51
|
Ougaard ME, Sembach FE, Jensen HE, Pyke C, Knudsen LB, Kvist PH. Liraglutide Improves the Kidney Function in a Murine Model of Chronic Kidney Disease. Nephron Clin Pract 2020; 144:595-606. [PMID: 32877912 DOI: 10.1159/000509418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a global health burden, and the current treatment options only slow down the disease progression. GLP-1 receptor agonists (GLP-1 RA) have shown a renal protective effect in models of CKD; however, the mechanism behind the beneficial effect is not understood. In this study, we investigate the effect of the GLP-1 RA liraglutide in the nephrotoxic serum nephritis (NTN) CKD model. Moreover, we compare the gene expression pattern of liraglutide-treated mice to the gene expression pattern of mice treated with the angiotensin converting enzyme inhibitor, enalapril. METHODS The effect of liraglutide was tested in the NTN model by evaluating the glomerular filtration rate (GFR), albuminuria, mesangial expansion, renal fibrosis, and renal inflammation. Furthermore, the regulation of selected genes involved in CKD and in glomerular, cortical tubulointerstitial, and whole kidney structures was analyzed using a gene expression array on samples following laser capture microdissection. RESULTS Treatment with liraglutide improved CKD hallmarks including GFR, albuminuria, mesangial expansion, renal inflammation, and renal fibrosis. The gene expression revealed that both liraglutide and enalapril reversed the regulation of several fibrosis and inflammation associated genes, which are also regulated in human CKD patients. Furthermore, liraglutide and enalapril both regulated genes in the kidney involved in blood pressure control. CONCLUSIONS Treatment with liraglutide improved the kidney function and diminished renal lesions in NTN-induced mice. Both liraglutide and enalapril reversed the regulation of genes involved in CKD and regulated genes involved in blood pressure control.
Collapse
Affiliation(s)
- Maria E Ougaard
- Pathology & Imaging, Novo Nordisk, Måløv, Denmark, .,Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark,
| | | | - Henrik E Jensen
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Charles Pyke
- Pathology & Imaging, Novo Nordisk, Måløv, Denmark
| | | | | |
Collapse
|
52
|
Martins FL, Bailey MA, Girardi ACC. Endogenous Activation of Glucagon-Like Peptide-1 Receptor Contributes to Blood Pressure Control: Role of Proximal Tubule Na +/H + Exchanger Isoform 3, Renal Angiotensin II, and Insulin Sensitivity. Hypertension 2020; 76:839-848. [PMID: 32755467 DOI: 10.1161/hypertensionaha.120.14868] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The pharmacological administration of GLP-1R (glucagon-like peptide-1 receptor) agonists reduces blood pressure (BP) in type 2 diabetes mellitus and nondiabetic patients. This study tested the hypothesis that endogenous GLP-1R signaling influences the regulation of BP. To this end, SHRs (spontaneously hypertensive rats) and Wistar rats were treated with the GLP-1R antagonist Ex9 (exendin-9) or vehicle for 4 weeks. Rats receiving the GLP-1R agonist Ex4 (exenatide) were used as an additional control. We found that blockade of baseline GLP-1R signaling by Ex9 increased systolic BP in both SHR and Wistar rats, compared with vehicle-treated animals, while Ex4 only reduced systolic BP in SHR. Higher systolic BP induced by Ex9 was accompanied by reduced lithium clearance and lower levels of NHE3 (Na+/H+ exchanger isoform 3) phosphorylation at the serine 552, indicative of increased proximal tubule sodium reabsorption. Additionally, urinary AGT (angiotensinogen) and renal cortical concentration of Ang II (angiotensin II) were enhanced by Ex9. Conversely, Ex4 decreased both urinary AGT and cortical Ang II but exclusively in SHRs. Moreover, both SHR and Wistar rats treated with Ex9 displayed hyperinsulinemia as compared with vehicle-treated rats, whereas Ex4 reduced fasting insulin concentration in SHR. Collectively, these results suggest that endogenous GLP-1R signaling exerts a physiologically relevant effect on BP control, which may be attributable, in part, to its tonic actions on the proximal tubule NHE3-mediated sodium reabsorption, intrarenal renin-angiotensin system, and insulin sensitivity. The possible role of impaired GLP-1R signaling in the pathogenesis of hypertension warrants further investigation.
Collapse
Affiliation(s)
- Flavia L Martins
- From the Heart Institute (InCor), Medical School, University of São Paulo, Brazil (F.L.M., A.C.C.G.)
| | - Matthew A Bailey
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, United Kingdom (M.A.B.)
| | - Adriana C C Girardi
- From the Heart Institute (InCor), Medical School, University of São Paulo, Brazil (F.L.M., A.C.C.G.)
| |
Collapse
|
53
|
Berra C, Manfrini R, Regazzoli D, Radaelli MG, Disoteo O, Sommese C, Fiorina P, Ambrosio G, Folli F. Blood pressure control in type 2 diabetes mellitus with arterial hypertension. The important ancillary role of SGLT2-inhibitors and GLP1-receptor agonists. Pharmacol Res 2020; 160:105052. [PMID: 32650058 DOI: 10.1016/j.phrs.2020.105052] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus and arterial hypertension are major cardiovascular risks factors which shares metabolic and haemodynamic abnormalities as well as pathophysiological mechanisms. The simultaneous presence of diabetes and arterial hypertension increases the risk of left ventricular hypertrophy, congestive heart failure, and stroke, as compared to either condition alone. A number of guidelines recommend lifestyle measures such as salt restriction, weight reduction and ideal body weight mainteinance, regular physical activity and smoking cessation, together with moderation of alcohol consumption and high intake of vegetables and fruits, as the basis for reduction of blood pressure and prevention of CV diseases. Despite the availability of multiple drugs effective for hypertension, BP targets are reached in only 50 % of patients, with even fewer individuals with T2DM-achieving goals. It is established that new emerging classes of type 2 diabetes mellitus treatment, SGLT2 inhibitors and GLP1-receptor agonists, are efficacious on glucose control, and safe in reducing HbA1c significantly, without increasing hypoglycemic episodes. Furthermore, in recent years, many CVOT trials have demonstrated, using GLP1-RA or SGLT2-inihibitors compared to placebo (in combination with the usual diabetes medications) important benefits on reducing MACE (cardio-cerebral vascular events) in the diabetic population. In this hypothesis-driven review, we have examined the anti-hypertensive effects of these novel molecules of the two different classes, in the diabetic population, and suggest that they could have an interesting ancillary role in controlling blood pressure in type 2 diabetic patients.
