51
|
de Souza ILL, Barros BC, de Oliveira GA, Queiroga FR, Toscano LT, Silva AS, Silva PM, Interaminense LFL, Cavalcante FDA, da Silva BA. Hypercaloric Diet Establishes Erectile Dysfunction in Rat: Mechanisms Underlying the Endothelial Damage. Front Physiol 2017; 8:760. [PMID: 29085300 PMCID: PMC5649200 DOI: 10.3389/fphys.2017.00760] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/19/2017] [Indexed: 01/06/2023] Open
Abstract
Obesity is characterized by an excessive increase in body mass, leading to endothelial damage that may favor the development of erectile dysfunction (ED). ED is defined as the inability to achieve or maintain a penile erection long enough to have a sexual intercourse. In this context, different ED models were developed, however the high price of special animals or the long period to establish the disease has limited studies in this field. Therefore, this study proposed to establish and characterize a novel model of ED in rats associated to a hypercaloric diet consumption. Animals were randomly divided into control group (CG), which received a standard diet, and obese group (OG), fed with a hypercaloric diet during 8 weeks. Rat's erectile function was evaluated in vivo and in vitro. Food and caloric intake of OG were reduced compared to CG, due to an increased diet energy efficiency. However, OG presented an increased body mass, inguinal, retroperitoneal and epididymal adipose tissues, as well as body adiposity index at the end of experimental protocol. In erectile function analysis, there was a decrease in the number and the latency of penile erections in OG. Additionally, the contractile reactivity of corpus cavernosum was increased in OG, favoring penile detumescence and related to a reduced nitric oxide bioavailability and an increased in contractile prostaglandins levels as a consequence of endothelial damage. Moreover, the endothelium-relaxation reactivity of corpus cavernosum was attenuated in OG associated to the oxidative stress. Thus, it was provided a model for advances in sexual dysfunction field and drug discovery for ED treatment.
Collapse
Affiliation(s)
- Iara L. L. de Souza
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Bárbara C. Barros
- Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | - Fernando R. Queiroga
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Lydiane T. Toscano
- Departamento de Educação Física, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Alexandre S. Silva
- Departamento de Educação Física, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Patrícia M. Silva
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | - Fabiana de Andrade Cavalcante
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
- Departamento de Fisiologia e Patologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Bagnólia A. da Silva
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
52
|
Castro É, Silva TEO, Festuccia WT. Critical review of beige adipocyte thermogenic activation and contribution to whole-body energy expenditure. Horm Mol Biol Clin Investig 2017; 31:/j/hmbci.ahead-of-print/hmbci-2017-0042/hmbci-2017-0042.xml. [PMID: 28862985 DOI: 10.1515/hmbci-2017-0042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/17/2017] [Indexed: 12/30/2022]
Abstract
Beige (or brite, "brown in white") adipocytes are uncoupling protein 1 (UCP1)-positive cells residing in white adipose depots that, depending on the conditions, behave either as classic white adipocytes, storing energy as lipids, or as brown adipocytes, dissipating energy from oxidative metabolism as heat through non-shivering thermogenesis. Because of their thermogenic potential and, therefore, possible usage to treat metabolic diseases such as obesity and type 2 diabetes, beige cells have attracted the attention of many scientists worldwide aiming to develop strategies to safely recruit and activate their thermogenic activity. Indeed, in recent years, a large variety of conditions, molecules (including nutrients) and signaling pathways were reported to promote the recruitment of beige adipocytes. Despite of those advances, the true contribution of beige adipocyte thermogenesis to whole-body energy expenditure is still not completely defined. Herein, we discuss some important aspects that should be considered when studying beige adipocyte biology and the contribution to energy balance and whole-body metabolism.
Collapse
|
53
|
Ryu V, Zarebidaki E, Albers HE, Xue B, Bartness TJ. Short photoperiod reverses obesity in Siberian hamsters via sympathetically induced lipolysis and Browning in adipose tissue. Physiol Behav 2017; 190:11-20. [PMID: 28694154 DOI: 10.1016/j.physbeh.2017.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
Changes in photoperiod length are transduced into neuroendocrine signals by melatonin (MEL) secreted by the pineal gland triggering seasonally adaptive responses in many animal species. Siberian hamsters, transferred from a long-day 'summer-like' photoperiod (LD) to a short-day 'winter-like' photoperiod (SD), exhibit a naturally-occurring reversal in obesity. Photoperiod-induced changes in adiposity are mediated by the duration of MEL secretion and can be mimicked by exogenously administered MEL into animals housed in LD. Evidence suggests that MEL increases the sympathetic nervous system (SNS) drive to white adipose tissue (WAT). Here, we investigated whether MEL-driven seasonally adaptive losses in body fat are associated with WAT lipolysis and browning. Hamsters were subcutaneously administered vehicle (LD+VEH) or 0.4mg/kg MEL (LD+MEL) daily for 10weeks while animals housed in SD served as a positive control. MEL and SD exposure significantly decreased the retroperitoneal (RWAT), inguinal (IWAT), epididymal (EWAT) WAT, food intake and caused testicular regression compared with the LD+VEH group. MEL/SD induced lipolysis in the IWAT and EWAT, browning of the RWAT, IWAT, and EWAT, and increased UCP1 expression in the IBAT. Additionally, MEL/SD significantly increased the number of shared MEL receptor 1a and dopamine beta-hydroxylase-immunoreactive neurons in discrete brain sites, notably the paraventricular hypothalamic nucleus, dorsomedial hypothalamic nucleus, arcuate nucleus, locus coeruleus and dorsal motor nucleus of vagus. Collectively, these findings support our hypothesis that SD-exposed Siberian hamsters undergo adaptive decreases in body adiposity due to SNS-stimulated lipid mobilization and generalized WAT browning.
Collapse
Affiliation(s)
- Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | - Eleen Zarebidaki
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| | - H Elliott Albers
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Bingzhong Xue
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA
| |
Collapse
|
54
|
Role of the adipose PPARγ-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol Psychiatry 2017; 22:1056-1068. [PMID: 27956741 PMCID: PMC5468488 DOI: 10.1038/mp.2016.225] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023]
Abstract
Adaptive responses to stressful stimuli involving behavioral, emotional and metabolic changes are orchestrated by the nervous and endocrine systems. Adipose tissue has been recognized as a highly active metabolic and endocrine organ, secreting adipokines that operate as hormones to mediate the crosstalk with other organs including the brain. The role of adipose tissue in sensing and responding to emotional stress and in behavioral regulation, however, remains largely unknown. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key transcriptional factor controlling adipokine gene expression. Here we show that chronic social defeat stress decreases messenger RNA and protein levels of PPARγ in adipose tissue of susceptible but not resilient mice, which was correlated with social avoidance behavior. A corresponding reduction in adipose adiponectin production was observed in susceptible mice. Rosiglitazone, a blood-brain barrier-impermeant PPARγ-selective agonist, elicited antidepressant- and anxiolytic-like behavioral effects in wild-type mice, with a concurrent increase in plasma adiponectin levels. These effects of rosiglitazone were absent in mice lacking adiponectin but having normal PPARγ expression in adipose tissue and brain. Moreover, pretreatment with the PPARγ-selective antagonist GW9662 blocked rosiglitazone-induced adiponectin expression and antidepressant/anxiolytic-like effects. Together, these results suggest that the behavioral responses to rosiglitazone are mediated through PPARγ-dependent induction of adiponectin. Our findings support an important role for the adipose PPARγ-adiponectin axis in susceptibility to stress and negative emotion-related behaviors. Selectively targeting PPARγ in adipose tissue may offer novel strategies for combating depression and anxiety.
Collapse
|
55
|
Sipe LM, Yang C, Ephrem J, Garren E, Hirsh J, Deppmann CD. Differential sympathetic outflow to adipose depots is required for visceral fat loss in response to calorie restriction. Nutr Diabetes 2017; 7:e260. [PMID: 28394360 PMCID: PMC5436093 DOI: 10.1038/nutd.2017.13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/01/2017] [Indexed: 01/10/2023] Open
Abstract
The sympathetic nervous system (SNS) regulates energy homeostasis in part by governing fatty acid liberation from adipose tissue. We first examined whether SNS activity toward discrete adipose depots changes in response to a weight loss diet in mice. We found that SNS activity toward each adipose depot is unique in timing, pattern of activation, and habituation with the most dramatic contrast between visceral and subcutaneous adipose depots. Sympathetic drive toward visceral epididymal adipose is more than doubled early in weight loss and then suppressed later in the diet when weight loss plateaued. Coincident with the decline in SNS activity toward visceral adipose is an increase in activity toward subcutaneous depots indicating a switch in lipolytic sources. In response to calorie restriction, SNS activity toward retroperitoneal and brown adipose depots is unaffected. Finally, pharmacological blockage of sympathetic activity on adipose tissue using the β3-adrenergic receptor antagonist, SR59230a, suppressed loss of visceral adipose mass in response to diet. These findings indicate that SNS activity toward discrete adipose depots is dynamic and potentially hierarchical. This pattern of sympathetic activation is required for energy liberation and loss of adipose tissue in response to calorie-restricted diet.
