51
|
Lee HW, Arif E, Altintas MM, Quick K, Maheshwari S, Plezia A, Mahmood A, Reiser J, Nihalani D, Gupta V. High-content screening assay-based discovery of paullones as novel podocyte-protective agents. Am J Physiol Renal Physiol 2017; 314:F280-F292. [PMID: 29046299 DOI: 10.1152/ajprenal.00338.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Podocyte dysfunction and loss is an early event and a hallmark of proteinuric kidney diseases. A podocyte's normal function is maintained via its unique cellular architecture that relies on an intracellular network of filaments, including filamentous actin (F-actin) and microtubules, that provides mechanical support. Damage to this filamentous network leads to changes in cellular morphology and results in podocyte injury, dysfunction, and death. Conversely, stabilization of this network protects podocytes and ameliorates proteinuria. This suggests that stabilization of podocyte architecture via its filamentous network could be a key therapeutic strategy for proteinuric kidney diseases. However, development of podocyte-directed therapeutics, especially those that target the cell's filamentous network, is still lacking, partly because of unavailability of appropriate cellular assays for use in a drug discovery environment. Here, we describe a new high-content screening-based methodology and its implementation on podocytes to identify paullone derivatives as a novel group of podocyte-protective compounds. We find that three compounds, i.e., kenpaullone, 1-azakenpaullone, and alsterpaullone, dose dependently protect podocytes from puromycin aminonucleoside (PAN)-mediated injury in vitro by reducing PAN-induced changes in both the filamentous actin and microtubules, with alsterpaullone providing maximal protection. Mechanistic studies further show that alsterpaullone suppressed PAN-induced activation of signaling downstream of GSK3β and p38 mitogen-activated protein kinase. In vivo it reduced ADR-induced glomerular injury in a zebrafish model. Together, these results identify paullone derivatives as novel podocyte-protective agents for future therapeutic development.
Collapse
Affiliation(s)
- Ha Won Lee
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Mehmet M Altintas
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Kevin Quick
- PerkinElmer Life Sciences, Waltham, Massachusetts
| | - Shrey Maheshwari
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Alexandra Plezia
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Aqsa Mahmood
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Jochen Reiser
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina , Charleston, South Carolina
| | - Vineet Gupta
- Drug Discovery Center, Department of Internal Medicine, Rush University Medical Center , Chicago, Illinois
| |
Collapse
|
52
|
Usefulness of zebrafish larvae to evaluate drug-induced functional and morphological renal tubular alterations. Arch Toxicol 2017; 92:411-423. [DOI: 10.1007/s00204-017-2063-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
|
53
|
MacRae CA, Boss G, Brenner M, Gerszten RE, Mahon S, Peterson RT. A countermeasure development pipeline. Ann N Y Acad Sci 2017; 1378:58-67. [PMID: 27737495 DOI: 10.1111/nyas.13224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023]
Abstract
We have developed an integrated pipeline for countermeasure discovery that, under the auspices of the National Institutes of Health Countermeasures Against Chemical Threats network, is one of the few efforts within academia that by design spans the spectrum from discovery to phase I. The successful implementation of this approach for cyanide would enable efficient proof-of-concept studies that would lay the foundation for a generalizable strategy for parallel mechanistic studies and accelerated countermeasure development in the face of new and emerging chemical threats.
Collapse
Affiliation(s)
- Calum A MacRae
- Brigham and Women's Hospital, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.
| | - Gerry Boss
- Department of Medicine, University of California, San Diego, San Diego, California
| | | | - Robert E Gerszten
- Harvard Medical School, Boston, Massachusetts.,Massachusetts General Hospital, Charlestown, Massachusetts
| | - Sari Mahon
- Department of Medicine, University of California, San Diego, San Diego, California
| | - Randall T Peterson
- Harvard Medical School, Boston, Massachusetts.,Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
54
|
Datta R, Wong A, Camarata T, Tamanna F, Ilahi I, Vasilyev A. Precise Cellular Ablation Approach for Modeling Acute Kidney Injury in Developing Zebrafish. J Vis Exp 2017. [PMID: 28605371 DOI: 10.3791/55606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Acute Kidney Injury (AKI) is a common medical condition with a high mortality rate. With the repair abilities of the kidney, it is possible to restore adequate kidney function after supportive treatment. However, a better understanding of how nephron cell death and repair occur on the cellular level is required to minimize cell death and to enhance the regenerative process. The zebrafish pronephros is a good model system to accomplish this goal because it contains anatomical segments that are similar to the mammalian nephron. Previously, the most common model used to study kidney injury in fish was the pharmacological gentamicin model. However, this model does not allow for precise spatiotemporal control of injury, and hence it is difficult to study cellular and molecular processes involved in kidney repair. To overcome this limitation, this work presents a method through which, in contrast to the gentamicin approach, a specific Green Fuorescent Protein (GFP)-expressing nephron segment can be photoablated using a violet laser light (405 nm). This novel model of AKI provides many advantages that other methods of epithelial injury lack. Its main advantages are the ability to "dial" the level of injury and the precise spatiotemporal control in the robust in vivo animal model. This new method has the potential to significantly advance the level of understanding of kidney injury and repair mechanisms.
Collapse
Affiliation(s)
| | - Ada Wong
- Department of Biomedical Sciences, NYITCOM
| | | | | | | | | |
Collapse
|
55
|
Rider SA, Christian HC, Mullins LJ, Howarth AR, MacRae CA, Mullins JJ. Zebrafish mesonephric renin cells are functionally conserved and comprise two distinct morphological populations. Am J Physiol Renal Physiol 2017; 312:F778-F790. [PMID: 28179256 DOI: 10.1152/ajprenal.00608.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/17/2017] [Accepted: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
Zebrafish provide an excellent model in which to assess the role of the renin-angiotensin system in renal development, injury, and repair. In contrast to mammals, zebrafish kidney organogenesis terminates with the mesonephros. Despite this, the basic functional structure of the nephron is conserved across vertebrates. The relevance of teleosts for studies relating to the regulation of the renin-angiotensin system was established by assessing the phenotype and functional regulation of renin-expressing cells in zebrafish. Transgenic fluorescent reporters for renin (ren), smooth muscle actin (acta2), and platelet-derived growth factor receptor-beta (pdgfrb) were studied to determine the phenotype and secretory ultrastructure of perivascular renin-expressing cells. Whole kidney ren transcription responded to altered salinity, pharmacological renin-angiotensin system inhibition, and renal injury. Mesonephric ren-expressing cells occupied niches at the preglomerular arteries and afferent arterioles, forming intermittent epithelioid-like multicellular clusters exhibiting a granular secretory ultrastructure. In contrast, renin cells of the efferent arterioles were thin bodied and lacked secretory granules. Renin cells expressed the perivascular cell markers acta2 and pdgfrb Transcriptional responses of ren to physiological challenge support the presence of a functional renin-angiotensin system and are consistent with the production of active renin. The reparative capability of the zebrafish kidney was harnessed to demonstrate that ren transcription is a marker for renal injury and repair. Our studies demonstrate substantive conservation of renin regulation across vertebrates, and ultrastructural studies of renin cells reveal at least two distinct morphologies of mesonephric perivascular ren-expressing cells.
Collapse
Affiliation(s)
- Sebastien A Rider
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, Little France, The University of Edinburgh, Edinburgh, United Kingdom;
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom; and
| | - Linda J Mullins
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, Little France, The University of Edinburgh, Edinburgh, United Kingdom
| | - Amelia R Howarth
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, Little France, The University of Edinburgh, Edinburgh, United Kingdom
| | - Calum A MacRae
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John J Mullins
- University/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, Little France, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
56
|
|
57
|
Abstract
Animal models have been an invaluable means to advance biomedical research as they provide experimental avenues for cellular and molecular investigations of disease pathology. The zebrafish (Danio rerio) is a good alternative to mammalian models that can be used to apply powerful genetic experimental methods normally used in invertebrates to answer questions about vertebrate development and disease. In the case of the kidney, the zebrafish has proven itself to be an applicable and versatile experimental system, mainly due to the simplicity of its pronephros, which contains two nephrons that possess conserved structural and physiological aspects with mammalian nephrons. Numerous genes that were not previously related to kidney conditions have now been linked to renal diseases by applying genetic screening with the zebrafish. In fact, a large collection of mutations that affect nephron formation and function were generated through phenotype-based forward screens. Complementary reverse genetic approaches have also been insightful, with methods spanning the use of antisense morpholino oligonucleotides to genome editing approaches such as the CRISPR/Cas9 system, to selectively knock down or knock out genes of interest to see if they produce kidney phenotypes. Acute kidney injury (AKI) has also been easily modeled in the zebrafish by injecting nephrotoxins, directly inducing damage through surgical intervention, or by generating transgenic lines that express compounds in a tissue-specific manner that when exposed to certain drugs promote an apoptotic response within cells. In this chapter, we provide an overview of these various approaches as well as discuss many of the contributions that have been achieved through the use of zebrafish to model kidney disease.
Collapse
|
58
|
McKee RA, Wingert RA. Nephrotoxin Microinjection in Zebrafish to Model Acute Kidney Injury. J Vis Exp 2016. [PMID: 27500823 DOI: 10.3791/54241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The kidneys are susceptible to harm from exposure to chemicals they filter from the bloodstream. This can lead to organ injury associated with a rapid decline in renal function and development of the clinical syndrome known as acute kidney injury (AKI). Pharmacological agents used to treat medical circumstances ranging from bacterial infection to cancer, when administered individually or in combination with other drugs, can initiate AKI. Zebrafish are a useful animal model to study the chemical effects on renal function in vivo, as they form an embryonic kidney comprised of nephron functional units that are conserved with higher vertebrates, including humans. Further, zebrafish can be utilized to perform genetic and chemical screens, which provide opportunities to elucidate the cellular and molecular facets of AKI and develop therapeutic strategies such as the identification of nephroprotective molecules. Here, we demonstrate how microinjection into the zebrafish embryo can be utilized as a paradigm for nephrotoxin studies.