Collapse
Affiliation(s)
- C Berra
- Department of Endocrine and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy.
| | - R Manfrini
- Departmental Unit of Diabetes and Metabolic Disease, ASST Santi Paolo e Carlo, Milan, Italy
| | - D Regazzoli
- Department of Cardiovascular Disease, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - M G Radaelli
- Department of Endocrine and Metabolic Diseases, IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - O Disoteo
- Endocrinology and Diabetology Service, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - C Sommese
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy
| | - P Fiorina
- University of Milano, Milan, Italy; TID International Center, Invernizzi Research Center, Milan, Italy; Endocrinology and Diabetology Unit, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, Milan, Italy
| | - G Ambrosio
- University of Perugia School of Medicine, Perugia, Italy
| | - F Folli
- Departmental Unit of Diabetes and Metabolic Disease, ASST Santi Paolo e Carlo, Milan, Italy; University of Milano, Milan, Italy; Endocrinology and Metabolism, Department of Health Science University of Milano, Italy
| |
Collapse
|
54
|
Kawanami D, Takashi Y. GLP-1 Receptor Agonists in Diabetic Kidney Disease: From Clinical Outcomes to Mechanisms. Front Pharmacol 2020; 11:967. [PMID: 32694999 PMCID: PMC7338581 DOI: 10.3389/fphar.2020.00967] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetic Kidney Disease (DKD) is the leading cause of end stage renal disease (ESRD) worldwide. Glucagon-like peptide 1 receptor agonists (GLP-1RAs) are now widely used in the treatment of patients with type 2 diabetes (T2D). A series of clinical and experimental studies demonstrated that GLP-1RAs have beneficial effects on DKD, independent of their glucose-lowering abilities, which are mediated by natriuresis, anti-inflammatory and anti-oxidative stress properties. Furthermore, GLP-1RAs have been shown to suppress renal fibrosis. Recent clinical trials have demonstrated that GLP-1RAs have beneficial effects on renal outcomes, especially in patients with T2D who are at high risk for CVD. These findings suggest that GLP-1RAs hold great promise in preventing the onset and progression of DKD. However, GLP-1RAs have only been shown to reduce albuminuria, and their ability to reduce progression to ESRD remains to be elucidated. In this review article, we highlight the current understanding of the clinical efficacy and the mechanisms underlying the effects of GLP-1RAs in DKD.
Collapse
Affiliation(s)
- Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
55
|
Takamiya Y, Kobayashi K, Kudo T, Okuda T, Okamura K, Shirai K, Urata H. Comprehensive Efficacy of the Dipeptidyl Peptidase 4 Inhibitor Alogliptin in Practical Clinical Settings: A Prospective Multi-Center Interventional Observational Study. J Clin Med Res 2020; 12:423-430. [PMID: 32655736 PMCID: PMC7331869 DOI: 10.14740/jocmr4224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 11/11/2022] Open
Abstract
Background This study aimed to verify the safety and efficacy, including glycemic control, of the selective dipeptidyl peptidase 4 inhibitor alogliptin in patients with type 2 diabetes. Methods This study used a multi-center, open-label, prospective observational design. Type 2 diabetes patients who were undergoing dietary therapy and/or exercise therapy alone without sufficient glycemic control (hemoglobin A1c (HbA1c) ≥ 6.5% and < 10%) were administered alogliptin (25 mg/day). The long-term effects (6 and 12 months) on blood glucose, blood pressure, heart rate, body weight and lipids were assessed. Results A final 50 patients were included with a high prevalence of hypertension (77%) and dyslipidemia (72%), and a mean duration of diabetes of 4.5 years. Pre-treatment HbA1c was 7.5% and was significantly decreased at 6 and 12 months (6M: 6.4%, 12M: 6.2%; P < 0.02 vs. 0M, respectively). Body weight, blood pressure and low-density lipoprotein cholesterol were significantly decreased by 6 months and maintained at 12 months. Triglycerides showed a significant decrease at 12 months. No significant differences were observed in HbA1c decrease for different grade of age, duration of diabetes, body mass index and renal function. The degree of decrease in HbA1c was most strongly correlated with pre-treatment HbA1c. Adverse events were noted in three patients, with no serious outcomes. Conclusion The blood glucose-lowering effect and safety of alogliptin were demonstrated regardless of baseline HbA1c, although its effect appeared stronger with higher pre-treatment HbA1c values. Additionally, alogliptin appears useful for managing atherosclerotic risk factors such as body weight and blood pressure.