Collapse
Affiliation(s)
- L M Sipe
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - C Yang
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - J Ephrem
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - E Garren
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - J Hirsh
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - C D Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
56
|
van der Stelt I, Hoevenaars F, Široká J, de Ronde L, Friedecký D, Keijer J, van Schothorst E. Metabolic Response of Visceral White Adipose Tissue of Obese Mice Exposed for 5 Days to Human Room Temperature Compared to Mouse Thermoneutrality. Front Physiol 2017; 8:179. [PMID: 28386236 PMCID: PMC5362617 DOI: 10.3389/fphys.2017.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/08/2017] [Indexed: 01/29/2023] Open
Abstract
Housing of laboratory mice at room temperature (22°C) might be considered a constant cold stress, which induces a thermogenic program in brown adipose tissue (BAT). However, the early adaptive response of white adipose tissue (WAT), the fat storage organ of the body, to a change from thermoneutrality to room temperature is not known. This was investigated here for various WAT depots, focusing on epididymal WAT (eWAT), widely used as reference depot. Male adult diet-induced obese (DIO) C57BL/6JOlaHsd mice housed at thermoneutrality (29°C), were for 5 days either switched to room temperature (22°C) or remained at thermoneutrality. Energy metabolism was continuously measured using indirect calorimetry. At the end of the study, serum metabolomics and WAT transcriptomics were performed. We confirmed activation of the thermogenic program in 22°C housed mice. Body weight and total fat mass were reduced. Whole body energy expenditure (EE) was increased, with a higher fatty acid to carbohydrate oxidation ratio and increased serum acylcarnitine levels, while energy intake was not significantly different between the two groups. Transcriptome analysis of eWAT identified tissue remodeling and inflammation as the most affected processes. Expression of pro-inflammatory M1 macrophage-related genes, and M1 over M2 macrophage ratio were decreased, which might be linked to an increased insulin sensitivity. Markers of thermogenesis were not altered in eWAT. Decreased expression of tryptophan hydroxylase 2 (Tph2) and cholecystokinin (Cck) might represent altered neuroendocrine signaling. eWAT itself does not show increased fatty acid oxidation. The three measured WATs, epididymal, mesenteric, and retroperitoneal, showed mainly similar responses; reduced inflammation (s100a8), decreased carbohydrate oxidation, and no or small differences in fatty acid oxidation. However, Ucp1 was only expressed and increased in rWAT in 22°C housed mice. Cck expression was decreased in the three WATs, significantly in eWAT and rWAT, in contrast to Tph2, which was decreased in eWAT while not expressed in mWAT and rWAT. Our data show that tissue remodeling, inflammation and neuroendocrine signaling are early responses in WAT to a moderate decrease in environmental temperature.
Collapse
Affiliation(s)
- Inge van der Stelt
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | - Femke Hoevenaars
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | - Jitka Široká
- Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc Olomouc, Czechia
| | - Lidwien de Ronde
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | - David Friedecký
- Laboratory of Metabolomics, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc Olomouc, Czechia
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University Wageningen, Netherlands
| | | |
Collapse
|
57
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
58
|
Zhou YT, He ZG, Liu TT, Feng MH, Zhang DY, Xiang HB. Neuroanatomical circuitry between kidney and rostral elements of brain: a virally mediated transsynaptic tracing study in mice. ACTA ACUST UNITED AC 2017; 37:63-69. [PMID: 28224417 DOI: 10.1007/s11596-017-1695-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The identity of higher-order neurons and circuits playing an associative role to control renal function is not well understood. We identified specific neural populations of rostral elements of brain regions that project multisynaptically to the kidneys in 3-6 days after injecting a retrograde tracer pseudorabies virus (PRV)-614 into kidney of 13 adult male C57BL/6J strain mice. PRV-614 infected neurons were detected in a number of mesencephalic (e.g. central amygdala nucleus), telencephalic regions and motor cortex. These divisions included the preoptic area (POA), dorsomedial hypothalamus (DMH), lateral hypothalamus, arcuate nucleus (Arc), suprachiasmatic nucleus (SCN), periventricular hypothalamus (PeH), and rostral and caudal subdivision of the paraventricular nucleus of the hypothalamus (PVN). PRV-614/Tyrosine hydroxylase (TH) double-labeled cells were found within DMH, Arc, SCN, PeH, PVN, the anterodorsal and medial POA. A subset of neurons in PVN that participated in regulating sympathetic outflow to kidney was catecholaminergic or serotonergic. PRV-614 infected neurons within the PVN also contained arginine vasopressin or oxytocin. These data demonstrate the rostral elements of brain innervate the kidney by the neuroanatomical circuitry.
Collapse
Affiliation(s)
- Ye-Ting Zhou
- Department of Surgery, Shuyang Hospital, Shuyang, 223600, China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao-Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhangnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Ding-Yu Zhang
- Intensive Care Unit, Wuhan Medical Treatment Center, Wuhan, 430023, China.
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
59
|
Booth AD, Magnuson AM, Cox-York KA, Wei Y, Wang D, Pagliassotti MJ, Foster MT. Inhibition of adipose tissue PPARγ prevents increased adipocyte expansion after lipectomy and exacerbates a glucose-intolerant phenotype. Cell Prolif 2016; 50. [PMID: 27976431 DOI: 10.1111/cpr.12325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/05/2016] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Adipose tissue plays a fundamental role in glucose homeostasis. For example, fat removal (lipectomy, LipX) in lean mice, resulting in a compensatory 50% increase in total fat mass, is associated with significant improvement in glucose tolerance. This study was designed to further examine the link between fat removal, adipose tissue compensation and glucose homeostasis using a peroxisome proliferator-activated receptor γ (PPAR γ; activator of adipogenesis) knockout mouse. MATERIAL AND METHODS The study involved PPARγ knockout (FKOγ) or control mice (CON), subdivided into groups that received LipX or Sham surgery. We reasoned that as the ability of adipose tissue to expand in response to LipX would be compromised in FKOγ mice, so would improvements in glucose homeostasis. RESULTS In CON mice, LipX increased total adipose depot mass (~60%), adipocyte number (~45%) and changed adipocyte distribution to smaller cells. Glucose tolerance was improved (~30%) in LipX CON mice compared to Shams. In FKOγ mice, LipX did not result in any significant changes in adipose depot mass, adipocyte number or distribution. LipX FKOγ mice were also characterized by reduction of glucose tolerance (~30%) compared to shams. CONCLUSIONS Inhibition of adipose tissue PPARγ prevented LipX-induced increases in adipocyte expansion and produced a glucose-intolerant phenotype. These data support the notion that adipose tissue expansion is critical to maintain and/or improvement in glucose homeostasis.
Collapse
Affiliation(s)
- A D Booth
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - A M Magnuson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - K A Cox-York
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Y Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - D Wang
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - M J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - M T Foster
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
60
|
Cui X, Nguyen NLT, Zarebidaki E, Cao Q, Li F, Zha L, Bartness T, Shi H, Xue B. Thermoneutrality decreases thermogenic program and promotes adiposity in high-fat diet-fed mice. Physiol Rep 2016; 4:4/10/e12799. [PMID: 27230905 PMCID: PMC4886167 DOI: 10.14814/phy2.12799] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 01/16/2023] Open
Abstract
Brown/beige adipocytes are therapeutic targets to combat obesity due to their abilities to dissipate energy through adaptive thermogenesis. Most studies investigating induction of brown/beige adipocytes were conducted in cold condition (e.g., 4°C); much is unknown about how the thermogenic program of brown/beige adipocytes is regulated in thermoneutral condition (e.g., 30°C), which is within the thermal comfort zone of human dwellings in daily life. Therefore, this study aims to characterize the thermogenic program of brown/beige adipocytes in mice housed under ambient (22°C) versus thermoneutral condition (30°C). Male mice raised at 22°C or 30°C were fed either chow diet or high‐fat (HF) diet for 20 weeks. Despite less food intake, chow‐fed mice housed at 30°C remained the same body weight compared to mice at 22°C. However, these thermoneutrally housed mice displayed a decrease in the expression of thermogenic program in both brown and white fat depots with larger adipocytes. When pair‐fed with chow diet, thermoneutrally housed mice showed an increase in body weight. Moreover, thermoneutrality increased body weight of mice fed with HF diet. This was associated with decreased expression of the thermogenic program in both brown and white fat depots of the thermoneutrally housed mice. The downregulation of the thermogenic program might have resulted from decreased sympathetic drive in the thermoneutrally housed mice evident by decreased expression of tyrosine hydroxylase expression and norepinephrine turnover in both brown and white fat depots. Our data demonstrate that thermoneutrality may negatively regulate the thermogenic program and sympathetic drive, leading to increased adiposity in mice.
Collapse
Affiliation(s)
- Xin Cui
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Ngoc Ly T Nguyen
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Eleen Zarebidaki
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Qiang Cao
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Fenfen Li
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Lin Zha
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Timothy Bartness
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Hang Shi
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Bingzhong Xue
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
61
|
Steinbusch LKM, Picard A, Bonnet MS, Basco D, Labouèbe G, Thorens B. Sex-Specific Control of Fat Mass and Counterregulation by Hypothalamic Glucokinase. Diabetes 2016; 65:2920-31. [PMID: 27422385 DOI: 10.2337/db15-1514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 07/07/2016] [Indexed: 11/13/2022]
Abstract
Glucokinase (Gck) is a critical regulator of glucose-induced insulin secretion by pancreatic β-cells. It has been suggested to also play an important role in glucose signaling in neurons of the ventromedial hypothalamic nucleus (VMN), a brain nucleus involved in the control of glucose homeostasis and feeding. To test the role of Gck in VMN glucose sensing and physiological regulation, we studied mice with genetic inactivation of the Gck gene in Sf1 neurons of the VMN (Sf1Gck(-/-) mice). Compared with control littermates, Sf1Gck(-/-) mice displayed increased white fat mass and adipocyte size, reduced lean mass, impaired hypoglycemia-induced glucagon secretion, and a lack of parasympathetic and sympathetic nerve activation by neuroglucopenia. However, these phenotypes were observed only in female mice. To determine whether Gck was required for glucose sensing by Sf1 neurons, we performed whole-cell patch clamp analysis of brain slices from control and Sf1Gck(-/-) mice. Absence of Gck expression did not prevent the glucose responsiveness of glucose-excited or glucose-inhibited Sf1 neurons in either sex. Thus Gck in the VMN plays a sex-specific role in the glucose-dependent control of autonomic nervous activity; this is, however, unrelated to the control of the firing activity of classical glucose-responsive neurons.
