51
|
Ong S, Bondonno NP, Downey LA, Scholey A, Smith MA, Stough C, Blekkenhorst LC, Woodman R, Croft KD, Hodgson JM, Bondonno CP. Effects of Chewing Gum on Nitric Oxide Metabolism, Markers of Cardiovascular Health and Neurocognitive Performance after a Nitrate-Rich Meal. J Am Coll Nutr 2021; 41:178-190. [PMID: 33600287 DOI: 10.1080/07315724.2020.1869119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Cardiovascular and neurocognitive responses to chewing gum have been reported, but the mechanisms are not well understood. Chewing gum after a nitrate-rich meal may upregulate the reduction of oral nitrate to nitrite and increase nitric oxide (NO), a molecule important to cardiovascular and neurocognitive health. We aimed to explore effects of chewing gum after a nitrate-rich meal on nitrate metabolism (through the enterosalivary nitrate-nitrite-NO pathway), endothelial function, blood pressure (BP), neurocognitive performance, mood and anxiety. METHODS Twenty healthy men (n = 6) and women (n = 14) with a mean age of 48 years (range: 23-69) were recruited to a randomized controlled cross-over trial. After consumption of a nitrate-rich meal (180 mg of nitrate), we assessed the acute effects of chewing gum, compared to no gum chewing, on (i) salivary nitrate, nitrite and the nitrate reductase ratio (100 x [nitrite]/([nitrate] + [nitrite]); (ii) plasma nitrite, S-nitrosothiols and other nitroso species (RXNO); (iii) endothelial function (measured by flow mediated dilatation); (iv) BP; (v) neurocognitive performance; (vi) mood; and (vii) anxiety. RESULTS Consumption of the nitrate-rich meal resulted in a significant increase in markers of nitrate metabolism. A significantly higher peak flow mediated dilatation was observed with chewing compared to no chewing (baseline adjusted mean difference: 1.10%, 95% CI: 0.06, 2.14; p = 0.038) after the nitrate-rich meal. A significant small increase in systolic BP, diastolic BP and heart rate were observed with chewing compared to no chewing after the nitrate-rich meal. The study did not observe increased oral reduction of nitrate to nitrite and NO, or improvements in neurocognitive performance, mood or anxiety with chewing compared to no chewing. CONCLUSION Chewing gum after a nitrate-rich meal resulted in an acute improvement in endothelial function and a small increase in BP but did not result in acute effects on neurocognitive function, mood or anxiety.
Collapse
Affiliation(s)
- Sharon Ong
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Nicola P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,School of Biomedical Sciences, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, Victoria, Australia.,Institute for Breathing & Sleep, Austin Hospital, Heidelberg, Victoria, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, Victoria, Australia
| | - Michael A Smith
- Department of Psychology, University of Northumbria, Newcastle, UK
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University, Melbourne, Victoria, Australia
| | - Lauren C Blekkenhorst
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Richard Woodman
- Flinders Centre for Epidemiology and Biostatistics, Flinders University, Adelaide, South Australia, Australia
| | - Kevin D Croft
- School of Biomedical Sciences, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Jonathan M Hodgson
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - Catherine P Bondonno
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
52
|
Jones AM, Vanhatalo A, Seals DR, Rossman MJ, Piknova B, Jonvik KL. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med Sci Sports Exerc 2021; 53:280-294. [PMID: 32735111 DOI: 10.1249/mss.0000000000002470] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is a gaseous signaling molecule that plays an important role in myriad physiological processes, including the regulation of vascular tone, neurotransmission, mitochondrial respiration, and skeletal muscle contractile function. NO may be produced via the canonical NO synthase-catalyzed oxidation of l-arginine and also by the sequential reduction of nitrate to nitrite and then NO. The body's nitrate stores can be augmented by the ingestion of nitrate-rich foods (primarily green leafy vegetables). NO bioavailability is greatly enhanced by the activity of bacteria residing in the mouth, which reduce nitrate to nitrite, thereby increasing the concentration of circulating nitrite, which can be reduced further to NO in regions of low oxygen availability. Recent investigations have focused on promoting this nitrate-nitrite-NO pathway to positively affect indices of cardiovascular health and exercise tolerance. It has been reported that dietary nitrate supplementation with beetroot juice lowers blood pressure in hypertensive patients, and sodium nitrite supplementation improves vascular endothelial function and reduces the stiffening of large elastic arteries in older humans. Nitrate supplementation has also been shown to enhance skeletal muscle function and to improve exercise performance in some circumstances. Recently, it has been established that nitrate concentration in skeletal muscle is much higher than that in blood and that muscle nitrate stores are exquisitely sensitive to dietary nitrate supplementation and deprivation. In this review, we consider the possibility that nitrate represents an essential storage form of NO and discuss the integrated function of the oral microbiome, circulation, and skeletal muscle in nitrate-nitrite-NO metabolism, as well as the practical relevance for health and performance.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter, UNITED KINGDOM
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO
| | - Barbora Piknova
- Molecular Medicine Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
53
|
Coggan AR, Hoffman RL, Gray DA, Moorthi RN, Thomas DP, Leibowitz JL, Thies D, Peterson LR. A Single Dose of Dietary Nitrate Increases Maximal Knee Extensor Angular Velocity and Power in Healthy Older Men and Women. J Gerontol A Biol Sci Med Sci 2021; 75:1154-1160. [PMID: 31231758 DOI: 10.1093/gerona/glz156] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Aging results in reductions in maximal muscular strength, speed, and power, which often lead to functional limitations highly predictive of disability, institutionalization, and mortality in elderly adults. This may be partially due to reduced nitric oxide (NO) bioavailability. We, therefore, hypothesized that dietary nitrate (NO3-), a source of NO via the NO3- → nitrite (NO2-) → NO enterosalivary pathway, could increase muscle contractile function in older subjects. METHODS Twelve healthy older (age 71 ± 5 years) men and women were studied using a randomized, double-blind, placebo-controlled, crossover design. After fasting overnight, subjects were tested 2 hours after ingesting beetroot juice containing or devoid of 13.4 ± 1.6 mmol NO3-. Plasma NO3- and NO2- and breath NO were measured periodically, and muscle function was determined using isokinetic dynamometry. RESULTS N O 3 - ingestion increased (p < .001) plasma NO3-, plasma NO2-, and breath NO by 1,051% ± 433%, 138% ± 149%, and 111% ± 115%, respectively. Maximal velocity of knee extension increased (p < .01) by 10.9% ± 12.1%. Maximal knee extensor power increased (p < .05) by 4.4% ± 7.8%. CONCLUSIONS Acute dietary NO3- intake improves maximal knee extensor angular velocity and power in older individuals. These findings may have important implications for this population, in whom diminished muscle function can lead to functional limitations, dependence, and even premature death.
Collapse
Affiliation(s)
- Andrew R Coggan
- Department of Kinesiology, Indiana University-Purdue University Indianapolis.,Department of Cellular and Integrative Physiology, Indiana University-Purdue University Indianapolis
| | - Richard L Hoffman
- Department of Kinesiology, Indiana University-Purdue University Indianapolis
| | - Derrick A Gray
- Department of Kinesiology, Indiana University-Purdue University Indianapolis
| | - Ranjani N Moorthi
- Department of Internal Medicine, Indiana University-Purdue University Indianapolis
| | - Deepak P Thomas
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Leibowitz
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dakkota Thies
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Linda R Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
54
|
Carrijo VHV, Amaral AL, Mariano IM, de Souza TCF, Batista JP, de Oliveira EP, Puga GM. Beetroot juice intake with different amounts of nitrate does not change aerobic exercise-mediated responses in heart rate variability in hypertensive postmenopausal women: A randomized, crossover and double-blind study. J Exerc Sci Fit 2021; 19:104-110. [PMID: 33391374 PMCID: PMC7772370 DOI: 10.1016/j.jesf.2020.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 11/18/2022] Open
Abstract
Objectives To compare the acute effects of a single dose of beetroot juice (BJ) with different concentrations of nitrate (NO3−) on heart rate variability (HRV) in postmenopausal hypertensive women. Methods Thirteen hypertensive postmenopausal women (58.1 ± 4.6 years of age and 27 ± 4 kg/m2 of BMI) completed the protocol that consisted of three visits with different beverage intakes in a randomized and crossover design. The three beverages were BJ with a high content of nitrate (high-NO3-), BJ with a low content of nitrate (low-NO3-), and an orange flavored non-caloric drink (OFD). Heart rate (HR) were evaluated during 20 min after sitting rest at 7:20 a.m. (baseline), after they drank one of the drinks, and remained at sitting rest for 120 min and then performed 40 min of aerobic exercise at 65–70% of the HR reserve on a treadmill. HR was recorded for 90 min after exercise for time, frequency, and non-linear domains of HRV index analysis. Results Two-way ANOVA showed that there were no interaction effects (time∗sessions) in any of the HRV indexes after exercise in all three sessions. HRV indexes increased after exercise (p = <0.05) similarly in all three sessions when compared with the baseline time point. Conclusion Therefore, a single dose of BJ, independent of NO3− content, does not change aerobic exercise-mediated responses in HRV indexes in hypertensive postmenopausal women.
Collapse
Affiliation(s)
- Victor Hugo V. Carrijo
- Laboratory of Cardiorespiratory and Metabolic Physiology, Physical Education and Physical Therapy Department, Federal University of Uberlândia, Uberlândia, MG, 38400-678, Brazil
| | - Ana Luiza Amaral
- Laboratory of Cardiorespiratory and Metabolic Physiology, Physical Education and Physical Therapy Department, Federal University of Uberlândia, Uberlândia, MG, 38400-678, Brazil
| | - Igor M. Mariano
- Laboratory of Cardiorespiratory and Metabolic Physiology, Physical Education and Physical Therapy Department, Federal University of Uberlândia, Uberlândia, MG, 38400-678, Brazil
| | - Tállita Cristina F. de Souza
- Laboratory of Cardiorespiratory and Metabolic Physiology, Physical Education and Physical Therapy Department, Federal University of Uberlândia, Uberlândia, MG, 38400-678, Brazil
| | - Jaqueline P. Batista
- Laboratory of Cardiorespiratory and Metabolic Physiology, Physical Education and Physical Therapy Department, Federal University of Uberlândia, Uberlândia, MG, 38400-678, Brazil
| | - Erick P. de Oliveira
- Laboratory of Nutrition, Exercise and Health (LaNES), School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Guilherme M. Puga
- Laboratory of Cardiorespiratory and Metabolic Physiology, Physical Education and Physical Therapy Department, Federal University of Uberlândia, Uberlândia, MG, 38400-678, Brazil
- Corresponding author. Faculdade de Educação Física, Universidade Federal de Uberlândia, Rua Benjamin Constant, 1286. Bairro: Aparecida, Uberlândia, MG, 38400-678, Brazil.
| |
Collapse
|
55
|
Horiuchi M, Rossetti GMK, Oliver SJ. The role of dietary nitrate supplementation in neurovascular function. Neural Regen Res 2021; 16:1419-1420. [PMID: 33318435 PMCID: PMC8284290 DOI: 10.4103/1673-5374.300993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Masahiro Horiuchi
- Division of Human Environmental Science, Mount Fuji Research Institute, Yamanashi, Japan
| | - Gabriella M K Rossetti
- School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| | - Samuel J Oliver
- School of Sport, Health and Exercise Sciences, College of Human Sciences, Bangor University, Bangor, UK
| |
Collapse
|
56
|
Ramick MG, Kirkman DL, Stock JM, Muth BJ, Farquhar WB, Chirinos JA, Doulias PT, Ischiropoulos H, Edwards DG. The effect of dietary nitrate on exercise capacity in chronic kidney disease: a randomized controlled pilot study. Nitric Oxide 2021; 106:17-23. [PMID: 33080411 PMCID: PMC10026360 DOI: 10.1016/j.niox.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chronic Kidney Disease (CKD) patients exhibit a reduced exercise capacity that impacts quality of life. Dietary nitrate supplementation has been shown to have favorable effects on exercise capacity in disease populations by reducing the oxygen cost of exercise. This study investigated whether dietary nitrates would acutely improve exercise capacity in CKD patients. METHODS AND RESULTS In this randomized, double-blinded crossover study, 12 Stage 3-4 CKD patients (Mean ± SEM: Age, 60 ± 5yrs; eGFR, 50.3 ± 4.6 ml/min/1.73 m2) received an acute dose of 12.6 mmol of dietary nitrate in the form of concentrated beetroot juice (BRJ) and a nitrate depleted placebo (PLA). Skeletal muscle mitochondrial oxidative function was assessed using near-infrared spectroscopy. Cardiopulmonary exercise testing was performed on a cycle ergometer, with intensity increased by 25 W every 3 min until volitional fatigue. Plasma nitric oxide (NO) metabolites (NOm; nitrate, nitrite, low molecular weight S-nitrosothiols, and metal bound NO) were determined by gas-phase chemiluminescence. Plasma NOm values were significantly increased following BRJ (BRJ vs. PLA: 1074.4 ± 120.4 μM vs. 28.4 ± 6.6 μM, p < 0.001). Total work performed (44.4 ± 10.6 vs 39.6 ± 9.9 kJ, p = 0.03) and total exercise time (674 ± 85 vs 627 ± 86s, p = 0.04) were significantly greater following BRJ. Oxygen consumption at the ventilatory threshold was also improved by BRJ (0.90 ± 0.08 vs. 0.74 ± 0.06 L/min, p = 0.04). These changes occurred in the absence of improved skeletal muscle mitochondrial oxidative capacity (p = 0.52) and VO2peak (p = 0.35). CONCLUSIONS Our findings demonstrate that inorganic nitrate can acutely improve exercise capacity in CKD patients. The effects of chronic nitrate supplementation on CKD related exercise intolerance should be investigated in future studies.