Collapse
Affiliation(s)
- Yosuke Takamiya
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Tadachika Kudo
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Tetsu Okuda
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Keisuke Okamura
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kazuyuki Shirai
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | | |
Collapse
|
56
|
Yaribeygi H, Maleki M, Sathyapalan T, Jamialahmadi T, Sahebkar A. Incretin-based therapies and renin-angiotensin system: Looking for new therapeutic potentials in the diabetic milieu. Life Sci 2020; 256:117916. [PMID: 32534034 DOI: 10.1016/j.lfs.2020.117916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
Incretin-based therapies include pharmacologic agents such as glucagon like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors which exert potent anti-hyperglycemic effects in the diabetic milieu. They are also shown to have extra-pancreatic effects. Renin-angiotensin system is part of the endocrine system which is widely distributed in the body and is closely involved in water and electrolyte homeostasis as well as renal and cardiovascular functions. Hence the renin-angiotensin system is the main target for treating patients with various renal and cardiovascular disorders. There is growing evidence that incretins have modulatory effects on renin-angiotensin system activity; thereby, can be promising therapeutic agents for the management of renal and cardiovascular disorders. But the exact molecular interactions between incretins and renin-angiotensin system are not clearly understood. In this current study, we have reviewed the possible molecular mechanisms by which incretins modulate renin-angiotensin system activity.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Mina Maleki
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| |
Collapse
|
57
|
Jensen EP, Møller S, Hviid AV, Veedfald S, Holst JJ, Pedersen J, Ørskov C, Sorensen CM. GLP-1-induced renal vasodilation in rodents depends exclusively on the known GLP-1 receptor and is lost in prehypertensive rats. Am J Physiol Renal Physiol 2020; 318:F1409-F1417. [PMID: 32390511 DOI: 10.1152/ajprenal.00579.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate postprandial insulin release. However, GLP-1 also exerts extrapancreatic effects, including renal effects. Some of these renal effects are attenuated in hypertensive rats, where renal expression of GLP-1 receptors is reduced. Here, we assessed the expression and vascular function of GLP-1 receptors in kidneys from young prehypertensive rats. We also examined GLP-1-induced vasodilation in the renal vasculature in wild-type (WT) and GLP-1 receptor knockout mice using wire and pressure myography and the isolated perfused juxtamedullary nephron preparation. We investigated whether GLP-1 and the metabolite GLP-1(9-36)amide had renal vascular effects independent of the known GLP-1 receptor. We hypothesized that hypertension decreased expression of renal GLP-1 receptors. We also hypothesized that GLP-1-induced renal vasodilatation depended on expression of the known GLP-1 receptor. In contrast to normotensive rats, no immunohistochemical staining or vasodilatory function of GLP-1 receptors was found in kidneys from prehypertensive rats. In WT mice, GLP-1 induced renal vasodilation and reduced the renal autoregulatory response. The GLP-1 receptor antagonist exendin 9-39 inhibited relaxation, and GLP-1(9-36)amide had no vasodilatory effect. In GLP-1 receptor knockout mice, no relaxation induced by GLP-1 or GLP-1(9-36)amide was found, the autoregulatory response in afferent arterioles was normal, and no GLP-1-induced reduction of autoregulation was found. We conclude that in prehypertensive kidneys, expression and function of GLP-1 receptors is lost. The renal vasodilatory effect of GLP-1 is mediated exclusively by the known GLP-1 receptor. GLP-1(9-36)amide has no renal vasodilatory effect. GLP-1 attenuates renal autoregulation by reducing the myogenic response.
Collapse
Affiliation(s)
- Elisa P Jensen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Møller
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksander Vauvert Hviid
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- NNF Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
58
|
Postprandial increase in glucagon-like peptide-1 is blunted in severe heart failure. Clin Sci (Lond) 2020; 134:1081-1094. [DOI: 10.1042/cs20190946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 04/14/2020] [Accepted: 04/29/2020] [Indexed: 11/17/2022]
Abstract
Abstract
The relationship between disturbances in glucose homeostasis and heart failure (HF) progression is bidirectional. However, the mechanisms by which HF intrinsically impairs glucose homeostasis remain unknown. The present study tested the hypothesis that the bioavailability of intact glucagon-like peptide-1 (GLP-1) is affected in HF, possibly contributing to disturbed glucose homeostasis. Serum concentrations of total and intact GLP-1 and insulin were measured after an overnight fast and 15 min after the ingestion of a mixed breakfast meal in 49 non-diabetic patients with severe HF and 40 healthy control subjects. Similarly, fasting and postprandial serum concentrations of these hormones were determined in sham-operated rats, and rats with HF treated with an inhibitor of the GLP-1-degrading enzyme dipeptidyl peptidase-4 (DPP4), vildagliptin, or vehicle for 4 weeks. We found that HF patients displayed a much lower increase in postprandial intact and total GLP-1 levels than controls. The increase in postprandial intact GLP-1 in HF patients correlated negatively with serum brain natriuretic peptide levels and DPP4 activity and positively with the glomerular filtration rate. Likewise, the postprandial increases in both intact and total GLP-1 were blunted in HF rats and were restored by DPP4 inhibition. Additionally, vehicle-treated HF rats displayed glucose intolerance and hyperinsulinemia, whereas normal glucose homeostasis was observed in vildagliptin-treated HF rats. We conclude that the postprandial increase in GLP-1 is blunted in non-diabetic HF. Impaired GLP-1 bioavailability after meal intake correlates with poor prognostic factors and may contribute to the establishment of a vicious cycle between glucose disturbance and HF development and progression.
Collapse
|
59
|
Abstract
The discovery that glucagon-like peptide 1 (GLP-1) mediates a significant proportion of the incretin effect during the postprandial period and the subsequent observation that GLP-1 bioactivity is retained in type 2 diabetes (T2D) led to new therapeutic strategies being developed for T2D treatment based on GLP-1 action. Although owing to its short half-life exogenous GLP-1 has no use therapeutically, GLP-1 mimetics, which have a much longer half-life than native GLP-1, have proven to be effective for T2D treatment since they prolong the incretin effect in patients. These GLP-1 mimetics are a desirable therapeutic option for T2D since they do not provoke hypoglycaemia or weight gain and have simple modes of administration and monitoring. Additionally, over more recent years, GLP-1 action has been found to mediate systemic physiological beneficial effects and this has high clinical relevance due to the post-diagnosis complications of T2D. Indeed, recent studies have found that certain GLP-1 analogue therapies improve the cardiovascular outcomes for people with diabetes. Furthermore, GLP-1-based therapies may enable new therapeutic strategies for diseases that can also arise independently of the clinical manifestation of T2D, such as dementia and Parkinson's disease. GLP-1 functions by binding to its receptor (GLP-1R), which expresses mainly in pancreatic islet beta cells. A better understanding of the mechanisms and signalling pathways by which acute and chronic GLP-1R activation alleviates disease phenotypes and induces desirable physiological responses during healthy conditions will likely lead to the development of new therapeutic GLP-1 mimetic-based therapies, which improve prognosis to a greater extent than current therapies for an array of diseases.