Collapse
Affiliation(s)
| | - Alexandre Picard
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Marion S Bonnet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Davide Basco
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
62
|
Shipp SL, Cline MA, Gilbert ER. Recent advances in the understanding of how neuropeptide Y and α-melanocyte stimulating hormone function in adipose physiology. Adipocyte 2016; 5:333-350. [PMID: 27994947 DOI: 10.1080/21623945.2016.1208867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
Communication between the brain and the adipose tissue has been the focus of many studies in recent years, with the "brain-fat axis" identified as a system that orchestrates the assimilation and usage of energy to maintain body mass and adequate fat stores. It is now well-known that appetite-regulating peptides that were studied as neurotransmitters in the central nervous system can act both on the hypothalamus to regulate feeding behavior and also on the adipose tissue to modulate the storage of energy. Energy balance is thus partly controlled by factors that can alter both energy intake and storage/expenditure. Two such factors involved in these processes are neuropeptide Y (NPY) and α-melanocyte stimulating hormone (α-MSH). NPY, an orexigenic factor, is associated with promoting adipogenesis in both mammals and chickens, while α-MSH, an anorexigenic factor, stimulates lipolysis in rodents. There is also evidence of interaction between the 2 peptides. This review aims to summarize recent advances in the study of NPY and α-MSH regarding their role in adipose tissue physiology, with an emphasis on the cellular and molecular mechanisms. A greater understanding of the brain-fat axis and regulation of adiposity by bioactive peptides may provide insights on strategies to prevent or treat obesity and also enhance nutrient utilization efficiency in agriculturally-important species.
Collapse
|
63
|
Abstract
Excess and ectopic fat accumulation in obesity is a major risk factor for developing hyperlipidemia, type 2 diabetes and cardiovascular disease. The activation of brown and/or beige adipocytes is a promising target for the treatment of metabolic disorders as the combustion of excess energy by these thermogenic adipocytes may help losing weight and improving plasma parameters including triglyceride, cholesterol and glucose levels. The regulation of heat production by thermogenic adipose tissues is based on a complex crosstalk between the autonomous nervous system, intracellular and secreted factors. This multifaceted alignment regulates thermogenic demands to environmental circumstances in dependence on available energy resources. This review summarizes the current knowledge how thermogenic tissues can be targeted to combat the burden of diseases with a special focus on lipid metabolism and diseases related to lipoprotein metabolism.
Collapse
Affiliation(s)
- Christian Schlein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
64
|
|
65
|
Murza A, Sainsily X, Coquerel D, Côté J, Marx P, Besserer-Offroy É, Longpré JM, Lainé J, Reversade B, Salvail D, Leduc R, Dumaine R, Lesur O, Auger-Messier M, Sarret P, Marsault É. Discovery and Structure-Activity Relationship of a Bioactive Fragment of ELABELA that Modulates Vascular and Cardiac Functions. J Med Chem 2016; 59:2962-72. [PMID: 26986036 DOI: 10.1021/acs.jmedchem.5b01549] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ELABELA (ELA) was recently discovered as a novel endogenous ligand of the apelin receptor (APJ), a G protein-coupled receptor. ELA signaling was demonstrated to be crucial for normal heart and vasculature development during embryogenesis. We delineate here ELA's structure-activity relationships and report the identification of analogue 3 (ELA(19-32)), a fragment of ELA that binds to APJ, activates the Gαi1 and β-arrestin-2 signaling pathways, and induces receptor internalization similarly to its parent endogenous peptide. An alanine scan performed on 3 revealed that the C-terminal residues are critical for binding to APJ and signaling. Finally, using isolated-perfused hearts and in vivo hemodynamic and echocardiographic measurements, we demonstrate that ELA and 3 both reduce arterial pressure and exert positive inotropic effects on the heart. Altogether, these results present ELA and 3 as potential therapeutic options in managing cardiovascular diseases.
Collapse
Affiliation(s)
- Alexandre Murza
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada.,Institut de Pharmacologie de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Xavier Sainsily
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada.,Institut de Pharmacologie de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - David Coquerel
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Jérôme Côté
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada.,Institut de Pharmacologie de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Patricia Marx
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada.,Institut de Pharmacologie de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Élie Besserer-Offroy
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada.,Institut de Pharmacologie de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Jean-Michel Longpré
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada.,Institut de Pharmacologie de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Jean Lainé
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Bruno Reversade
- Laboratory of Human Embryology & Genetics, Institute of Medical Biology, A*STAR , 8A Biomedical Grove, 138648 Singapore
| | - Dany Salvail
- IPS Thérapeutique Inc. , Sherbrooke, J1G 5J6 Québec, Canada
| | - Richard Leduc
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada.,Institut de Pharmacologie de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Robert Dumaine
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Olivier Lesur
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada.,Institut de Pharmacologie de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| | - Éric Marsault
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada.,Institut de Pharmacologie de Sherbrooke , Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
66
|
Parisi V, Rengo G, Perrone-Filardi P, Pagano G, Femminella GD, Paolillo S, Petraglia L, Gambino G, Caruso A, Grimaldi MG, Baldascino F, Nolano M, Elia A, Cannavo A, De Bellis A, Coscioni E, Pellegrino T, Cuocolo A, Ferrara N, Leosco D. Increased Epicardial Adipose Tissue Volume Correlates With Cardiac Sympathetic Denervation in Patients With Heart Failure. Circ Res 2016; 118:1244-53. [PMID: 26926470 DOI: 10.1161/circresaha.115.307765] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE It has been reported that epicardial adipose tissue (EAT) may affect myocardial autonomic function. OBJECTIVE The aim of this study was to explore the relationship between EAT and cardiac sympathetic nerve activity in patients with heart failure. METHODS AND RESULTS In 110 patients with systolic heart failure, we evaluated the correlation between echocardiographic EAT thickness and cardiac adrenergic nerve activity assessed by (123)I-metaiodobenzylguanidine ((123)I-MIBG). The predictive value of EAT thickness on cardiac sympathetic denervation ((123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score) was tested in a multivariate analysis. Furthermore, catecholamine levels, catecholamine biosynthetic enzymes, and sympathetic nerve fibers were measured in EAT and subcutaneous adipose tissue biopsies obtained from patients with heart failure who underwent cardiac surgery. EAT thickness correlated with (123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score, but not with left ventricular ejection fraction. Moreover, EAT resulted as an independent predictor of (123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score and showed a significant additive predictive value on (123)I-MIBG planar and single-photon emission computed tomography results over demographic and clinical data. Although no differences were found in sympathetic innervation between EAT and subcutaneous adipose tissue, EAT showed an enhanced adrenergic activity demonstrated by the increased catecholamine levels and expression of catecholamine biosynthetic enzymes. CONCLUSIONS This study provides the first evidence of a direct correlation between increased EAT thickness and cardiac sympathetic denervation in heart failure.
Collapse
Affiliation(s)
- Valentina Parisi
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Giuseppe Rengo
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.).
| | - Pasquale Perrone-Filardi
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Gennaro Pagano
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Grazia Daniela Femminella
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Stefania Paolillo
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Laura Petraglia
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Giuseppina Gambino
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Aurelio Caruso
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Maria Gabriella Grimaldi
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Francesco Baldascino
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Maria Nolano
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Andrea Elia
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Alessandro Cannavo
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Antonio De Bellis
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Enrico Coscioni
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Teresa Pellegrino
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Alberto Cuocolo
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Nicola Ferrara
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Dario Leosco
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| |
Collapse
|
67
|
Fukano N, Wada N, Oka T, Bungo T. Evaluation of a Modified Manual Restraint Test for Estimating Fearfulness in Laying Hens. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ijps.2015.602.605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
68
|
Peroxisome proliferator-activated receptor γ controls ingestive behavior, agouti-related protein, and neuropeptide Y mRNA in the arcuate hypothalamus. J Neurosci 2015; 35:4571-81. [PMID: 25788674 DOI: 10.1523/jneurosci.2129-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is clinically targeted for type II diabetes treatment; however, rosiglitazone (ROSI), a PPARγ agonist, increases food intake and body/fat mass as side-effects. Mechanisms for these effects and the role of PPARγ in feeding are not understood. Therefore, we tested this role in Siberian hamsters, a model of human energy balance, and C57BL/6 mice. We tested the following: (1) how ROSI and/or GW9662 (2-chloro-5-nitro-N-phenylbenzamide; PPARγ antagonist) injected intraperitoneally or into the third ventricle (3V) affected Siberian hamster feeding behaviors; (2) whether food deprivation (FD) co-increases agouti-related protein (AgRP) and PPARγ mRNA expression in Siberian hamsters and mice; (3) whether intraperitoneally administered ROSI increases AgRP and NPY in ad libitum-fed animals; (4) whether intraperitoneally administered PPARγ antagonism blocks FD-induced increases in AgRP and NPY; and finally, (5) whether intraperitoneally administered PPARγ modulation affects plasma ghrelin. Third ventricular and intraperitoneally administered ROSI increased food hoarding and intake for 7 d, an effect attenuated by 3V GW9662, and also prevented (intraperitoneal) FD-induced feeding. FD hamsters and mice increased AgRP within the arcuate hypothalamic nucleus with concomitant increases in PPARγ exclusively within AgRP/NPY neurons. ROSI increased AgRP and NPY similarly to FD, and GW9662 prevented FD-induced increases in AgRP and NPY in both species. Neither ROSI nor GW9662 affected plasma ghrelin. Thus, we demonstrated that PPARγ activation is sufficient to trigger food hoarding/intake, increase AgRP/NPY, and possibly is necessary for FD-induced increases in feeding and AgRP/NPY. These findings provide initial evidence that FD-induced increases in AgRP/NPY may be a direct PPARγ-dependent process that controls ingestive behaviors.