Collapse
Affiliation(s)
- Meghan G Ramick
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA; Department of Kinesiology, West Chester University, West Chester, PA, USA
| | - Danielle L Kirkman
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA; Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph M Stock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Bryce J Muth
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA; School of Health Sciences, Stockton University, Stockton, NJ, USA
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Julio A Chirinos
- Division of Cardiovascular Medicine. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paschalis-Thomas Doulias
- Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Harry Ischiropoulos
- Laboratory of Biochemistry, Department of Chemistry, School of Sciences, University of Ioannina, Ioannina, 45110, Greece; Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - David G Edwards
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
57
|
Nitrate and nitrite exposure leads to mild anxiogenic-like behavior and alters brain metabolomic profile in zebrafish. PLoS One 2020; 15:e0240070. [PMID: 33382700 PMCID: PMC7774831 DOI: 10.1371/journal.pone.0240070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dietary nitrate lowers blood pressure and improves athletic performance in humans, yet data supporting observations that it may increase cerebral blood flow and improve cognitive performance are mixed. We tested the hypothesis that nitrate and nitrite treatment would improve indicators of learning and cognitive performance in a zebrafish (Danio rerio) model. We utilized targeted and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to examine the extent to which treatment resulted in changes in nitrate or nitrite concentrations in the brain and altered the brain metabolome. Fish were exposed to sodium nitrate (606.9 mg/L), sodium nitrite (19.5 mg/L), or control water for 2–4 weeks and free swim, startle response, and shuttle box assays were performed. Nitrate and nitrite treatment did not change fish weight, length, predator avoidance, or distance and velocity traveled in an unstressed environment. Nitrate- and nitrite-treated fish initially experienced more negative reinforcement and increased time to decision in the shuttle box assay, which is consistent with a decrease in associative learning or executive function however, over multiple trials, all treatment groups demonstrated behaviors associated with learning. Nitrate and nitrite treatment was associated with mild anxiogenic-like behavior but did not alter epinephrine, norepinephrine or dopamine levels. Targeted metabolomics analysis revealed no significant increase in brain nitrate or nitrite concentrations with treatment. Untargeted metabolomics analysis found 47 metabolites whose abundance was significantly altered in the brain with nitrate and nitrite treatment. Overall, the depletion in brain metabolites is plausibly associated with the regulation of neuronal activity including statistically significant reductions in the inhibitory neurotransmitter γ-aminobutyric acid (GABA; 18–19%), and its precursor, glutamine (17–22%). Nitrate treatment caused significant depletion in the brain concentration of fatty acids including linoleic acid (LA) by 50% and arachidonic acid (ARA) by 80%; nitrite treatment caused depletion of LA by ~90% and ARA by 60%, change which could alter the function of dopaminergic neurons and affect behavior. Nitrate and nitrite treatment did not adversely affect multiple parameters of zebrafish health. It is plausible that indirect NO-mediated mechanisms may be responsible for the nitrate and nitrite-mediated effects on the brain metabolome and behavior in zebrafish.
Collapse
|
58
|
Capper TE, Houghton D, Stewart CJ, Blain AP, McMahon N, Siervo M, West DJ, Stevenson EJ. Whole beetroot consumption reduces systolic blood pressure and modulates diversity and composition of the gut microbiota in older participants. NFS JOURNAL 2020. [DOI: 10.1016/j.nfs.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
59
|
Volino-Souza M, de Oliveira GV, Conte-Junior CA, Alvares TS. Covid-19 Quarantine: Impact of Lifestyle Behaviors Changes on Endothelial Function and Possible Protective Effect of Beetroot Juice. Front Nutr 2020; 7:582210. [PMID: 33195371 PMCID: PMC7609412 DOI: 10.3389/fnut.2020.582210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
The current recommendation for reducing person-to-person Coronavirus 2019 (COVID-19) transmission is social distancing, including remote work and school, and home confinement. However, confinement may cause negative feelings, such as frustration, anger, boredom, and stress, in quarantined people. Furthermore, unhealthy diet and physical inactivity behaviors are commonly linked to home confinement, leading to weight gain, metabolic disorders, smoking, and exacerbated alcohol consumption. As a result, these unhealthy behaviors are typically linked to vascular endothelium damage (endothelial dysfunction), which is a first step for the development of cardiovascular disease (CVD). Given that CVD is the main cause of morbidity and mortality worldwide, attenuating the progression of endothelial dysfunction is very important for the control of CVD. Consuming vegetable rich in nitrate, such as beetroots, may be an effective way to prevent endothelial dysfunction. Several emerging studies have recommended beetroot juice in order to improve endothelial function in hypertensive, hypercholesterolemic individuals, as well as in those with CVD risk factors. Therefore, nitrate-rich vegetable consumption, such as beetroot, should be encouraged to be included in the diet during confinement from COVID-19 outbreaks in order to alleviate the potential negative effect of home confinement on cardiovascular health.
Collapse
Affiliation(s)
- Mônica Volino-Souza
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
| | - Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Carlos Adam Conte-Junior
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Thiago Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, Brazil
- Postgraduate Program in Bioactive Products and Biosciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
60
|
Cramer MN, Hieda M, Huang M, Moralez G, Crandall CG. Dietary nitrate supplementation does not influence thermoregulatory or cardiovascular strain in older individuals during severe ambient heat stress. Exp Physiol 2020; 105:1730-1741. [PMID: 32816341 DOI: 10.1113/ep088834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does dietary nitrate supplementation with beetroot juice attenuate thermoregulatory and cardiovascular strain in older adults during severe heat stress? What is the main finding and its importance? A 7-day nitrate supplementation regimen lowered resting mean arterial pressure in thermoneutral conditions. During heat stress, core and mean skin temperatures, vasodilatory responses, sweat loss, heart rate and left ventricular function were unchanged, and mean arterial pressure was only transiently reduced, post-supplementation. These data suggest nitrate supplementation with beetroot juice does not mitigate thermoregulatory or cardiovascular strain in heat-stressed older individuals. ABSTRACT This study tested the hypothesis that dietary nitrate supplementation with concentrated beetroot juice attenuates thermoregulatory and cardiovascular strain in older individuals during environmental heat stress. Nine healthy older individuals (six females, three males; aged 67 ± 5 years) were exposed to 42.5 ± 0.1°C and 34.0 ± 0.5% relative humidity conditions for 120 min before (CON) and after 7 days of dietary nitrate supplementation with concentrated beetroot juice (BRJ; 280 ml, ∼16.8 mmol of nitrate daily). Core and skin temperatures, body mass changes (indicative of whole-body sweat loss), skin blood flow and cutaneous vascular conductance, forearm blood flow and vascular conductance, heart rate, arterial blood pressures and indices of cardiac function were measured. The 7-day beetroot juice regimen increased plasma nitrate/nitrite levels from 27.4 ± 15.2 to 477.0 ± 102.5 μmol l-1 (P < 0.01) and lowered resting mean arterial pressure from 90 ± 7 to 83 ± 10 mmHg at baseline under thermoneutral conditions (P = 0.02). However, during subsequent heat stress, no differences in core and skin temperatures, skin blood flow and vascular conductance, forearm blood flow and vascular conductance, whole-body sweat loss, heart rate, and echocardiographic indices of systolic function and diastolic filling were evident following nitrate supplementation (all P > 0.05). Mean arterial pressure was lower in BRJ vs. CON during heat stress (treatment-by-time interaction: P = 0.02). Overall, these findings suggest that dietary nitrate supplementation with concentrated beetroot juice does not attenuate thermoregulatory or cardiovascular strain in older individuals exposed to severe ambient heat stress.
Collapse
Affiliation(s)
- Matthew N Cramer
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michinari Hieda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,School of Medicine, Kyushu University, Fukuoka, Japan
| | - Mu Huang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gilbert Moralez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA.,Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
61
|
Willmott T, McBain AJ, Humphreys GJ, Myers J, Cottrell E. Does the Oral Microbiome Play a Role in Hypertensive Pregnancies? Front Cell Infect Microbiol 2020; 10:389. [PMID: 32850488 PMCID: PMC7406642 DOI: 10.3389/fcimb.2020.00389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023] Open
Abstract
Chronic hypertension during gestation is associated with an increased risk of adverse pregnancy outcomes including pre-eclampsia, fetal growth restriction and preterm birth. Research into new chemotherapeutic regimes for the treatment of hypertension in pregnancy is limited due to concerns about fetal toxicity and teratogenicity, and new therapeutic avenues are being sought in alternative physiological pathways. Historically, generation of the vasodilator nitric oxide was believed to be solely from L-arginine by means of nitric oxide synthase enzymes. Recently, a novel pathway for the reduction of dietary inorganic nitrate to nitrite by the bacteria in the oral cavity and subsequently to vasodilatory nitric oxide within the body has been uncovered. Dietary nitrate is abundant in green leafy vegetables, including beetroot and spinach, and reduction of exogenous nitrate to nitrite by oral bacteria can increase nitric oxide in the vasculature, lessening hypertension. Supplements rich in nitrate may be an attractive choice for treatment due to fewer side effects than drugs that are currently used to treat hypertensive pregnancy disorders. Additionally, manipulation of the composition of the oral microbiota using pro- and prebiotics in tandem with additional dietary interventions to promote cardiovascular health during gestation may offer a safe and effective means of treating hypertensive pregnancy disorders including gestational hypertension and pre-eclampsia. The use of dietary inorganic nitrate as a supplement during pregnancy requires further exploration and large scale studies before it may be considered as part of a treatment regime. The aim of this article is to review the current evidence that oral microbiota plays a role in hypertensive pregnancies and whether it could be manipulated to improve patient outcomes.
Collapse
Affiliation(s)
- Thomas Willmott
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jenny Myers
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Elizabeth Cottrell
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
62
|
Pavitt MJ, Tanner RJ, Lewis A, Buttery S, Mehta B, Jefford H, Curtis KJ, Banya WAS, Husain S, Satkunam K, Shrikrishna D, Man W, Polkey MI, Hopkinson NS. Oral nitrate supplementation to enhance pulmonary rehabilitation in COPD: ON-EPIC a multicentre, double-blind, placebo-controlled, randomised parallel group study. Thorax 2020; 75:547-555. [PMID: 32376732 DOI: 10.1136/thoraxjnl-2019-214278] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
RATIONALE Dietary nitrate supplementation has been proposed as a strategy to improve exercise performance, both in healthy individuals and in people with COPD. We aimed to assess whether it could enhance the effect of pulmonary rehabilitation (PR) in COPD. METHODS This double-blind, placebo-controlled, parallel group, randomised controlled study performed at four UK centres, enrolled adults with Global Initiative for Chronic Obstructive Lung Disease grade II-IV COPD and Medical Research Council dyspnoea score 3-5 or functional limitation to undertake a twice weekly 8-week PR programme. They were randomly assigned (1:1) to either 140 mL of nitrate-rich beetroot juice (BRJ) (12.9 mmol nitrate), or placebo nitrate-deplete BRJ, consumed 3 hours prior to undertaking each PR session. Allocation used computer-generated block randomisation. MEASUREMENTS The primary outcome was change in incremental shuttle walk test (ISWT) distance. Secondary outcomes included quality of life, physical activity level, endothelial function via flow-mediated dilatation, fat-free mass index and blood pressure parameters. RESULTS 165 participants were recruited, 78 randomised to nitrate-rich BRJ and 87 randomised to placebo. Exercise capacity increased more with active treatment (n=57) than placebo (n=65); median (IQR) change in ISWT distance +60 m (10, 85) vs +30 m (0, 70), estimated treatment effect 30 m (95% CI 10 to 40); p=0.027. Active treatment also impacted on systolic blood pressure: treatment group -5.0 mm Hg (-5.0, -3.0) versus control +6.0 mm Hg (-1.0, 15.5), estimated treatment effect -7 mm Hg (95% CI 7 to -20) (p<0.0005). No significant serious adverse events or side effects were reported. CONCLUSIONS Dietary nitrate supplementation appears to be a well-tolerated and effective strategy to augment the benefits of PR in COPD. TRIAL REGISTRATION NUMBER ISRCTN27860457.