Collapse
Affiliation(s)
- Josh Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Stephen C. Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | | |
Collapse
|
60
|
Lytvyn Y, Bjornstad P, van Raalte DH, Heerspink HL, Cherney DZI. The New Biology of Diabetic Kidney Disease-Mechanisms and Therapeutic Implications. Endocr Rev 2020; 41:5601424. [PMID: 31633153 PMCID: PMC7156849 DOI: 10.1210/endrev/bnz010] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease remains the most common cause of end-stage kidney disease in the world. Despite reductions in incidence rates of myocardial infarction and stroke in people with diabetes over the past 3 decades, the risk of diabetic kidney disease has remained unchanged, and may even be increasing in younger individuals afflicted with this disease. Accordingly, changes in public health policy have to be implemented to address the root causes of diabetic kidney disease, including the rise of obesity and diabetes, in addition to the use of safe and effective pharmacological agents to prevent cardiorenal complications in people with diabetes. The aim of this article is to review the mechanisms of pathogenesis and therapies that are either in clinical practice or that are emerging in clinical development programs for potential use to treat diabetic kidney disease.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Petter Bjornstad
- Department of Medicine, Division of Nephrology, Department of Pediatrics, Section of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel H van Raalte
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Netherlands
| | - Hiddo L Heerspink
- The George Institute for Global Health, Sydney, Australia.,Department of Clinical Pharmacology, University of Groningen, Groningen, Netherlands
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
61
|
Sarafidis P, Ferro CJ, Morales E, Ortiz A, Malyszko J, Hojs R, Khazim K, Ekart R, Valdivielso J, Fouque D, London GM, Massy Z, Ruggenenti P, Porrini E, Wiecek A, Zoccali C, Mallamaci F, Hornum M. SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA. Nephrol Dial Transplant 2020; 34:208-230. [PMID: 30753708 DOI: 10.1093/ndt/gfy407] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) in patients with diabetes mellitus (DM) is a major problem of public health. Currently, many of these patients experience progression of cardiovascular and renal disease, even when receiving optimal treatment. In previous years, several new drug classes for the treatment of type 2 DM have emerged, including inhibitors of renal sodium-glucose co-transporter-2 (SGLT-2) and glucagon-like peptide-1 (GLP-1) receptor agonists. Apart from reducing glycaemia, these classes were reported to have other beneficial effects for the cardiovascular and renal systems, such as weight loss and blood pressure reduction. Most importantly, in contrast to all previous studies with anti-diabetic agents, a series of recent randomized, placebo-controlled outcome trials showed that SGLT-2 inhibitors and GLP-1 receptor agonists are able to reduce cardiovascular events and all-cause mortality, as well as progression of renal disease, in patients with type 2 DM. This document presents in detail the available evidence on the cardioprotective and nephroprotective effects of SGLT-2 inhibitors and GLP-1 analogues, analyses the potential mechanisms involved in these actions and discusses their place in the treatment of patients with CKD and DM.
Collapse
Affiliation(s)
- Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charles J Ferro
- Department of Renal Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Enrique Morales
- Department of Nephrology, Hospital Universitario 12 de Octubre and Research Institute i+12, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, School of Medicine, University Autonoma of Madrid, FRIAT and REDINREN, Madrid, Spain
| | - Jolanta Malyszko
- Department of Nephrology, Dialysis and Internal Medicine, Warsaw Medical University, Warsaw, Poland
| | - Radovan Hojs
- Department of Nephrology, University Medical Center and Faculty of Medicine, Maribor University, Maribor, Slovenia
| | - Khaled Khazim
- Department of Nephrology and Hypertension, Galilee Medical Center, Nahariya, Israel
| | - Robert Ekart
- Department of Nephrology, University Medical Center and Faculty of Medicine, Maribor University, Maribor, Slovenia
| | - Jose Valdivielso
- Vascular and Renal Translational Research Group, Institut de Recerca Biomedica de Lleida, IRBLleida, Lleida and RedInRen, ISCIII, Spain
| | - Denis Fouque
- Department of Nephrology, Centre Hospitalier Lyon Sud, University of Lyon, Lyon, France
| | | | - Ziad Massy
- Hopital Ambroise Paré, Paris Ile de France Ouest (UVSQ) University, Paris, France
| | - Petro Ruggenenti
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Nephrology and Dialysis Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Esteban Porrini
- Faculty of Medicine, University of La Laguna, Instituto de Tecnología Biomédicas (ITB) Hospital Universitario de Canarias, Tenerife, Canary Islands, Spain
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Carmine Zoccali
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases Unit, Ospedali Riuniti, Reggio Calabria, Italy
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology and Pathophysiology of Hypertension and Renal Diseases Unit, Ospedali Riuniti, Reggio Calabria, Italy
| | - Mads Hornum
- Department of Nephrology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
62
|
Hviid AVR, Sørensen CM. Glucagon-like peptide-1 receptors in the kidney: impact on renal autoregulation. Am J Physiol Renal Physiol 2020; 318:F443-F454. [DOI: 10.1152/ajprenal.00280.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and strategies based on this blood sugar-reducing and appetite-suppressing hormone are used to treat obesity and type 2 diabetes. However, the GLP-1 receptor (GLP-1R) is also present in the kidney, where it influences renal function. The effect of GLP-1 on the kidney varies between humans and rodents. The effect of GLP-1 on kidney function also seems to vary depending on its concentration and the physiological or pathological state of the kidney. In studies with rodents or humans, acute infusion of pharmacological doses of GLP-1 stimulates natriuresis and diuresis. However, the effect on the renal vasculature is less clear. In rodents, GLP-1 infusion increases renal plasma flow and glomerular filtration rate, suggesting renal vasodilation. In humans, only a subset of the study participants exhibits increased renal plasma flow and glomerular filtration rate. Differential status of kidney function and changes in renal vascular resistance of the preglomerular arterioles may account for the different responses of the human study participants. Because renal function in patients with type 2 diabetes is already at risk or compromised, understanding the effects of GLP-1R activation on kidney function in these patients is particularly important. This review examines the distribution of GLP-1R in the kidney and the effects elicited by GLP-1 or GLP-1R agonists. By integrating results from acute and chronic studies in healthy individuals and patients with type 2 diabetes along with those from rodent studies, we provide insight into how GLP-1R activation affects renal function and autoregulation.