Collapse
|
69
|
Lecoutre S, Breton C. Maternal nutritional manipulations program adipose tissue dysfunction in offspring. Front Physiol 2015; 6:158. [PMID: 26029119 PMCID: PMC4429565 DOI: 10.3389/fphys.2015.00158] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022] Open
Abstract
Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth) and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates). Maternal nutritional manipulations reprogram offspring's adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids) and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations.
Collapse
Affiliation(s)
- Simon Lecoutre
- Unité Environnement Périnatal et Santé, UPRES EA 4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Université de Lille Villeneuve d'Ascq, France
| | - Christophe Breton
- Unité Environnement Périnatal et Santé, UPRES EA 4489, Equipe Malnutrition Maternelle et Programmation des Maladies Métaboliques, Université de Lille Villeneuve d'Ascq, France
| |
Collapse
|
70
|
Chabowska-Kita A, Trabczynska A, Korytko A, Kaczmarek MM, Kozak LP. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. FASEB J 2015; 29:3238-52. [PMID: 25896784 PMCID: PMC4511198 DOI: 10.1096/fj.15-271395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/31/2015] [Indexed: 01/24/2023]
Abstract
The brown adipocyte phenotype (BAP) in white adipose tissue (WAT) is transiently induced in adult mammals in response to reduced ambient temperature. Since it is unknown whether a cold challenge can permanently induce brown adipocytes (BAs), we reared C57BL/6J (B6) and AxB8/PgJ (AxB8) mice at 17 or 29°C from birth to weaning, to assess the BAP in young and adult mice. Energy balance measurements showed that 17°C reduced fat mass in the preweaning mice by increasing energy expenditure and suppressed diet-induced obesity in adults. Microarray analysis of global gene expression of inguinal fat (ING) from 10-day-old (D) mice indicates that expression at 17°C vs. 29°C was not different. Between 10 and 21 days of age, the BAP was induced coincident with morphologic remodeling of ING and marked changes in expression of neural development genes (e.g., Akap 12 and Ngfr). Analyses of Ucp1 mRNA and protein showed that 17°C transiently increased the BAP in ING from 21D mice; however, BAs were unexpectedly present in mice reared at 29°C. The involution of the BAP in WAT occurred after weaning in mice reared at 23°C. Therefore, the capacity to stimulate thermogenically competent BAs in WAT is set by a temperature-independent, genetically controlled program between birth and weaning.—Chabowska-Kita, A., Trabczynska, A., Korytko, A., Kaczmarek, M. M., Kozak, L. P. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes.
Collapse
Affiliation(s)
| | - Anna Trabczynska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Agnieszka Korytko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Monika M Kaczmarek
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
71
|
Teubner BJW, Leitner C, Thomas MA, Ryu V, Bartness TJ. An intact dorsomedial posterior arcuate nucleus is not necessary for photoperiodic responses in Siberian hamsters. Horm Behav 2015; 70:22-9. [PMID: 25647158 PMCID: PMC4409532 DOI: 10.1016/j.yhbeh.2014.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 01/29/2023]
Abstract
Seasonal responses of many animal species are triggered by changes in daylength and its transduction into a neuroendocrine signal by the pineal gland through the nocturnal duration of melatonin (MEL) release. The precise central sites necessary to receive, transduce, and relay the short day (SD) fall-winter MEL signals into seasonal responses and changes in physiology and behavior are unclear. In Siberian hamsters, SDs trigger decreases in body and lipid mass, testicular regression and pelage color changes. Several candidate genes and their central sites of expression have been proposed as components of the MEL transduction system with considerable recent focus on the arcuate nucleus (ARC) and its component, the dorsomedial posterior arcuate nucleus (dmpARC). This site has been postulated as a critical relay of SD information through the modulation of a variety of neurochemicals/receptors important for the control of energy balance. Here the necessity of an intact dmpARC for SD responses was tested by making electrolytic lesions of the Siberian hamster dmpARC and then exposing them to either long days (LD) or SDs for 12wks. The SD typical decreases in body and fat mass, food intake, testicular volume, serum testosterone concentrations, pelage color change and increased UCP-1 protein expression (a proxy for brown adipose tissue thermogenesis) all occurred despite the lack of an intact dmpARC. Although the Siberian hamster dmpARC contains photoperiod-modulated constituents, these data demonstrate that an intact dmpARC is not necessary for SD responses and not integral to the seasonal energy- and reproductive-related responses measured here.
Collapse
Affiliation(s)
- Brett J W Teubner
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Claudia Leitner
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Michael A Thomas
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Vitaly Ryu
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA
| | - Timothy J Bartness
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA.
| |
Collapse
|
72
|
MacLean PS, Higgins JA, Giles ED, Sherk VD, Jackman MR. The role for adipose tissue in weight regain after weight loss. Obes Rev 2015; 16 Suppl 1:45-54. [PMID: 25614203 PMCID: PMC4371661 DOI: 10.1111/obr.12255] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Weight regain after weight loss is a substantial challenge in obesity therapeutics. Dieting leads to significant adaptations in the homeostatic system that controls body weight, which promotes overeating and the relapse to obesity. In this review, we focus specifically on the adaptations in white adipose tissues that contribute to the biological drive to regain weight after weight loss. Weight loss leads to a reduction in size of adipocytes and this decline in size alters their metabolic and inflammatory characteristics in a manner that facilitates the clearance and storage of ingested energy. We present the hypothesis whereby the long-term signals reflecting stored energy and short-term signals reflecting nutrient availability are derived from the cellularity characteristics of adipose tissues. These signals are received and integrated in the hypothalamus and hindbrain and an energy gap between appetite and metabolic requirements emerges and promotes a positive energy imbalance and weight regain. In this paradigm, the cellularity and metabolic characteristics of adipose tissues after energy-restricted weight loss could explain the persistence of a biological drive to regain weight during both weight maintenance and the dynamic period of weight regain.
Collapse
Affiliation(s)
- P S MacLean
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, Anschutz Health and Wellness Center, University of Colorado School of Medicine, Aurora, Colorado USA
| | | | | | | | | |
Collapse
|
73
|
Dinh CHL, Szabo A, Camer D, Yu Y, Wang H, Huang XF. Bardoxolone methyl prevents fat deposition and inflammation in the visceral fat of mice fed a high-fat diet. Chem Biol Interact 2015; 229:1-8. [PMID: 25637688 DOI: 10.1016/j.cbi.2015.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/07/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
Key features of diet-induced obesity are visceral fat deposition, macrophage infiltration and inflammation that can lead to metabolic disorders. This study examined the effects of bardoxolone methyl (BARD) in preventing obesity and inflammation in the visceral fat of mice fed high-fat diet. Male C57BL/6J mice were fed a high-fat diet (HFD), a low-fat diet (LFD, i.e., lab chow diet) or a high-fat diet supplemented with BARD (HFD/BARD) for 21weeks. BARD at a dosage of 10mg/kg body weight was administered orally in drinking water. Histology, immunohistochemistry and Western blot were used for the analysis of epididymal adipose tissue. Morphological results demonstrated that HFD fed mice treated with BARD had smaller adipocytes and fewer macrophages present in epididymal adipose tissue than the HFD group. Furthermore, BARD administration reduced the inflammatory profile in this tissue by increasing the expression of nuclear factor of kappa-light-polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) protein and decreasing the protein expression of tumour necrosis factor alpha (TNF-α). BARD also prevented oxidative stress reflected by a reduction in stress activated proteins, including signal transducer and activator of transcription 3 (STAT3), protein kinase B (Akt), extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). BARD administration activated the sympathetic nervous system in epididymal adipose tissue assessed by the increased synthesis of tyrosine hydroxylase (TH) and uncoupling protein 2 (UCP2). The expression of inflammatory and sympathetic nervous system proteins in BARD mice fed a HFD was equivalent to that of the LFD control mice, indicating the anti-inflammatory and anti-obesity properties of this drug. In conclusion, the oral administration of BARD in HFD mice prevented fat deposition, inflammation and oxidative stress, and improved sympathetic activity in visceral fat. This study suggests a potential therapeutic role of BARD in preventing the development of obesity.
Collapse
Affiliation(s)
- Chi H L Dinh
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Alexander Szabo
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia; ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, NSW 2234, Australia
| | - Danielle Camer
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Yinghua Yu
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Hongqin Wang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia.
| |
Collapse
|
74
|
Castro AV, Woolcott OO, Iyer MS, Kabir M, Ionut V, Stefanovski D, Kolka CM, Szczepaniak LS, Szczepaniak EW, Asare-Bediako I, Paszkiewicz RL, Broussard JL, Kim SP, Kirkman EL, Rios HC, Mkrtchyan H, Wu Q, Ader M, Bergman RN. Increase in visceral fat per se does not induce insulin resistance in the canine model. Obesity (Silver Spring) 2015; 23:105-11. [PMID: 25322680 PMCID: PMC4276477 DOI: 10.1002/oby.20906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/30/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To determine whether a selective increase of visceral adipose tissue content will result in insulin resistance. METHODS Sympathetic denervation of the omental fat was performed under general inhalant anesthesia by injecting 6-hydroxydopamine in the omental fat of lean mongrel dogs (n = 11). In the conscious animal, whole-body insulin sensitivity was assessed by the minimal model (SI ) and the euglycemic hyperinsulinemic clamp (SICLAMP ). Changes in abdominal fat were monitored by magnetic resonance. All assessments were determined before (Wk0) and 2 weeks (Wk2) after denervation. Data are medians (upper and lower interquartile). RESULTS Denervation of omental fat resulted in increased percentage (and content) of visceral fat [Wk0: 10.2% (8.5-11.4); Wk2: 12.4% (10.4-13.6); P < 0.01]. Abdominal subcutaneous fat remained unchanged. However, no changes were found in SI [Wk0: 4.7 (mU/l)(-1) min(-1) (3.1-8.8); Wk2: 5.3 (mU/l)(-1) min(-1) (4.5-7.2); P = 0.59] or SICLAMP [Wk0: 42.0 × 10(-4) dl kg(-1) min(-1) (mU/l)(-1) (41.0-51.0); Wk2: 40.0 × 10(-4) dl kg(-1) min(-1) (mU/l) (-1) (34.0-52.0); P = 0.67]. CONCLUSIONS Despite a selective increase in visceral adiposity in dogs, insulin sensitivity in vivo did not change, which argues against the concept that accumulation of visceral adipose tissue contributes to insulin resistance.