Collapse
Affiliation(s)
- Robert A McKee
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame; Center for Stem Cells and Regenerative Medicine, Department of Biological Sciences, University of Notre Dame
| | - Rebecca A Wingert
- Center for Zebrafish Research, Department of Biological Sciences, University of Notre Dame; Center for Stem Cells and Regenerative Medicine, Department of Biological Sciences, University of Notre Dame;
| |
Collapse
|
59
|
Chang MY, Cheng YC, Hsu SH, Ma TL, Chou LF, Hsu HH, Tian YC, Chen YC, Sun YJ, Hung CC, Pan RL, Yang CW. Leptospiral outer membrane protein LipL32 induces inflammation and kidney injury in zebrafish larvae. Sci Rep 2016; 6:27838. [PMID: 27278903 PMCID: PMC4899798 DOI: 10.1038/srep27838] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
Leptospirosis is an often overlooked cause of acute kidney injury that can lead to multiple organ failure and even death. The principle protein that conserved in many pathogenic leptospires is the outer membrane protein LipL32. However, the role of LipL32 in the pathogenesis of renal injury in leptospirosis is not entirely clear. Here we studied the effects of LipL32 on the developing kidney in zebrafish larvae. Incubation of zebrafish larvae with Leptospira santarosai serovar Shermani induced acute tubular injury predominantly in the proximal pronephric ducts. Furthermore, microinjection of lipl32 mRNA or recombinant LipL32 protein into zebrafish larvae increased macrophage accumulation and disrupted the basolateral location of NA-K-ATPase in pronephric ducts. These changes led to substantial impairment of the pronephric kidney structure. We further demonstrated that morpholino knockdown of tlr2, but not tlr4, reduced the LipL32-induced leukocyte infiltration and kidney injury. These data demonstrate that LipL32 contributes to the renal pathology in leptospirosis and gives some clues to the potential virulence of LipL32. Our results support the use of zebrafish as a model organism for studying the disease mechanism of leptospiral infection. This model might permit the future exploration of the virulence and molecular pathways of different leptospiral outer membrane proteins.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Department of Biochemistry and Molecular Biology, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsu-Lin Ma
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Li-Fang Chou
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yuh-Ju Sun
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
60
|
Hatzold J, Beleggia F, Herzig H, Altmüller J, Nürnberg P, Bloch W, Wollnik B, Hammerschmidt M. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit. eLife 2016; 5. [PMID: 27240166 PMCID: PMC4973367 DOI: 10.7554/elife.14277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/28/2016] [Indexed: 01/11/2023] Open
Abstract
The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression.
Collapse
Affiliation(s)
- Julia Hatzold
- Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Filippo Beleggia
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Hannah Herzig
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Janine Altmüller
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Bernd Wollnik
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| |
Collapse
|
61
|
Abstract
The kidney of the zebrafish shares many features with other vertebrate kidneys including the human kidney. Similar cell types and shared developmental and patterning mechanisms make the zebrafish pronephros a valuable model for kidney organogenesis. Here we review recent advances in studies of zebrafish pronephric development and provide experimental protocols to analyze kidney cell types and structures, measure nephron function, live image kidney cells in vivo, and probe mechanisms of kidney regeneration after injury.
Collapse
Affiliation(s)
- I A Drummond
- Massachusetts General Hospital, Charlestown, MA, United States
| | - A J Davidson
- The University of Auckland, Auckland, New Zealand
| |
Collapse
|
62
|
Poureetezadi SJ, Wingert RA. Little fish, big catch: zebrafish as a model for kidney disease. Kidney Int 2016; 89:1204-10. [PMID: 27165832 DOI: 10.1016/j.kint.2016.01.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/13/2016] [Accepted: 01/21/2016] [Indexed: 02/08/2023]
Abstract
The zebrafish, Danio rerio, is a relevant vertebrate model for biomedical research and translational studies because of its broad genetic conservation with humans. In recent years, scientists have formulated a growing list of zebrafish kidney disease paradigms, the study of which has contributed a multitude of insights into the basic biology of human conditions and even identified potential therapeutic agents. Conversely, there are also distinctive aspects of zebrafish biology lacking in higher vertebrates, such as the capacity to heal without lasting scar formation after tissue damage and the ability to generate nephrons throughout their lifespan, which makes the zebrafish uniquely suited to study regeneration in the context of the kidney. Here, we review several informative zebrafish models of kidney disease and discuss their future applications in nephrology.
Collapse
Affiliation(s)
- Shahram Jevin Poureetezadi
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, USA.
| |
Collapse
|
63
|
Bhandari S, Lee JN, Kim YI, Nam IK, Kim SJ, Kim SJ, Kwak S, Oh GS, Kim HJ, Yoo HJ, So HS, Choe SK, Park R. The fatty acid chain elongase, Elovl1, is required for kidney and swim bladder development during zebrafish embryogenesis. Organogenesis 2016; 12:78-93. [PMID: 27078170 DOI: 10.1080/15476278.2016.1172164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Very long chain fatty acids are required for sphingolipid synthesis, lipid homeostasis, myelin formation, epidermal permeability, and retinal function. Seven different enzymes are known to be involved in the elongation cycle of fatty acids, with different chain-length specificities. Elovl1 is one of those enzymes whose function has been linked mainly to the synthesis of sphingolipids and the epidermal barrier. However, the role of Elovl1 in organogenesis is not clear. In zebrafish, 2 Elovl1 genes, elovl1a and elovl1b, are highly expressed in the swim bladder, and elovl1b is also expressed in the kidney. We found that both elovl1 knockdown embryos contain increased levels of long chain fatty acids from carbon number 14 to 20 as compared to control embryos. Oil-Red-O staining shows that yolk lipid consumption is greatly reduced, whereas lipid droplets accumulate within the swim bladder. Notably, knockdown of either elovl1a or elovl1b affects the expression of genes involved in swim bladder development and impairs inflation of the swim bladder. Consistent with its expression in the pronephros, knockdown of elovl1b alone affects the expression of genes required for kidney development and reduces renal clearance. Our findings strongly suggest that both elovl1 genes are a key determinant of swim bladder and kidney development in zebrafish, which may be comparatively applicable to lung and kidney development in humans.
Collapse
Affiliation(s)
- Sushil Bhandari
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Joon No Lee
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Young-Il Kim
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - In-Koo Nam
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Su-Jung Kim
- b Asan Institute of Life Sciences, University of Ulsan College of Medicine, Asan Medical Center , Seoul , Republic of Korea
| | - Se-Jin Kim
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - SeongAe Kwak
- c Zoonosis Research Center, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Gi-Su Oh
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Hyung-Jin Kim
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Hyun Ju Yoo
- b Asan Institute of Life Sciences, University of Ulsan College of Medicine, Asan Medical Center , Seoul , Republic of Korea
| | - Hong-Seob So
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Seong-Kyu Choe
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea.,d Institute of Wonkwang Medical Science, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea
| | - Raekil Park
- a Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine , Iksan , Jeonbuk , Republic of Korea.,e Department of Biomedical Science & Engineering , Institute of Integrated Technology, Gwangju Institute of Science & Technology , Gwangju , Republic of Korea
| |
Collapse
|
64
|
Wu TS, Yang JJ, Wang YW, Yu FY, Liu BH. Mycotoxin ochratoxin A disrupts renal development via a miR-731/prolactin receptor axis in zebrafish. Toxicol Res (Camb) 2016; 5:519-529. [PMID: 30090366 PMCID: PMC6062247 DOI: 10.1039/c5tx00360a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin ochratoxin A (OTA) frequently contaminates various food and feed products, including cereals, coffee and wine. While the nephrotoxicity and teratogenicity of OTA have been extensively documented, the molecular mechanisms associated with OTA toxicity remained poorly understood in a developing organism. We showed that zebrafish embryos exposed to OTA demonstrated incorrect heart looping and small heart chambers. OTA also impaired the renal morphology and reduced the glomerular filtration rate of the embryonic zebrafish. The treatment of embryos with OTA attenuated the expression of the prolactin receptor, a gene (PRLRa) that has a key role in organogenesis and osmoregulation in vertebrates. OTA not only inhibited the phosphorylation of STAT5 and AKT, but also down-regulated the level of serpina1 mRNA in a dose-dependent manner. On the other hand, the microRNA profiling based on RNA sequencing revealed the up-regulation of microRNA-731 (miR-731) in the OTA-treated embryos. Further in silico analysis predicted that PRLRa was a target gene of miR-731. AntagomiR-731 restored PRLRa levels that had been reduced by OTA and also recovered the pronephros morphology that was damaged by OTA. These observations suggest that the exposure to OTA adversely affected the organogenesis of zebrafish, and the modulation of miR-731 and the PRLR signaling cascade contributed to the abnormal renal development mediated by OTA.
Collapse
Affiliation(s)
- Ting-Shuan Wu
- Graduate Institute of Toxicology , College of Medicine , National Taiwan University , Taipei , Taiwan . ; ; Tel: +886-2-23123456, ext 88602
| | - Jiann-Jou Yang
- Department of Biomedical Sciences , Chung Shan Medical University , Taiwan .
| | - Yan-Wei Wang
- Department of Biomedical Sciences , Chung Shan Medical University , Taiwan .
| | - Feng-Yih Yu
- Department of Biomedical Sciences , Chung Shan Medical University , Taiwan .
- Department of Medical Research , Chung Shan Medical University Hospital , Taichung , Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology , College of Medicine , National Taiwan University , Taipei , Taiwan . ; ; Tel: +886-2-23123456, ext 88602
| |
Collapse
|
65
|
Akhtar MT, Mushtaq MY, Verpoorte R, Richardson MK, Choi YH. Zebrafish as a Model for Systems Medicine R&D: Rethinking the Metabolic Effects of Carrier Solvents and Culture Buffers Determined by (1)H NMR Metabolomics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 20:42-52. [PMID: 26669610 DOI: 10.1089/omi.2015.0119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Zebrafish is a frequently employed model organism in systems medicine and biomarker discovery. A crosscutting fundamental question, and one that has been overlooked in the field, is the "system-wide" (omics) effects induced in zebrafish by metabolic solvents and culture buffers. Indeed, any bioactivity or toxicity test requires that the target compounds are dissolved in an appropriate nonpolar solvent or aqueous media. It is important to know whether the solvent or the buffer itself has an effect on the zebrafish model organism. We evaluated the effects of two organic carrier solvents used in research with zebrafish, as well as in drug screening: dimethyl sulfoxide (DMSO) and ethanol, and two commonly used aqueous buffers (egg water and Hank's balanced salt solution). The effects of three concentrations (0.01, 0.1, and 1%) of DMSO and ethanol were tested in the 5-day-old zebrafish embryo using proton nuclear magnetic resonance ((1)H NMR) based metabolomics. DMSO (1% and 0.1%, but not 0.01%) exposure significantly decreased the levels of adenosine triphosphate (ATP), betaine, alanine, histidine, lactate, acetate, and creatine (p < 0.05). By contrast, ethanol exposure did not alter the embryos' metabolome at any concentration tested. The two different aqueous media noted above impacted the zebrafish embryo metabolome as evidenced by changes in valine, alanine, lactate, acetate, betaine, glycine, glutamate, adenosine triphosphate, and histidine. These results show that DMSO has greater effects on the embryo metabolome than ethanol, and thus is used with caution as a carrier solvent in zebrafish biomarker research and oral medicine. Moreover, the DMSO concentration should not be higher than 0.01%. Careful attention is also warranted for the use of the buffers egg water and Hank's balanced salt solution in zebrafish. In conclusion, as zebrafish is widely used as a model organism in life sciences, metabolome changes induced by solvents and culture buffers warrant further attention for robust systems science, and precision biomarkers that will stand the test of time.