Collapse
Affiliation(s)
- Aleksander Vauvert R. Hviid
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
63
|
Trevisan M, Fu EL, Szummer K, Norhammar A, Lundman P, Wanner C, Sjölander A, Jernberg T, Carrero JJ. Glucagon-like peptide-1 receptor agonists and the risk of cardiovascular events in diabetes patients surviving an acute myocardial infarction. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2020; 7:104-111. [PMID: 31999317 PMCID: PMC7957901 DOI: 10.1093/ehjcvp/pvaa004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/03/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
AIMS Trial evidence indicates that glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may reduce the risk of cardiovascular (CV) events in patients with diabetes and myocardial infarction (MI). We aimed to expand this observation to routine care settings. METHODS AND RESULTS Prospective observational study including all patients with diabetes surviving an MI and registered in the nationwide SWEDEHEART registry during 2010-17. Multivariable Cox regression analyses were used to estimate the association between GLP-1 RAs use and the study outcome, which was a composite of stroke, heart failure, Re-infarction, or CV death. Covariates included demographics, comorbidities, presentation at admission, and use of secondary CV prevention therapies. In total, 17 868 patients with diabetes were discharged alive after a first event of MI. Their median age was 71 years, 36% were women and their median estimated glomerular filtration rate was 75 mL/min/1.73m2. Of those, 365 (2%) were using GLP-1 RAs. During median 3 years of follow-up, 7005 patients experienced the primary composite outcome. Compared with standard of diabetes care, use of GLP-1 RAs was associated with a lower event risk [adjusted hazard ratio (HR) 0.72; 95% confidence interval (CI): 0.56-0.92], mainly attributed to a lower rate of re-infarction and stroke. Results were similar after propensity score matching or when compared with users of sulfonylurea. There was no suggestion of heterogeneity across subgroups of age, sex, chronic kidney disease, and STEMI. CONCLUSION GLP-1 RAs use, compared with standard of diabetes care, was associated with lower risk for major CV events in healthcare-managed survivors of an MI.
Collapse
Affiliation(s)
- Marco Trevisan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77 Stockholm, Sweden
| | - Edouard L Fu
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karolina Szummer
- Department of Cardiology, Karolinska University Hospital, Solna, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Anna Norhammar
- Department of Medicine, Karolinska Institutet, Solna, Sweden.,Capio Saint Görans hospital, Stockholm, Sweden
| | - Pia Lundman
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Christoph Wanner
- Department of Medicine, Würzburg University Clinic, Würzburg, Germany
| | - Arvid Sjölander
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77 Stockholm, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, 171 77 Stockholm, Sweden
| |
Collapse
|
64
|
Akhter MS, Uppal P. Toxicity of Metformin and Hypoglycemic Therapies. Adv Chronic Kidney Dis 2020; 27:18-30. [PMID: 32146997 DOI: 10.1053/j.ackd.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Metformin along with other antidiabetic medications provide benefit to patients in the treatment of type 2 diabetes mellitus, but caution is advised in certain scenarios to avoid toxicity in kidney disease. Renal dosing, monitoring of kidney function, and evaluating the risk of developing serious side effects are warranted with some agents. The available literature with regard to incidence of adverse events and toxicity of hypoglycemic therapies is reviewed.
Collapse
|
65
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 915] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
66
|
Silva Dos Santos D, Polidoro JZ, Borges-Júnior FA, Girardi ACC. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective. Am J Physiol Cell Physiol 2019; 318:C328-C336. [PMID: 31721613 DOI: 10.1152/ajpcell.00275.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors, also known as gliflozins, improve glycemia by suppressing glucose reuptake in the renal proximal tubule. Currently, SGLT2 inhibitors are primarily indicated as antidiabetic agents; however, their benefits extend far beyond glucose control. Cardiovascular outcome trials indicated that all studied SGLT2 inhibitors remarkably and consistently reduce cardiovascular mortality and hospitalization for heart failure (HF) in type 2 diabetes (T2D) patients. Nevertheless, the mechanisms underlying the unprecedented cardiovascular benefits of gliflozins remain elusive. Multiple processes that directly or indirectly improve myocardial performance may be involved, including the amelioration of proximal tubular dysfunction. Therefore, this paper provides a perspective on the potential cellular and molecular mechanisms of the proximal tubule that may, at least in part, mediate the cardioprotection conferred by SGLT2 inhibitors. Specifically, we focus on the effects of SGLT2 on extracellular volume homeostasis, including its plausible functional and physical association with the apical Na+/H+ exchanger isoform 3 as well as its complex and its possible bidirectional interactions with the intrarenal angiotensin system and renal sympathetic nervous system. We also discuss evidence supporting a potential benefit of gliflozins in reducing cardiovascular risk, attributable to their effect on proximal tubule handling of uric acid and albumin as well as in erythropoietin production. Unraveling the mechanisms behind the beneficial actions of SGLT2 inhibitors may not only contribute to a better understanding of the pathophysiology of cardiovascular diseases but also enable repurposing of gliflozins to improve the routine management of HF patients with or without T2D.
Collapse
Affiliation(s)
| | - Juliano Z Polidoro
- Heart Institute (InCor), University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Adriana C C Girardi
- Heart Institute (InCor), University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
67
|
De Cosmo S, Viazzi F, Piscitelli P, Leoncini G, Mirijello A, Bonino B, Pontremoli R. Impact of CVOTs in primary and secondary prevention of kidney disease. Diabetes Res Clin Pract 2019; 157:107907. [PMID: 31676332 DOI: 10.1016/j.diabres.2019.107907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes mellitus is the leading cause of end stage renal disease worldwide. Diabetic kidney disease, whose main clinical manifestations are albuminuria and decline of glomerular filtration rate, affects up to 40% of patients. Sodium Glucose cotransporter-2 inhibitors (SGLT2-is) and Glucagon-like peptide-1 receptor agonists (GLP-1ras) are new classes of anti-hyperglycemic drugs which have demonstrated to improve renal outcome. Renal benefits of both SGLT2-is and GLP-1ras are acknowledged from data of large randomized phase III clinical trials conducted to assess their cardiovascular safety. In this review, we will focus on renal results of major cardiovascular outcome trials, and we will describe direct and indirect mechanisms through which they confer renal protection.
