogenesis, and melanogenesis, the function of SCF in the regulation of vascular integrity has not been studied. APPROACH AND RESULTS We demonstrated that SCF binds to and activates the cKit receptor in endothelial cells, thereby increasing the internalization of vascular endothelial-cadherin and enhancing extravasation of dyes to a similar extent as vascular endothelial growth factor. SCF-mediated cKit activation in endothelial cells enhanced the phosphorylation of endothelial nitric oxide (NO) synthase via the phosphoinositide 3-kinase/Akt signaling pathway and subsequently increased the production of NO. Inhibition of endothelial NO synthase expression and NO synthesis using small interfering RNA knockdown and chemical inhibitors substantially diminished the ability of SCF to increase the internalization of vascular endothelial-cadherin and in vitro endothelial permeability. SCF-induced increase in extravasation of the dyes was abrogated in endothelial NO synthase knockout mice, which indicates that endothelial NO synthase-mediated NO production was responsible for the SCF-induced vascular leakage. Furthermore, we demonstrated that the expression of SCF and cKit was significantly higher in the retina of streptozotocin-injected diabetic mice than in the nondiabetic control animals. Depletion of SCF by intravitreous injection of anti-SCF-neutralizing immunoglobulin G significantly prevented vascular hyperpermeability in the retinas of streptozotocin-injected diabetic mice. CONCLUSIONS Our data reveal that SCF disrupts the endothelial adherens junction and enhances vascular leakage, as well as suggest that anti-SCF/cKit therapy may hold promise as a potential therapy for the treatment of hyperpermeable vascular diseases.
Collapse
Affiliation(s)
- Ji Yeon Kim
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Jun-Sub Choi
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Sun-Hwa Song
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Ji-Eun Im
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Jung-Mo Kim
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Kyungjong Kim
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Soonboem Kwon
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Hwa Kyoung Shin
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Choun-Ki Joo
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Byung Ho Lee
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.)
| | - Wonhee Suh
- From the College of Pharmacy, Ajou University, Suwon, Korea (J.Y.K., S.-H.S., J.-E.I., K.K., S.K., W.S.); Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea (J.-S.C., C.-K.J.); Department of Molecular and Life Science, CHA University, Seoul, Korea (J.-M.K.); Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Gyeongnam, Korea (H.K.S.); and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Korea (B.H.L.).
| |
Collapse
|
75
|
Baluk P, Phillips K, Yao LC, Adams A, Nitschké M, McDonald DM. Neutrophil dependence of vascular remodeling after Mycoplasma infection of mouse airways. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1877-89. [PMID: 24726646 DOI: 10.1016/j.ajpath.2014.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/20/2014] [Accepted: 02/25/2014] [Indexed: 12/22/2022]
Abstract
Vascular remodeling is a feature of sustained inflammation in which capillaries enlarge and acquire the phenotype of venules specialized for plasma leakage and leukocyte recruitment. We sought to determine whether neutrophils are required for vascular remodeling in the respiratory tract by using Mycoplasma pulmonis infection as a model of sustained inflammation in mice. The time course of vascular remodeling coincided with the influx of neutrophils during the first few days after infection and peaked at day 5. Depletion of neutrophils with antibody RB6-8C5 or 1A8 reduced neutrophil influx and vascular remodeling after infection by about 90%. Similarly, vascular remodeling after infection was suppressed in Cxcr2(-/-) mice, in which neutrophils adhered to the endothelium of venules but did not extravasate into the tissue. Expression of the venular adhesion molecule P-selectin increased in endothelial cells from day 1 to day 3 after infection, as did expression of the Cxcr2-receptor ligands Cxcl1 and Cxcl2. Tumor necrosis factor α (TNFα) expression increased more than sixfold in the trachea of wild-type and Cxcr2(-/-) mice, but intratracheal administration of TNFα did not induce vascular remodeling similar to that seen in infection. We conclude that neutrophil influx is required for remodeling of capillaries into venules in the airways of mice with Mycoplasma infection and that TNFα signaling is necessary but not sufficient for vascular remodeling.
Collapse
Affiliation(s)
- Peter Baluk
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California.
| | - Keeley Phillips
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Li-Chin Yao
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Alicia Adams
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Maximilian Nitschké
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Donald M McDonald
- Cardiovascular Research Institute, Department of Anatomy, and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| |
Collapse
|
76
|
Lander HM, Grant AM, Albrecht T, Hill T, Peters CJ. Endothelial cell permeability and adherens junction disruption induced by junín virus infection. Am J Trop Med Hyg 2014; 90:993-1002. [PMID: 24710609 DOI: 10.4269/ajtmh.13-0382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Junín virus (JUNV) is endemic to the fertile Pampas of Argentina, maintained in nature by the rodent host Calomys musculinus, and the causative agent of Argentine hemorrhagic fever (AHF), which is characterized by vascular dysfunction and fluid distribution abnormalities. Clinical as well as experimental studies implicate involvement of the endothelium in the pathogenesis of AHF, although little is known of its role. JUNV has been shown to result in productive infection of endothelial cells (ECs) in vitro with no visible cytopathic effects. In this study, we show that direct JUNV infection of primary human ECs results in increased vascular permeability as measured by electric cell substrate impedance sensing and transwell permeability assays. We also show that EC adherens junctions are disrupted during virus infection, which may provide insight into the role of the endothelium in the pathogenesis of AHF and possibly, other viral hemorrhagic fevers.