Collapse
Affiliation(s)
- Ana V.B. Castro
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Orison O. Woolcott
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Malini S. Iyer
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Morvarid Kabir
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Viorica Ionut
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Darko Stefanovski
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Cathryn M. Kolka
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Lidia S. Szczepaniak
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Edward W. Szczepaniak
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Isaac Asare-Bediako
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | | | - Josiane L. Broussard
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Stella P. Kim
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Erlinda L. Kirkman
- Department of Animal Resources, University of Southern California, Los Angeles
| | - Hernan C. Rios
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Hasmik Mkrtchyan
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Qiang Wu
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Marilyn Ader
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| | - Richard N. Bergman
- Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles
| |
Collapse
|
75
|
Brain Monoamine Asymmetry in Chicks Subjected to a Separation-Stress Procedure with Litter Substrate. J Poult Sci 2015. [DOI: 10.2141/jpsa.0130171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
76
|
Oriowo MA. Perivascular adipose tissue, vascular reactivity and hypertension. Med Princ Pract 2015; 24 Suppl 1:29-37. [PMID: 24503717 PMCID: PMC6489082 DOI: 10.1159/000356380] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/09/2013] [Indexed: 12/13/2022] Open
Abstract
Most blood vessels are surrounded by a variable amount of adventitial adipose tissue, perivascular adipose tissue (PVAT), which was originally thought to provide mechanical support for the vessel. It is now known that PVAT secretes a number of bioactive substances including vascular endothelial growth factor, tumor necrosis factor-alpha (TNF-α), leptin, adiponectin, insulin-like growth factor, interleukin-6, plasminogen activator substance, resistin and angiotensinogen. Several studies have shown that PVAT significantly modulated vascular smooth muscle contractions induced by a variety of agonists and electrical stimulation by releasing adipocyte-derived relaxing (ADRF) and contracting factors. The identity of ADRF is not yet known. However, several vasodilators have been suggested including adiponectin, angiotensin 1-7, hydrogen sulfide and methyl palmitate. The anticontractile effect of PVAT is mediated through the activation of potassium channels since it is abrogated by inhibiting potassium channels. Hypertension is characterized by a reduction in the size and amount of PVAT and this is associated with the attenuated anticontractile effect of PVAT in hypertension. However, since a reduction in size and amount of PVAT and the attenuated anticontractile effect of PVAT were already evident in prehypertensive rats with no evidence of impaired release of ADRF, there is the possibility that the anticontractile effect of PVAT was not directly related to an altered function of the adipocytes per se. Hypertension is characterized by low-grade inflammation and infiltration of macrophages. One of the adipokines secreted by macrophages is TNF-α. It has been shown that exogenously administered TNF-α enhanced agonist-induced contraction of a variety of vascular smooth muscle preparations and reduced endothelium-dependent relaxation. Other procontractile factors released by the PVAT include angiotensin II and superoxide. It is therefore possible that the loss could be due to an increased amount of these proinflammatory and procontractile factors. More studies are definitely required to confirm this.
Collapse
Affiliation(s)
- Mabayoje A Oriowo
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
77
|
Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35:473-93. [PMID: 24736043 PMCID: PMC4175185 DOI: 10.1016/j.yfrne.2014.04.001] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/10/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023]
Abstract
White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) and its activation is necessary for lipolysis. WAT parasympathetic innervation is not supported. Fully-executed SNS-norepinephrine (NE)-mediated WAT lipolysis is dependent on β-adrenoceptor stimulation ultimately hinging on hormone sensitive lipase and perilipin A phosphorylation. WAT sympathetic drive is appropriately measured electrophysiologically and neurochemically (NE turnover) in non-human animals and this drive is fat pad-specific preventing generalizations among WAT depots and non-WAT organs. Leptin-triggered SNS-mediated lipolysis is weakly supported, whereas insulin or adenosine inhibition of SNS/NE-mediated lipolysis is strongly supported. In addition to lipolysis control, increases or decreases in WAT SNS drive/NE inhibit and stimulate white adipocyte proliferation, respectively. WAT sensory nerves are of spinal-origin and sensitive to local leptin and increases in sympathetic drive, the latter implicating lipolysis. Transsynaptic viral tract tracers revealed WAT central sympathetic and sensory circuits including SNS-sensory feedback loops that may control lipolysis.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA.
| | - Yang Liu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yogendra B Shrestha
- Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302-4010, USA; Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, USA; Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
78
|
Lecoutre S, Breton C. The cellularity of offspring's adipose tissue is programmed by maternal nutritional manipulations. Adipocyte 2014; 3:256-62. [PMID: 26317049 DOI: 10.4161/adip.29806] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
Epidemiological studies initially demonstrated that maternal undernutrition leads to low birth weight with increased risk of adult-onset obesity. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catch-up growth also predispose offspring to fat accumulation. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set-point. Adipose tissue is a key fuel storage unit mainly involved in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a gender- and depot-specific manner. This review summarizes the impact of maternal nutritional manipulations on cellularity (i.e., cell number, size, and type) of adipose tissue in programmed offspring. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Maternal nutritional manipulations result in increased adipogenesis and modified fat distribution and composition. Inflammation changes such as infiltration of macrophages and increased inflammatory markers are also observed. Overall, it may predispose offspring to fat accumulation and obesity. Inappropriate hormone levels, modified tissue sensitivity, and epigenetic mechanisms are key factors involved in the programming of adipose tissue's cellularity during the perinatal period.
Collapse
|
79
|
Meng X, Zheng R, Zhang Y, Qiao M, Liu L, Jing P, Wang L, Liu J, Gao Y. An activated sympathetic nervous system affects white adipocyte differentiation and lipolysis in a rat model of Parkinson's disease. J Neurosci Res 2014; 93:350-60. [PMID: 25257318 DOI: 10.1002/jnr.23488] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/13/2014] [Accepted: 09/04/2014] [Indexed: 01/25/2023]
Abstract
Weight loss is an important nonmotor symptom associated with Parkinson's disease (PD). However, the cellular factors responsible for PD-induced weight loss remain unclear. Because the sympathetic nervous system plays an important role in lipid metabolism and fat cell differentiation, this study investigates whether PD-induced changes to this system are associated with weight loss in a rat model of PD. Body weight and food intake were measured in control and PD-model rats. After 10 weeks, retroperitoneal white adipose tissues (RWAT) were removed and weighed. Markers of the sympathetic nervous system were measured in the brainstem dorsal medulla and RWAT. Free fat acids (FFA), triglycerides (TG), adipocyte differentiation-related genes, and lipolysis-related molecules in the RWAT and serum were analyzed. Differences in body weight and food intake were insignificant in PD-model rats and control rats; however, relative RWAT weight and adipocyte surface area were significantly reduced in the PD group. Changes in markers of the sympathetic nervous system were observed in the brainstem dorsal medulla and RWAT of PD rats. Decreased mRNA expression levels of genes involved in adipocyte differentiation, decreased TG levels in RWAT, increased FFA in RWAT, and increased lipolysis-related molecules in RWAT and serum FFA were observed in PD rats. This study demonstrates that degenerated dopaminergic neurons in the nigrostriatal system correlate with increases in sympathetic nervous system function, resulting in lipolysis and inhibition of fat cell differentiation. These factors ultimately result in the decrease of RWAT in PD-model rats.
Collapse
Affiliation(s)
- XiangZhi Meng
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Protein kinase a-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI3K and mTOR. Exp Cell Res 2014; 328:143-155. [PMID: 25102377 DOI: 10.1016/j.yexcr.2014.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 02/03/2023]
Abstract
The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI3K system and the mTOR complexes were all activated by cAMP, but these activations were not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias.
Collapse
|
81
|
Ryu V, Bartness TJ. Short and long sympathetic-sensory feedback loops in white fat. Am J Physiol Regul Integr Comp Physiol 2014; 306:R886-900. [PMID: 24717676 PMCID: PMC4159734 DOI: 10.1152/ajpregu.00060.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/03/2014] [Indexed: 01/06/2023]
Abstract
We previously demonstrated white adipose tissue (WAT) innervation using the established WAT retrograde sympathetic nervous system (SNS)-specific transneuronal viral tract tracer pseudorabies virus (PRV152) and showed its role in the control of lipolysis. Conversely, we demonstrated WAT sensory innervation using the established anterograde sensory system (SS)-specific transneuronal viral tracer, the H129 strain of herpes simplex virus-1, with sensory nerves showing responsiveness with increases in WAT SNS drive. Several brain areas were part of the SNS outflow to and SS inflow from WAT between these studies suggesting SNS-SS feedback loops. Therefore, we injected both PRV152 and H129 into inguinal WAT (IWAT) of Siberian hamsters. Animals were perfused on days 5 and 6 postinoculation after H129 and PRV152 injections, respectively, and brains, spinal cords, sympathetic, and dorsal root ganglia (DRG) were processed for immunohistochemical detection of each virus across the neuroaxis. The presence of H129+PRV152-colocalized neurons (~50%) in the spinal segments innervating IWAT suggested short SNS-SS loops with significant coinfections (>60%) in discrete brain regions, signifying long SNS-SS loops. Notably, the most highly populated sites with the double-infected neurons were the medial part of medial preoptic nucleus, medial preoptic area, hypothalamic paraventricular nucleus, lateral hypothalamus, periaqueductal gray, oral part of the pontine reticular nucleus, and the nucleus of the solitary tract. Collectively, these results strongly indicate the neuroanatomical reality of the central SNS-SS feedback loops with short loops in the spinal cord and long loops in the brain, both likely involved in the control of lipolysis or other WAT pad-specific functions.