Collapse
Affiliation(s)
- Salvatore De Cosmo
- Unit of Internal Medicine, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG 71013, Italy.
| | - Francesca Viazzi
- Università degli Studi and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pamela Piscitelli
- Unit of Internal Medicine, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG 71013, Italy
| | - Giovanna Leoncini
- Università degli Studi and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Mirijello
- Unit of Internal Medicine, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG 71013, Italy
| | - Barbara Bonino
- Università degli Studi and IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Pontremoli
- Università degli Studi and IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
68
|
Xue L, Pan Z, Yin Q, Zhang P, Zhang J, Qi W. Liraglutide promotes autophagy by regulating the AMPK/mTOR pathway in a rat remnant kidney model of chronic renal failure. Int Urol Nephrol 2019; 51:2305-2313. [PMID: 31531806 DOI: 10.1007/s11255-019-02274-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND We aimed to determine whether the glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide (LRG) could ameliorate renal function through promoting autophagy via regulating the AMPK/mTOR pathway in a rat remnant kidney model of chronic renal failure. METHODS Rats were divided into four groups (n = 10 per group) as follows: (1) sham, (2) nephrectomy (NPX), (3) LRG control (LRG control), and (4) LRG treatment (LRG). Except for rats in the sham group, all rats underwent 5/6 nephrectomy surgery to establish a remnant kidney model of chronic renal failure. In addition, rats in LRG group received LRG as a subcutaneous injection at a dose of 10 mg/kg (once daily) for 4 consecutive weeks, whereas rats in the LRG control group received treatment similar to that of rats in the LRG group, except saline was used instead of LRG. After 4 weeks of treatment, serum creatinine (Scr), blood urea nitrogen (BUN), and urinary albumin excretion were determined. Immunofluorescence assay, immunoprecipitation assay, and Western blot analysis were performed to evaluate the AMPK/mTOR pathway expression of proteins. RESULTS Nephrectomized rats (including rats in the NPX, LRG control, and LRG groups) showed higher levels of the Scr, BUN, and urinary albumin excretion, as well as down-regulation of GLP-1R, LC3-II, and AMPK phosphorylation, and up-regulation of mTOR phosphorylation when compared with rats in the sham group. However, those changes were blocked by liraglutide. CONCLUSION Liraglutide may promote autophagy through regulating the AMPK/mTOR pathway to exert renoprotective effects in a rat remnant kidney model of chronic renal failure.
Collapse
Affiliation(s)
- Lingyu Xue
- Department of Nephrology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China.
| | - Zhanglei Pan
- Department of Nephrology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Qiao Yin
- Department of Nephrology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Peng Zhang
- Department of Nephrology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Jing Zhang
- Department of Nephrology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Wenwen Qi
- Department of Nephrology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| |
Collapse
|
69
|
Katsurada K, Nandi SS, Sharma NM, Zheng H, Liu X, Patel KP. Does glucagon-like peptide-1 induce diuresis and natriuresis by modulating afferent renal nerve activity? Am J Physiol Renal Physiol 2019; 317:F1010-F1021. [PMID: 31390233 DOI: 10.1152/ajprenal.00028.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1), an incretin hormone, has diuretic and natriuretic effects. The present study was designed to explore the possible underlying mechanisms for the diuretic and natriuretic effects of GLP-1 via renal nerves in rats. Immunohistochemistry revealed that GLP-1 receptors were avidly expressed in the pelvic wall, the wall being adjacent to afferent renal nerves immunoreactive to calcitonin gene-related peptide, which is the dominant neurotransmitter for renal afferents. GLP-1 (3 μM) infused into the left renal pelvis increased ipsilateral afferent renal nerve activity (110.0 ± 15.6% of basal value). Intravenous infusion of GLP-1 (1 µg·kg-1·min-1) for 30 min increased renal sympathetic nerve activity (RSNA). After the distal end of the renal nerve was cut to eliminate the afferent signal, the increase in efferent renal nerve activity during intravenous infusion of GLP-1 was diminished compared with the increase in total RSNA (17.0 ± 9.0% vs. 68.1 ± 20.0% of the basal value). Diuretic and natriuretic responses to intravenous infusion of GLP-1 were enhanced by total renal denervation (T-RDN) with acute surgical cutting of the renal nerves. Selective afferent renal nerve denervation (A-RDN) was performed by bilateral perivascular application of capsaicin on the renal nerves. Similar to T-RDN, A-RDN enhanced diuretic and natriuretic responses to GLP-1. Urine flow and Na+ excretion responses to GLP-1 were not significantly different between T-RDN and A-RDN groups. These results indicate that the diuretic and natriuretic effects of GLP-1 are partly governed via activation of afferent renal nerves by GLP-1 acting on sensory nerve fibers within the pelvis of the kidney.