Collapse
Affiliation(s)
- Muhammad T Akhtar
- 1 Natural Products Laboratory, Leiden University , Leiden, the Netherlands .,3 Laboratory of Natural Products, Institute of Bioscience, University Putra Malaysia , Serdang, Malaysia
| | - Mian Y Mushtaq
- 1 Natural Products Laboratory, Leiden University , Leiden, the Netherlands .,4 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University , Kuantan, Malaysia
| | - Robert Verpoorte
- 1 Natural Products Laboratory, Leiden University , Leiden, the Netherlands
| | - Michael K Richardson
- 2 Sylvius Laboratory, Institute of Biology, Leiden University , Leiden, the Netherlands
| | - Young H Choi
- 1 Natural Products Laboratory, Leiden University , Leiden, the Netherlands
| |
Collapse
|
66
|
Skrypnyk NI, Sanker S, Skvarca LB, Novitskaya T, Woods C, Chiba T, Patel K, Goldberg ND, McDermott L, Vinson PN, Calcutt MW, Huryn DM, Vernetti LA, Vogt A, Hukriede NA, de Caestecker MP. Delayed treatment with PTBA analogs reduces postinjury renal fibrosis after kidney injury. Am J Physiol Renal Physiol 2015; 310:F705-F716. [PMID: 26661656 DOI: 10.1152/ajprenal.00503.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023] Open
Abstract
No therapies have been shown to accelerate recovery or prevent fibrosis after acute kidney injury (AKI). In part, this is because most therapeutic candidates have to be given at the time of injury and the diagnosis of AKI is usually made too late for drugs to be efficacious. Strategies to enhance post-AKI repair represent an attractive approach to address this. Using a phenotypic screen in zebrafish, we identified 4-(phenylthio)butanoic acid (PTBA), which promotes proliferation of embryonic kidney progenitor cells (EKPCs), and the PTBA methyl ester UPHD25, which also increases postinjury repair in ischemia-reperfusion and aristolochic acid-induced AKI in mice. In these studies, a new panel of PTBA analogs was evaluated. Initial screening was performed in zebrafish EKPC assays followed by survival assays in a gentamicin-induced AKI larvae zebrafish model. Using this approach, we identified UPHD186, which in contrast to UPHD25, accelerates recovery and reduces fibrosis when administered several days after ischemia-reperfusion AKI and reduces fibrosis after unilateral ureteric obstruction in mice. UPHD25 and 186 are efficiently metabolized to the active analog PTBA in liver and kidney microsome assays, indicating both compounds may act as PTBA prodrugs in vivo. UPHD186 persists longer in the circulation than UPHD25, suggesting that sustained levels of UPHD186 may increase efficacy by acting as a reservoir for renal metabolism to PTBA. These findings validate use of zebrafish EKPC and AKI assays as a drug discovery strategy for molecules that reduce fibrosis in multiple AKI models and can be administered days after initiation of injury.
Collapse
Affiliation(s)
- Nataliya I Skrypnyk
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Subramaniam Sanker
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Tatiana Novitskaya
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Clara Woods
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Takuto Chiba
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Kevin Patel
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Natasha D Goldberg
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lee McDermott
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paige N Vinson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - M Wade Calcutt
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Donna M Huryn
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lawrence A Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andreas Vogt
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Neil A Hukriede
- Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, Tennessee; .,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
67
|
Yin W, Naini SM, Chen G, Hentschel DM, Humphreys BD, Bonventre JV. Mammalian Target of Rapamycin Mediates Kidney Injury Molecule 1-Dependent Tubule Injury in a Surrogate Model. J Am Soc Nephrol 2015; 27:1943-57. [PMID: 26538632 DOI: 10.1681/asn.2015050500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/08/2015] [Indexed: 12/14/2022] Open
Abstract
Kidney injury molecule 1 (KIM-1), an epithelial phagocytic receptor, is markedly upregulated in the proximal tubule in various forms of acute and chronic kidney injury in humans and many other species. Whereas acute expression of KIM-1 has adaptive anti-inflammatory effects, chronic expression may be maladaptive in mice. Here, we characterized the zebrafish Kim family, consisting of Kim-1, Kim-3, and Kim-4. Kim-1 was markedly upregulated in kidney after gentamicin-induced injury and had conserved phagocytic activity in zebrafish. Both constitutive and tamoxifen-induced expression of Kim-1 in zebrafish kidney tubules resulted in loss of the tubule brush border, reduced GFR, pericardial edema, and increased mortality. Kim-1-induced kidney injury was associated with reduction of growth of adult fish. Kim-1 expression led to activation of the mammalian target of rapamycin (mTOR) pathway, and inhibition of this pathway with rapamycin increased survival. mTOR pathway inhibition in KIM-1-overexpressing transgenic mice also significantly ameliorated serum creatinine level, proteinuria, tubular injury, and kidney inflammation. In conclusion, persistent Kim-1 expression results in chronic kidney damage in zebrafish through a mechanism involving mTOR. This observation predicted the role of the mTOR pathway and the therapeutic efficacy of mTOR-targeted agents in KIM-1-mediated kidney injury and fibrosis in mice, demonstrating the utility of the Kim-1 renal tubule zebrafish models.
Collapse
Affiliation(s)
- Wenqing Yin
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Said Movahedi Naini
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Guochun Chen
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Dirk M Hentschel
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Benjamin D Humphreys
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; and Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
68
|
Islam M, Rasul M, Kashem M, Hossain M, Liza A, Sayeed M, Hossain MM. Effect of Oxytetracycline on Thai Silver Barb (Barbonymus gonionotus) and on it’s Culture Environment. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/jfas.2015.323.336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
69
|
Kamei CN, Liu Y, Drummond IA. Kidney Regeneration in Adult Zebrafish by Gentamicin Induced Injury. J Vis Exp 2015:e51912. [PMID: 26275011 DOI: 10.3791/51912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The kidney is essential for fluid homeostasis, blood pressure regulation and filtration of waste from the body. The fundamental unit of kidney function is the nephron. Mammals are able to repair existing nephrons after injury, but lose the ability to form new nephrons soon after birth. In contrast to mammals, adult fish produce new nephrons (neonephrogenesis) throughout their lives in response to growth requirements or injury. Recently, lhx1a has been shown to mark nephron progenitor cells in the adult zebrafish kidney, however mechanisms controlling the formation of new nephrons after injury remain unknown. Here we show our method for robust and reproducible injury in the adult zebrafish kidney by intraperitoneal (i.p.) injection of gentamicin, which uses a noninvasive visual screening process to select for fish with strong but nonlethal injury. Using this method, we can determine optimal gentamicin dosages for injury and go on to demonstrate the effect of higher temperatures on kidney regeneration in zebrafish.
Collapse
Affiliation(s)
- Caramai N Kamei
- Nephrology Division, Department of Medicine, Massachusetts General Hospital
| | - Yan Liu
- Nephrology Division, Department of Medicine, Massachusetts General Hospital; Basic Sciences Division, Fred Hutchinson Cancer Research Center
| | - Iain A Drummond
- Nephrology Division, Department of Medicine, Massachusetts General Hospital; Department of Genetics, Harvard Medical School;
| |
Collapse
|
70
|
Chen YH, Chang CF, Lai YY, Sun CY, Ding YJ, Tsai JN. von Hippel-Lindau gene plays a role during zebrafish pronephros development. In Vitro Cell Dev Biol Anim 2015. [PMID: 26194803 DOI: 10.1007/s11626-015-9938-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
von Hippel-Lindau (pVHL)-mediated ubiquitination of HIF-1α plays a central role in the cellular responses to changes in oxygen availability. In the present study, using zebrafish as a model, we showed that specific knockdown of endogenous vhl leads to pronephros malformation and renal failure. Knockdown of vhl resulted in abnormal kidney development, including curved and cystic pronephric tubule or/and cystic and atrophic glomerulus. Co-injecting capped vhl messenger RNA (mRNA) partially rescued pronephros morphant phenotype, confirming the specificity of the morpholino oligonucleotide (MO)-induced pronephric defects. In keeping with the pronephros phenotype, renal function was affected as well in vhl morphants. Dextran clearance abilities of vhl morphants were significantly reduced as compared with those of control embryos. Further analysis indicated that glomerular integrity is impaired in vhl morphants, while the organization of pronephric duct was minimally affected. Vhl morphants display global increased vegf signaling and angiogenesis. In addition, we found that vhl morphants displayed elevated expression of vegfa in podocytes and increased angiogenesis at pronephric glomerulus and the nearby vessels. Treatment of vegf inducer to embryos also caused pronephros phenotype resembling vhl morphants, further supporting that increased vegfa signaling contribute to the pronephros morphant phenotype. Our study establishes the zebrafish as an alternative vertebrate model system for studying Vhl function during kidney development.