Collapse
Affiliation(s)
- Heather M Lander
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Ashley M Grant
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas Albrecht
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Terence Hill
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Clarence J Peters
- Departments of Pathology and Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
77
|
Wen B, Combes V, Bonhoure A, Weksler BB, Couraud PO, Grau GER. Endotoxin-induced monocytic microparticles have contrasting effects on endothelial inflammatory responses. PLoS One 2014; 9:e91597. [PMID: 24646764 PMCID: PMC3960107 DOI: 10.1371/journal.pone.0091597] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/11/2014] [Indexed: 12/31/2022] Open
Abstract
Septic shock is a severe disease state characterised by the body's life threatening response to infection. Complex interactions between endothelial cells and circulating monocytes are responsible for microvasculature dysfunction contributing to the pathogenesis of this syndrome. Here, we intended to determine whether microparticles derived from activated monocytes contribute towards inflammatory processes and notably vascular permeability. We found that endotoxin stimulation of human monocytes enhances the release of microparticles of varying phenotypes and mRNA contents. Elevated numbers of LPS-induced monocytic microparticles (mMP) expressed CD54 and contained higher levels of transcripts for pro-inflammatory cytokines such as TNF, IL-6 and IL-8. Using a prothrombin time assay, a greater reduction in plasma coagulation time was observed with LPS-induced mMP than with non-stimulated mMP. Co-incubation of mMP with the human brain endothelial cell line hCMEC/D3 triggered their time-dependent uptake and significantly enhanced endothelial microparticle release. Unexpectedly, mMP also modified signalling pathways by diminishing pSrc (tyr416) expression and promoted endothelial monolayer tightness, as demonstrated by endothelial impedance and permeability assays. Altogether, these data strongly suggest that LPS-induced mMP have contrasting effects on the intercellular communication network and display a dual potential: enhanced pro-inflammatory and procoagulant properties, together with protective function of the endothelium.
Collapse
Affiliation(s)
- Beryl Wen
- Vascular Immunology Unit, Sydney Medical School & Bosch Institute, University of Sydney, Camperdown, Australia
| | - Valery Combes
- Vascular Immunology Unit, Sydney Medical School & Bosch Institute, University of Sydney, Camperdown, Australia
| | - Amandine Bonhoure
- Vascular Immunology Unit, Sydney Medical School & Bosch Institute, University of Sydney, Camperdown, Australia
| | - Babette B Weksler
- Weill Medical College, Cornell University, New York, New York, United States of America
| | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Georges E R Grau
- Vascular Immunology Unit, Sydney Medical School & Bosch Institute, University of Sydney, Camperdown, Australia
| |
Collapse
|
78
|
Küppers V, Vockel M, Nottebaum AF, Vestweber D. Phosphatases and kinases as regulators of the endothelial barrier function. Cell Tissue Res 2014; 355:577-86. [DOI: 10.1007/s00441-014-1812-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/13/2014] [Indexed: 01/03/2023]
|
79
|
Wessel F, Winderlich M, Holm M, Frye M, Rivera-Galdos R, Vockel M, Linnepe R, Ipe U, Stadtmann A, Zarbock A, Nottebaum AF, Vestweber D. Leukocyte extravasation and vascular permeability are each controlled in vivo by different tyrosine residues of VE-cadherin. Nat Immunol 2014; 15:223-30. [DOI: 10.1038/ni.2824] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/03/2014] [Indexed: 12/16/2022]
|
80
|
Pregnancy Programming and Preeclampsia: Identifying a Human Endothelial Model to Study Pregnancy-Adapted Endothelial Function and Endothelial Adaptive Failure in Preeclamptic Subjects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 814:27-47. [DOI: 10.1007/978-1-4939-1031-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
81
|
Seynhaeve ALB, Rens JAP, Schipper D, Eggermont AMM, Ten Hagen TLM. Exposing endothelial cells to tumor necrosis factor-α and peripheral blood mononuclear cells damage endothelial integrity via interleukin-1ß by degradation of vascular endothelial-cadherin. Surgery 2013; 155:545-53. [PMID: 24439748 DOI: 10.1016/j.surg.2013.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/11/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND PURPOSE We demonstrated previously that the administration of tumor necrosis factor alpha (TNF-α) for the treatment of solid tumors enhanced the response to chemotherapy by augmenting intratumoral drug accumulation. TNF-α changes the integrity of the endothelial cell monolayer in combination with interferon gamma (IFN-γ), which is further enhanced by the addition of peripheral blood mononuclear cells (PBMCs). The improved effect of PBMCs was mostly induced by the endogenous production of interleukin-1beta (IL-1ß) after TNF-α stimulation. In the current study, we demonstrate that exposing endothelial cells to TNF-α and PBMCs mediates the loss of vascular endothelial (VE)-cadherin, an important adherens junction protein for maintaining endothelial integrity, through endogenous IL-1ß. This loss increases permeability of the endothelial layer, thereby explaining the augmented passage of chemotherapeutics into the tumor. METHODS Human umbilical vein endothelial cells were exposed to TNF-α, IFN-γ, PBMCs, or IL-1ß, and the effects on the endothelial integrity were assessed by morphological changes and permeability changes with the use of fluorescein isothiocyanate-labeled bovine serum albumin flux. The loss of VE-cadherin was assessed using immunofluorescence, western blotting, and polymerase chain reaction. RESULTS Incubating endothelial cells with TNF-α, IFN-γ, and PBMCs increased cell elongation, gap formation, and subsequently the permeability of fluorescein isothiocyanate-labeled bovine serum albumin compared with control or TNF-α and IFN-γ-treated cells (P < .05). When PBMCs were replaced with IL-1ß, identical changes were observed. These changes in integrity were associated with a loss of VE-cadherin at the membrane. CONCLUSION We conclude that VE-cadherin is lost at the membrane when endothelial cells are exposed to TNF-α, IFN-γ, and PBMCs, which results in loss of integrity. IL-1ß can mimic the effects of PBMCs, indicating a dominant role of endogenously produced IL-1ß in this process.