Collapse
Affiliation(s)
- Vitaly Ryu
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| | - Timothy J Bartness
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, Georgia
| |
Collapse
|
82
|
Abstract
There has been an upsurge of interest in the adipocyte coincident with the onset of the obesity epidemic and the realization that adipose tissue plays a major role in the regulation of metabolic function. The past few years, in particular, have seen significant changes in the way that we classify adipocytes and how we view adipose development and differentiation. We have new perspective on the roles played by adipocytes in a variety of homeostatic processes and on the mechanisms used by adipocytes to communicate with other tissues. Finally, there has been significant progress in understanding how these relationships are altered during metabolic disease and how they might be manipulated to restore metabolic health.
Collapse
Affiliation(s)
- Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Departments of Genetics and Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Bruce M Spiegelman
- Departments of Genetics and Cell Biology, Harvard Medical School, Boston, MA 02215, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
83
|
Mauvais-Jarvis F. Developmental androgenization programs metabolic dysfunction in adult mice: Clinical implications. Adipocyte 2014; 3:151-4. [PMID: 24719790 DOI: 10.4161/adip.27746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/26/2013] [Accepted: 01/06/2014] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence supports a developmental origin for the metabolic syndrome in the context of polycystic ovary syndrome (PCOS) in which the fetal environment programs both reproductive and metabolic abnormalities that will occur in adulthood. To explore the role of developmental androgen excess in programming metabolic dysfunction in adulthood, we reported a mouse model system in which neonates were androgenized with testosterone. We compared female mice with neonatal exposure to testosterone (NTF) with control females (CF), control males (CM), and male mice with neonatal testosterone exposure (NTM). NTF develop many of the features of metabolic syndrome observed in women with PCOS. These features include increased food intake and lean mass, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, decreased osteocalcin activity, insulin resistance, pre-diabetes, and hypertension. NTF also develop a novel form of leptin resistance independent of STAT3. In contrast, littermate NTM develop a phenotype of hypogonadotropic hypogonadism with decreased lean mass and food intake. These NTM mice exhibit subcutaneous adiposity without cardiometabolic alterations. We discuss the relevance of this mouse model of developmental androgenization to the metabolic syndrome and its clinical implications to human metabolic diseases.
Collapse
|
84
|
Liu C, Bookout AL, Lee S, Sun K, Jia L, Lee C, Udit S, Deng Y, Scherer PE, Mangelsdorf DJ, Gautron L, Elmquist JK. PPARγ in vagal neurons regulates high-fat diet induced thermogenesis. Cell Metab 2014; 19:722-30. [PMID: 24703703 PMCID: PMC4046333 DOI: 10.1016/j.cmet.2014.01.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/05/2013] [Accepted: 01/29/2014] [Indexed: 12/26/2022]
Abstract
The vagus nerve innervates visceral organs providing a link between key metabolic cues and the CNS. However, it is not clear whether vagal neurons can directly respond to changing lipid levels and whether altered "lipid sensing" by the vagus nerve regulates energy balance. In this study, we systematically profiled the expression of all known nuclear receptors in laser-captured nodose ganglion (NG) neurons. In particular, we found PPARγ expression was reduced by high-fat-diet feeding. Deletion of PPARγ in Phox2b neurons promoted HFD-induced thermogenesis that involved the reprograming of white adipocyte into a brown-like adipocyte cell fate. Finally, we showed that PPARγ in NG neurons regulates genes necessary for lipid metabolism and those that are important for synaptic transmission. Collectively, our findings provide insights into how vagal afferents survey peripheral metabolic cues and suggest that the reduction of PPARγ in NG neurons may serve as a protective mechanism against diet-induced weight gain.
Collapse
Affiliation(s)
- Chen Liu
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Syann Lee
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lin Jia
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charlotte Lee
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Swalpa Udit
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yingfeng Deng
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurent Gautron
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel K Elmquist
- Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
85
|
Xiong XQ, Chen WW, Zhu GQ. Adipose afferent reflex: sympathetic activation and obesity hypertension. Acta Physiol (Oxf) 2014; 210:468-78. [PMID: 24118791 DOI: 10.1111/apha.12182] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/05/2013] [Accepted: 10/09/2013] [Indexed: 01/09/2023]
Abstract
Excessive sympathetic activity contributes to the pathogenesis of hypertension and the progression of the related organ damage. Adipose afferent reflex (AAR) is a sympatho-excitatory reflex that the afferent activity from white adipose tissue (WAT) increases sympathetic outflow and blood pressure. Hypothalamic paraventricular nucleus (PVN or PVH) is one of the central sites in the control of the AAR, and ionotropic glutamate receptors in the nucleus mediate the AAR. The AAR is enhanced in obesity and obesity hypertension. Enhanced WAT afferent activity and AAR contribute to the excessive sympathetic activation and hypertension in obesity. Blockage of the AAR attenuates the excessive sympathetic activity and hypertension. Leptin may be one of sensors in the WAT for the AAR, and is involved in the enhanced AAR in obesity and hypertension. This review focuses on the neuroanatomical basis and physiological functions of the AAR, and the important role of the enhanced AAR in the pathogenesis of obesity hypertension.
Collapse
Affiliation(s)
- X.-Q. Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| | - W.-W. Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing 210029 China
| |
Collapse
|
86
|
Bulloch JM, Daly CJ. Autonomic nerves and perivascular fat: interactive mechanisms. Pharmacol Ther 2014; 143:61-73. [PMID: 24560685 DOI: 10.1016/j.pharmthera.2014.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/31/2022]
Abstract
The evidence describing the autonomic innervation of body fat is reviewed with a particular focus on the role of the sympathetic neurotransmitters. In compiling the evidence, a strong case emerges for the interaction between autonomic nerves and perivascular adipose tissue (PVAT). Adipocytes have been shown to express receptors for neurotransmitters released from nearby sympathetic varicosities such as adrenoceptors (ARs), purinoceptors and receptors for neuropeptide Y (NPY). Noradrenaline can modulate both lipolysis (via α2- and β3-ARs) and lipogenesis (via α1- and β3-ARs). ATP can inhibit lipolysis (via P1 purinoceptors) or stimulate lipolysis (via P2y purinoceptors). NPY, which can be produced by adipocytes and sympathetic nerves, inhibits lipolysis. Thus the sympathetic triad of transmitters can influence adipocyte free fatty acid (FFA) content. Substance P (SP) released from sensory nerves has also been shown to promote lipolysis. Therefore, we propose a mechanism whereby sympathetic neurotransmission can simultaneously activate smooth muscle cells in the tunica media to cause vasoconstriction and alter FFA content and release from adjacent adipocytes in PVAT. The released FFA can influence endothelial function. Adipocytes also release a range of vasoactive substances, both relaxing and contractile factors, including adiponectin and reactive oxygen species. The action of adipokines (such as adiponectin) and reactive oxygen species (ROS) on cells of the vascular adventitia and nerves has yet to be fully elucidated. We hypothesise a strong link between PVAT and autonomic fibres and suggest that this poorly understood relationship is extremely important for normal vascular function and warrants a detailed study.
Collapse
Affiliation(s)
- Janette M Bulloch
- School of Science, University of the West of Scotland, Hamilton ML3 0JB, Scotland.
| | - Craig J Daly
- School of Life Sciences, University of Glasgow, Glasgow G128QQ, Scotland.
| |
Collapse
|
87
|
Nguyen NLT, Randall J, Banfield BW, Bartness TJ. Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am J Physiol Regul Integr Comp Physiol 2014; 306:R375-86. [PMID: 24452544 DOI: 10.1152/ajpregu.00552.2013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a link between visceral white adipose tissue (WAT) and the metabolic syndrome in humans, with health improvements produced with small visceral WAT reduction. By contrast, subcutaneous WAT provides a site for lipid storage that is rather innocuous relative to ectopic lipid storage in muscle or liver. The sympathetic nervous system (SNS) is the principal initiator for lipolysis in WAT by mammals. Nothing is known, however, about the central origins of the SNS circuitry innervating the only true visceral WAT in rodents, mesenteric WAT (MWAT), which drains into the hepatic portal vein. We tested whether the central sympathetic circuits to subcutaneous [inguinal WAT (IWAT)] and visceral WAT (MWAT) are separate or shared and whether they possess differential sympathetic drives with food deprivation in Siberian hamsters. Using two isogenic strains of pseudorabies virus, a retrograde transneuronal viral tract tracer within the same hamsters, we found some overlap (∼20-55% doubly infected neurons) between the two circuitries across the neural axis with lesser overlap proximal to the depots (spinal cord and sympathetic chain) and with more neurons involved in the innervation of IWAT than MWAT in some brain regions. Food deprivation triggered a greater sympathetic drive to subcutaneous (IWAT) than visceral (MWAT) depots. Collectively, we demonstrated both shared and separate populations of brain, spinal cord, and sympathetic chain neurons ultimately project to a subcutaneous WAT depot (IWAT) and the only visceral WAT depot in rodents (MWAT). In addition, the lipolytic stimulus of food deprivation only increased SNS drive to subcutaneous fat (IWAT).