Collapse
Affiliation(s)
- Yau-Hung Chen
- Department of Chemistry, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, New Taipei, Taiwan. .,Bachelor's Program in Advanced Material Sciences, Tamkang University, Tamsui, New Taipei, Taiwan.
| | - Chiung-Fang Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Yu Lai
- Department of Chemistry, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, New Taipei, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yu-Ju Ding
- Department of Chemistry, Tamkang University, No. 151, Ying-Chuan Road, Tamsui, New Taipei, Taiwan
| | - Jen-Ning Tsai
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
71
|
Chiba T, Skrypnyk NI, Skvarca LB, Penchev R, Zhang KX, Rochon ER, Fall JL, Paueksakon P, Yang H, Alford CE, Roman BL, Zhang MZ, Harris R, Hukriede NA, de Caestecker MP. Retinoic Acid Signaling Coordinates Macrophage-Dependent Injury and Repair after AKI. J Am Soc Nephrol 2015; 27:495-508. [PMID: 26109319 DOI: 10.1681/asn.2014111108] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Retinoic acid (RA) has been used therapeutically to reduce injury and fibrosis in models of AKI, but little is known about the regulation of this pathway and what role it has in regulating injury and repair after AKI. In these studies, we show that RA signaling is activated in mouse and zebrafish models of AKI, and that these responses limit the extent of injury and promote normal repair. These effects were mediated through a novel mechanism by which RA signaling coordinated the dynamic equilibrium of inflammatory M1 spectrum versus alternatively activated M2 spectrum macrophages. Our data suggest that locally synthesized RA represses proinflammatory macrophages, thereby reducing macrophage-dependent injury post-AKI, and activates RA signaling in injured tubular epithelium, which in turn promotes alternatively activated M2 spectrum macrophages. Because RA signaling has an essential role in kidney development but is repressed in the adult, these findings provide evidence of an embryonic signaling pathway that is reactivated after AKI and involved in reducing injury and enhancing repair.
Collapse
Affiliation(s)
- Takuto Chiba
- Division of Nephrology, Department of Medicine, Departments of Cell and Developmental Biology, and
| | | | | | | | | | | | | | | | - Haichun Yang
- Pathology, Vanderbilt University, Nashville, Tennessee
| | - Catherine E Alford
- Department of Pathology and Laboratory Medicine, Veteran Affairs Tennessee Valley Health Authority, Nashville, Tennessee; and
| | | | | | | | - Neil A Hukriede
- Departments of Developmental Biology, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Departments of Cell and Developmental Biology, and
| |
Collapse
|
72
|
Cirio MC, de Caestecker MP, Hukriede NA. Zebrafish Models of Kidney Damage and Repair. CURRENT PATHOBIOLOGY REPORTS 2015; 3:163-170. [PMID: 28690924 PMCID: PMC5497754 DOI: 10.1007/s40139-015-0080-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vertebrate kidney possesses the capacity to repair damaged nephrons, and this potential is conserved regardless of the complexity of species-specific kidneys. However, many aquatic vertebrates possess the ability to not only repair existing nephrons, but also generate new nephrons after injury. Adult zebrafish have the ability to recover from acute renal injury not only by replacing lost injured epithelial cells of endogenous nephrons, but by also generating de novo nephrons. This strong regeneration potential, along with other unique characteristics such as the high degree of genetic conservation with humans, the ease of harvesting externally fertilized, transparent embryos, the accessibility to larval and adult kidneys, and the ability to perform whole organism phenotypic small molecule screens, has positioned zebrafish as a unique vertebrate model to study kidney injury. In this review, we provide an overview of the contribution of zebrafish larvae/adult studies to the understanding of renal regeneration, diseases, and therapeutic discovery.
Collapse
Affiliation(s)
- Maria Cecilia Cirio
- Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mark P de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
73
|
Atlas of Cellular Dynamics during Zebrafish Adult Kidney Regeneration. Stem Cells Int 2015; 2015:547636. [PMID: 26089919 PMCID: PMC4451991 DOI: 10.1155/2015/547636] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
The zebrafish is a useful animal model to study the signaling pathways that orchestrate kidney regeneration, as its renal nephrons are simple, yet they maintain the biological complexity inherent to that of higher vertebrate organisms including mammals. Recent studies have suggested that administration of the aminoglycoside antibiotic gentamicin in zebrafish mimics human acute kidney injury (AKI) through the induction of nephron damage, but the timing and details of critical phenotypic events associated with the regeneration process, particularly in existing nephrons, have not been characterized. Here, we mapped the temporal progression of cellular and molecular changes that occur during renal epithelial regeneration of the proximal tubule in the adult zebrafish using a platform of histological and expression analysis techniques. This work establishes the timing of renal cell death after gentamicin injury, identifies proliferative compartments within the kidney, and documents gene expression changes associated with the regenerative response of proliferating cells. These data provide an important descriptive atlas that documents the series of events that ensue after damage in the zebrafish kidney, thus availing a valuable resource for the scientific community that can facilitate the implementation of zebrafish research to delineate the mechanisms that control renal regeneration.
Collapse
|
74
|
McKee RA, Wingert RA. Zebrafish Renal Pathology: Emerging Models of Acute Kidney Injury. CURRENT PATHOBIOLOGY REPORTS 2015; 3:171-181. [PMID: 25973344 PMCID: PMC4419198 DOI: 10.1007/s40139-015-0082-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The renal system is vital to maintain homeostasis in the body, where the kidneys contain nephron functional units that remove metabolic waste from the bloodstream, regulate fluids, and balance electrolytes. Severe organ damage from toxins or ischemia that occurs abruptly can cause acute kidney injury (AKI) in which there is a rapid, life-threatening loss of these activities. Humans have a limited but poorly understood ability to regenerate damaged nephrons after AKI. However, researchers studying AKI in vertebrate animal models such as mammals, and more recently the zebrafish, have documented robust regeneration within the nephron blood filter and tubule following injury. Further, zebrafish kidneys contain progenitors that create new nephrons after AKI. Here, we review investigations in zebrafish which have established a series of exciting renal pathology paradigms that complement existing AKI models and can be implemented to discover insights into kidney regeneration and the roles of stem cells.
Collapse
Affiliation(s)
- Robert A. McKee
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Rebecca A. Wingert
- Department of Biological Sciences, Center for Zebrafish Research, Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
75
|
Christou-Savina S, Beales PL, Osborn DPS. Evaluation of zebrafish kidney function using a fluorescent clearance assay. J Vis Exp 2015:e52540. [PMID: 25742415 DOI: 10.3791/52540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The zebrafish embryo offers a tractable model to study organogenesis and model human genetic disease. Despite its relative simplicity, the zebrafish kidney develops and functions in almost the same way as humans. A major difference in the construction of the human kidney is the presence of millions of nephrons compared to the zebrafish that has only two. However, simplifying such a complex system into basic functional units has aided our understanding of how the kidney develops and operates. In zebrafish, the midline located glomerulus is responsible for the initial blood filtration into two pronephric tubules that diverge to run bilaterally down the embryonic axis before fusing to each other at the cloaca. The pronephric tubules are heavily populated by motile cilia that facilitate the movement of filtrate along the segmented tubule, allowing the exchange of various solutes before finally exiting via the cloaca. Many genes responsible for CKD, including those related to ciliogenesis, have been studied in zebrafish. However, a major draw back has been the difficulty in evaluating zebrafish kidney function after genetic manipulation. Traditional assays to measure kidney dysfunction in humans have proved non translational to zebrafish, mainly due to their aquatic environment and small size. For example, it is not physically possible to extract blood from embryonic staged fish for analysis of urea and creatinine content, as they are too small. In addition, zebrafish do not produce enough urine for testing on a simple proteinuria 'dipstick', which is often performed during initial patient examinations. We describe a fluorescent assay that utilizes the optical transparency of the zebrafish to quantitatively monitor the clearance of a fluorescent dye, over time, from the vasculature and out through the kidney, to give a read out of renal function.
Collapse
Affiliation(s)
| | - Philip L Beales
- Genetics and Genomic Medicine, Institute of Child Health, University College London
| | - Daniel P S Osborn
- Molecular Cell Science Research Centre, St. George's University of London;
| |
Collapse
|
76
|
Ding YJ, Sun CY, Wen CC, Chen YH. Nephroprotective role of resveratrol and ursolic Acid in aristolochic Acid intoxicated zebrafish. Toxins (Basel) 2015; 7:97-109. [PMID: 25590276 PMCID: PMC4303816 DOI: 10.3390/toxins7010097] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022] Open
Abstract
The nephrotoxicity of aristolochic acid (AA) is well known, but information regarding the attenuation of AA-induced toxicity is limited. The aim of the present study was to study the nephroprotective effects of resveratrol (Resv) and ursolic acid (UA) in a zebrafish model. We used two transgenic lines, Tg(wt1b:EGFP) and Tg(gata1:DsRed), to evaluate the nephroprotective effects of Resv and UA by recording subtle changes in the kidney and red blood cell circulation. Our results demonstrated that both Resv and UA treatment can attenuate AA-induced kidney malformations and improve blood circulation. Glomerular filtration rate assays revealed that both Resv and UA treatment can restore renal function (100% for Mock; 56.1% ± 17.3% for AA-treated; 80.2% ± 11.3% for Resv+AA; and 83.1% ± 8.1% for UA+AA, n = 15). Furthermore, real-time RT-PCR experiments showed that pre-treatment with either Resv or UA suppresses expression of pro-inflammatory genes. In conclusion, our findings reveal that AA-induced nephrotoxicities can be attenuated by pre-treatment with either Resv or UA. Therefore, we believe that zebrafish represent an efficient model for screening AA-protective natural compounds.
Collapse
Affiliation(s)
- Yu-Ju Ding
- Department of Chemistry, Tamkang University, No. 151 Ying-chuan Road, Tamsui, New Taipei City 25137, Taiwan.
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 20491, Taiwan.
| | - Chi-Chung Wen
- Department of Mathematics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan.
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, No. 151 Ying-chuan Road, Tamsui, New Taipei City 25137, Taiwan.
| |
Collapse
|
77
|
McKee R, Gerlach GF, Jou J, Cheng CN, Wingert RA. Temporal and spatial expression of tight junction genes during zebrafish pronephros development. Gene Expr Patterns 2014; 16:104-13. [PMID: 25460834 DOI: 10.1016/j.gep.2014.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023]
Abstract
The kidney is comprised of nephrons - epithelial tubes with specialized segments that reabsorb and secrete solutes, perform osmoregulation, and produce urine. Different nephron segments exhibit unique combinations of ion channels, transporter proteins, and cell junction proteins that govern permeability between neighboring cells. The zebrafish pronephros is a valuable model to study the mechanisms of vertebrate nephrogenesis, but many basic features of segment gene expression in renal progenitors and mature nephrons have not been characterized. Here, we analyzed the temporal and spatial expression pattern of tight junction components during zebrafish kidney ontogeny. During nephrogenesis, renal progenitors show discrete expression domains of claudin (cldn) 15a, cldn8, occludin (ocln) a, oclnb, tight junction protein (tjp) 2a, tjp2b, and tjp3. Interestingly, transcripts encoding these genes exhibit dynamic spatiotemporal domains during the time when pronephros segment domains are established. These data provide a useful gene expression map of cell junction components during zebrafish nephrogenesis. As such, this information complements the existing molecular map of nephron segment characteristics, and can be used to characterize kidney development mutants as well as various disease models, in addition to aiding in the elucidation of mechanisms governing epithelial regeneration after acute nephron injury.