Collapse
Affiliation(s)
- Matthew J Pavitt
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Rebecca Jayne Tanner
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Adam Lewis
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Sara Buttery
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Bhavin Mehta
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Helen Jefford
- Greenwich Adult Community Health Service, Oxleas NHS Foundation Trust, Dartford, Kent, UK
| | - Katrina J Curtis
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Winston A S Banya
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| | - Syed Husain
- Respiratory Medicine, Maidstone and Tunbridge Wells NHS Trust, Maidstone, Kent, UK
| | - Karnan Satkunam
- Greenwich Adult Community Health Service, Oxleas NHS Foundation Trust, Dartford, Kent, UK
| | - Dinesh Shrikrishna
- Musgrove Park Hospital, Taunton and Somerset NHS Foundation Trust, Taunton, Somerset, UK
| | - William Man
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Michael I Polkey
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Nicholas S Hopkinson
- National Heart and Lung Institute, Royal Brompton Campus, Imperial College London, London, UK
| |
Collapse
|
63
|
Berry MJ, Miller GD, Kim-Shapiro DB, Fletcher MS, Jones CG, Gauthier ZD, Collins SL, Basu S, Heinrich TM. A randomized controlled trial of nitrate supplementation in well-trained middle and older-aged adults. PLoS One 2020; 15:e0235047. [PMID: 32574223 PMCID: PMC7310701 DOI: 10.1371/journal.pone.0235047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Nitrate (NO3-), through its conversion to nitrite (NO2-) and nitric oxide, has been shown to increase exercise tolerance in healthy younger adults and older diseased patients. Nitrate’s effect in well-trained middle to older-aged adults has not been studied. Therefore, the purpose of this investigation was to examine the effects of a NO3- rich beverage on submaximal constant work rate exercise time in well-trained middle to older-aged adults. Methods This was a randomized controlled cross-over trial with 15 well-trained middle to older-aged adults, 41–64 year-old, who received one of two treatments (NO3- rich beverage then placebo or placebo then NO3- rich beverage), after which an exercise test at 75 percent of the subject’s maximal work rate was completed. Results The NO3- rich beverage increased plasma NO3- and NO2- levels by 260 μM and 0.47 μM, respectively (p<0.001). Exercise time was not significantly different (p = 0.31) between the NO3- rich versus placebo conditions (1130±151 vs 1060±132 sec, respectively). Changes in exercise time between the two conditions ranged from a 55% improvement to a 40% decrease with the NO3- rich beverage. Oxygen consumption and rating of perceived exertion were not significantly different between the two conditions. Conclusion In middle to older-aged well-trained adults, NO3- supplementation has non-significant, albeit highly variable, effects on exercise tolerance. ClinicalTrials.gov Identifier: NCT03371966
Collapse
Affiliation(s)
- Michael J. Berry
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
- * E-mail:
| | - Gary D. Miller
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Daniel B. Kim-Shapiro
- Physics Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Macie S. Fletcher
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Caleb G. Jones
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Zachary D. Gauthier
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Summer L. Collins
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Swati Basu
- Physics Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Timothy M. Heinrich
- Health and Exercise Department, Wake Forest University, Winston-Salem, North Carolina, United States of America
| |
Collapse
|
64
|
Kapil V, Khambata RS, Jones DA, Rathod K, Primus C, Massimo G, Fukuto JM, Ahluwalia A. The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway. Pharmacol Rev 2020; 72:692-766. [DOI: 10.1124/pr.120.019240] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
65
|
Babateen AM, Rubele S, Shannon O, Okello E, Smith E, McMahon N, O'Brien G, Wightman E, Kennedy D, Mathers JC, Siervo M. Protocol and recruitment results from a 13-week randomized controlled trial comparing the effects of different doses of nitrate-rich beetroot juice on cognition, cerebral blood flow and peripheral vascular function in overweight and obese older people. Contemp Clin Trials Commun 2020; 18:100571. [PMID: 32405570 PMCID: PMC7212182 DOI: 10.1016/j.conctc.2020.100571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/11/2020] [Accepted: 04/19/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Nitrate-rich food can increase NO production and may induce positive effects on brain function. This study examined the feasibility of a randomized clinical trial (RCT) testing the effects of prolonged consumption of incremental doses of dietary nitrate (NO3 -) in overweight and obese older participants. Secondary aims tested dose-dependent changes in cognitive, vascular and pulmonary functions and cerebral blood flow (CBF). METHODS This was a single blind, four-arm parallel RCT conducted in 60 overweight and obese older participants. Eligible participants were randomized to:1) high NO3 - (140 ml of beetroot juice (BJ) per day, ~800 mg of NO3 -/day), 2) moderate NO3 - (70 ml of BJ per day, ~400 mg of NO3 -/day), 3) low NO3 - (70 ml on alternate days, ~400 mg of NO3 -) or 4) NO3 - depleted (70 ml on alternate days, ~0.001 mg of NO3). Measurements of cognitive, vascular and pulmonary functions and CBF were conducted at baseline and 13-weeks NO3 - intake was assessed by six 24-h recalls, and by measuring NO3 - intake biomarkers. Feasibility was assessed by obtaining qualitative feedback and evaluating trial recruitment, retention, compliance with study visits and measurement protocols. RESULTS Participant recruitment started in July 2018 and ended in April 2019. Of all the recruitment strategies that were used, advertisement of the study via Facebook generated the highest response rate. Sixty-two participants consented and were enrolled. Overall, characteristics of included participants matched our recruitment criteria. CONCLUSION The findings from this study provide evidence of the acceptability and feasibility of an intervention investigating the effects of incremental doses of high-nitrate BJ over a prolonged period. TRIAL REGISTRATION The intervention study was registered with clinical trial ISRCTN registry (ISRCTN14746723) on 27 December 2018.
Collapse
Affiliation(s)
- Abrar M. Babateen
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Applied Medical Sciences, Clinical Nutrition Department, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sofia Rubele
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Oliver Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Edward Okello
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, UK
| | - Ellen Smith
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon-Tyne, NE1 8ST, UK
| | - Nicholas McMahon
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Gerry O'Brien
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Wightman
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon-Tyne, NE1 8ST, UK
| | - David Kennedy
- Brain Performance and Nutrition Research Centre, Northumbria University, Newcastle Upon-Tyne, NE1 8ST, UK
| | - John C. Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Mario Siervo
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
66
|
Hughes WE, Kruse NT, Ueda K, Feider AJ, Hanada S, Bock JM, Casey DP. Dietary nitrate does not acutely enhance skeletal muscle blood flow and vasodilation in the lower limbs of older adults during single-limb exercise. Eur J Appl Physiol 2020; 120:1357-1369. [DOI: 10.1007/s00421-020-04368-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
|
67
|
Zamani H, de Joode MEJR, Hossein IJ, Henckens NFT, Guggeis MA, Berends JE, de Kok TMCM, van Breda SGJ. The benefits and risks of beetroot juice consumption: a systematic review. Crit Rev Food Sci Nutr 2020; 61:788-804. [PMID: 32292042 DOI: 10.1080/10408398.2020.1746629] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Beetroot juice (BRJ) has become increasingly popular amongst athletes aiming to improve sport performances. BRJ contains high concentrations of nitrate, which can be converted into nitric oxide (NO) after consumption. NO has various functions in the human body, including a vasodilatory effect, which reduces blood pressure and increases oxygen- and nutrient delivery to various organs. These effects indicate that BRJ may have relevant applications in prevention and treatment of cardiovascular disease. Furthermore, the consumption of BRJ also has an impact on oxygen delivery to skeletal muscles, muscle efficiency, tolerance and endurance and may thus have a positive impact on sports performances. Aside from the beneficial aspects of BRJ consumption, there may also be potential health risks. Drinking BRJ may easily increase nitrate intake above the acceptable daily intake, which is known to stimulate the endogenous formation of N-nitroso compounds (NOC's), a class of compounds that is known to be carcinogenic and that may also induce several other adverse effects. Compared to studies on the beneficial effects, the amount of data and literature on the negative effects of BRJ is rather limited, and should be increased in order to perform a balanced risk assessment.
Collapse
Affiliation(s)
- H Zamani
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M E J R de Joode
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - I J Hossein
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - N F T Henckens
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - M A Guggeis
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - J E Berends
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - T M C M de Kok
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - S G J van Breda
- Department of Toxicogenomics, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
68
|
Nutraceutical support in heart failure: a position paper of the International Lipid Expert Panel (ILEP). Nutr Res Rev 2020; 33:155-179. [PMID: 32172721 DOI: 10.1017/s0954422420000049] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heart failure (HF) is a complex clinical syndrome that represents a major cause of morbidity and mortality in Western countries. Several nutraceuticals have shown interesting clinical results in HF prevention as well as in the treatment of the early stages of the disease, alone or in combination with pharmacological therapy. The aim of the present expert opinion position paper is to summarise the available clinical evidence on the role of phytochemicals in HF prevention and/or treatment that might be considered in those patients not treated optimally as well as in those with low therapy adherence. The level of evidence and the strength of recommendation of particular HF treatment options were weighed up and graded according to predefined scales. A systematic search strategy was developed to identify trials in PubMed (January 1970 to June 2019). The terms 'nutraceuticals', 'dietary supplements', 'herbal drug' and 'heart failure' or 'left verntricular dysfunction' were used in the literature search. The experts discussed and agreed on the recommendation levels. Available clinical trials reported that the intake of some nutraceuticals (hawthorn, coenzyme Q10, l-carnitine, d-ribose, carnosine, vitamin D, probiotics, n-3 PUFA and beet nitrates) might be associated with improvements in self-perceived quality of life and/or functional parameters such as left ventricular ejection fraction, stroke volume and cardiac output in HF patients, with minimal or no side effects. Those benefits tended to be greater in earlier HF stages. Available clinical evidence supports the usefulness of supplementation with some nutraceuticals to improve HF management in addition to evidence-based pharmacological therapy.
Collapse
|
69
|
Mirmiran P, Houshialsadat Z, Gaeini Z, Bahadoran Z, Azizi F. Functional properties of beetroot ( Beta vulgaris) in management of cardio-metabolic diseases. Nutr Metab (Lond) 2020; 17:3. [PMID: 31921325 PMCID: PMC6947971 DOI: 10.1186/s12986-019-0421-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/23/2019] [Indexed: 11/12/2022] Open
Abstract
Red beetroot (Beta vulgaris), as a naturally occurring root vegetable and a rich source of phytochemicals and bioactive compounds, is known for its beneficial roles in the improvement of several clinical and pathologic outcome. Chronic and acute beetroot juice supplementation, as a cost-effective strategy, is proposed to hold promises in controlling diabetes and insulin hemostasis, blood pressure and vascular function, renal health and the possible effect on microbiome abundance. The secondary outcome and physiological response of microbiome abundance modulation included the non- significant fluctuation of systolic and diastolic blood pressures. Also, some studies have suggested a reno-protective property of beetroot juice that is associated with the reduction of mortality rate and favorable changes in kidney’s functional parameters among patients with renal disorders. Similarly, it is shown that the persistent consumption of beetroot juice effectively postpones the postprandial glycemic response and decreases the blood glucose peak. The significant blood pressure lowering effect has been seen among normotensive subjects, which tend to be more considerable among hypertensive individuals and progressive among overweight adults. Within this context, this review aims to provide a comprehensive overview on the therapeutic applications of beetroot juice in metabolic disorders and theirs underlying mechanisms. Despite the inconsistencies in the set of results from the reviewed studies, there is no doubt that further contributing factors must be investigated more deeply in future studies.