Collapse
Affiliation(s)
- Ann L B Seynhaeve
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, Erasmus MC, Rotterdam, The Netherlands.
| | - Joost A P Rens
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Debby Schipper
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Alexander M M Eggermont
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, Erasmus MC, Rotterdam, The Netherlands; Institut Gustave Roussy, Villejuif, Paris-Sud, France
| | - Timo L M Ten Hagen
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
82
|
Di Lorenzo A, Lin MI, Murata T, Landskroner-Eiger S, Schleicher M, Kothiya M, Iwakiri Y, Yu J, Huang PL, Sessa WC. eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J Cell Sci 2013; 126:5541-52. [PMID: 24046447 DOI: 10.1242/jcs.115972] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transient disruption of endothelial adherens junctions and cytoskeletal remodeling are responsible for increases in vascular permeability induced by inflammatory stimuli and vascular endothelial growth factor (VEGF). Nitric oxide (NO) produced by endothelial NO synthase (eNOS) is crucial for VEGF-induced changes in permeability in vivo; however, the molecular mechanism by which endogenous NO modulates endothelial permeability is not clear. Here, we show that the lack of eNOS reduces VEGF-induced permeability, an effect mediated by enhanced activation of the Rac GTPase and stabilization of cortical actin. The loss of NO increased the recruitment of the Rac guanine-nucleotide-exchange factor (GEF) TIAM1 to adherens junctions and VE-cadherin (also known as cadherin 5), and reduced Rho activation and stress fiber formation. In addition, NO deficiency reduced VEGF-induced VE-cadherin phosphorylation and impaired the localization, but not the activation, of c-Src to cell junctions. The physiological role of eNOS activation is clear given that VEGF-, histamine- and inflammation-induced vascular permeability is reduced in mice bearing a non-phosphorylatable knock-in mutation of the key eNOS phosphorylation site S1176. Thus, NO is crucial for Rho GTPase-dependent regulation of cytoskeletal architecture leading to reversible changes in vascular permeability.
Collapse
Affiliation(s)
- Annarita Di Lorenzo
- Department of Pharmacology and Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Hardyman MA, Wilkinson E, Martin E, Jayasekera NP, Blume C, Swindle EJ, Gozzard N, Holgate ST, Howarth PH, Davies DE, Collins JE. TNF-α-mediated bronchial barrier disruption and regulation by src-family kinase activation. J Allergy Clin Immunol 2013; 132:665-675.e8. [PMID: 23632299 DOI: 10.1016/j.jaci.2013.03.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 02/02/2013] [Accepted: 03/12/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Because TNF-α is increased in severe asthma, we hypothesized that TNF-α contributes to barrier dysfunction and cell activation in bronchial epithelial cells. We further hypothesized that src-family kinase inhibition would improve barrier function in healthy cells in the presence of TNF-α and directly in cultures of severe asthmatic cells where the barrier is disrupted. OBJECTIVES We assessed the effect of TNF-α, with or without src-family kinase inhibitor SU6656, on barrier properties and cytokine release in differentiated human bronchial epithelial cultures. Further, we tested the effect of SU6656 on differentiated primary cultures from severe asthma. METHODS Barrier properties of differentiated human bronchial epithelial air-liquid interface cultures from healthy subjects and subjects with severe asthma were assessed with transepithelial electrical resistance and fluorescent dextran passage. Proteins were detected by immunostaining or Western blot analysis and cytokines by immunoassay. Mechanisms were investigated with src kinase and other inhibitors. RESULTS TNF-α lowered transepithelial electrical resistance and increased fluorescent dextran permeability, caused loss of occludin and claudins from tight junctions with redistribution of p120 catenin and E-cadherin from adherens junctions, and also increased endogenous TNF-α, IL-6, IL-1β, IL-8, thymic stromal lymphoprotein, and pro-matrix metalloprotease 9 release. SU6656 reduced TNF-α-mediated paracellular permeability changes, restored occludin, p120, and E-cadherin and lowered autocrine TNF-α release. Importantly, SU6656 improved the barrier properties of severe asthmatic air-liquid interface cultures. Redistribution of E-cadherin and p120 was observed in bronchial biopsies from severe asthmatic airways. CONCLUSIONS Inhibiting TNF-α or src kinases may be a therapeutic option to normalize barrier integrity and cytokine release in airway diseases associated with barrier dysfunction.