Collapse
Affiliation(s)
- Robert McKee
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gary F Gerlach
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jonathan Jou
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Christina N Cheng
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
78
|
Fogelgren B, Zuo X, Buonato JM, Vasilyev A, Baek JI, Choi SY, Chacon-Heszele MF, Palmyre A, Polgar N, Drummond I, Park KM, Lazzara MJ, Lipschutz JH. Exocyst Sec10 protects renal tubule cells from injury by EGFR/MAPK activation and effects on endocytosis. Am J Physiol Renal Physiol 2014; 307:F1334-41. [PMID: 25298525 DOI: 10.1152/ajprenal.00032.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury is common and has a high mortality rate, and no effective treatment exists other than supportive care. Using cell culture models, we previously demonstrated that exocyst Sec10 overexpression reduced damage to renal tubule cells and speeded recovery and that the protective effect was mediated by higher basal levels of mitogen-activated protein kinase (MAPK) signaling. The exocyst, a highly-conserved eight-protein complex, is known for regulating protein trafficking. Here we show that the exocyst biochemically interacts with the epidermal growth factor receptor (EGFR), which is upstream of MAPK, and Sec10-overexpressing cells express greater levels of phosphorylated (active) ERK, the final step in the MAPK pathway, in response to EGF stimulation. EGFR endocytosis, which has been linked to activation of the MAPK pathway, increases in Sec10-overexpressing cells, and gefitinib, a specific EGFR inhibitor, and Dynasore, a dynamin inhibitor, both reduce EGFR endocytosis. In turn, inhibition of the MAPK pathway reduces ligand-mediated EGFR endocytosis, suggesting a potential feedback of elevated ERK activity on EGFR endocytosis. Gefitinib also decreases MAPK signaling in Sec10-overexpressing cells to levels seen in control cells and, demonstrating a causal role for EGFR, reverses the protective effect of Sec10 overexpression following cell injury in vitro. Finally, using an in vivo zebrafish model of acute kidney injury, morpholino-induced knockdown of sec10 increases renal tubule cell susceptibility to injury. Taken together, these results suggest that the exocyst, acting through EGFR, endocytosis, and the MAPK pathway is a candidate therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Ben Fogelgren
- Departments of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Janine M Buonato
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Jeong-In Baek
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Soo Young Choi
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | | | - Aurélien Palmyre
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Noemi Polgar
- Departments of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Iain Drummond
- Departments of Medicine and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Kwon Moo Park
- Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine, Junggu, Daegu, Republic of Korea; and
| | - Matthew J Lazzara
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
79
|
Palmyre A, Lee J, Ryklin G, Camarata T, Selig MK, Duchemin AL, Nowak P, Arnaout MA, Drummond IA, Vasilyev A. Collective epithelial migration drives kidney repair after acute injury. PLoS One 2014; 9:e101304. [PMID: 25010471 PMCID: PMC4092191 DOI: 10.1371/journal.pone.0101304] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a common and significant medical problem. Despite the kidney’s remarkable regenerative capacity, the mortality rate for the AKI patients is high. Thus, there remains a need to better understand the cellular mechanisms of nephron repair in order to develop new strategies that would enhance the intrinsic ability of kidney tissue to regenerate. Here, using a novel, laser ablation-based, zebrafish model of AKI, we show that collective migration of kidney epithelial cells is a primary early response to acute injury. We also show that cell proliferation is a late response of regenerating kidney epithelia that follows cell migration during kidney repair. We propose a computational model that predicts this temporal relationship and suggests that cell stretch is a mechanical link between migration and proliferation, and present experimental evidence in support of this hypothesis. Overall, this study advances our understanding of kidney repair mechanisms by highlighting a primary role for collective cell migration, laying a foundation for new approaches to treatment of AKI.
Collapse
Affiliation(s)
- Aurélien Palmyre
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeongeun Lee
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
| | - Gennadiy Ryklin
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
| | - Troy Camarata
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Martin K. Selig
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Anne-Laure Duchemin
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Paul Nowak
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
| | - M. Amin Arnaout
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Iain A. Drummond
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aleksandr Vasilyev
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
- * E-mail:
| |
Collapse
|
80
|
Kroeger PT, Wingert RA. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis 2014; 52:771-92. [PMID: 24920186 DOI: 10.1002/dvg.22798] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
Abstract
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, 46556
| | | |
Collapse
|
81
|
Abstract
Renal tubule epithelial cells can regenerate in response to acute injury. Although this process remains poorly understood, it appears to involve the reactivation of pathways that are operative during embryonic kidney formation. A better understanding of renal regeneration may lead to the development of new therapies that can attenuate acute kidney injury or expedite recovery. The zebrafish is being used as a model to understand renal regeneration. In this review, we summarize the current knowledge on zebrafish kidney formation, describe methods for inducing acute injury, and focus on the unique capacity of the zebrafish adult kidney to undergo de novo nephron formation in response to damage.
Collapse
Affiliation(s)
- Veronika Sander
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
82
|
Cirio MC, de Groh ED, de Caestecker MP, Davidson AJ, Hukriede NA. Kidney regeneration: common themes from the embryo to the adult. Pediatr Nephrol 2014; 29:553-64. [PMID: 24005792 PMCID: PMC3944192 DOI: 10.1007/s00467-013-2597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate kidney has an inherent ability to regenerate following acute damage. Successful regeneration of the injured kidney requires the rapid replacement of damaged tubular epithelial cells and reconstitution of normal tubular function. Identifying the cells that participate in the regeneration process as well as the molecular mechanisms involved may reveal therapeutic targets for the treatment of kidney disease. Renal regeneration is associated with the expression of genetic pathways that are necessary for kidney organogenesis, suggesting that the regenerating tubular epithelium may be "reprogrammed" to a less-differentiated, progenitor state. This review will highlight data from various vertebrate models supporting the hypothesis that nephrogenic genes are reactivated as part of the process of kidney regeneration following acute kidney injury (AKI). Emphasis will be placed on the reactivation of developmental pathways and how our understanding of the resulting regeneration process may be enhanced by lessons learned in the embryonic kidney.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eric D. de Groh
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mark P. de Caestecker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Alan J. Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
83
|
Kamei CN, Drummond IA. Zebrafish as a Model for Studying Kidney Regeneration. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0044-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
84
|
Al-Hamed MH, van Lennep C, Hynes AM, Chrystal P, Eley L, Al-Fadhly F, El Sayed R, Simms RJ, Meyer B, Sayer JA. Functional modelling of a novel mutation in BBS5. Cilia 2014; 3:3. [PMID: 24559376 PMCID: PMC3931281 DOI: 10.1186/2046-2530-3-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 02/04/2014] [Indexed: 12/22/2022] Open
Abstract
Background Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy disorder with 18 known causative genes (BBS1-18). The primary clinical features are renal abnormalities, rod-cone dystrophy, post-axial polydactyly, learning difficulties, obesity and male hypogonadism. Results We describe the clinical phenotype in three Saudi siblings in whom we have identified a novel mutation in exon 12 of BBS5 (c.966dupT; p.Ala323CysfsX57). This single nucleotide duplication creates a frame shift results in a predicted elongated peptide. Translation blocking Morpholino oligonucleotides were used to create zebrafish bbs5 morphants. Morphants displayed retinal layering defects, abnormal cardiac looping and dilated, cystic pronephric ducts with reduced cilia expression. Morphants also displayed significantly reduced dextran clearance via the pronephros compared to wildtype embryos, suggesting reduced renal function in morphants. The eye, kidney and heart defects reported in morphant zebrafish resemble the human phenotype of BBS5 mutations. The pathogenicity of the novel BBS5 mutation was determined. Mutant mRNA was unable to rescue pleiotropic phenotypes of bbs5 morphant zebrafish and in cell culture we demonstrate a mislocalisation of mutant BBS5 protein which fails to localise discretely with the basal body. Conclusions We conclude that this novel BBS5 mutation has a deleterious function that accounts for the multisystem ciliopathy phenotype seen in affected human patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - John A Sayer
- International Centre for Life, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle NE1 3BZ, UK.
| |
Collapse
|
85
|
McCampbell KK, Wingert RA. New tides: using zebrafish to study renal regeneration. Transl Res 2014; 163:109-22. [PMID: 24183931 PMCID: PMC3946610 DOI: 10.1016/j.trsl.2013.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/24/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022]
Abstract
Over the past several decades, the zebrafish has become one of the major vertebrate model organisms used in biomedical research. In this arena, the zebrafish has emerged as an applicable system for the study of kidney diseases and renal regeneration. The relevance of the zebrafish model for nephrology research has been increasingly appreciated as the understanding of zebrafish kidney structure, ontogeny, and the response to damage has steadily expanded. Recent studies have documented the amazing regenerative characteristics of the zebrafish kidney, which include the ability to replace epithelial populations after acute injury and to grow new renal functional units, termed nephrons. Here we discuss how nephron composition is conserved between zebrafish and mammals, and highlight how recent findings from zebrafish studies utilizing transgenic technologies and chemical genetics can complement traditional murine approaches in the effort to dissect how the kidney responds to acute damage and identify therapeutics that enhance human renal regeneration.