Collapse
Affiliation(s)
- Parvin Mirmiran
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran
| | - Zeinab Houshialsadat
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran
| | - Zahra Gaeini
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran
| | - Zahra Bahadoran
- 1Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, Tehran, Iran
| | - Fereidoun Azizi
- 2Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
70
|
Can Improving the Nutritional Content of Bread Enhance Cognition? Cognitive Outcomes from a Randomized Controlled Trial. JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
71
|
Shannon OM, Grisotto G, Babateen A, McGrattan A, Brandt K, Mathers JC, Siervo M. Knowledge and beliefs about dietary inorganic nitrate among UK-based nutrition professionals: Development and application of the KINDS online questionnaire. BMJ Open 2019; 9:e030719. [PMID: 31676652 PMCID: PMC6830619 DOI: 10.1136/bmjopen-2019-030719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To examine knowledge and beliefs about the biological roles of dietary inorganic nitrate in UK-based nutrition professionals, and to explore potential differences by participants' education level. SETTING An online questionnaire was administered to UK-based nutrition professionals, exploring knowledge and/or beliefs across five areas: (1) health and performance effects of nitrate; (2) current and recommended intake values for nitrate; (3) dietary sources of nitrate; (4) methods of evaluating nitrate intake and (5) nitrate metabolism. PARTICIPANTS One hundred and twenty-five nutrition professionals. PRIMARY OUTCOME Knowledge and beliefs about inorganic nitrate. RESULTS Most nutrition professionals taking part in the survey had previously heard of inorganic nitrate (71%) and perceived it to be primarily beneficial (51%). The majority believed that nitrate consumption can improve sports performance (59%) and reduce blood pressure (54%), but were unsure about effects on cognitive function (71%), kidney function (80%) and cancer risk (70%). Knowledge of dietary sources of nitrate and factors affecting its content in food were generally good (41%-79% of participants providing correct answers). However, most participants were unsure of the average population intake (65%) and the acceptable daily intake (64%) of nitrate. Most participants (65%) recognised at least one compound (ie, nitric oxide or nitrosamines) that is derived from dietary nitrate in the body. Knowledge of nitrate, quantified by a 23-point index created by summing correct responses, was greater in individuals with a PhD (p=0.01; median (IQR)=13 (9-17)) and tended to be better in respondents with a masters degree (p=0.054; 13 (8-15)) compared with undergraduate-level qualifications (10 (2-14)). CONCLUSIONS UK-based nutrition professionals demonstrated mixed knowledge about the physiology of dietary nitrate, which was better in participants with higher education. More efficient dissemination of current knowledge about inorganic nitrate and its effects on health to nutrition professionals will support them to make more informed recommendations about consumption of this compound.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Giorgia Grisotto
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Abrar Babateen
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrea McGrattan
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kirsten Brandt
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mario Siervo
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, The University of Nottingham Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
72
|
Jackson JK, Patterson AJ, MacDonald-Wicks LK, Oldmeadow C, McEvoy MA. The role of inorganic nitrate and nitrite in cardiovascular disease risk factors: a systematic review and meta-analysis of human evidence. Nutr Rev 2019; 76:348-371. [PMID: 29506204 DOI: 10.1093/nutrit/nuy005] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Context Depleted nitric oxide levels in the human body play a major role in cardiovascular disease pathogenesis. Inorganic nitrate/nitrite (rich dietary sources include beetroot and spinach) can act as a nitric oxide donor because nitrate/nitrite can be metabolized to produce nitric oxide. Objective This review and meta-analysis sought to investigate the role of inorganic nitrate/nitrite in preventing or treating cardiovascular disease risk factors in humans. Data Sources Electronic databases, including Medline, Embase, Cumulative Index to Nursing and Allied Health Literature, Cochrane, and Scopus, were searched. Data Extraction Experimental trials examining the effect of oral inorganic nitrate/nitrite intake on cardiovascular disease risk factors were included for systematic analysis. Results Thirty-four studies were included for qualitative synthesis, 23 of which were eligible for meta-analysis. Included studies measured the following outcomes: blood pressure, endothelial function, arterial stiffness, platelet aggregation, and/or blood lipids. Inorganic nitrate intake was found to significantly reduce resting blood pressure (systolic blood pressure: -4.80 mmHg, P < 0.0001; diastolic blood pressure: -1.74 mmHg, P = 0.001), improve endothelial function (flow-mediated dilatation: 0.59%, P < 0.0001), reduce arterial stiffness (pulse wave velocity: -0.23 m/s, P < 0.0001; augmentation index: -2.1%, P = 0.05), and reduce platelet aggregation by 18.9% (P < 0.0001). Conclusions Inorganic nitrate consumption represents a simple strategy for targeting cardiovascular disease risk factors. Future studies investigating the long-term effects of inorganic nitrate on cardiovascular disease outcomes are warranted.
Collapse
Affiliation(s)
- Jacklyn K Jackson
- Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Amanda J Patterson
- Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lesley K MacDonald-Wicks
- Priority Research Centre in Physical Activity and Nutrition, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher Oldmeadow
- Clinical Research Design and Statistical Services, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark A McEvoy
- Centre for Clinical Epidemiology and Biostatistics, Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
73
|
Jones T, Dunn EL, Macdonald JH, Kubis HP, McMahon N, Sandoo A. The Effects of Beetroot Juice on Blood Pressure, Microvascular Function and Large-Vessel Endothelial Function: A Randomized, Double-Blind, Placebo-Controlled Pilot Study in Healthy Older Adults. Nutrients 2019; 11:nu11081792. [PMID: 31382524 PMCID: PMC6722817 DOI: 10.3390/nu11081792] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 01/03/2023] Open
Abstract
Dietary nitrate (NO3−) has been reported to improve endothelial function (EF) and blood pressure (BP). However, most studies only assess large-vessel EF with little research on the microvasculature. Thus, the aim of the present pilot study is to examine NO3− supplementation on microvascular and large-vessel EF and BP. Twenty older adults (63 ± 6 years) were randomized to a beetroot juice (BRJ) or placebo (PLA) group for 28 (±7) days and attended three laboratory visitations. Across visitations, blood pressure, microvascular function and large-vessel EF were assessed by laser Doppler imaging (LDI) with iontophoresis of vasoactive substances and flow-mediated dilatation (FMD), respectively. Plasma NO3−concentrations, BP and the presence of NO3− reducing bacteria were also assessed. Plasma NO3− increased following two weeks of BRJ supplementation (p = 0.04) along with a concomitant decrease in systolic and diastolic BP of approximately −6 mmHg and −4 mmHg, respectively (p = 0.04; p = 0.01, respectively). BP remained unchanged in the PLA group. There were no significant differences in endothelium-dependent or endothelium-independent microvascular responses between groups. FMD increased by 1.5% following two weeks of BRJ (p = 0.04), with only a minimal (0.1%) change for the PLA group. In conclusion, this pilot study demonstrated that medium-term BRJ ingestion potentially improves SBP, DBP and large-vessel EF in healthy older adults. The improvements observed in the present study are likely to be greater in populations presenting with endothelial dysfunction. Thus, further prospective studies are warranted in individuals at greater risk for cardiovascular disease.
Collapse
Affiliation(s)
- Tomos Jones
- School of Sport, Health and Exercise Sciences, Bangor University, George Building, Bangor, Gwynedd, Wales LL57 2PZ, UK.
| | - Emily Louise Dunn
- School of Sport, Health and Exercise Sciences, Bangor University, George Building, Bangor, Gwynedd, Wales LL57 2PZ, UK
| | - Jamie Hugo Macdonald
- School of Sport, Health and Exercise Sciences, Bangor University, George Building, Bangor, Gwynedd, Wales LL57 2PZ, UK
| | - Hans-Peter Kubis
- School of Sport, Health and Exercise Sciences, Bangor University, George Building, Bangor, Gwynedd, Wales LL57 2PZ, UK
| | - Nicholas McMahon
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD 4067, Australia
| | - Aamer Sandoo
- School of Sport, Health and Exercise Sciences, Bangor University, George Building, Bangor, Gwynedd, Wales LL57 2PZ, UK
| |
Collapse
|
74
|
Shepherd AI, Costello JT, Bailey SJ, Bishop N, Wadley AJ, Young-Min S, Gilchrist M, Mayes H, White D, Gorczynski P, Saynor ZL, Massey H, Eglin CM. "Beet" the cold: beetroot juice supplementation improves peripheral blood flow, endothelial function, and anti-inflammatory status in individuals with Raynaud's phenomenon. J Appl Physiol (1985) 2019; 127:1478-1490. [PMID: 31343948 DOI: 10.1152/japplphysiol.00292.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Raynaud's phenomenon (RP) is characterized by recurrent transient peripheral vasospasm and lower nitric oxide (NO) bioavailability in the cold. We investigated the effect of nitrate-rich beetroot juice (BJ) supplementation on 1) NO-mediated vasodilation, 2) cutaneous vascular conductance (CVC) and skin temperature (Tsk) following local cooling, and 3) systemic anti-inflammatory status. Following baseline testing, 23 individuals with RP attended four times, in a double-blind, randomized crossover design, following acute and chronic (14 days) BJ and nitrate-depleted beetroot juice (NDBJ) supplementation. Peripheral Tsk and CVC were measured during and after mild hand and foot cooling, and during transdermal delivery of acetylcholine and sodium nitroprusside. Markers of anti-inflammatory status were also measured. Plasma nitrite concentration ([nitrite]) was increased in the BJ conditions (P < 0.001). Compared with the baseline visit, thumb CVC was greater following chronic-BJ (Δ2.0 flux/mmHg, P = 0.02) and chronic-NDBJ (Δ1.45 flux/mmHg, P = 0.01) supplementation; however, no changes in Tsk were observed (P > 0.05). Plasma [interleukin-10] was greater, pan endothelin and systolic and diastolic blood pressure (BP) were reduced, and forearm endothelial function was improved, by both BJ and NDBJ supplementation (P < 0.05). Acute and chronic BJ and NDBJ supplementation improved anti-inflammatory status, endothelial function and blood pressure (BP). CVC following cooling increased post chronic-BJ and chronic-NDBJ supplementation, but no effect on Tsk was observed. The key findings are that beetroot supplementation improves thumb blood flow, improves endothelial function and anti-inflammatory status, and reduces BP in people with Raynaud's.NEW & NOTEWORTHY This is the first study to examine the effect of dietary nitrate supplementation in individuals with Raynaud's phenomenon. The principal novel findings from this study were that both beetroot juice and nitrate-depleted beetroot juice 1) increased blood flow in the thumb following a cold challenge; 2) enhanced endothelium-dependent and -independent vasodilation in the forearm; 3) reduced systolic and diastolic blood pressure, and pan-endothelin concentration; and 4) improved inflammatory status in comparison to baseline.
Collapse
Affiliation(s)
- Anthony I Shepherd
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Joseph T Costello
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Stephen J Bailey
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, United Kingdom
| | - Nicolette Bishop
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, United Kingdom.,University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Alex J Wadley
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Epinal Way, Loughborough, United Kingdom.,University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, United Kingdom
| | - Steven Young-Min
- Rheumatology Department, Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom
| | - Mark Gilchrist
- University of Exeter Medical School and NIHR Exeter Clinical Research Facility, Royal Devon and Exeter Hospital, Exeter, Devon, United Kingdom
| | - Harry Mayes
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Danny White
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Paul Gorczynski
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Zoe L Saynor
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Heather Massey
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Clare M Eglin
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
75
|
Stanaway L, Rutherfurd-Markwick K, Page R, Wong M, Jirangrat W, Teh KH, Ali A. Acute Supplementation with Nitrate-Rich Beetroot Juice Causes a Greater Increase in Plasma Nitrite and Reduction in Blood Pressure of Older Compared to Younger Adults. Nutrients 2019; 11:nu11071683. [PMID: 31336633 PMCID: PMC6683255 DOI: 10.3390/nu11071683] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023] Open
Abstract
Nitrate-rich beetroot juice supplementation has been shown to improve cardiovascular and cognitive function in younger and older adults via increased nitric oxide production. However, it is unclear whether the level of effects differs between the two groups. We hypothesized that acute supplementation with nitrate-rich beetroot juice would improve cardiovascular and cognitive function in older and younger adults, with the potential for greater improvements in older adults. Thirteen younger (18–30 years) and 11 older (50–70 years) adults consumed either 150 mL of nitrate-rich beetroot juice (BR; 10.5 mmol nitrate) or placebo (PL; 1 mmol nitrate) in a double-blind, crossover design, 2.25 h prior to a 30-min treadmill walk. Plasma nitrate and nitrite concentrations, blood pressure (BP), heart rate (HR), cognitive function, mood and perceptual tests were performed throughout the trial. BR consumption significantly increased plasma nitrate (p < 0.001) and nitrite (p = 0.003) concentrations and reduced systolic BP (p < 0.001) in both age groups and reduced diastolic BP (p = 0.013) in older adults. Older adults showed a greater elevation in plasma nitrite (p = 0.038) and a greater reduction in diastolic BP (p = 0.005) following BR consumption than younger adults. Reaction time was improved in the Stroop test following BR supplementation for both groups (p = 0.045). Acute BR supplementation increased plasma nitrite concentrations and reduced diastolic BP to a greater degree in older adults; whilst systolic BP was reduced in both older and younger adults, suggesting nitrate-rich BR may improve cardiovascular health, particularly in older adults due to the greater benefits from reductions in diastolic BP.
Collapse
Affiliation(s)
- Luke Stanaway
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0632, New Zealand
| | - Kay Rutherfurd-Markwick
- School of Health Sciences, Massey University, Auckland 0632, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
| | - Rachel Page
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Marie Wong
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
- School of Food & Advanced Technology, Massey University, Auckland 0632, New Zealand
| | | | - Koon Hoong Teh
- School of Food & Advanced Technology, Massey University, Auckland 0632, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0632, New Zealand.