Collapse
Affiliation(s)
- Michelle A Hardyman
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | - Emily Wilkinson
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | - Emma Martin
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | - Nivenka P Jayasekera
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom; Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | - Cornelia Blume
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | - Emily J Swindle
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | | | - Stephen T Holgate
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom; Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | - Peter H Howarth
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom; Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom; Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom
| | - Jane E Collins
- Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom; Southampton NIHR Respiratory Biomedical Research Unit, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
84
|
Zelová H, Hošek J. TNF-α signalling and inflammation: interactions between old acquaintances. Inflamm Res 2013; 62:641-51. [PMID: 23685857 DOI: 10.1007/s00011-013-0633-0] [Citation(s) in RCA: 512] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/03/2013] [Accepted: 05/06/2013] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Inflammation is a very important part of innate immunity and is regulated in many steps. One such regulating step is the cytokine network, where tumor necrosis factor α (TNF-α) plays one of the most important roles. METHODS A PubMed and Web of Science databases search was performed for studies providing evidences on the role of TNF-α in inflammation, apoptosis, and cancer. RESULTS AND CONCLUSION This review concisely summarizes the role of this pro-inflammatory cytokine during inflammation. It is focused mainly on TNF-α intracellular signaling and its influence on the typical inflammatory features in the organism. Being one of the most important pro-inflammatory cytokines, TNF-α participates in vasodilatation and edema formation, and leukocyte adhesion to epithelium through expression of adhesion molecules; it regulates blood coagulation, contributes to oxidative stress in sites of inflammation, and indirectly induces fever. The connection between TNF-α and cancer is mentioned as well.
Collapse
Affiliation(s)
- Hana Zelová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42 Brno, Czech Republic
| | | |
Collapse
|
85
|
Herwig MC, Tsokos M, Hermanns MI, Kirkpatrick CJ, Müller AM. Vascular endothelial cadherin expression in lung specimens of patients with sepsis-induced acute respiratory distress syndrome and endothelial cell cultures. Pathobiology 2013; 80:245-51. [PMID: 23635392 DOI: 10.1159/000347062] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
AIMS Vascular endothelial (VE) cadherin is a cell adhesion molecule localized at endothelial cell (EC) junctions. As a major component of endothelial adherens junctions, its main function is the maintenance and regulation of EC integrity. In the acute respiratory distress syndrome (ARDS), increased vascular permeability is a major mechanism in pulmonary edema and lung dysfunction. In this study, VE-cadherin expression was investigated in ARDS lungs and control tissue as well as in an ARDS cell culture model. METHODS Lung specimens of patients with ARDS due to Gram-negative sepsis (n = 20; control lung tissue: n = 41) and cell cultures of human pulmonary microvascular ECs and human umbilical vein ECs stimulated with LPS, TNF-α and IFN-γ were stained with a VE-cadherin antibody. Staining intensity was semiquantitatively evaluated by conventional light and immunofluorescence microscopy. RESULTS VE-cadherin expression was statistically significantly reduced in the endothelium of all vessel types in ARDS lungs compared to control tissue. Cell cultures showing disrupted cellular borders confirmed these results. CONCLUSION Reduced expression of VE-cadherin has to be considered as a major mechanism of increased vessel permeability in ARDS. The previously described vessel-type-specific expression pattern of VE-cadherin in the human lung is not influenced by ARDS.
Collapse
Affiliation(s)
- Martina C Herwig
- Division of Ophthalmic Pathology, Department of Ophthalmology, University of Bonn, DE-53127 Bonn, Germany
| | | | | | | | | |
Collapse
|
86
|
Daniel AE, van Buul JD. Endothelial junction regulation: a prerequisite for leukocytes crossing the vessel wall. J Innate Immun 2013; 5:324-35. [PMID: 23571667 DOI: 10.1159/000348828] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/12/2013] [Indexed: 12/13/2022] Open
Abstract
The leukocytes of the innate immune system, especially neutrophils and monocytes, exit the circulation early in the response to local inflammation and infection. This is necessary to control and prevent the spread of infections before an adaptive immune response can be raised. The endothelial cells and the intercellular junctions that connect them form a barrier that leukocytes need to pass in order to get to the site of inflammation. The junctions are tightly regulated which ensures that leukocytes only exit when and where they are needed. This regulation is disturbed in many chronic inflammatory diseases which are characterized by ongoing recruitment and interstitial accumulation of leukocytes. In this review, we summarize the molecular mechanisms that regulate endothelial cell-cell junctions and prevent or permit leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Anna E Daniel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
87
|
Flynn KM, Michaud M, Canosa S, Madri JA. CD44 regulates vascular endothelial barrier integrity via a PECAM-1 dependent mechanism. Angiogenesis 2013; 16:689-705. [PMID: 23504212 DOI: 10.1007/s10456-013-9346-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/08/2013] [Indexed: 01/13/2023]
Abstract
Vascular integrity is a critical parameter in normal growth and development. Loss of appropriate vascular barrier function is present in various immune- and injury-mediated pathological conditions. CD44 is an adhesion molecule expressed by multiple cell types, including endothelial cells (EC). The goal of the present study was to examine how loss of CD44 affected vascular permeability. Using C57BL/6 WT and CD44-KO mice, we found no significant permeability to Evan's Blue in either strain at baseline. However, there was significantly increased histamine-induced permeability in CD44-deficient mice compared to WT counterparts. Similar results were observed in vitro, where CD44-deficient endothelial monolayers were also impermeable to 40kD-FITC dextran in the absence of vasoactive challenge, but exhibited enhanced and prolonged permeability following histamine. However, CD44-KO monolayers have reduced baseline barrier strength by electrical resistance, which correlated with increased permeability, at baseline, to smaller molecular weight 4-kD FITC-dextran, suggesting weakly formed endothelial junctions. The CD44-KO EC displayed several characteristics consistent with impaired barrier function/dysfunctional EC junctions, including differential expression, phosphorylation, and localization of endothelial junction proteins, increased matrix metalloprotease expression, and altered cellular morphology. Reduced platelet endothelial cell adhesion molecule-1 (PECAM-1) expression by CD44-KO EC in vivo and in vitro was also observed. Reconstitution of murine CD44 or PECAM-1 restored these defects to near WT status, suggesting CD44 regulates vascular permeability and integrity through a PECAM-1 dependent mechanism.