Collapse
Affiliation(s)
- Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota
| | - Xuefei Liu
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
70
|
Kang Z, Zeng J, Zhang T, Lin S, Gao J, Jiang C, Fan R, Yin D. Hyperglycemia induces NF-κB activation and MCP-1 expression via downregulating GLP-1R expression in rat mesangial cells: inhibition by metformin. Cell Biol Int 2019; 43:940-953. [PMID: 31136032 DOI: 10.1002/cbin.11184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/25/2019] [Indexed: 12/25/2022]
Abstract
Hyperglycemia impairs glucagon-like peptide-1 receptor (GLP-1R) signaling in multiple cell types and thereby potentially attenuates the therapeutic effects of GLP-1R agonists. We hypothesized that the downregulation of GLP-1R by hyperglycemia might reduce the renal-protective effects of GLP-1R agonists in diabetic nephropathy (DN). In this study, we examined the effects of high glucose on the expression of GLP-1R and its signaling pathways in the HBZY-1 rat mesangial cell line. We found that high glucose reduced GLP-1R messenger RNA (mRNA) levels in HBZY-1 cells and in the renal cortex in db/db mice comparing with control groups. In consistence, GLP-1R agonist exendin-4 induced CREB phosphorylation was attenuated by high glucose but not low glucose treatment, which is paralleled with abrogated anti-inflammatory functions in HBZY-1 cells linked with nuclear factor-κB (NF-κB) activation. In consistence, GLP-1R inhibition aggravated the high glucose-induced activation of NF-κB and MCP-1 protein levels in cultured HBZY-1 cells while overexpression of GLP-1R opposite effects. We further proved that metformin restored high glucose-inhibited GLP-1R mRNA expression and decreased high glucose evoked inflammation in HBZY-1 cells. On the basis of these findings, we conclude that high glucose lowers GLP-1R expression and leads to inflammatory responses in mesangial cells, which can be reversed by metformin. These data support the rationale of combinative therapy of metformin with GLP-1R agonists in DN.
Collapse
Affiliation(s)
- Zhanfang Kang
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China.,Department of Basic Medical Research, Qingyuan hospital affiliated to Jinan University, Qingyuan, 511518, Guangdong, China
| | - Jianwen Zeng
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Tian Zhang
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Shuyun Lin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Jun Gao
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Chonghe Jiang
- Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14183, Stockholm, Sweden
| | - Dazhong Yin
- Department of Basic Medical Research, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| |
Collapse
|
71
|
García-Carro C, Vergara A, Agraz I, Jacobs-Cachá C, Espinel E, Seron D, Soler MJ. The New Era for Reno-Cardiovascular Treatment in Type 2 Diabetes. J Clin Med 2019; 8:E864. [PMID: 31212945 PMCID: PMC6617211 DOI: 10.3390/jcm8060864] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease in the developed world. Until 2016, the only treatment that was clearly demonstrated to delay the DKD was the renin-angiotensin system blockade, either by angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. However, this strategy only partially covered the DKD progression. Thus, new strategies for reno-cardiovascular protection in type 2 diabetic patients are urgently needed. In the last few years, hypoglycaemic drugs, such as sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide-1 receptor agonists, demonstrated a cardioprotective effect, mainly in terms of decreasing hospitalization for heart failure and cardiovascular death in type 2 diabetic patients. In addition, these drugs also demonstrated a clear renoprotective effect by delaying DKD progression and decreasing albuminuria. Another hypoglycaemic drug class, dipeptidyl peptidase 4 inhibitors, has been approved for its use in patients with advanced chronic kidney disease, avoiding, in part, the need for insulinization in this group of DKD patients. Studies in diabetic and non-diabetic experimental models suggest that these drugs may exert their reno-cardiovascular protective effect by glucose and non-glucose dependent mechanisms. This review focuses on newly demonstrated strategies that have shown reno-cardiovascular benefits in type 2 diabetes and that may change diabetes management algorithms.
Collapse
Affiliation(s)
- Clara García-Carro
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Ander Vergara
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Irene Agraz
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Eugenia Espinel
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Daniel Seron
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - María José Soler
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| |
Collapse
|
72
|
Greco EV, Russo G, Giandalia A, Viazzi F, Pontremoli R, De Cosmo S. GLP-1 Receptor Agonists and Kidney Protection. ACTA ACUST UNITED AC 2019; 55:medicina55060233. [PMID: 31159279 PMCID: PMC6630923 DOI: 10.3390/medicina55060233] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is the leading cause of chronic kidney disease (CKD). Diabetic nephropathy (DN) is determined by specific pathological structural and functional alterations of the kidneys in patients with diabetes, and its clinical manifestations are albuminuria and decline of glomerular filtration rate (GFR). Apart from renin–angiotensin–aldosterone system (RAAS) inhibitors, no other drugs are currently available as therapy for diabetic kidney disease (DKD). Glucagon-like peptide-1 receptor (GLP-1R) agonists are a new class of anti-hyperglycemic drugs which have been demonstrated to prevent the onset of macroalbuminuria and reduce the decline of GFR in diabetic patients. These drugs may exert their beneficial actions on the kidneys through blood glucose- and blood pressure (BP)-lowering effects, reduction of insulin levels and weight loss. Clinical benefits of GLP-1R agonists were acknowledged due to data from large randomized phase III clinical trials conducted to assess their cardiovascular(CV) safety. These drugs improved renal biomarkers in placebo-controlled clinical studies, with effects supposed to be independent of the actions on glycemic control. In this review, we will focus on the actions of GLP-1R agonists on glucose metabolism and kidney physiology, and evaluate direct and indirect mechanisms through which these drugs may confer renal protection.
Collapse
Affiliation(s)
- Eulalia Valentina Greco
- Unit of Internal Medicine, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| | - Giuseppina Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy.
| | - Annalisa Giandalia
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy.
| | - Francesca Viazzi
- University of Genoa and Policlinico San Martino-IST, 16131 Genoa, Italy.
| | - Roberto Pontremoli
- University of Genoa and Policlinico San Martino-IST, 16131 Genoa, Italy.
| | - Salvatore De Cosmo
- Unit of Internal Medicine, Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo (FG), Italy.