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand.
| |
Collapse
|
76
|
Stanaway L, Rutherfurd-Markwick K, Page R, Wong M, Jirangrat W, Teh KH, Ali A. Acute Supplementation with Nitrate-Rich Beetroot Juice Causes a Greater Increase in Plasma Nitrite and Reduction in Blood Pressure of Older Compared to Younger Adults. Nutrients 2019; 11:1683. [PMID: 31336633 PMCID: PMC6683255 DOI: 10.3390/nu11071683,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 08/28/2024] Open
Abstract
Nitrate-rich beetroot juice supplementation has been shown to improve cardiovascular and cognitive function in younger and older adults via increased nitric oxide production. However, it is unclear whether the level of effects differs between the two groups. We hypothesized that acute supplementation with nitrate-rich beetroot juice would improve cardiovascular and cognitive function in older and younger adults, with the potential for greater improvements in older adults. Thirteen younger (18-30 years) and 11 older (50-70 years) adults consumed either 150 mL of nitrate-rich beetroot juice (BR; 10.5 mmol nitrate) or placebo (PL; 1 mmol nitrate) in a double-blind, crossover design, 2.25 h prior to a 30-min treadmill walk. Plasma nitrate and nitrite concentrations, blood pressure (BP), heart rate (HR), cognitive function, mood and perceptual tests were performed throughout the trial. BR consumption significantly increased plasma nitrate (p < 0.001) and nitrite (p = 0.003) concentrations and reduced systolic BP (p < 0.001) in both age groups and reduced diastolic BP (p = 0.013) in older adults. Older adults showed a greater elevation in plasma nitrite (p = 0.038) and a greater reduction in diastolic BP (p = 0.005) following BR consumption than younger adults. Reaction time was improved in the Stroop test following BR supplementation for both groups (p = 0.045). Acute BR supplementation increased plasma nitrite concentrations and reduced diastolic BP to a greater degree in older adults; whilst systolic BP was reduced in both older and younger adults, suggesting nitrate-rich BR may improve cardiovascular health, particularly in older adults due to the greater benefits from reductions in diastolic BP.
Collapse
Affiliation(s)
- Luke Stanaway
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0632, New Zealand
| | - Kay Rutherfurd-Markwick
- School of Health Sciences, Massey University, Auckland 0632, New Zealand
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
| | - Rachel Page
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
- School of Health Sciences, Massey University, Wellington 6021, New Zealand
| | - Marie Wong
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand
- School of Food & Advanced Technology, Massey University, Auckland 0632, New Zealand
| | | | - Koon Hoong Teh
- School of Food & Advanced Technology, Massey University, Auckland 0632, New Zealand
| | - Ajmol Ali
- School of Sport, Exercise and Nutrition, Massey University, Auckland 0632, New Zealand.
- Centre for Metabolic Health Research, Massey University, Auckland 0745, New Zealand.
| |
Collapse
|
77
|
Abstract
Nitric oxide (NO) plays a plethora of important roles in the human body. Insufficient production of NO (for example, during older age and in various disease conditions) can adversely impact health and physical performance. In addition to its endogenous production through the oxidation of l-arginine, NO can be formed nonenzymatically via the reduction of nitrate and nitrite, and the storage of these anions can be augmented by the consumption of nitrate-rich foodstuffs such as green leafy vegetables. Recent studies indicate that dietary nitrate supplementation, administered most commonly in the form of beetroot juice, can ( a) improve muscle efficiency by reducing the O2 cost of submaximal exercise and thereby improve endurance exercise performance and ( b) enhance skeletal muscle contractile function and thereby improve muscle power and sprint exercise performance. This review describes the physiological mechanisms potentially responsible for these effects, outlines the circumstances in which ergogenic effects are most likely to be evident, and discusses the effects of dietary nitrate supplementation on physical performance in a range of human populations.
Collapse
Affiliation(s)
- Andrew M Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Christopher Thompson
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Lee J Wylie
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| | - Anni Vanhatalo
- Department of Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom;
| |
Collapse
|
78
|
A Single Dose of Beetroot Juice Does Not Change Blood Pressure Response Mediated by Acute Aerobic Exercise in Hypertensive Postmenopausal Women. Nutrients 2019; 11:nu11061327. [PMID: 31200505 PMCID: PMC6627101 DOI: 10.3390/nu11061327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To verify if acute intake of beetroot juice potentiates post-exercise hypotension (PEH) in hypertensive postmenopausal women. METHODS Thirteen hypertensive postmenopausal women (58.1 ± 4.62 years and 27.4 ± 4.25 kg/m²) were recruited to participate in three experimental sessions, taking three different beverages: Beetroot juice (BJ), placebo nitrate-depleted BJ (PLA), and orange flavored non-caloric drink (OFD). The participants performed moderate aerobic exercise training on a treadmill, at 65-70% of heart rate reserve (HRR), for 40 min. After an overnight fast, the protocol started at 07h when the first resting blood pressure (BP) was measured. The beverage was ingested at 07h30 and BP was monitored until the exercise training started, at 09h30. After the end of the exercise session, BP was measured every 15 min over a 90-min period. Saliva samples were collected at rest, immediately before and after exercise, and 90 min after exercise for nitrite (NO2-) analysis. RESULTS There was an increase in salivary NO2- with BJ intake when compared to OFD and PLA. A slight increase in salivary NO2- was observed with PLA when compared to OFD (p < 0.05), however, PLA resulted in lower salivary NO2- when compared to BJ (p < 0.001). There were no changes in salivary NO2- with the OFD. Systolic and diastolic BP decreased (p < 0.001) on all post exercise time points after all interventions, with no difference between the three beverages. CONCLUSION Acute BJ intake does not change PEH responses in hypertensive postmenopausal women, even though there is an increase in salivary NO2-.
Collapse
|
79
|
Sim M, Lewis JR, Blekkenhorst LC, Bondonno CP, Devine A, Zhu K, Peeling P, Prince RL, Hodgson JM. Dietary nitrate intake is associated with muscle function in older women. J Cachexia Sarcopenia Muscle 2019; 10:601-610. [PMID: 30907070 PMCID: PMC6596394 DOI: 10.1002/jcsm.12413] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/27/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In younger individuals, dietary nitrate supplementation has been shown to improve short-term vascular and muscle function. The role of higher habitual nitrate intake as part of a typical diet on muscle function in ageing has not been investigated. A cross-sectional study of relationships between dietary nitrate and measures of muscle function in older community-dwelling Australian women (n = 1420, ≥70 years) was undertaken. METHODS Participants completed a semi-quantitative food frequency questionnaire assessing dietary intake over the previous year. Total nitrate from vegetables and non-vegetable sources was calculated from a validated instrument that quantified the nitrate content of food recorded within the food frequency questionnaire. Handgrip strength and timed-up-and-go (TUG) were assessed, representing muscle strength and physical function, respectively. Cut-points for weak grip strength (<22 kg) and slow TUG (>10.2 s) were selected due to their association with adverse outcomes. Linear and logistic regressions were used to examine the relationship between total nitrate intake and muscle function measures. RESULTS Mean ± standard deviation (SD) total nitrate intake was 79.5 ± 31.2 mg/day, of which 84.5% came from vegetables. Across the unadjusted tertiles of nitrate intake (<64.2 mg/day; 64.2 to <89.0 mg/day; ≥89.0 mg/day), women in the highest tertile had a 4% stronger grip strength and a 5% faster TUG performance compared with the lowest tertile. In multivariable-adjusted models, each SD higher nitrate intake (31.2 mg/day) was associated with stronger grip strength (per kilogram, β 0.31, P = 0.027) and faster TUG (per second, β -0.27, P = 0.001). The proportion of women with weak grip strength (<22 kg) or slow TUG (>10.2 s) was 61.0% and 36.9%, respectively. Each SD higher nitrate intake (31.2 mg/day) was associated with lower odds for weak grip strength (OR 0.84, 95% CI 0.74-0.95, P = 0.005) and slow TUG (OR 0.86, 95% CI 0.76-0.98, P = 0.021). Compared with women in the lowest tertile of nitrate intake, women in the highest nitrate intake tertile had lower odds for weak grip strength (OR 0.65, 95% CI 0.49-0.87, Ptrend= 0.004) and slow TUG (OR 0.72, 95% CI 0.53-0.97, Ptrend = 0.044). CONCLUSIONS This investigation highlights potential benefits of nitrate-rich diets on muscle strength and physical function in a large cohort of older women. Considering poor muscle strength and physical function is associated with a range of adverse health outcomes such as falling, fractures, cardiovascular disease, and mortality, increasing dietary nitrate, especially though vegetable consumption may be an effective way to limit age-related declines in muscle function.
Collapse
Affiliation(s)
- Marc Sim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Joshua R Lewis
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Lauren C Blekkenhorst
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Catherine P Bondonno
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| | - Amanda Devine
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Kun Zhu
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, Sir Charles Gairdner Unit, The University Western Australia, Perth, WA, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sports Science), The University Western Australia, Perth, WA, Australia.,Western Australian Institute of Sport, Mt Claremont, WA, Australia
| | - Richard L Prince
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Medical School, Sir Charles Gairdner Unit, The University Western Australia, Perth, WA, Australia
| | - Jonathan M Hodgson
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, Royal Perth Hospital Unit, The University Western Australia, Perth, WA, Australia
| |
Collapse
|
80
|
Le Roux-Mallouf T, Pelen F, Vallejo A, Halimaoui I, Doutreleau S, Verges S. Effect of chronic nitrate and citrulline supplementation on vascular function and exercise performance in older individuals. Aging (Albany NY) 2019; 11:3315-3332. [PMID: 31141497 PMCID: PMC6555465 DOI: 10.18632/aging.101984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
Increased nitric oxide (NO) bioavailability may improve exercise performance and vascular function. It remains unclear whether older adults who experience a decreased NO bioavailability may benefit from chronic NO precursor supplementation. This randomised, double-blind, trial aims to assess the effect of chronic NO precursor intake on vascular function and exercise performance in older adults (60-70 years old). Twenty-four healthy older adults (12 females) performed vascular function assessment and both local (knee extensions) and whole-body (incremental cycling) exercise tests to exhaustion before and after one month of daily intake of a placebo (PLA) or a nitrate-rich salad and citrulline (N+C, 520mg nitrate and 6g citrulline) drink. Arterial blood pressure (BP) and stiffness, post-ischemic, hypercapnic and hypoxic vascular responses were evaluated. Prefrontal cortex and quadriceps oxygenation was monitored by near-infrared spectroscopy. N+C supplementation reduced mean BP (-3.3mmHg; p=0.047) without altering other parameters of vascular function and oxygenation kinetics. N+C supplementation reduced heart rate and oxygen consumption during submaximal cycling and increased maximal power output by 5.2% (p<0.05), but had no effect on knee extension exercise performance. These results suggest that chronic NO precursor supplementation in healthy older individuals can reduce resting BP and increase cycling performance by improving cardiorespiratory responses.
Collapse
Affiliation(s)
| | - Felix Pelen
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
| | - Angela Vallejo
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
| | - Idir Halimaoui
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
| | - Stéphane Doutreleau
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
- Sport and Pathologies Unit, Grenoble Alpes University Hospital, Hôpital Michallon, Grenoble F-38042, France
| | - Samuel Verges
- Université Grenoble Alpes, Inserm, HP2 Laboratory, Grenoble F-38000, France
- Sport and Pathologies Unit, Grenoble Alpes University Hospital, Hôpital Michallon, Grenoble F-38042, France
| |
Collapse
|
81
|
Davis GR, Bellar D. Montmorency cherry supplement does not affect aerobic exercise performance in healthy men. INT J VITAM NUTR RES 2019; 90:403-410. [PMID: 30932750 DOI: 10.1024/0300-9831/a000575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aim: To determine the effects of short-term Montmorency cherry (MC) supplementation upon exercise performance, total blood nitrate levels, muscle oxygenation, and slow-component [Formula: see text]O2 kinetics. Methods: Twelve healthy male participants ingested a MC or placebo (PL) supplement in a randomized cross-over fashion over a six day period then cycled at a power output achieved at 70% of [Formula: see text]O2 peak for a maximum of 30 minutes or until exhaustion. Near-Infrared Spectroscopy sensors were used to determine muscle oxygenation. Blood was collected one hour post-supplement consumption on day one, day six, and one hour post-exercise. Results: All results are presented as mean ± SEM. Blood nitrate (μM/L) levels were not different one hour post-ingestion (MC = 8.30 ± 2.15, PL = 8.18 ± 1.86), following six days of supplementation (MC = 9.14 ± 1.89, PL = 7.24 ± 1.75) or one hour post-exercise (MC = 9.63 ± 1.61, PL = 7.97 ± 1.92) for treatment F = 0.26, p = 0.62; for time F = 0.45, p = 0.64; or treatment by time interaction F = 2.28, p = 0.13. Muscle oxygenation was not different between treatments for the right or left vastus lateralis, F = 0.68, p = 0.81 nor was time to respiratory compensation point (minutes) (MC = 18.40 ± 1.48, PL = 17.16 ± 1.78) F = 0.52, p = 0.60. MC supplement ingestion does not alter blood nitrate levels. Conclusion: Short-term MC ingestion does not increase muscle oxygenation during cycling exercise nor does it change slow-component [Formula: see text]O2 kinetics.