Collapse
Affiliation(s)
- Kelly M Flynn
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street LH115, P.O. Box 208023, New Haven, CT 06520-8023, USA
| | | | | | | |
Collapse
|
88
|
Angelini DJ, Dorsey RM, Willis KL, Hong C, Moyer RA, Oyler J, Jensen NS, Salem H. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies? Inhal Toxicol 2013; 25:37-62. [DOI: 10.3109/08958378.2012.750406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
89
|
Cho T, Romagnuolo R, Scipione C, Boffa MB, Koschinsky ML. Apolipoprotein(a) stimulates nuclear translocation of β-catenin: a novel pathogenic mechanism for lipoprotein(a). Mol Biol Cell 2012; 24:210-21. [PMID: 23243000 PMCID: PMC3564524 DOI: 10.1091/mbc.e12-08-0637] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein(a) (apo(a)), the distinguishing component of lipoprotein(a), accelerates atherosclerosis by provoking endothelial cell dysfunction. This study unravels proatherosclerotic and proinflammatory apo(a)-mediated signaling pathways involving PTEN/PI3K/Akt/GSK3β that result in β-catenin nuclear translocation and up-regulation of COX-2. Lipoprotein(a) (Lp(a)) is associated with cardiovascular disease risk. This may be attributable to the ability of Lp(a) to elicit endothelial dysfunction. We previously reported that apolipoprotein(a) (apo(a); the distinguishing kringle-containing component of Lp(a)) elicits cytoskeletal rearrangements in vascular endothelial cells, resulting in increased cellular permeability. These effects require a strong lysine-binding site (LBS) in apo(a). We now report that apo(a) induces both nuclear β-catenin–mediated cyclooxygenase-2 (COX-2) expression and prostaglandin E2 secretion, indicating a proinflammatory role for Lp(a). Apo(a) caused the disruption of VE-cadherin/β-catenin complexes in a Src-dependent manner, decreased β-catenin phosphorylation, and increased phosphorylation of Akt and glycogen synthase kinase-3β, ultimately resulting in increased nuclear translocation of β-catenin; all of these effects are downstream of apo(a) attenuation of phosphatase and tensin homologue deleted on chromosome 10 activity. The β-catenin–mediated effects of apo(a) on COX-2 expression were absent using a mutant apo(a) lacking the strong LBS. Of interest, the normal and LBS mutant forms of apo(a) bound to human umbilical vein endothelial cells in a similar manner, and the binding of neither was affected by lysine analogues. Taken together, our findings suggest a novel mechanism by which apo(a) can induce proinflammatory and proatherosclerotic effects through modulation of vascular endothelial cell function.
Collapse
Affiliation(s)
- Taewoo Cho
- Department of Biochemistry, Queen's University, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
90
|
Naikawadi RP, Cheng N, Vogel SM, Qian F, Wu D, Malik AB, Ye RD. A critical role for phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 in endothelial junction disruption and vascular hyperpermeability. Circ Res 2012; 111:1517-27. [PMID: 22965143 DOI: 10.1161/circresaha.112.273078] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RATIONALE The small GTPase Rac is critical to vascular endothelial functions, yet its regulation in endothelial cells remains unclear. Understanding the upstream pathway may delineate Rac activation mechanisms and its role in maintaining vascular endothelial barrier integrity. OBJECTIVE By investigating phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 (P-Rex1), one of the Rac-specific guanine nucleotide exchange factors previously known for G protein-coupled receptor signaling, we sought to determine whether Rac-guanine nucleotide exchange factor is nodal for signal integration and potential target for drug intervention. METHODS AND RESULTS Using gene deletion and small interference RNA silencing approach, we investigated the role of P-Rex1 in human lung microvascular endothelial cells. Tumor necrosis factor α (TNF-α) exposure led to disruption of endothelial junctions, and silencing P-Rex1 protected junction integrity. TNF-α stimulated Rac activation and reactive oxygen species production in a P-Rex1-dependent manner. Removal of P-Rex1 significantly reduced intercellular adhesion molecule-1 expression, polymorphonuclear leukocyte transendothelial migration, and leukocyte sequestration in TNF-α-challenged mouse lungs. The P-Rex1 knockout mice were also refractory to lung vascular hyperpermeability and edema in a lipopolysaccharide-induced sepsis model. CONCLUSIONS These results demonstrate for the first time that P-Rex1 expressed in endothelial cells is activated downstream of TNF-α, which is not a G protein-coupled receptor agonist. Our data identify P-Rex1 as a critical mediator of vascular barrier disruption. Targeting P-Rex1 may effectively protect against TNF-α- and lipopolysaccharide-induced endothelial junction disruption and vascular hyperpermeability.