Collapse
Affiliation(s)
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Ind.
| |
Collapse
|
86
|
Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney. PLoS One 2013; 8:e82137. [PMID: 24324758 PMCID: PMC3852951 DOI: 10.1371/journal.pone.0082137] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/21/2013] [Indexed: 01/01/2023] Open
Abstract
The analysis of kidney malformation caused by environmental influences during nephrogenesis or by hereditary nephropathies requires animal models allowing the in vivo observation of developmental processes. The zebrafish has emerged as a useful model system for the analysis of vertebrate organ development and function, and it is suitable for the identification of organotoxic or disease-modulating compounds on a larger scale. However, to fully exploit its potential in high content screening applications, dedicated protocols are required allowing the consistent visualization of inner organs such as the embryonic kidney. To this end, we developed a high content screening compatible pipeline for the automated imaging of standardized views of the developing pronephros in zebrafish larvae. Using a custom designed tool, cavities were generated in agarose coated microtiter plates allowing for accurate positioning and orientation of zebrafish larvae. This enabled the subsequent automated acquisition of stable and consistent dorsal views of pronephric kidneys. The established pipeline was applied in a pilot screen for the analysis of the impact of potentially nephrotoxic drugs on zebrafish pronephros development in the Tg(wt1b:EGFP) transgenic line in which the developing pronephros is highlighted by GFP expression. The consistent image data that was acquired allowed for quantification of gross morphological pronephric phenotypes, revealing concentration dependent effects of several compounds on nephrogenesis. In addition, applicability of the imaging pipeline was further confirmed in a morpholino based model for cilia-associated human genetic disorders associated with different intraflagellar transport genes. The developed tools and pipeline can be used to study various aspects in zebrafish kidney research, and can be readily adapted for the analysis of other organ systems.
Collapse
|
87
|
Dauber A, Golzio C, Guenot C, Jodelka FM, Kibaek M, Kjaergaard S, Leheup B, Martinet D, Nowaczyk MJM, Rosenfeld JA, Zeesman S, Zunich J, Beckmann JS, Hirschhorn JN, Hastings ML, Jacquemont S, Katsanis N. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant. Am J Hum Genet 2013; 93:798-811. [PMID: 24140112 DOI: 10.1016/j.ajhg.2013.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Copy-number variants (CNVs) represent a significant interpretative challenge, given that each CNV typically affects the dosage of multiple genes. Here we report on five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3. Fine mapping localized a commonly deleted 78 kb region that contains three genes: SCRIB, NRBP2, and PUF60. In vivo dissection of the CNV showed discrete contributions of the planar cell polarity effector SCRIB and the splicing factor PUF60 to the syndromic phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr change in PUF60. Functional testing of this allele in vivo and in vitro showed that the mutation perturbs the relative dosage of two PUF60 isoforms and, subsequently, the splicing efficiency of downstream PUF60 targets. These data inform the functions of two genes not associated previously with human genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions.
Collapse
Affiliation(s)
- Andrew Dauber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Sanz AB, Sanchez-Niño MD, Martín-Cleary C, Ortiz A, Ramos AM. Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert Opin Drug Discov 2013; 8:879-95. [PMID: 23627598 DOI: 10.1517/17460441.2013.793667] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinical syndrome characterized by the acute loss of kidney function. AKI is increasingly frequent and is associated with impaired survival and chronic kidney disease progression. Experimental AKI models have contributed to a better understanding of pathophysiological mechanisms but they have not yet resulted in routine clinical application of novel therapeutic approaches. AREAS COVERED The authors present the advances in experimental AKI models over the last decade. Furthermore, the authors review their current and expected impact on novel drug discovery. EXPERT OPINION New AKI models have been developed in rodents and non-rodents. Non-rodents allow the evaluation of specific aspects of AKI in both bigger animals and simpler organisms such as drosophila and zebrafish. New rodent models have recently reproduced described clinical entities, such as aristolochic and warfarin nephropathies, and have also provided better models for old entities such as thrombotic microangiopathy-induced AKI. Several therapies identified in animal models are now undergoing clinical trials in human AKI, including p53 RNAi and bone-marrow derived mesenchymal stem cells. It is conceivable that further refinement of animal models in combination with ongoing trials and novel trials based on already identified potential targets will eventually yield effective therapies for clinical AKI.
Collapse
Affiliation(s)
- Ana B Sanz
- Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundació Jiménez Díaz/Universidad Autónoma de Madrid (IIS-FJD-UAM), Madrid, Spain
| | | | | | | | | |
Collapse
|
89
|
Cianciolo Cosentino C, Skrypnyk NI, Brilli LL, Chiba T, Novitskaya T, Woods C, West J, Korotchenko VN, McDermott L, Day BW, Davidson AJ, Harris RC, de Caestecker MP, Hukriede NA. Histone deacetylase inhibitor enhances recovery after AKI. J Am Soc Nephrol 2013; 24:943-53. [PMID: 23620402 DOI: 10.1681/asn.2012111055] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
At present, there are no effective therapies to ameliorate injury, accelerate recovery, or prevent postinjury fibrosis after AKI. Here, we sought to identify candidate compounds that accelerate recovery after AKI by screening for small molecules that increase proliferation of renal progenitor cells in zebrafish embryos. One compound identified from this screen was the histone deacetylase inhibitor methyl-4-(phenylthio)butanoate, which we subsequently administered to zebrafish larvae and mice 24-48 hours after inducing AKI. In zebrafish, treatment with the compound increased larval survival and proliferation of renal tubular epithelial cells. In mice, treatment accelerated recovery, reduced postinjury tubular atrophy and interstitial fibrosis, and increased the regenerative capacity of actively cycling renal tubular cells by decreasing the number of cells in G2/M arrest. These data suggest that accelerating recovery may be a viable approach to treating AKI and provide proof of concept that a screen in zebrafish embryos can identify therapeutic candidates for kidney injury.
Collapse
|
90
|
Huang J, McKee M, Huang HD, Xiang A, Davidson AJ, Lu HAJ. A zebrafish model of conditional targeted podocyte ablation and regeneration. Kidney Int 2013; 83:1193-200. [PMID: 23466998 PMCID: PMC3672345 DOI: 10.1038/ki.2013.6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Podocytes are specialized cells that contribute critically to the normal structure and function of the glomerular filtration barrier. Their depletion plays an important role in the pathogenesis of glomerulosclerosis. Here, we report generation of a genetic model of conditional podocyte ablation and regeneration in zebrafish using a bacterial nitroreductase strategy to convert a prodrug, Metronidazole, into a cytotoxic metabolite. A transgenic zebrafish line was generated that expresses a green fluorescence protein (GFP) and the nitroreductase fusion protein under the control of the podocin promoter Tg(podocin:nitroreductase-GFP). Treatment of these transgenic zebrafish with Metronidazole results in podocyte apoptosis, a loss of nephrin and podocin expression, foot process effacement, and a leaky glomerular filtration barrier. Following Metronidazole washout, proliferating cells were detected in the glomeruli of recovering transgenic fish with a restoration of nitroreductase-GFP fluorescence, nephrin and podocin expression, a reestablishment of normal foot process architecture and glomerular barrier function. Thus, our studies show that zebrafish podocytes are capable of regenerating following depletion and establish the Tg(podocin:NTR-GFP) fish as a new model to study podocyte injury and repair.
Collapse
Affiliation(s)
- Jianmin Huang
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Caine ST, Mclaughlin KA. Regeneration of functional pronephric proximal tubules after partial nephrectomy in Xenopus laevis. Dev Dyn 2013; 242:219-29. [PMID: 23233460 DOI: 10.1002/dvdy.23916] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 11/02/2012] [Accepted: 11/26/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND While the renal system is critical for maintaining homeostatic equilibrium within the body, it is also susceptible to various kinds of damage. Tubule dysfunction in particular contributes to acute renal injury and chronic kidney disease in millions of patients worldwide. Because current treatments are highly invasive and often unavailable, gaining a better understanding of the regenerative capacity of renal structures is vital. Although the effects of various types of acute damage have been previously studied, the ability of the excretory system to repair itself after dramatic tissue loss due to mechanical damage is less well characterized. RESULTS A novel unilateral nephrectomy technique was developed to excise pronephric proximal tubules from Xenopus laevis tadpoles to study tubule repair after injury. Immunohistochemical detection of protein expression and renal uptake assays demonstrated that X. laevis larvae have the capacity to regenerate functional proximal tubules following resection. CONCLUSIONS We have validated the renal identity of the restored tubules and demonstrated their ability to functional normally providing the first evidence of regeneration of renal tissue in an amphibian system. Importantly, this tubule restoration occurs by means of a process involving an early apoptotic event and the biphasic expression of the matrix metalloproteinase, Xmmp-9.
Collapse
|
93
|
Poureetezadi SJ, Wingert RA. Congenital and Acute Kidney Disease: Translational Research Insights from Zebrafish Chemical Genetics. ACTA ACUST UNITED AC 2013; 1:112. [PMID: 24653992 DOI: 10.4172/2327-5146.1000112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Today, acute kidney injury (AKI) and congenital anomalies of the kidney and urinary tract (CAKUT) represent major issues in healthcare. Both AKI and CAKUT can lead to end stage renal disease (ESRD) that requires life-long medical care with renal replacement therapy. Renal replacement by dialysis is intensive, and kidney transplantation is restricted by organ availability. These limitations, along with the growing epidemic of patients affected by kidney disease, highlight the significant need to identify alternative ways to treat renal injury and birth defects. Drug discovery is one promising avenue of current research. Here, we discuss zebrafish chemical genetics and its latent potency as a method to rapidly identify small molecule therapeutics to accelerate recovery after AKI. Specifically, we review two groundbreaking studies that have recently provided a template to screen for compounds that expand the renal progenitor field in development that were capable of treating AKI in both the zebrafish and the mouse. These new findings demonstrate that drug discovery using zebrafish can be used for relevant translational research to identify clinical interventions for renal conditions in humans.
Collapse
Affiliation(s)
| | - Rebecca A Wingert
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
94
|
Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:559-85. [PMID: 24014448 DOI: 10.1002/wdev.92] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrates form a progressive series of up to three kidney organs during development-the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways.
Collapse
Affiliation(s)
- Gary F Gerlach
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
95
|
Mo D, Ihrke G, Costa SA, Brilli L, Labilloy A, Halfter W, Cianciolo Cosentino C, Hukriede NA, Weisz OA. Apical targeting and endocytosis of the sialomucin endolyn are essential for establishment of zebrafish pronephric kidney function. J Cell Sci 2012; 125:5546-54. [PMID: 22976307 DOI: 10.1242/jcs.111468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Kidney function requires the appropriate distribution of membrane proteins between the apical and basolateral surfaces along the kidney tubule. Further, the absolute amount of a protein at the cell surface versus intracellular compartments must be attuned to specific physiological needs. Endolyn (CD164) is a transmembrane protein that is expressed at the brush border and in apical endosomes of the proximal convoluted tubule and in lysosomes of more distal segments of the kidney. Endolyn has been shown to regulate CXCR4 signaling in hematopoietic precursor cells and myoblasts; however, little is known about endolyn function in the adult or developing kidney. Here we identify endolyn as a gene important for zebrafish pronephric kidney function. Zebrafish endolyn lacks the N-terminal mucin-like domain of the mammalian protein, but is otherwise highly conserved. Using in situ hybridization we show that endolyn is expressed early during development in zebrafish brain, eye, gut and pronephric kidney. Embryos injected with a translation-inhibiting morpholino oligonucleotide targeted against endolyn developed pericardial edema, hydrocephaly and body curvature. The pronephric kidney appeared normal morphologically, but clearance of fluorescent dextran injected into the common cardinal vein was delayed, consistent with a defect in the regulation of water balance in morphant embryos. Heterologous expression of rat endolyn rescued the morphant phenotypes. Interestingly, rescue experiments using mutant rat endolyn constructs revealed that both apical sorting and endocytic/lysosomal targeting motifs are required for normal pronephric kidney function. This suggests that both polarized targeting and postendocytic trafficking of endolyn are essential for the protein's proper function in mammalian kidney.