Collapse
Affiliation(s)
| | - David Bellar
- University of Louisiana at Lafayette, Lafayette, LA
| |
Collapse
|
82
|
Lee S, Abel MG, Thomas T, Symons TB, Yates JW. Acute beetroot juice supplementation does not attenuate knee extensor exercise muscle fatigue in a healthy young population. J Exerc Nutrition Biochem 2019; 23:55-62. [PMID: 31010275 PMCID: PMC6477801 DOI: 10.20463/jenb.2019.0008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
PURPOSE The effect of acute nitrate supplementation on muscle fatigue is largely unknown. This study aimed to evaluate the effect of acute nitrate supplementation on muscle fatigue. METHODS Thirty-five recreationally active subjects consumed 140 ml of beetroot (BR) juice (nitrate: 8 mmol·d-1) or placebo (PL) 12 and 2.5 hours before two exercise sessions. Peak torque was measured during 50 repetitions, at maximal effort, and during concentric knee extensions at 90°·s-1. Blood pressure (BP) was recorded pre- and post-exercise. RESULTS Peak torque, maximum work, rate of fatigue, and rate of work fatigue were similar between the BR and PL conditions. Post-exercise diastolic BP (BR: 67.2 ± 9.8 vs. PL: 64.5 ± 7.9 mmHg, p < 0.05) and mean arterial pressure (BR: 91.6 ± 9.3 vs. PL: 88.8 ± 8.2 mmHg, p < 0.05) were higher with BR supplementation. CONCLUSION These findings suggest that the acute intake of BR juice had no effect on knee extensor muscle strength or fatigue but increased BP in a healthy recreationally active population.
Collapse
Affiliation(s)
- Seungyong Lee
- Department of Pathology, Johns Hopkins University School of Medicine, BaltimoreUSA
- Department of Kinesiology and Health Promotion, University of Kentucky, LexingtonUSA
| | - Mark G. Abel
- Department of Kinesiology and Health Promotion, University of Kentucky, LexingtonUSA
| | - Travis Thomas
- College of Health Sciences, University of Kentucky, LexingtonUSA
| | - T. Brock Symons
- Department of Health & Sports Sciences, University of Louisville, LouisvilleUSA
| | - James W. Yates
- Department of Kinesiology and Health Promotion, University of Kentucky, LexingtonUSA
| |
Collapse
|
83
|
Craig JC, Colburn TD, Hirai DM, Musch TI, Poole DC. Sexual dimorphism in the control of skeletal muscle interstitial Po 2 of heart failure rats: effects of dietary nitrate supplementation. J Appl Physiol (1985) 2019; 126:1184-1192. [PMID: 30844332 DOI: 10.1152/japplphysiol.01004.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sex differences in the mechanisms underlying cardiovascular pathophysiology of O2 transport in heart failure (HF) remain to be explored. In HF, nitric oxide (NO) bioavailability is reduced and contributes to deficits in O2 delivery-to-utilization matching. Females may rely more on NO for cardiovascular control and as such experience greater decrements in HF. We tested the hypotheses that moderate HF induced by myocardial infarction would attenuate the skeletal muscle interstitial Po2 response to contractions (Po2is; determined by O2 delivery-to-utilization matching) compared with healthy controls and females would express greater dysfunction than male counterparts. Furthermore, we hypothesized that 5 days of dietary nitrate supplementation (Nitrate; 1 mmol·kg-1·day-1) would raise Po2is in HF rats. Forty-two Sprague-Dawley rats were randomly assigned to healthy, HF, or HF + Nitrate groups (each n = 14; 7 female/7 male). Spinotrapezius Po2is was measured via phosphorescence quenching during electrically induced twitch contractions (180 s; 1 Hz). HF reduced resting Po2is for both sexes compared with healthy controls (P < 0.01), and females were lower than males (14 ± 1 vs. 17 ± 2 mmHg) (P < 0.05). In HF both sexes expressed reduced Po2is amplitudes following the onset of muscle contractions compared with healthy controls (female: -41 ± 7%, male: -26 ± 12%) (P < 0.01). In HF rats, Nitrate elevated resting Po2is to values not different from healthy rats and removed the sex difference. Female HF + Nitrate rats expressed greater resting Po2is and amplitudes compared with female HF (P < 0.05). In this model of moderate HF, O2 delivery-to-utilization matching in the interstitial space is diminished in a sex-specific manner and dietary nitrate supplementation may serve to offset this reduction in HF rats with greater effects in females. NEW & NOTEWORTHY Interstitial Po2 (Po2is; indicative of O2 delivery-to-utilization matching) determines, in part, O2 flux into skeletal muscle. We show that heart failure (HF) reduces Po2is at rest and during skeletal muscle contractions in rats and this negative effect is amplified for females. However, elevating NO bioavailability with dietary nitrate supplementation increases resting Po2is and alters the dynamic response with greater efficacy in female HF rats, particularly at rest and following the onset of muscle contractions.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Daniel M Hirai
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
84
|
Mayra ST, Johnston CS, Sweazea KL. High-nitrate salad increased plasma nitrates/nitrites and brachial artery flow-mediated dilation in postmenopausal women: A pilot study. Nutr Res 2019; 65:99-104. [PMID: 30954341 DOI: 10.1016/j.nutres.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 02/01/2023]
Abstract
Cardiovascular disease risk is elevated in postmenopausal women relative to men of the same age or to younger, premenopausal women. This elevated risk is closely linked to the loss of estrogen, which is a potent stimulator of the vasodilator nitric oxide. While studies have largely supported dietary nitrate supplementation (typically concentrated beetroot juice) to augment plasma nitric oxide, these studies focused mainly on improving vascular fitness of athletes or patient populations. The purpose of this controlled crossover trial was to assess the feasibility of consuming a high-nitrate, leafy green salad twice daily for 10 consecutive days versus a low-nitrate, canned vegetable control (beans, corn, or peas) on plasma nitrate/nitrite concentration and measures of cardiovascular health in postmenopausal women. We hypothesized that plasma nitrate/nitrite concentration and flow-mediated dilation would improve following the leafy green salad treatment. Ten women (52.6 ± 4.9 y; 26.4 ± 6.4 kg/m2) completed the two 10-day treatment periods separated by 2-3 weeks washout. The mean fasting plasma nitrate/nitrite concentration was significantly increased following the high-nitrate salad treatment compared to the control (+156% and+ 16% respectively; P = .002, effect size = 0.661). Flow-mediated dilation responded favorably to the high nitrate salad in comparison to the canned vegetable condition (+17% versus -8% respectively; P = .047, effect size = 0.407); however, there were no treatment effects on peripheral or derived central-aortic blood pressure. These data suggest that daily ingestion of nitrate-rich, leafy green salads may prove a useful strategy for improving cardiovascular health in postmenopausal women.
Collapse
Affiliation(s)
- Selicia T Mayra
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004.
| | - Carol S Johnston
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004.
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004; School of Life Sciences, Arizona State University, Phoenix, AZ 85004.
| |
Collapse
|
85
|
The effect of acute and 7-days dietary nitrate on mechanical efficiency, exercise performance and cardiac biomarkers in patients with chronic obstructive pulmonary disease. Clin Nutr 2018; 37:1852-1861. [DOI: 10.1016/j.clnu.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 11/17/2022]
|
86
|
Shannon OM, McGawley K, Nybäck L, Duckworth L, Barlow MJ, Woods D, Siervo M, O'Hara JP. "Beet-ing" the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude. Sports Med 2018; 47:2155-2169. [PMID: 28577258 PMCID: PMC5633647 DOI: 10.1007/s40279-017-0744-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea level. Recently, dietary nitrate (NO3−) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3− supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3− supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/performance. Conversely, current evidence suggests that NO3− supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3− at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3− supplementation. No effects of NO3− supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided.
Collapse
Affiliation(s)
- Oliver Michael Shannon
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.
| | - Kerry McGawley
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Linn Nybäck
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Lauren Duckworth
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - Matthew John Barlow
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| | - David Woods
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK.,Defence Medical Services, Royal Centre for Defence Medicine, Birmingham, B152TH, UK
| | - Mario Siervo
- Institute of Cellular Medicine, University of Newcastle, Newcastle upon Tyne, NE45PL, UK
| | - John Paul O'Hara
- Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University, Leeds, LS6 3QS, UK
| |
Collapse
|
87
|
Vanhatalo A, Blackwell JR, L'Heureux JE, Williams DW, Smith A, van der Giezen M, Winyard PG, Kelly J, Jones AM. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic Biol Med 2018; 124:21-30. [PMID: 29807159 PMCID: PMC6191927 DOI: 10.1016/j.freeradbiomed.2018.05.078] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/19/2018] [Accepted: 05/21/2018] [Indexed: 11/24/2022]
Abstract
Imbalances in the oral microbial community have been associated with reduced cardiovascular and metabolic health. A possible mechanism linking the oral microbiota to health is the nitrate (NO3-)-nitrite (NO2-)-nitric oxide (NO) pathway, which relies on oral bacteria to reduce NO3- to NO2-. NO (generated from both NO2- and L-arginine) regulates vascular endothelial function and therefore blood pressure (BP). By sequencing bacterial 16S rRNA genes we examined the relationships between the oral microbiome and physiological indices of NO bioavailability and possible changes in these variables following 10 days of NO3- (12 mmol/d) and placebo supplementation in young (18-22 yrs) and old (70-79 yrs) normotensive humans (n = 18). NO3- supplementation altered the salivary microbiome compared to placebo by increasing the relative abundance of Proteobacteria (+225%) and decreasing the relative abundance of Bacteroidetes (-46%; P < 0.05). After NO3-supplementation the relative abundances of Rothia (+127%) and Neisseria (+351%) were greater, and Prevotella (-60%) and Veillonella (-65%) were lower than in the placebo condition (all P < 0.05). NO3- supplementation increased plasma concentration of NO2- and reduced systemic blood pressure in old (70-79 yrs), but not young (18-22 yrs), participants. High abundances of Rothia and Neisseria and low abundances of Prevotella and Veillonella were correlated with greater increases in plasma [NO2-] in response to NO3- supplementation. The current findings indicate that the oral microbiome is malleable to change with increased dietary intake of inorganic NO3-, and that diet-induced changes in the oral microbial community are related to indices of NO homeostasis and vascular health in vivo.
Collapse
Affiliation(s)
- Anni Vanhatalo
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK.
| | - Jamie R Blackwell
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | - Joanna E L'Heureux
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | | | - Ann Smith
- Division of Population Medicine, Cardiff University, Cardiff CF14 4XY UK
| | - Mark van der Giezen
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | - Paul G Winyard
- University of Exeter Medical School, University of Exeter, Exeter EX1 1TE, UK
| | - James Kelly
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| | - Andrew M Jones
- College of Life and Environmental Sciences, University of Exeter, Exeter EX1 1TE, UK
| |
Collapse
|
88
|
Benefit-risk analysis for foods (BRAFO): Evaluation of exposure to dietary nitrates. Food Chem Toxicol 2018; 120:709-723. [PMID: 30134152 DOI: 10.1016/j.fct.2018.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/29/2018] [Accepted: 08/17/2018] [Indexed: 01/07/2023]
Abstract
Dietary nitrate has been associated with health benefits as well as potential risks, thus presenting a paradox for consumers and health professionals. To address the issue, we applied the Benefit-Risk Analysis for Foods (BRAFO) framework to evaluate dietary exposure to nitrate by considering how the risks and benefits might vary under the reference scenario of the acceptable daily intake (ADI) set forth by JECFA (3.7 mg/kg-day), or under an alternative scenario of a higher ADI (independently developed herein). Results demonstrated that risk, as conservatively characterized by various toxicological benchmarks, was present at levels ranging from the current ADI value of 3.7 mg/kg-day (lowest end of the range) to >15 mg/kg-day. When these ADI values, both established by regulatory bodies as well as independently herein were compared to intakes associated with benefits (decreased blood pressure observed following repeated exposure to nitrates ∼4-18 mg/kg-day), along with considerations of current dietary exposures associated with healthy diets, the alternative scenario allowed for benefits without incurring additional risk. For consumers aged 12 weeks and older, ADI values ∼12-17 mg/kg-day-based on more reliable data than used to derive the current ADI-allow benefits to be realized while still protecting public health. The assessment serves as a case study in how benefits can be considered in a risk assessment paradigm for foods, thus providing useful information to decision makers.