Collapse
Affiliation(s)
- Ram P Naikawadi
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Timmerman I, Hoogenboezem M, Bennett AM, Geerts D, Hordijk PL, van Buul JD. The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of β-catenin phosphorylation. Mol Biol Cell 2012; 23:4212-25. [PMID: 22956765 PMCID: PMC3484100 DOI: 10.1091/mbc.e12-01-0038] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reconstitution of the endothelial barrier involves SHP2-mediated dephosphorylation of VE-cadherin–associated β-catenin, leading to reassembly of adherens junctions and thereby closing the gaps between endothelial cells. Impaired endothelial barrier function results in a persistent increase in endothelial permeability and vascular leakage. Repair of a dysfunctional endothelial barrier requires controlled restoration of adherens junctions, comprising vascular endothelial (VE)-cadherin and associated β-, γ-, α-, and p120-catenins. Little is known about the mechanisms by which recovery of VE-cadherin–mediated cell–cell junctions is regulated. Using the inflammatory mediator thrombin, we demonstrate an important role for the Src homology 2-domain containing tyrosine phosphatase (SHP2) in mediating recovery of the VE-cadherin–controlled endothelial barrier. Using SHP2 substrate-trapping mutants and an in vitro phosphatase activity assay, we validate β-catenin as a bona fide SHP2 substrate. SHP2 silencing and SHP2 inhibition both result in delayed recovery of endothelial barrier function after thrombin stimulation. Moreover, on thrombin challenge, we find prolonged elevation in tyrosine phosphorylation levels of VE-cadherin–associated β-catenin in SHP2-depleted cells. No disassembly of the VE-cadherin complex is observed throughout the thrombin response. Using fluorescence recovery after photobleaching, we show that loss of SHP2 reduces the mobility of VE-cadherin at recovered cell–cell junctions. In conclusion, our data show that the SHP2 phosphatase plays an important role in the recovery of disrupted endothelial cell–cell junctions by dephosphorylating VE-cadherin–associated β-catenin and promoting the mobility of VE-cadherin at the plasma membrane.
Collapse
Affiliation(s)
- Ilse Timmerman
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
92
|
Möpert K, Löffler K, Röder N, Kaufmann J, Santel A. Depletion of protein kinase N3 (PKN3) impairs actin and adherens junctions dynamics and attenuates endothelial cell activation. Eur J Cell Biol 2012; 91:694-705. [DOI: 10.1016/j.ejcb.2012.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 12/30/2022] Open
|
93
|
Abstract
Alterations to blood-brain barrier (BBB) adhesion molecules and junctional integrity during neuroinflammation can promote central nervous system (CNS) pathology. The chemokine CCL2 is elevated during CNS inflammation and is associated with endothelial dysfunction. The effects of CCL2 on endothelial adherens junctions (AJs) have not been defined. We demonstrate that CCL2 transiently induces Src-dependent disruption of human brain microvascular endothelial AJ. β-Catenin is phosphorylated and traffics from the AJ to PECAM-1 (platelet endothelial cell adhesion molecule-1), where it is sequestered at the membrane. PECAM-1 is also tyrosine-phosphorylated, an event associated with recruitment of the phosphatase SHP-2 (Src homology 2 domain-containing protein phosphatase) to PECAM-1, β-catenin release from PECAM-1, and reassociation of β-catenin with the AJ. Surface localization of PECAM-1 is increased in response to CCL2. This may enable the endothelium to sustain CCL2-induced alterations in AJ and facilitate recruitment of leukocytes into the CNS. Our novel findings provide a mechanism for CCL2-mediated disruption of endothelial junctions that may contribute to BBB dysfunction and increased leukocyte recruitment in neuroinflammatory diseases.
Collapse
|
94
|
Shah NG, Tulapurkar ME, Damarla M, Singh IS, Goldblum SE, Shapiro P, Hasday JD. Febrile-range hyperthermia augments reversible TNF-α-induced hyperpermeability in human microvascular lung endothelial cells. Int J Hyperthermia 2012; 28:627-35. [PMID: 22834633 DOI: 10.3109/02656736.2012.690547] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fever commonly occurs in acute lung injury (ALI) and ALI occurs in 25% of victims of heat stroke. We have shown in mouse models of ALI that exposure to febrile-range hyperthermia (FRH), 39.5°C, increases non-cardiogenic pulmonary oedema. In this study we studied the direct effects of FRH on endothelial barrier integrity using human microvascular endothelial cells (HMVEC-Ls). We analysed the effect of exposure to culture temperatures between 38.5° and 41°C with and without tumour necrosis factor-α (TNF-α) up to 250 U/mL for 6-24 h. We found that exposure to 2.5-250 U/mL TNF-α increased HMVEC-L permeability by 4.1-15.8-fold at 37°C. Exposure to 39.5°C alone caused variable, modest, lot-specific increases in HMVEC-L permeability, however raising culture temperature to 39.5°C in the presence of TNF-α increased permeability an additional 1.6-4.5-fold compared with cells incubated with the same TNF-α concentration at 37°C. Permeability occurred without measurable cytotoxicity and was reversible upon removal of TNF-α and reduction in temperature to 37°C. Exposure to 39.5°C or TNF-α each stimulated rapid activation of p38 and ERK but the effects were not additive. Treatment with inhibitors of ERK (U0126) or p38 (SB203580) each reduced TNF-α-induced permeability in 39.5°C monolayers to levels in 37°C cells, but did not alter TNF-α-induced permeability in the 37°C cells. These results demonstrate that FRH directly increases paracellular pathway opening through a process that requires ERK and p38 MAPKs. A better understanding of this mechanism may provide new understanding about how fever may contribute to the pathogenesis of ALI and provide new therapeutic targets to improve clinical outcomes.