Collapse
Affiliation(s)
- Di Mo
- Renal Electrolyte Division, University of Pittsburgh School of Medicine Pittsburgh, PA 15261 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Wu TS, Yang JJ, Yu FY, Liu BH. Evaluation of nephrotoxic effects of mycotoxins, citrinin and patulin, on zebrafish (Danio rerio) embryos. Food Chem Toxicol 2012; 50:4398-404. [PMID: 22847133 DOI: 10.1016/j.fct.2012.07.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/30/2012] [Accepted: 07/19/2012] [Indexed: 11/15/2022]
Abstract
Citrinin (CTN) and patulin (PAT) are fungal secondary metabolites which are found in food and feed and showed organotoxicity in mature animals. In this study zebrafish embryos were applied to investigate the developmental toxicity of CTN and PAT on embryonic kidney. In the presence of CTN and PAT, the gross morphology of kidneys from embryos with green fluorescent kidney (wt1b:GFP) was not apparently altered. Histological analysis of CTN-treated embryos indicated cystic glomerular and tubular lesions; a disorganized arrangement of renal cells was also found in the PAT-treated group. From the view point of renal function, dextran clearance abilities of embryos exposed to CTN and PAT were significantly reduced. The damaged renal function caused by CTN could be partially rescued by the administration of pentoxifylline, suggesting the reduction of glomerular blood flow contributes to CTN-induced renal dysfunction. Additionally, CTN induced the expression of proinflammation genes, including COX2a, TNF-α and IL-1β, but failed to modify the levels and distribution of wt1a transcript and Na(+)/K(+)-ATPase protein. In summary, CTN and PAT caused profound nephrotoxicity in histological structure and biological function of zebrafish embryos; the inflammatory pathway and blood rheology may involve in CTN-induced renal impairment.
Collapse
Affiliation(s)
- Ting-Shuan Wu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
97
|
Mitra S, Lukianov S, Ruiz WG, Cianciolo Cosentino C, Sanker S, Traub LM, Hukriede NA, Apodaca G. Requirement for a uroplakin 3a-like protein in the development of zebrafish pronephric tubule epithelial cell function, morphogenesis, and polarity. PLoS One 2012; 7:e41816. [PMID: 22848617 PMCID: PMC3404999 DOI: 10.1371/journal.pone.0041816] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/29/2012] [Indexed: 12/02/2022] Open
Abstract
Uroplakin (UP)3a is critical for urinary tract development and function; however, its role in these processes is unknown. We examined the function of the UP3a-like protein Upk3l, which was expressed at the apical surfaces of the epithelial cells that line the pronephric tubules (PTs) of the zebrafish pronephros. Embryos treated with upk3l-targeted morpholinos showed decreased pronephros function, which was attributed to defects in PT epithelial cell morphogenesis and polarization including: loss of an apical brush border and associated phospho-ERM proteins, apical redistribution of the basolateral Na+/K+–ATPase, and altered or diminished expression of the apical polarity complex proteins Prkcz (atypical protein kinase C zeta) and Pard3 (Par3). Upk3l missing its C-terminal cytoplasmic domain or containing mutations in conserved tyrosine or proline residues did not rescue, or only partially rescued the effects of Upk3l depletion. Our studies indicate that Upk3l promotes epithelial polarization and morphogenesis, likely by forming or stimulating interactions with cytoplasmic signaling or polarity proteins, and that defects in this process may underlie the pathology observed in UP3a knockout mice or patients with renal abnormalities that result from altered UP3a expression.
Collapse
Affiliation(s)
- Shalini Mitra
- Department of Medicine Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stefan Lukianov
- Department of Medicine Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chiara Cianciolo Cosentino
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Subramaniam Sanker
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Linton M. Traub
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
98
|
Rbaibi Y, Cui S, Mo D, Carattino M, Rohatgi R, Satlin LM, Szalinski CM, Swanhart LM, Fölsch H, Hukriede NA, Weisz OA. OCRL1 modulates cilia length in renal epithelial cells. Traffic 2012; 13:1295-305. [PMID: 22680056 DOI: 10.1111/j.1600-0854.2012.01387.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/06/2012] [Accepted: 06/08/2012] [Indexed: 01/18/2023]
Abstract
Lowe syndrome is an X-linked disorder characterized by cataracts at birth, mental retardation and progressive renal malfunction that results from loss of function of the OCRL1 (oculocerebrorenal syndrome of Lowe) protein. OCRL1 is a lipid phosphatase that converts phosphatidylinositol 4,5-bisphosphate to phosphatidylinositol 4-phosphate. The renal pathogenesis of Lowe syndrome patients has been suggested to result from alterations in membrane trafficking, but this cannot fully explain the disease progression. We found that knockdown of OCRL1 in zebrafish caused developmental defects consistent with disruption of ciliary function, including body axis curvature, pericardial edema, hydrocephaly and impaired renal clearance. In addition, cilia in the proximal tubule of the zebrafish pronephric kidney were longer in ocrl morphant embryos. We also found that knockdown of OCRL1 in polarized renal epithelial cells caused elongation of the primary cilium and disrupted formation of cysts in three-dimensional cultures. Calcium release in response to ATP was blunted in OCRL1 knockdown cells, suggesting changes in signaling that could lead to altered cell function. Our results suggest a new role for OCRL1 in renal epithelial cell function that could contribute to the pathogenesis of Lowe syndrome.
Collapse
Affiliation(s)
- Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Pattaro C, Köttgen A, Teumer A, Garnaas M, Böger CA, Fuchsberger C, Olden M, Chen MH, Tin A, Taliun D, Li M, Gao X, Gorski M, Yang Q, Hundertmark C, Foster MC, O'Seaghdha CM, Glazer N, Isaacs A, Liu CT, Smith AV, O'Connell JR, Struchalin M, Tanaka T, Li G, Johnson AD, Gierman HJ, Feitosa M, Hwang SJ, Atkinson EJ, Lohman K, Cornelis MC, Johansson Å, Tönjes A, Dehghan A, Chouraki V, Holliday EG, Sorice R, Kutalik Z, Lehtimäki T, Esko T, Deshmukh H, Ulivi S, Chu AY, Murgia F, Trompet S, Imboden M, Kollerits B, Pistis G, Harris TB, Launer LJ, Aspelund T, Eiriksdottir G, Mitchell BD, Boerwinkle E, Schmidt H, Cavalieri M, Rao M, Hu FB, Demirkan A, Oostra BA, de Andrade M, Turner ST, Ding J, Andrews JS, Freedman BI, Koenig W, Illig T, Döring A, Wichmann HE, Kolcic I, Zemunik T, Boban M, Minelli C, Wheeler HE, Igl W, Zaboli G, Wild SH, Wright AF, Campbell H, Ellinghaus D, Nöthlings U, Jacobs G, Biffar R, Endlich K, Ernst F, Homuth G, Kroemer HK, Nauck M, Stracke S, Völker U, Völzke H, Kovacs P, Stumvoll M, Mägi R, Hofman A, Uitterlinden AG, Rivadeneira F, Aulchenko YS, Polasek O, Hastie N, Vitart V, Helmer C, Wang JJ, Ruggiero D, Bergmann S, Kähönen M, Viikari J, Nikopensius T, Province M, Ketkar S, Colhoun H, Doney A, Robino A, Giulianini F, Krämer BK, Portas L, Ford I, Buckley BM, Adam M, Thun GA, Paulweber B, Haun M, Sala C, Metzger M, Mitchell P, Ciullo M, Kim SK, Vollenweider P, Raitakari O, Metspalu A, Palmer C, Gasparini P, Pirastu M, Jukema JW, Probst-Hensch NM, Kronenberg F, Toniolo D, Gudnason V, Shuldiner AR, Coresh J, Schmidt R, Ferrucci L, Siscovick DS, van Duijn CM, Borecki I, Kardia SLR, Liu Y, Curhan GC, Rudan I, Gyllensten U, Wilson JF, Franke A, Pramstaller PP, Rettig R, Prokopenko I, Witteman JCM, Hayward C, Ridker P, Parsa A, Bochud M, Heid IM, Goessling W, Chasman DI, Kao WHL, Fox CS. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet 2012; 8:e1002584. [PMID: 22479191 PMCID: PMC3315455 DOI: 10.1371/journal.pgen.1002584] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/22/2012] [Indexed: 01/06/2023] Open
Abstract
Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.