Collapse
|
89
|
Kerksick CM, Wilborn CD, Roberts MD, Smith-Ryan A, Kleiner SM, Jäger R, Collins R, Cooke M, Davis JN, Galvan E, Greenwood M, Lowery LM, Wildman R, Antonio J, Kreider RB. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 2018; 15:38. [PMID: 30068354 PMCID: PMC6090881 DOI: 10.1186/s12970-018-0242-y] [Citation(s) in RCA: 410] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022] Open
Abstract
Background Sports nutrition is a constantly evolving field with hundreds of research papers published annually. In the year 2017 alone, 2082 articles were published under the key words ‘sport nutrition’. Consequently, staying current with the relevant literature is often difficult. Methods This paper is an ongoing update of the sports nutrition review article originally published as the lead paper to launch the Journal of the International Society of Sports Nutrition in 2004 and updated in 2010. It presents a well-referenced overview of the current state of the science related to optimization of training and performance enhancement through exercise training and nutrition. Notably, due to the accelerated pace and size at which the literature base in this research area grows, the topics discussed will focus on muscle hypertrophy and performance enhancement. As such, this paper provides an overview of: 1.) How ergogenic aids and dietary supplements are defined in terms of governmental regulation and oversight; 2.) How dietary supplements are legally regulated in the United States; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of nutritional approaches to augment skeletal muscle hypertrophy and the potential ergogenic value of various dietary and supplemental approaches. Conclusions This updated review is to provide ISSN members and individuals interested in sports nutrition with information that can be implemented in educational, research or practical settings and serve as a foundational basis for determining the efficacy and safety of many common sport nutrition products and their ingredients.
Collapse
Affiliation(s)
- Chad M Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO, USA.
| | - Colin D Wilborn
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | | | - Abbie Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Rick Collins
- Collins Gann McCloskey and Barry PLLC, Mineola, NY, USA
| | - Mathew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jaci N Davis
- Exercise & Sport Science Department, University of Mary-Hardin Baylor, Belton, TX, USA
| | - Elfego Galvan
- University of Texas Medical Branch, Galveston, TX, USA
| | - Mike Greenwood
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA
| | - Lonnie M Lowery
- Department of Human Performance & Sport Business, University of Mount Union, Alliance, OH, USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL, USA
| | - Richard B Kreider
- Exercise & Sports Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
90
|
Schneider AC, Hughes WE, Ueda K, Bock JM, Casey DP. Reduced blood pressure responsiveness to skeletal muscle metaboreflex activation in older adults following inorganic nitrate supplementation. Nitric Oxide 2018; 78:81-88. [DOI: 10.1016/j.niox.2018.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/25/2023]
|
91
|
Craig JC, Broxterman RM, Smith JR, Allen JD, Barstow TJ. Effect of dietary nitrate supplementation on conduit artery blood flow, muscle oxygenation, and metabolic rate during handgrip exercise. J Appl Physiol (1985) 2018; 125:254-262. [DOI: 10.1152/japplphysiol.00772.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dietary nitrate supplementation has positive effects on mitochondrial and muscle contractile efficiency during large muscle mass exercise in humans and on skeletal muscle blood flow (Q̇) in rats. However, concurrent measurement of these effects has not been performed in humans. Therefore, we assessed the influence of nitrate supplementation on Q̇ and muscle oxygenation characteristics during moderate- (40 %peak) and severe-intensity(85% peak) handgrip exercise in a randomized, double-blind, crossover design. Nine healthy men (age: 25 ± 2 yr) completed four constant-power exercise tests (2/intensity) randomly assigned to condition [nitrate-rich (nitrate) or nitrate-poor (placebo) beetroot supplementation] and intensity (40 or 85% peak). Resting mean arterial pressure was lower after nitrate compared with placebo (84 ± 4 vs. 89 ± 4 mmHg, P < 0.01). All subjects were able to sustain 10 min of exercise at 40% peak in both conditions. Nitrate had no effect on exercise tolerance during 85% peak (nitrate: 358 ± 29; placebo: 341 ± 34 s; P = 0.3). Brachial artery Q̇ was not different after nitrate at rest or any time during exercise. Deoxygenated [hemoglobin + myoglobin] was not different for 40% peak ( P > 0.05) but was elevated throughout 85% peak ( P < 0.05) after nitrate. The metabolic cost (V̇o2) was not different at the end of exercise; however, the V̇o2 primary amplitude at the onset of exercise was elevated after nitrate for the 85% peak work rate (96 ± 20 vs. 72 ± 12 ml/min, P < 0.05) and had a faster response. These findings suggest that an acute dose of nitrate reduces resting blood pressure and speeds V̇o2 kinetics in young adults but does not augment Q̇ or reduce steady-state V̇o2 during small muscle mass handgrip exercise. NEW & NOTEWORTHY We show that acute dietary nitrate supplementation via beetroot juice increases the amplitude and speed of local muscle V̇o2 on kinetics parameters during severe- but not moderate-intensity handgrip exercise. These changes were found in the absence of an increased blood flow response, suggesting that the increased V̇o2 was attained via improvements in fractional O2 extraction and/or spatial distribution of blood flow within the exercising muscle.
Collapse
Affiliation(s)
- Jesse C. Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Ryan M. Broxterman
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Joshua R. Smith
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jason D. Allen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Kinesiology, University of Virginia, Charlottesville, Virginia
| | - Thomas J. Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
92
|
Clifford T, Babateen A, Shannon OM, Capper T, Ashor A, Stephan B, Robinson L, O'Hara JP, Mathers JC, Stevenson E, Siervo M. Effects of inorganic nitrate and nitrite consumption on cognitive function and cerebral blood flow: A systematic review and meta-analysis of randomized clinical trials. Crit Rev Food Sci Nutr 2018; 59:2400-2410. [PMID: 29617153 DOI: 10.1080/10408398.2018.1453779] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We conducted a systematic review and meta-analysis of randomized clinical trials examining the effect of inorganic nitrate or nitrite supplementation on cognitive function (CF) and cerebral blood flow (CBF). Two databases (PubMed, Embase) were searched for articles from inception until May 2017. Inclusion criteria were: randomized clinical trials; participants >18 years old; trials comparing a nitrate/nitrite intervention with a control. Thirteen and nine trials were included in the meta-analysis to assess CF and CBF, respectively. Random-effects models were used and the effect size described as standardized mean differences (SMDs). A total of 297 participants (median of 23 per trial) were included for CF; 163 participants (median of 16 per trial) were included for CBF. Nitrate/nitrite supplementation did not influence CF (SMD +0.06, 95% CI: -0.06, 0.18, P = 0.32) or CBF under resting (SMD +0.14, 95% CI: -0.13, 0.41, P = 0.31), or stimulated conditions (SMD + 0.23, 95% CI: -0.11, 0.56, P = 0.19). The meta-regression showed an inverse association between duration of the intervention and CBF (P = 0.02) but no influence of age, BMI or dose (P < 0.05). Nitrate and nitrite supplementation did not modify CBF or CF. Further trials employing larger samples sizes and interventions with longer duration are warranted.
Collapse
Affiliation(s)
- Tom Clifford
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| | - Abrar Babateen
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK.,b Faculty of Applied Medical Sciences, Clinical Nutrition Department, Umm Al-Qura University , Makkah , Saudi Arabia
| | - Oliver M Shannon
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK.,c Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University , Leeds , UK
| | - Tess Capper
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| | - Ammar Ashor
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK.,d College of Medicine, University of Al-Mustansiriyah , Baghdad , Iraq
| | - Blossom Stephan
- e Institute of Health and Society, Newcastle University , Newcastle upon Tyne , UK
| | - Louise Robinson
- e Institute of Health and Society, Newcastle University , Newcastle upon Tyne , UK
| | - John P O'Hara
- c Research Institute for Sport, Physical Activity, and Leisure, Leeds Beckett University , Leeds , UK
| | - John C Mathers
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| | - Emma Stevenson
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| | - Mario Siervo
- a Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University , Newcastle on Tyne , UK
| |
Collapse
|
93
|
Cosola C, Sabatino A, di Bari I, Fiaccadori E, Gesualdo L. Nutrients, Nutraceuticals, and Xenobiotics Affecting Renal Health. Nutrients 2018; 10:nu10070808. [PMID: 29937486 PMCID: PMC6073437 DOI: 10.3390/nu10070808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) affects 8–16% of the population worldwide. In developed countries, the most important risk factors for CKD are diabetes, hypertension, and obesity, calling into question the importance of educating and acting on lifestyles and nutrition. A balanced diet and supplementation can indeed support the maintenance of a general health status, including preservation of renal function, and can help to manage and curb the main risk factors for renal damage. While the concept of protein and salt restriction in nephrology is historically acknowledged, the role of some nutrients in renal health and the importance of nutrition as a preventative measure for renal care are less known. In this narrative review, we provide an overview of the demonstrated and potential actions of some selected nutrients, nutraceuticals, and xenobiotics on renal health and function. The direct and indirect effects of fiber, protein, fatty acids, curcumin, steviol glycosides, green tea, coffee, nitrates, nitrites, and alcohol on kidney health are reviewed here. In view of functional and personalized nutrition, understanding the renal and systemic effects of dietary components is essential since many chronic conditions, including CKD, are related to systemic dysfunctions such as chronic low-grade inflammation.
Collapse
Affiliation(s)
- Carmela Cosola
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Alice Sabatino
- Department of Medicine and Surgery, Parma University Medical School, 43126 Parma, Italy.
| | - Ighli di Bari
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Enrico Fiaccadori
- Department of Medicine and Surgery, Parma University Medical School, 43126 Parma, Italy.
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation-Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
94
|
McMahon NF, Leveritt MD, Pavey TG. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med 2018; 47:735-756. [PMID: 27600147 DOI: 10.1007/s40279-016-0617-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Recent research into the use of dietary nitrates and their role in vascular function has led to it becoming progressively more popular amongst athletes attempting to enhance performance. OBJECTIVE The objective of this review was to perform a systematic review and meta-analysis of the literature to evaluate the effect of dietary nitrate (NO3-) supplementation on endurance exercise performance. An additional aim was to determine whether the performance outcomes are affected by potential moderator variables. DATA SOURCES Relevant databases such as Cochrane Library, Embase, PubMed, Ovid, Scopus and Web of Science were searched for the following search terms 'nitrates OR nitrate OR beetroot OR table beet OR garden beet OR red beet AND exercise AND performance' from inception to October 2015. STUDY SELECTION Studies were included if a placebo versus dietary nitrate-only supplementation protocol was able to be compared, and if a quantifiable measure of exercise performance was ≥30 s (for a single bout of exercise or the combined total for multiple bouts). STUDY APPRAISAL AND SYNTHESIS The literature search identified 1038 studies, with 47 (76 trials) meeting the inclusion criteria. Data from the 76 trials were extracted for inclusion in the meta-analysis. A fixed-effects meta-analysis was conducted for time trial (TT) (n = 28), time to exhaustion (TTE) (n = 22) and graded-exercise test (GXT) (n = 8) protocols. Univariate meta-regression was used to assess potential moderator variables (exercise type, dose duration, NO3- type, study quality, fitness level and percentage nitrite change). RESULTS Pooled analysis identified a trivial but non-significant effect in favour of dietary NO3- supplementation [effect size (ES) = -0.10, 95 % Cl = -0.27 to 0.06, p > 0.05]. TTE trials had a small to moderate statistically significant effect in favour of dietary NO3- supplementation (ES = 0.33, 95 % Cl = 0.15-0.50, p < 0.01). GXT trials had a small but non-significant effect in favour of dietary NO3- supplementation in GXT performance measures (ES = 0.25, 95 % Cl = -0.06 to 0.56, p > 0.05). No significant heterogeneity was detected in the meta-analysis. No statistically significant effects were observed from the meta-regression analysis. CONCLUSION Dietary NO3- supplementation is likely to elicit a positive outcome when testing endurance exercise capacity, whereas dietary NO3- supplementation is less likely to be effective for time-trial performance. Further work is needed to understand the optimal dosing strategies, which population is most likely to benefit, and under which conditions dietary nitrates are likely to be most effective for performance.
Collapse
Affiliation(s)
- Nicholas F McMahon
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia.
| | - Michael D Leveritt
- School of Human Movement and Nutrition Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Toby G Pavey
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
95
|
Akazawa N, Hamasaki A, Tanahashi K, Kosaki K, Yoshikawa T, Myoenzono K, Maeda S. Lactotripeptide ingestion increases cerebral blood flow velocity in middle-aged and older adults. Nutr Res 2018; 53:61-66. [DOI: 10.1016/j.nutres.2018.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 11/25/2022]
|
96
|
Waldron M, Waldron L, Lawlor C, Gray A, Highton J. Beetroot supplementation improves the physiological responses to incline walking. Eur J Appl Physiol 2018; 118:1131-1141. [PMID: 29546639 DOI: 10.1007/s00421-018-3843-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/08/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE We investigated the effects of an acute 24-h nitrate-rich beetroot juice supplement (BR) on the energy cost, exercise efficiency and blood pressure responses to intermittent walking at different gradients. METHODS In a double-blind, cross-over design, eight participants were provided with a total of 350 ml of nitrate-rich (~ 20.5 mmol nitrate) BR or placebo (PLA) across 24 h before completing intermittent walking at 3 km/h on treadmill at gradients of 1, 5, 10, 15 and 20%. RESULTS Resting mean arterial pressure (MAP) was ~ 4.1% lower after BR (93 vs. 89 mmHg; P = 0.001), as well as during exercise (102 vs. 99 mmHg; P = 0.011) and recovery (97 vs. 94 mmHg; P = 0.001). Exercising (1227 vs. 1129 ml/min P < 0.001) and end-stage (1404 vs. 1249 ml/min; P = 0.002) oxygen uptake ([Formula: see text]O2) was lower in BR compared to PLA, which was accompanied by an average reduction in phase II [Formula: see text]O2 amplitude (1067 vs. 940 ml/min; P = 0.025). Similarly, recovery [Formula: see text]O2 (509 vs. 458 ml/min; P = 0.001) was lower in BR. Whole blood potassium concentration increased from pre-post exercise in PLA (4.1 ± 0.3 vs. 4.5 ± 0.3 mmol/L; P = 0.013) but not BR (4.1 ± 0.31 vs. 4.3 ± 0.2 mmol/L; P = 0.188). CONCLUSIONS Energy cost of exercise, recovery of [Formula: see text]O2, MAP and blood markers were ameliorated after BR. Previously-reported mechanisms explain these findings, which are more noticeable during less-efficient walking at steep gradients (15-20%). These findings have practical implications for hill-walkers.