Collapse
Affiliation(s)
- Nirav G Shah
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
95
|
Fernández-Martín L, Marcos-Ramiro B, Bigarella CL, Graupera M, Cain RJ, Reglero-Real N, Jiménez A, Cernuda-Morollón E, Correas I, Cox S, Ridley AJ, Millán J. Crosstalk between reticular adherens junctions and platelet endothelial cell adhesion molecule-1 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol 2012; 32:e90-102. [PMID: 22723439 DOI: 10.1161/atvbaha.112.252080] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Endothelial cells provide a barrier between the blood and tissues, which is reduced during inflammation to allow selective passage of molecules and cells. Adherens junctions (AJ) play a central role in regulating this barrier. We aim to investigate the role of a distinctive 3-dimensional reticular network of AJ found in the endothelium. METHODS AND RESULTS In endothelial AJ, vascular endothelial-cadherin recruits the cytoplasmic proteins β-catenin and p120-catenin. β-catenin binds to α-catenin, which links AJ to actin filaments. AJ are usually described as linear structures along the actin-rich intercellular contacts. Here, we show that these AJ components can also be organized in reticular domains that contain low levels of actin. Reticular AJ are localized in areas where neighboring cells overlap and encompass the cell adhesion receptor platelet endothelial cell adhesion molecule-1 (PECAM-1). Superresolution microscopy revealed that PECAM-1 forms discrete structures distinct from and distributed along AJ, within the voids of reticular domains. Inflammatory tumor necrosis factor-α increases permeability by mechanisms that are independent of actomyosin-mediated tension and remain incompletely understood. Reticular AJ, but not actin-rich linear AJ, were disorganized by tumor necrosis factor-α. This correlated with PECAM-1 dispersal from cell borders. PECAM-1 inhibition with blocking antibodies or small interfering RNA specifically disrupted reticular AJ, leaving linear AJ intact. This disruption recapitulated typical tumor necrosis factor-α-induced alterations of barrier function, including increased β-catenin phosphorylation, without altering the actomyosin cytoskeleton. CONCLUSIONS We propose that reticular AJ act coordinately with PECAM-1 to maintain endothelial barrier function in regions of low actomyosin-mediated tension. Selective disruption of reticular AJ contributes to permeability increase in response to tumor necrosis factor-α.
Collapse
Affiliation(s)
- Laura Fernández-Martín
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, Akhmanova A, Rehmann H, de Rooij J. Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. ACTA ACUST UNITED AC 2012; 196:641-52. [PMID: 22391038 PMCID: PMC3307691 DOI: 10.1083/jcb.201108120] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A specialized subset of VE-cadherin adhesions senses cytoskeletal force and recruits Vinculin to control the stability of endothelial cell–cell junctions during their force-dependent remodeling. To remodel endothelial cell–cell adhesion, inflammatory cytokine- and angiogenic growth factor–induced signals impinge on the vascular endothelial cadherin (VE-cadherin) complex, the central component of endothelial adherens junctions. This study demonstrates that junction remodeling takes place at a molecularly and phenotypically distinct subset of VE-cadherin adhesions, defined here as focal adherens junctions (FAJs). FAJs are attached to radial F-actin bundles and marked by the mechanosensory protein Vinculin. We show that endothelial hormones vascular endothelial growth factor, tumor necrosis factor α, and most prominently thrombin induced the transformation of stable junctions into FAJs. The actin cytoskeleton generated pulling forces specifically on FAJs, and inhibition of Rho-Rock-actomyosin contractility prevented the formation of FAJs and junction remodeling. FAJs formed normally in cells expressing a Vinculin binding-deficient mutant of α-catenin, showing that Vinculin recruitment is not required for adherens junction formation. Comparing Vinculin-devoid FAJs to wild-type FAJs revealed that Vinculin protects VE-cadherin junctions from opening during their force-dependent remodeling. These findings implicate Vinculin-dependent cadherin mechanosensing in endothelial processes such as leukocyte extravasation and angiogenesis.
Collapse
Affiliation(s)
- Stephan Huveneers
- Hubrecht Institute for Developmental Biology and Stem Cell Research, University Medical Centre Utrecht, 3584 CT, Utrecht, Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Hatanaka K, Lanahan AA, Murakami M, Simons M. Fibroblast growth factor signaling potentiates VE-cadherin stability at adherens junctions by regulating SHP2. PLoS One 2012; 7:e37600. [PMID: 22629427 PMCID: PMC3358251 DOI: 10.1371/journal.pone.0037600] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 04/26/2012] [Indexed: 11/19/2022] Open
Abstract
Background The fibroblast growth factor (FGF) system plays a critical role in the maintenance of vascular integrity via enhancing the stability of VE-cadherin at adherens junctions. However, the precise molecular mechanism is not well understood. In the present study, we aimed to investigate the detailed mechanism of FGF regulation of VE-cadherin function that leads to endothelial junction stabilization. Methods and Findings In vitro studies demonstrated that the loss of FGF signaling disrupts the VE-cadherin-catenin complex at adherens junctions by increasing tyrosine phosphorylation levels of VE-cadherin. Among protein tyrosine phosphatases (PTPs) known to be involved in the maintenance of the VE-cadherin complex, suppression of FGF signaling reduces SHP2 expression levels and SHP2/VE-cadherin interaction due to accelerated SHP2 protein degradation. Increased endothelial permeability caused by FGF signaling inhibition was rescued by SHP2 overexpression, indicating the critical role of SHP2 in the maintenance of endothelial junction integrity. Conclusions These results identify FGF-dependent maintenance of SHP2 as an important new mechanism controlling the extent of VE-cadherin tyrosine phosphorylation, thereby regulating its presence in adherens junctions and endothelial permeability.