Collapse
Affiliation(s)
- Ngoc Ly T Nguyen
- Department of Biology, Obesity Reversal Center, Georgia State University, Atlanta, Georgia
| | | | | | | |
Collapse
|
88
|
Garretson JT, Bartness TJ. Dynamic modification of hoarding in response to hoard size manipulation. Physiol Behav 2014; 127:8-12. [PMID: 24412721 DOI: 10.1016/j.physbeh.2013.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/20/2013] [Accepted: 12/23/2013] [Indexed: 11/30/2022]
Abstract
Food hoarding is an evolutionary adaptation whereby animals store food for later consumption when food is limited or when predation risk while foraging is high. It also occurs as part of normal appetitive behavior by humans and non-human animals when they are hungry. Contrary to popular belief, humans do not overeat after food restriction/fasting, rather they increase food hoarding, as do hamster species, but not in laboratory rats or mice. Thus, this aspect of human appetitive behavior is better modeled by hamsters than laboratory rats and mice. Here we tested whether male Siberian hamsters (Phodopus sungorus) modify their daily food hoard size under ad libitum-feeding and after food deprivation when we artificially increased or removed their food hoard. When the food hoard was completely removed, hamsters hoarded more food the next day than did animals where the hoard was surreptitiously increased. Hamsters that had alternating daily hoard increases/decreases rapidly adjusted their food hoarding inversely proportional to food hoard size. Similarly, after 48h of food deprivation, a stimulus that initiates high levels of food hoarding upon refeeding in this species, hamsters with artificially increased food hoard size hoarded significantly less than did hamsters where we left the hoard unaltered additionally suggesting that food hoard size directly affects food hoarding. Collectively, as we previously found when the caloric value of the food offered was increased or decreased, food hoard size is in some sense 'regulated' and not simply a reflexive response triggered by inter-meal hunger or food deprivation.
Collapse
Affiliation(s)
- John T Garretson
- Neuroscience Institute, Georgia State University, 24 Peachtree Center Ave NE, Atlanta, GA 30302-4010, USA; Obesity Reversal Center, Georgia State University, 24 Peachtree Center Ave NE, Atlanta, GA 30302-4010, USA
| | - Timothy J Bartness
- Neuroscience Institute, Georgia State University, 24 Peachtree Center Ave NE, Atlanta, GA 30302-4010, USA; Department of Biology, Georgia State University, 24 Peachtree Center Ave NE, Atlanta, GA 30302-4010, USA; Obesity Reversal Center, Georgia State University, 24 Peachtree Center Ave NE, Atlanta, GA 30302-4010, USA.
| |
Collapse
|
89
|
Lukaszewski MA, Eberlé D, Vieau D, Breton C. Nutritional manipulations in the perinatal period program adipose tissue in offspring. Am J Physiol Endocrinol Metab 2013; 305:E1195-207. [PMID: 24045869 DOI: 10.1152/ajpendo.00231.2013] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.
Collapse
Affiliation(s)
- Marie-Amélie Lukaszewski
- Unité Environnement Périnatal et Croissance, UPRES EA 4489, Equipe Dénutritions Maternelles Périnatales, Université Lille-Nord de France, Villeneuve d'Ascq, France
| | | | | | | |
Collapse
|
90
|
Lockie SH, Stefanidis A, Oldfield BJ, Perez-Tilve D. Brown adipose tissue thermogenesis in the resistance to and reversal of obesity: A potential new mechanism contributing to the metabolic benefits of proglucagon-derived peptides. Adipocyte 2013; 2:196-200. [PMID: 24052894 PMCID: PMC3774694 DOI: 10.4161/adip.25417] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/29/2022] Open
Abstract
The capacity for increased thermogenesis through brown adipose tissue (BAT) activation is important for body weight homeostasis. Differences in BAT thermogenesis can underlie significant differences in body weight and body composition, as we demonstrate in a rat model of obesity. This mini-review focuses on our current understanding of physiological BAT regulation, with a view to how it may be exploited therapeutically. BAT activation is under central nervous system control, with the most potent activator of BAT being the sympathetic nervous system, although other humoral and hormonal factors also contribute to BAT regulation. The peptide products of the proglucagon gene are important in energy homeostasis, with well-described effects on feeding and body weight. We recently demonstrated that the peptides glucagon-like peptide 1, glucagon, and oxyntomodulin are also able to induce BAT thermogenesis by a central, sympathetic mechanism. Given the wide spread use of GLP-1 receptor based therapies for type 2 diabetes, drugs targeting this system may be useful in a wider energy balance context.
Collapse
|
91
|
Teubner BJW, Bartness TJ. Anti-ghrelin Spiegelmer inhibits exogenous ghrelin-induced increases in food intake, hoarding, and neural activation, but not food deprivation-induced increases. Am J Physiol Regul Integr Comp Physiol 2013; 305:R323-33. [PMID: 23804279 DOI: 10.1152/ajpregu.00097.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Circulating concentrations of the stomach-derived "hunger-peptide" ghrelin increase in direct proportion to the time since the last meal. Exogenous ghrelin also increases food intake in rodents and humans, suggesting ghrelin may increase post-fast ingestive behaviors. Food intake after food deprivation is increased by laboratory rats and mice, but not by humans (despite dogma to the contrary) or by Siberian hamsters; instead, humans and Siberian hamsters increase food hoarding, suggesting the latter as a model of fasting-induced changes in human ingestive behavior. Exogenous ghrelin markedly increases food hoarding by ad libitum-fed Siberian hamsters similarly to that after food deprivation, indicating sufficiency. Here, we tested the necessity of ghrelin to increase food foraging, food hoarding, and food intake, and neural activation [c-Fos immunoreactivity (c-Fos-ir)] using anti-ghrelin Spiegelmer NOX-B11-2 (SPM), an l-oligonucleotide that specifically binds active ghrelin, inhibiting peptide-receptor interaction. SPM blocked exogenous ghrelin-induced increases in food hoarding the first 2 days after injection, and foraging and food intake at 1-2 h and 2-4 h, respectively, and inhibited hypothalamic c-Fos-ir. SPM given every 24 h across 48-h food deprivation inconsistently inhibited food hoarding after refeeding and c-Fos-ir, similarly to inabilities to do so in laboratory rats and mice. These results suggest that ghrelin may not be necessary for food deprivation-induced foraging and hoarding and neural activation. A possible compensatory response, however, may underlie these findings because SPM treatment led to marked increases in circulating ghrelin concentrations. Collectively, these results show that SPM can block exogenous ghrelin-induced ingestive behaviors, but the necessity of ghrelin for food deprivation-induced ingestive behaviors remains unclear.
Collapse
Affiliation(s)
- Brett J W Teubner
- Department of Biology and Obesity Reversal Center, Georgia State University, Atlanta, Georgia
| | | |
Collapse
|
92
|
Nohara K, Waraich RS, Liu S, Ferron M, Waget A, Meyers MS, Karsenty G, Burcelin R, Mauvais-Jarvis F. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice. Am J Physiol Endocrinol Metab 2013; 304:E1321-30. [PMID: 23612996 PMCID: PMC3680697 DOI: 10.1152/ajpendo.00620.2012] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.
Collapse
Affiliation(s)
- Kazunari Nohara
- Division of Endocrinology, Metabolism, and Molecular Medicine, and
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Harris RBS. Direct and indirect effects of leptin on adipocyte metabolism. Biochim Biophys Acta Mol Basis Dis 2013; 1842:414-23. [PMID: 23685313 DOI: 10.1016/j.bbadis.2013.05.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Georgia Regents University, USA.
| |
Collapse
|
94
|
Vargovic P, Ukropec J, Laukova M, Kurdiova T, Balaz M, Manz B, Ukropcova B, Kvetnansky R. Repeated immobilization stress induces catecholamine production in rat mesenteric adipocytes. Stress 2013; 16:340-52. [PMID: 23035889 DOI: 10.3109/10253890.2012.736046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Catecholamines (CATs), the major regulator of lipolysis in adipose tissue, are produced mainly by the sympathoadrenal system. However, recent studies report endogenous CAT production in adipocytes themselves. This study investigated the effects of single and repeated (7-14 times) immobilization (IMO) stress on CAT production in various fat depots of the rat. Single IMO quickly induced a rise of norepinephrine (NE) and epinephrine (EPI) concentration in mesenteric and brown adipose depots. Adaptive response to repeated IMO included robust increases of NE and EPI levels in mesenteric and subcutaneous adipose tissue. These changes likely reflect the activation of sympathetic nervous system in fat depots by IMO. However, this process was also paralleled by an increase in tyrosine hydroxylase gene expression in mesenteric fat, suggesting regulation of endogenous CAT production in adipose tissue cells. Detailed time-course analysis (time course 10, 30, and 120 min) clearly showed that repeated stress led to increased CAT biosynthesis in isolated mesenteric adipocytes resulting in gradual accumulation of intracellular EPI during IMO exposure. Comparable changes were also found in stromal/vascular fractions, with more pronounced effects of single than repeated IMO. The potential physiological importance of these findings is accentuated by parallel increase in expression of vesicular monoamine transporter 1, indicating a need for CAT storage in adipocyte vesicles. Taken together, we show that CAT production occurs in adipose tissue and may be activated by stress directly in adipocytes.
Collapse
Affiliation(s)
- Peter Vargovic
- Laboratory of Stress Research, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Teubner BJ, Garretson JT, Hwang Y, Cole PA, Bartness TJ. Inhibition of ghrelin O-acyltransferase attenuates food deprivation-induced increases in ingestive behavior. Horm Behav 2013; 63:667-73. [PMID: 23399323 PMCID: PMC3633643 DOI: 10.1016/j.yhbeh.2013.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 01/21/2023]
Abstract
Ghrelin is an orexigenic hormone produced by the stomach in direct proportion to the time since the last meal and has therefore been called a 'hunger signal'. The octanoylation of ghrelin is critical for its orexigenic functions and is dependent upon ghrelin O-acyltransferase (GOAT) catalyzation. The GOAT inhibitor, GO-CoA-Tat, decreases the circulating concentrations of octanoylated ghrelin and attenuates weight gain on a high fat diet in mice. Unlike rats and mice, Siberian hamsters and humans do not increase food intake after food deprivation, but increase food hoarding after food deprivation. In Siberian hamsters, exogenous ghrelin increases ingestive behaviors similarly to 48-56 h food deprivation. Therefore, we tested the necessity of increased ghrelin in food-deprived Siberian hamsters to stimulate ingestive behaviors. To do so we used our simulated natural housing system that allows hamsters to forage for and hoard food. Animals were given an injection of GO-CoA-Tat (i.p., 11 μmol/kg) every 6h because that is the duration of its effective inhibition of octanoylated ghrelin concentrations during a 48 h food deprivation. We found that GO-CoA-Tat attenuated food foraging (0-1h), food intake (0-1 and 2-4h), and food hoarding (0-1h and 2 and 3 days) post-refeeding compared with saline treated animals. This suggests that increased octanoylated ghrelin concentrations play a role in the food deprivation-induced increases in ingestive behavior. Therefore, ghrelin is a critical aspect of the multi-faceted mechanisms that stimulate ingestive behaviors, and might be a critical point for a successful clinical intervention scheme in humans.