Collapse
Affiliation(s)
- Mark Waldron
- School of Sport, Health and Applied Science, St Mary's University, Waldegrave Road, Twickenham, London, TW1 4SX, UK. .,School of Science and Technology, University of New England, Armidale, NSW, 2350, Australia.
| | - Luke Waldron
- Medical Education Centre, Royal Cornwall Hospitals NHS Trust, Truro, TR1 3LJ, UK
| | - Craig Lawlor
- School of Science and Technology, University of New England, Armidale, NSW, 2350, Australia
| | - Adrian Gray
- School of Science and Technology, University of New England, Armidale, NSW, 2350, Australia
| | - Jamie Highton
- Department of Sports and Exercise Sciences, University of Chester, Parkgate Road, Chester, CH14BJ, UK
| |
Collapse
|
97
|
McDonagh STJ, Wylie LJ, Thompson C, Vanhatalo A, Jones AM. Potential benefits of dietary nitrate ingestion in healthy and clinical populations: A brief review. Eur J Sport Sci 2018. [PMID: 29529987 DOI: 10.1080/17461391.2018.1445298] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article provides an overview of the current literature relating to the efficacy of dietary nitrate (NO3-) ingestion in altering aspects of cardiovascular and metabolic health and exercise capacity in healthy and diseased individuals. The consumption of NO3--rich vegetables, such as spinach and beetroot, have been variously shown to promote nitric oxide bioavailability, reduce systemic blood pressure, enhance tissue blood flow, modulate muscle O2 utilisation and improve exercise tolerance both in normoxia and in hypoxia, as is commonly observed in a number of disease states. NO3- ingestion may, therefore, act as a natural means for augmenting performance and attenuating complications associated with limited O2 availability or transport, hypertension and the metabolic syndrome. Recent studies indicate that dietary NO3- might also augment intrinsic skeletal muscle contractility and improve the speed and power of muscle contraction. Moreover, several investigations suggest that NO3- supplementation may improve aspects of cognitive performance both at rest and during exercise. Collectively, these observations position NO3- as more than a putative ergogenic aid and suggest that increasing natural dietary NO3- intake may act as a prophylactic in countering the predations of senescence and certain cardiovascular-metabolic diseases.
Collapse
Affiliation(s)
- Sinead T J McDonagh
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Lee J Wylie
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Christopher Thompson
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Anni Vanhatalo
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| | - Andrew M Jones
- a Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus , University of Exeter , Exeter , Devon , UK
| |
Collapse
|
98
|
Ashley J, Kim Y, Gonzales JU. Impact of l-citrulline supplementation on oxygen uptake kinetics during walking. Appl Physiol Nutr Metab 2018; 43:631-637. [PMID: 29394491 PMCID: PMC5980789 DOI: 10.1139/apnm-2017-0696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Supplementation with l-citrulline (Cit) has been shown to improve muscle oxygenation and oxygen uptake kinetics during moderate- to high-intensity cycling in young men. The aim of this study was to test the hypothesis that Cit would improve oxygen uptake kinetics during walking in older and young adults. In a randomized, double-blind study, 26 (15 women, 11 men) adults between the ages of 20-35 years (n = 15) and 64-86 years (n = 11) completed 7-day periods of taking placebo and Cit (6 g/day) in a crossover manner. Participants walked on a treadmill at 40% heart rate reserve while pulmonary oxygen uptake was measured using indirect calorimetry. Net oxygen cost, mean response time (MRT), and the oxygen deficit were calculated before and after each supplement period. There was no significant change (P > 0.05) in net oxygen cost, MRT, or the oxygen deficit after Cit in older adults, while young adults showed a decrease (P = 0.05) in the oxygen deficit after Cit that tended (P = 0.053) to be different than the change after placebo. Sex-stratified analysis revealed that Cit decreased MRT (P = 0.04, Cohen's d = 0.41) and the oxygen deficit (P < 0.01, Cohen's d = 0.56) in men with the change after Cit being greater than the change after placebo (MRT: -4.5 ± 2.1 vs. 3.4 ± 2.1 s, P = 0.01; deficit: -0.15 ± 0.05 vs. 0.01 ± 0.05 L, P = 0.02). All oxygen uptake parameters were unchanged (P > 0.05) following Cit and placebo in women. Cit does not alter the oxygen cost of moderate-intensity walking in young or older adults, but Cit improved the rate of rise in oxygen uptake at exercise onset in men.
Collapse
Affiliation(s)
- John Ashley
- Department of Kinesiology and Sport Management, Texas Tech University, P.O. Box 43011, Lubbock, TX 79409, USA
| | - Youngdeok Kim
- Department of Kinesiology and Sport Management, Texas Tech University, P.O. Box 43011, Lubbock, TX 79409, USA.,Department of Kinesiology and Sport Management, Texas Tech University, P.O. Box 43011, Lubbock, TX 79409, USA
| | - Joaquin U Gonzales
- Department of Kinesiology and Sport Management, Texas Tech University, P.O. Box 43011, Lubbock, TX 79409, USA.,Department of Kinesiology and Sport Management, Texas Tech University, P.O. Box 43011, Lubbock, TX 79409, USA
| |
Collapse
|
99
|
Dalton RL, Sowinski RJ, Grubic TJ, Collins PB, Coletta AM, Reyes AG, Sanchez B, Koozehchian M, Jung YP, Rasmussen C, Greenwood M, Murano PS, Earnest CP, Kreider RB. Hematological and Hemodynamic Responses to Acute and Short-Term Creatine Nitrate Supplementation. Nutrients 2017; 9:nu9121359. [PMID: 29244743 PMCID: PMC5748809 DOI: 10.3390/nu9121359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 11/16/2022] Open
Abstract
In a double-blind, crossover, randomized and placebo-controlled trial; 28 men and women ingested a placebo (PLA), 3 g of creatine nitrate (CNL), and 6 g of creatine nitrate (CNH) for 6 days. Participants repeated the experiment with the alternate supplements after a 7-day washout. Hemodynamic responses to a postural challenge, fasting blood samples, and bench press, leg press, and cycling time trial performance and recovery were assessed. Data were analyzed by univariate, multivariate, and repeated measures general linear models (GLM). No significant differences were found among treatments for hemodynamic responses, clinical blood markers or self-reported side effects. After 5 days of supplementation, one repetition maximum (1RM) bench press improved significantly for CNH (mean change, 95% CI; 6.1 [3.5, 8.7] kg) but not PLA (0.7 [-1.6, 3.0] kg or CNL (2.0 [-0.9, 4.9] kg, CNH, p = 0.01). CNH participants also tended to experience an attenuated loss in 1RM strength during the recovery performance tests following supplementation on day 5 (PLA: -9.3 [-13.5, -5.0], CNL: -9.3 [-13.5, -5.1], CNH: -3.9 [-6.6, -1.2] kg, p = 0.07). After 5 days, pre-supplementation 1RM leg press values increased significantly, only with CNH (24.7 [8.8, 40.6] kg, but not PLA (13.9 [-15.7, 43.5] or CNL (14.6 [-0.5, 29.7]). Further, post-supplementation 1RM leg press recovery did not decrease significantly for CNH (-13.3 [-31.9, 5.3], but did for PLA (-30.5 [-53.4, -7.7] and CNL (-29.0 [-49.5, -8.4]). CNL treatment promoted an increase in bench press repetitions at 70% of 1RM during recovery on day 5 (PLA: 0.4 [-0.8, 1.6], CNL: 0.9 [0.35, 1.5], CNH: 0.5 [-0.2, 0.3], p = 0.56), greater leg press endurance prior to supplementation on day 5 (PLA: -0.2 [-1.6, 1.2], CNL: 0.9 [0.2, 1.6], CNH: 0.2 [-0.5, 0.9], p = 0.25) and greater leg press endurance during recovery on day 5 (PLA: -0.03 [-1.2, 1.1], CNL: 1.1 [0.3, 1.9], CNH: 0.4 [-0.4, 1.2], p = 0.23). Cycling time trial performance (4 km) was not affected. Results indicate that creatine nitrate supplementation, up to a 6 g dose, for 6 days, appears to be safe and provide some ergogenic benefit.
Collapse
Affiliation(s)
- Ryan L Dalton
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Ryan J Sowinski
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Tyler J Grubic
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Patrick B Collins
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Adriana M Coletta
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Aimee G Reyes
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Brittany Sanchez
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Majid Koozehchian
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Yanghoon P Jung
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Christopher Rasmussen
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Mike Greenwood
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| | - Peter S Murano
- Institute for Obesity and Program Evaluation, Texas A & M University, College Station, TX 77843, USA.
| | - Conrad P Earnest
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
- Clinical Science Division, Nutrabolt, 3891 S. Traditions Drive, Bryan, TX 77807, USA.
| | - Richard B Kreider
- Exercise and Sport Nutrition Lab, Human Clinical Research Facility, Texas A & M University, College Station, TX 77843-4253, USA.
| |
Collapse
|
100
|
Raubenheimer K, Hickey D, Leveritt M, Fassett R, Ortiz de Zevallos Munoz J, Allen JD, Briskey D, Parker TJ, Kerr G, Peake JM, Pecheniuk NM, Neubauer O. Acute Effects of Nitrate-Rich Beetroot Juice on Blood Pressure, Hemostasis and Vascular Inflammation Markers in Healthy Older Adults: A Randomized, Placebo-Controlled Crossover Study. Nutrients 2017; 9:nu9111270. [PMID: 29165355 PMCID: PMC5707742 DOI: 10.3390/nu9111270] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with a vasoconstrictive, pro-coagulant, and pro-inflammatory profile of arteries and a decline in the bioavailability of the endothelium-derived molecule nitric oxide. Dietary nitrate elicits vasodilatory, anti-coagulant and anti-inflammatory effects in younger individuals, but little is known about whether these benefits are evident in older adults. We investigated the effects of 140 mL of nitrate-rich (HI-NI; containing 12.9 mmol nitrate) versus nitrate-depleted beetroot juice (LO-NI; containing ≤0.04 mmol nitrate) on blood pressure, blood coagulation, vascular inflammation markers, plasma nitrate and nitrite before, and 3 h and 6 h after ingestion in healthy older adults (five males, seven females, mean age: 64 years, age range: 57-71 years) in a randomized, placebo-controlled, crossover study. Plasma nitrate and nitrite increased 3 and 6 h after HI-NI ingestion (p < 0.05). Systolic, diastolic and mean arterial blood pressure decreased 3 h relative to baseline after HI-NI ingestion only (p < 0.05). The number of blood monocyte-platelet aggregates decreased 3 h after HI-NI intake (p < 0.05), indicating reduced platelet activation. The number of blood CD11b-expressing granulocytes decreased 3 h following HI-NI beetroot juice intake (p < 0.05), suggesting a shift toward an anti-adhesive granulocyte phenotype. Numbers of blood CD14++CD16⁺ intermediate monocyte subtypes slightly increased 6 h after HI-NI beetroot juice ingestion (p < 0.05), but the clinical implications of this response are currently unclear. These findings provide new evidence for the acute effects of nitrate-rich beetroot juice on circulating immune cells and platelets. Further long-term research is warranted to determine if these effects reduce the risk of developing hypertension and vascular inflammation with aging.
Collapse
Affiliation(s)
- Kyle Raubenheimer
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Danica Hickey
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Michael Leveritt
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, OLD 4059, Australia.
| | - Robert Fassett
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, OLD 4059, Australia.
| | | | - Jason D Allen
- Institute of Sport Exercise and Active Living, Victoria University, Melbourne, VIC 8001, Australia.
| | - David Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, OLD 4059, Australia.
| | - Tony J Parker
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Graham Kerr
- School of Exercise and Nutrition Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Jonathan M Peake
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| | - Oliver Neubauer
- Tissue Repair and Translational Physiology Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, OLD 4059, Australia.
| |
Collapse
|