Collapse
Affiliation(s)
- Kunihiko Hatanaka
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Anthony A. Lanahan
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Masahiro Murakami
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| | - Michael Simons
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
98
|
Sidibé A, Mannic T, Arboleas M, Subileau M, Gulino-Debrac D, Bouillet L, Jan M, Vandhuick T, Le Loët X, Vittecoq O, Vilgrain I. Soluble VE-cadherin in rheumatoid arthritis patients correlates with disease activity: evidence for tumor necrosis factor α-induced VE-cadherin cleavage. ACTA ACUST UNITED AC 2012; 64:77-87. [PMID: 21905018 DOI: 10.1002/art.33336] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder that principally attacks synovial joints. However, accelerated atherosclerosis and increased cardiovascular morbidity and mortality are major clinical consequences of endothelial dysfunction in RA patients. Tumor necrosis factor α (TNFα) is the major mediator of inflammation in RA, related to vascular injury by targeting VE-cadherin, an endothelium-specific adhesion molecule of vital importance for endothelium integrity and angiogenesis. We undertook this study to examine the mechanisms regulating VE-cadherin processing by TNFα and their occurrence in RA. METHODS Human umbilical vein endothelial cells were used in primary culture and treated with recombinant TNFα to study VE-cadherin cleavage. Cell lysates and conditioned media were analyzed by Western blotting for VE-cadherin cytoplasmic domain and extracellular domain (VE-90) generation, respectively. VE-90 was analyzed at baseline and at the 1-year followup in sera from 63 RA patients (from the Very Early Rheumatoid Arthritis cohort) with disease duration of <6 months. RESULTS TNFα induced a time-dependent shedding of VE-90 in cell media. This effect was prevented by tyrosine kinase inhibitors (genistein and PP2) or by knocking down Src kinase. In contrast, tyrosine phosphatase blockade enhanced VE-cadherin cleavage, confirming the requirement of tyrosine phosphorylation processes. In addition, using the matrix metalloproteinase (MMP) activator APMA and the MMP inhibitor GM6001, we demonstrated that MMPs are involved in TNFα-induced VE-cadherin cleavage. Of major importance, VE-90 was detected in sera from the 63 RA patients and was positively correlated with the Disease Activity Score at baseline and after 1-year followup. CONCLUSION These findings provide the first evidence of VE-cadherin proteolysis upon TNFα stimulation and suggest potential clinical relevance of soluble VE-cadherin in management of RA.
Collapse
Affiliation(s)
- Adama Sidibé
- INSERM Unité 1036, Joseph Fourier University-Grenoble 1, and CEA Grenoble, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Lillehoj EP, Hyun SW, Feng C, Zhang L, Liu A, Guang W, Nguyen C, Luzina IG, Atamas SP, Passaniti A, Twaddell WS, Puché AC, Wang LX, Cross AS, Goldblum SE. NEU1 sialidase expressed in human airway epithelia regulates epidermal growth factor receptor (EGFR) and MUC1 protein signaling. J Biol Chem 2012; 287:8214-31. [PMID: 22247545 DOI: 10.1074/jbc.m111.292888] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6-1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7-1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38-56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli.
Collapse
Affiliation(s)
- Erik P Lillehoj
- Departments of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Nguyen C, Feng C, Zhan M, Cross AS, Goldblum SE. Bacillus anthracis-derived edema toxin (ET) counter-regulates movement of neutrophils and macromolecules through the endothelial paracellular pathway. BMC Microbiol 2012; 12:2. [PMID: 22230035 PMCID: PMC3277462 DOI: 10.1186/1471-2180-12-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 01/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A common finding amongst patients with inhalational anthrax is a paucity of polymorphonuclear leukocytes (PMNs) in infected tissues in the face of abundant circulating PMNs. A major virulence determinant of anthrax is edema toxin (ET), which is formed by the combination of two proteins produced by the organism, edema factor (EF), which is an adenyl cyclase, and protective antigen (PA). Since cAMP, a product of adenyl cyclase, is known to enhance endothelial barrier integrity, we asked whether ET might decrease extravasation of PMNs into tissues through closure of the paracellular pathway through which PMNs traverse. RESULTS Pretreatment of human microvascular endothelial cell(EC)s of the lung (HMVEC-L) with ET decreased interleukin (IL)-8-driven transendothelial migration (TEM) of PMNs with a maximal reduction of nearly 60%. This effect required the presence of both EF and PA. Conversely, ET did not diminish PMN chemotaxis in an EC-free system. Pretreatment of subconfluent HMVEC-Ls decreased transendothelial 14 C-albumin flux by ~ 50% compared to medium controls. Coadministration of ET with either tumor necrosis factor-α or bacterial lipopolysaccharide, each at 100 ng/mL, attenuated the increase of transendothelial 14 C-albumin flux caused by either agent alone. The inhibitory effect of ET on TEM paralleled increases in protein kinase A (PKA) activity, but could not be blocked by inhibition of PKA with either H-89 or KT-5720. Finally, we were unable to replicate the ET effect with either forskolin or 3-isobutyl-1-methylxanthine, two agents known to increase cAMP. CONCLUSIONS We conclude that ET decreases IL-8-driven TEM of PMNs across HMVEC-L monolayers independent of cAMP/PKA activity.
Collapse
Affiliation(s)
- Chinh Nguyen
- Southern Arizona Veterans Affairs Health Care Systems, Tucson, AZ 85723, USA.
| | | | | | | | | |
Collapse
|