Collapse
Affiliation(s)
- Brett J.W. Teubner
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010 USA
| | - John T. Garretson
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010 USA
| | - Yousang Hwang
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Philip A. Cole
- Department of Pharmacology & Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Timothy J. Bartness
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010 USA
- To whom all correspondence should be addressed: Dr. Timothy J. Bartness, Department of Biology, 24 Peachtree Center Ave. NE, Georgia State University, Atlanta, GA 30302-4010, Phone: (404) 413-5334, FAX: (404) 413-5301,
| |
Collapse
|
96
|
Breton C. The hypothalamus-adipose axis is a key target of developmental programming by maternal nutritional manipulation. J Endocrinol 2013; 216:R19-31. [PMID: 23108716 DOI: 10.1530/joe-12-0157] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidemiological studies initially demonstrated that maternal undernutrition leading to low birth weight may predispose for energy balance disorders throughout life. High birth weight due to maternal obesity or diabetes, inappropriate early post-natal nutrition and rapid catch-up growth may also sensitise to increased risk of obesity. As stated by the Developmental Origin of Health and Disease concept, the perinatal perturbation of foetus/neonate nutrient supply might be a crucial determinant of individual programming of body weight set point. The hypothalamus-adipose axis plays a pivotal role in the maintenance of energy homoeostasis controlling the nutritional status and energy storage level. The perinatal period largely corresponds to the period of brain maturation, neuronal differentiation and active adipogenesis in rodents. Numerous dams and/or foetus/neonate dietary manipulation models were developed to investigate the mechanisms underlying perinatal programming in rodents. These models showed several common offspring hypothalamic consequences such as impaired neurogenesis, neuronal functionality, nuclei structural organisation and feeding circuitry hardwiring. These alterations led to a persistent reprogrammed appetite system that favoured the orexigenic pathways, leptin/insulin resistance and hyperphagia. Impaired hypothalamic sympathetic outflow to adipose tissue and/or reduced innervation may also account for modified fat cell metabolism. Thus, enhanced adipogenesis and/or lipogenesis capacities may predispose the offspring to fat accumulation. Abnormal hypothalamus-adipose axis circadian rhythms were also evidenced. This review mainly focuses on studies in rodents. It highlights hormonal and epigenetic mechanisms responsible for long-lasting programming of energy balance in the offspring. Dietary supplementation may provide a therapeutic option using a specific regimen for reversing adverse programming outcomes in humans.
Collapse
Affiliation(s)
- Christophe Breton
- Unité Environnement Périnatal et Croissance, UPRES EA 4489, Equipe Dénutritions Maternelles Périnatales, Université Lille-Nord de France, Villeneuve d'Ascq, France.
| |
Collapse
|
97
|
Kvetnansky R, Ukropec J, Laukova M, Manz B, Pacak K, Vargovic P. Stress stimulates production of catecholamines in rat adipocytes. Cell Mol Neurobiol 2012; 32:801-13. [PMID: 22402834 PMCID: PMC3419009 DOI: 10.1007/s10571-012-9822-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/17/2012] [Indexed: 11/28/2022]
Abstract
The sympathoadrenal system is the main source of catecholamines (CAs) in adipose tissues and therefore plays the key role in the regulation of adipose tissue metabolism. We recently reported existence of an alternative CA-producing system directly in adipose tissue cells, and here we investigated effect of various stressors-physical (cold) and emotional stress (immobilization) on dynamics of this system. Acute or chronic cold exposure increased intracellular norepinephrine (NE) and epinephrine (EPI) concentration in isolated rat mesenteric adipocytes. Gene expression of CA biosynthetic enzymes did not change in adipocytes but was increased in stromal vascular fraction (SVF) after 28 day cold. Exposure of rats to a single IMO stress caused increases in NE and EPI levels, and also gene expression of CA biosynthetic enzymes in adipocytes. In SVF changes were similar but more pronounced. Animals adapted to a long-term cold exposure (28 days, 4°C) did not show those responses found after a single IMO stress either in adipocytes or SVF. Our data indicate that gene machinery accommodated in adipocytes, which is able to synthesize NE and EPI de novo, is significantly activated by stress. Cold-adapted animals keep their adaptation even after an exposure to a novel stressor. These findings suggest the functionality of CAs produced endogenously in adipocytes. Taken together, the newly discovered CA synthesizing system in adipocytes is activated in stress situations and might significantly contribute to regulation of lipolysis and other metabolic or thermogenetic processes.
Collapse
Affiliation(s)
- R Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
98
|
Harris RBS. Sympathetic denervation of one white fat depot changes norepinephrine content and turnover in intact white and brown fat depots. Obesity (Silver Spring) 2012; 20:1355-64. [PMID: 22513494 PMCID: PMC3996845 DOI: 10.1038/oby.2012.95] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is well-established that the sympathetic nervous system (SNS) regulates adipocyte metabolism and recently it has been reported that sensory afferents from white fat overlap anatomically with sympathetic efferents to white fat. The studies described here characterize the response of intact fat pads to selective sympathectomy (local 6-hydroxydopamine (6OHDA) injections) of inguinal (ING) or epididymal (EPI) fat in male NIH Swiss mice and provide in vivo evidence for communication between individual white and brown fat depots. The contralateral ING pad, both EPI pads, perirenal (PR), and mesenteric (MES) pads were significantly enlarged 4 weeks after denervating one ING pad, but only intrascapular brown adipose tissue (IBAT) increased when both ING pads were denervated. Denervation of one or both EPI pad had no effect on fat depot weights. In an additional experiment, norepinephrine turnover (NETO) was inhibited in ING, retroperitoneal (RP), MES, and IBAT 2 days after denervation of both EPI or of both ING pads. NE content was reduced to 10-30% of control values in all fat depots. There was no relation between early changes in NETO and fat pad weight 4 weeks after denervation, even though the reduction in NE content of intact fat pads was maintained. These data demonstrate that there is communication among individual fat pads, presumably through central integration of activity of sensory afferent and sympathetic efferent fibers, that changes sympathetic drive to white adipose tissue in a unified manner. In specific situations, removal of sympathetic efferents to one pad induces a compensatory enlargement of other intact depots.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA.
| |
Collapse
|
99
|
Abstract
The melanocortin-3 receptor-deficient (MC3-R(-/-)) mouse exhibits mild obesity without hyperphagia or hypometabolism. MC3-R deletion is reported to increase adiposity, reduce lean mass and white adipose tissue inflammation, and increase sensitivity to salt-induced hypertension. We show here that the MC3-R(-/-) mouse exhibits defective fasting-induced white adipose tissue lipolysis, fasting-induced liver triglyceride accumulation, fasting-induced refeeding, and fasting-induced regulation of the adipostatic and hypothalamic-adrenal-pituitary axes. Close examination of the hypothalamic-pituitary-adrenal axis showed that MC3-R(-/-) mice exhibit elevated nadir corticosterone as well as a blunted fasting-induced activation of the axis. The previously described phenotypes of this animal and the reduced bone density reported here parallel those of Cushing syndrome. Thus, MC3-R is required for communicating nutritional status to both central and peripheral tissues involved in nutrient partitioning, and this defect explains much of the metabolic phenotype in the model.
Collapse
|
100
|
Sethi J, Sanchez-Alavez M, Tabarean IV. Loss of histaminergic modulation of thermoregulation and energy homeostasis in obese mice. Neuroscience 2012; 217:84-95. [PMID: 22579982 DOI: 10.1016/j.neuroscience.2012.04.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 01/27/2023]
Abstract
Histamine acts centrally to increase energy expenditure and reduce body weight by mechanisms not fully understood. It has been suggested that in the obese state hypothalamic histamine signaling is altered. Previous studies have also shown that histamine acting in the preoptic area controls thermoregulation. We aimed to study the influence of preoptic histamine on body temperature and energy homeostasis in control and obese mice. Activating histamine receptors in the preoptic area by increasing the concentration of endogenous histamine or by local injection of specific agonists induced an elevation of core body temperature and decreased respiratory exchange ratio (RER). In addition, the food intake was significantly decreased. The hyperthermic effect was associated with a rapid increase in mRNA expression of uncoupling proteins in thermogenic tissues, the most pronounced being that of uncoupling protein (UCP) 1 in brown adipose tissue and of UCP2 in white adipose tissue. In diet-induced obese mice histamine had much diminished hyperthermic effects as well as reduced effect on RER. Similarly, the ability of preoptic histamine signaling to increase the expression of uncoupling proteins was abolished. We also found that the expression of mRNA encoding the H1 receptor subtype in the preoptic area was significantly lower in obese animals. These results indicate that histamine signaling in the preoptic area modulates energy homeostasis by regulating body temperature, metabolic parameters and food intake and that the obese state is associated with a decrease in neurotransmitter's influence.
Collapse
Affiliation(s)
- J Sethi
- The Department of Molecular and Integrative Neurosciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|