Collapse
Affiliation(s)
- Cristian Pattaro
- Institute of Genetic Medicine, European Academy of Bozen/Bolzano (EURAC) and Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Renal Division, Freiburg University Clinic, Freiburg, Germany
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Maija Garnaas
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carsten A. Böger
- Department of Internal Medicine II, University Medical Center Regensburg, Regensburg, Germany
| | - Christian Fuchsberger
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthias Olden
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
- Department of Epidemiology and Preventive Medicine, Regensburg University Medical Center, Regensburg, Germany
| | - Ming-Huei Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Daniel Taliun
- Institute of Genetic Medicine, European Academy of Bozen/Bolzano (EURAC) and Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Man Li
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Xiaoyi Gao
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mathias Gorski
- Department of Epidemiology and Preventive Medicine, University Hospital Regensburg, Regensburg, Germany
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | | | - Meredith C. Foster
- National Heart, Lung, and Blood Institute's Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts, United States of America
| | - Conall M. O'Seaghdha
- National Heart, Lung, and Blood Institute's Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts, United States of America
- Division of Nephrology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nicole Glazer
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Centre for Medical Systems Biology, Leiden, The Netherlands
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Albert V. Smith
- Icelandic Heart Association, Research Institute, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Jeffrey R. O'Connell
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Maksim Struchalin
- Department of Epidemiology and Biostatistics and Department of Forensic Molecular Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Toshiko Tanaka
- Clinical Research Branch, National Institute of Aging, Baltimore, Maryland, United States of America
| | - Guo Li
- University of Washington, Seattle, Washington, United States of America
| | - Andrew D. Johnson
- National Heart, Lung, and Blood Institute's Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts, United States of America
| | - Hinco J. Gierman
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Mary Feitosa
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shih-Jen Hwang
- National Heart, Lung, and Blood Institute's Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts, United States of America
| | - Elizabeth J. Atkinson
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kurt Lohman
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Marilyn C. Cornelis
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Åsa Johansson
- Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anke Tönjes
- Department of Medicine, University of Leipzig, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Elizabeth G. Holliday
- Centre for Clinical Epidemiology and Biostatistics, School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Centre for Information-based Medicine, Hunter Medical Research Institute, Newcastle, Australia
| | - Rossella Sorice
- Institute of Genetics and Biophysics “Adriano-Buzzati Traverso”–CNR, Napoli, Italy
| | - Zoltan Kutalik
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, Centre for Laboratory Medicine Tampere Finn-Medi 2, Tampere, Finland
| | - Tõnu Esko
- Estonian Genome Center of University of Tartu (EGCUT), Tartu, Estonia
- Estonian Biocenter and Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Harshal Deshmukh
- Wellcome Trust Centre for Molecular Medicine, Clinical Research Centre, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Sheila Ulivi
- Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Audrey Y. Chu
- Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | | | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Medea Imboden
- Unit of Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Barbara Kollerits
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | - Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | - Tamara B. Harris
- Laboratory of Epidemiology, Demography, and Biometry, NIA, Bethesda, Maryland, United States of America
| | - Lenore J. Launer
- Laboratory of Epidemiology, Demography, and Biometry, NIA, Bethesda, Maryland, United States of America
| | - Thor Aspelund
- Icelandic Heart Association, Research Institute, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | | | - Braxton D. Mitchell
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Helena Schmidt
- Austrian Stroke Prevention Study, Institute of Molecular Biology and Biochemistry and Department of Neurology, Medical University Graz, Graz, Austria
| | - Margherita Cavalieri
- Austrian Stroke Prevention Study, University Clinic of Neurology, Department of Special Neurology, Medical University Graz, Graz, Austria
| | - Madhumathi Rao
- Division of Nephrology/Tufts Evidence Practice Center, Tufts University School of Medicine, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Frank B. Hu
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Ayse Demirkan
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ben A. Oostra
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stephen T. Turner
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jingzhong Ding
- Department of Internal Medicine/Geriatrics, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jeanette S. Andrews
- Department of Biostatistical Sciences, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Barry I. Freedman
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | | | - Thomas Illig
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angela Döring
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - H.-Erich Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
- Klinikum Grosshadern, Neuherberg, Germany
| | - Ivana Kolcic
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Tatijana Zemunik
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Mladen Boban
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Cosetta Minelli
- Institute of Genetic Medicine, European Academy of Bozen/Bolzano (EURAC) and Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Heather E. Wheeler
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Wilmar Igl
- Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Ghazal Zaboli
- Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah H. Wild
- Center for Population Health Sciences, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Alan F. Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Harry Campbell
- Center for Population Health Sciences, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Ute Nöthlings
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
- popgen Biobank, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Gunnar Jacobs
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
- popgen Biobank, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Reiner Biffar
- Clinic for Prosthodontic Dentistry, Gerostomatology, and Material Science, University of Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Institute of Anatomy and Cell Biology, University of Greifswald, Greifswald, Germany
| | - Florian Ernst
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Heyo K. Kroemer
- Institute of Pharmacology, University of Greifswald, Greifswald, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Sylvia Stracke
- Clinic for Internal Medicine A, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University of Greifswald, Greifswald, Germany
| | - Peter Kovacs
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Department of Medicine, University of Leipzig, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Reedik Mägi
- Estonian Genome Center of University of Tartu (EGCUT), Tartu, Estonia
- Wellcome Trust Centre for Human Genetics and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andre G. Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yurii S. Aulchenko
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ozren Polasek
- Croatian Centre for Global Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Nick Hastie
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Catherine Helmer
- INSERM U897, Université Victor Ségalen Bordeaux 2, ISPED, Bordeaux, France
- Université Bordeaux 2 Victor Segalen, Bordeaux, France
| | - Jie Jin Wang
- Centre for Vision Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Sydney, Australia
- Centre for Eye Research Australia (CERA), University of Melbourne, Melbourne, Australia
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics “Adriano-Buzzati Traverso”–CNR, Napoli, Italy
| | - Sven Bergmann
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Jorma Viikari
- Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Tiit Nikopensius
- Estonian Biocenter and Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Michael Province
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shamika Ketkar
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Helen Colhoun
- Wellcome Trust Centre for Molecular Medicine, Clinical Research Centre, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Alex Doney
- NHS Tayside, Wellcome Trust Centre for Molecular Medicine, Clinical Research Centre, Ninewells Hospital, University of Dundee, Dundee, United Kingdom
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo,” University of Trieste, Trieste, Italy
| | - Franco Giulianini
- Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Bernhard K. Krämer
- University Medical Centre Mannheim, 5th Department of Medicine, Mannheim, Germany
| | - Laura Portas
- Institute of Population Genetics – CNR, Sassari, Italy
| | - Ian Ford
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, United Kingdom
| | - Brendan M. Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Martin Adam
- Unit of Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Gian-Andri Thun
- Unit of Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Margot Haun
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Marie Metzger
- Inserm UMRS 1018, CESP Team 10, Université Paris Sud, Villejuif, France
| | - Paul Mitchell
- Centre for Vision Research, Westmead Millennium Institute, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Marina Ciullo
- Institute of Genetics and Biophysics “Adriano-Buzzati Traverso”–CNR, Napoli, Italy
| | - Stuart K. Kim
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Peter Vollenweider
- Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, Department of Clinical Physiology, Turku University Hospital, University of Turku, Turku, Finland
| | - Andres Metspalu
- Estonian Genome Center of University of Tartu (EGCUT), Tartu, Estonia
- Estonian Biocenter and Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Colin Palmer
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Paolo Gasparini
- Institute for Maternal and Child Health, IRCCS “Burlo Garofolo,” University of Trieste, Trieste, Italy
| | - Mario Pirastu
- Institute of Population Genetics – CNR, Sassari, Italy
| | - J. Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, The Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
| | - Nicole M. Probst-Hensch
- Unit of Chronic Disease Epidemiology, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Vilmundur Gudnason
- Icelandic Heart Association, Research Institute, Kopavogur, Iceland
- University of Iceland, Reykjavik, Iceland
| | - Alan R. Shuldiner
- Department of Medicine, University of Maryland Medical School, Baltimore, Maryland, United States of America
- Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, United States of America
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, United States of America
| | - Reinhold Schmidt
- Austrian Stroke Prevention Study, University Clinic of Neurology, Department of Special Neurology, Medical University Graz, Graz, Austria
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute of Aging, Baltimore, Maryland, United States of America
| | | | - Cornelia M. van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid Borecki
- Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Gary C. Curhan
- Brigham and Women's Hospital and Channing Laboratory, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Igor Rudan
- Center for Population Health Sciences, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Ulf Gyllensten
- Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - James F. Wilson
- Center for Population Health Sciences, University of Edinburgh Medical School, Edinburgh, United Kingdom
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts University, Kiel, Germany
| | - Peter P. Pramstaller
- Institute of Genetic Medicine, European Academy of Bozen/Bolzano (EURAC) and Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Rainer Rettig
- Institute of Physiology, University of Greifswald, Greifswald, Germany
| | - Inga Prokopenko
- Wellcome Trust Centre for Human Genetics and Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Paul Ridker
- Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Afshin Parsa
- Division of Nephrology, University of Maryland Medical School, Baltimore, Maryland, United States of America
| | - Murielle Bochud
- University Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Iris M. Heid
- Department of Epidemiology and Preventive Medicine, University Hospital Regensburg, Regensburg, Germany
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfram Goessling
- Divisions of Genetics and Gastroenterology, Department of Internal Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
| | - Daniel I. Chasman
- Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - W. H. Linda Kao
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland, United States of America
| | - Caroline S. Fox
- National Heart, Lung, and Blood Institute's Framingham Heart Study and the Center for Population Studies, Framingham, Massachusetts, United States of America
- Division of Endocrinology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
100
|
Ding YJ, Chen YH. Developmental nephrotoxicity of aristolochic acid in a zebrafish model. Toxicol Appl Pharmacol 2012; 261:59-65. [PMID: 22472514 DOI: 10.1016/j.taap.2012.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/01/2012] [Accepted: 03/19/2012] [Indexed: 02/05/2023]
Abstract
Aristolochic acid (AA) is a component of Aristolochia plant extracts which is used as a treatment for different pathologies and their toxicological effects have not been sufficiently studied. The aim of this study was to evaluate AA-induced nephrotoxicity in zebrafish embryos. After soaking zebrafish embryos in AA, the embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tubes, pronephric ducts, and cases of atrophic glomeruli. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AA increased. Furthermore, AA-treated embryos exhibited significantly reduced glomerular filtration rates (GFRs) in comparison with mock-control littermates (mock-control: 100±2.24% vs. 10 ppm AA treatment for 3-5h: 71.48±18.84%~39.41±15.88%), indicating that AA treatment not only caused morphological kidney changes but also induced renal failure. In addition to kidney malformations, AA-treated zebrafish embryos also exhibited deformed hearts, swollen pericardiums, impaired blood circulation and the accumulation(s) of red blood cells. Whole-mount in situ hybridization studies using cmlc2 and wt1b as riboprobes indicated that the kidney is more sensitive than the heart to AA damage. Real-time PCR showed that AA can up-regulate the expression of proinflammatory genes like TNFα, cox2 and mpo. These results support the following conclusions: (1) AA-induced renal failure is mediated by inflammation, which causes circulation dysfunction followed by serious heart malformation; and (2) the kidney is more sensitive than the heart to AA injury.
Collapse
Affiliation(s)
- Yu-Ju Ding
- Department of Chemistry, Tamkang University, Tamsui, New Taipei City, Taiwan
| | | |
Collapse
|