| |
Collapse
|
73
|
Zhang J, Chen Q, Zhong J, Liu C, Zheng B, Gong Q. DPP-4 Inhibitors as Potential Candidates for Antihypertensive Therapy: Improving Vascular Inflammation and Assisting the Action of Traditional Antihypertensive Drugs. Front Immunol 2019; 10:1050. [PMID: 31134095 PMCID: PMC6526751 DOI: 10.3389/fimmu.2019.01050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) is an important protease that is widely expressed on the surface of human cells and plays a key role in immune-regulation, inflammation, oxidative stress, cell adhesion, and apoptosis by targeting different substrates. DPP-4 inhibitors (DPP-4i) are commonly used as hypoglycemic agents. However, in addition to their hypoglycemic effect, DPP-4i have also shown potent activities in the cardiovascular system, particularly in the regulation of blood pressure (BP). Previous studies have shown that the regulatory actions of DPP-4i in controlling BP are complex and that the mechanisms involved include the functional activities of the nerves, kidneys, hormones, blood vessels, and insulin. Recent work has also shown that inflammation is closely associated with the elevation of BP, and that the inhibition of DPP-4 can reduce BP by regulating the function of the immune system, by reducing inflammatory reactions and by improving oxidative stress. In this review, we describe the potential anti-hypertensive effects of DPP-4i and discuss potential new anti-hypertensive therapies. Our analysis indicated that DPP-4i treatment has a mild anti-hypertensive effect as a monotherapy and causes a significant reduction in BP when used in combined treatments. However, the combination of DPP-4i with high-dose angiotensin converting enzyme inhibitors (ACEI) can lead to increased BP. We suggest that DPP-4i improves vascular endothelial function in hypertensive patients by suppressing inflammatory responses and by alleviating oxidative stress. In addition, DPP-4i can also regulate BP by activating the sympathetic nervous system, interfering with the renin angiotensin aldosterone system (RAAS), regulating Na/H2O metabolism, and attenuating insulin resistance (IR).
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Qiuyue Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
74
|
Takamiya Y, Okamura K, Shirai K, Okuda T, Kobayashi K, Urata H. Multicenter prospective observational study of teneligliptin, a selective dipeptidyl peptidase-4 inhibitor, in patients with poorly controlled type 2 diabetes: Focus on glycemic control, hypotensive effect, and safety Chikushi Anti-Diabetes Mellitus Trial-Teneligliptin (CHAT-T). Clin Exp Hypertens 2019; 42:197-204. [PMID: 30974980 DOI: 10.1080/10641963.2019.1601207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: We purpose to confirm the effect of teneligliptin (Tenelia), a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, on glycemic control and non-glucose risk factors for macroangiopathy, including blood pressure, lipid metabolism, and body weight.Methods: In a prospective, multicenter, open-label, observational study, teneligliptin (20 mg/day) was administered to type 2 diabetic patients with poor glycemic control (HbA1c ≥ 6.5% to <10%) at our hospitals. The safety of teneligliptin and its impact on blood glucose, blood pressure, and the lipid profile were assessed after administration for 3 and 6 months.Results: One hundred and sixty-two patients were enrolled between February 2014 and August 2015. HbA1c was 7.6% at baseline and showed significant reduction to 7.1% after 3 months of treatment and to 6.9% after 6 months (both p < 0.01). Patients with poorly controlled hypertension (systolic blood pressure [SBP] ≥130 mmHg and/or diastolic blood pressure [DBP] ≥80 mmHg) at study initiation were extracted to investigate the effect of teneligliptin on blood pressure. SBP showed a significant decrease from 141.2 ± 9.8 mmHg at baseline to 131.1 ± 14.3 mmHg after 3 months and 133.9 ± 11.5 mmHg after 6 months (both p < 0.001). DBP also decreased significantly from 85.8 ± 5.7 mmHg at baseline to 78.4 ± 10.0 mmHg after 3 months and 79.7 ± 10.1 mmHg after 6 months (both p < 0.001). Adverse events were pruritus in four patients, and cerebral infarction was reported as a cerebrovascular event in one patient.Conclusions: Teneligliptin therapy was safe and improved glycemic control irrespective of baseline HbA1c. Blood pressure was also improved in patients with concomitant hypertension.
Collapse
Affiliation(s)
- Yosuke Takamiya
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Keisuke Okamura
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kazuyuki Shirai
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Tetsu Okuda
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kunihisa Kobayashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Hidenori Urata
- Department of Cardiovascular Diseases, Fukuoka University Chikushi Hospital, Chikushino, Japan
| |
Collapse
|
75
|
Davis H, Jones Briscoe V, Dumbadze S, Davis SN. Using DPP-4 inhibitors to modulate beta cell function in type 1 diabetes and in the treatment of diabetic kidney disease. Expert Opin Investig Drugs 2019; 28:377-388. [PMID: 30848158 DOI: 10.1080/13543784.2019.1592156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION DPP-4 inhibitors have pleomorphic effects that extend beyond the anti-hyperglycemic labeled use of the drug. DPP-4 inhibitors have demonstrated promising renal protective effects in T2DM and T1DM and protective effects against immune destruction of pancreatic beta-cells in T1DM. AREAS COVERED The efficacy of DPP-4 inhibitors in the treatment of diabetic kidney disease and possible adjunct with insulin in the treatment of T1DM to preserve beta-cell function. Pertinent literature was identified through Medline, PubMed and ClinicalTrials.gov (1997-November 2018) using the search terms T1DM, sitagliptin, vildagliptin, linagliptin, beta-cell function, diabetic nephropathy. Only articles are written in the English language, and clinical trials evaluating human subjects were used. EXPERT OPINION DPP-4 inhibitors can be used safely in patients with diabetic kidney disease and do not appear to exacerbate existing diabetic nephropathy. Linagliptin reduces albuminuria and protects renal endothelium from the deleterious effects of hyperglycemia. The effects of DPP-4 inhibitors on preserving beta-cell function in certain subtypes of T1DM [e.g. Latent Autoimmune Diabetes in Adult (LADA) and Slowly Progressive Type 1 Diabetes (SPIDDM)] are encouraging and show promise.
Collapse
|
76
|
Chung S, Kim S, Son M, Kim M, Koh ES, Shin SJ, Ko SH, Kim HS. Empagliflozin Contributes to Polyuria via Regulation of Sodium Transporters and Water Channels in Diabetic Rat Kidneys. Front Physiol 2019; 10:271. [PMID: 30941057 PMCID: PMC6433843 DOI: 10.3389/fphys.2019.00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
Besides lowering glucose, empagliflozin, a selective sodium-glucose cotransporter-2 (SGLT2) inhibitor, have been known to provide cardiovascular and renal protection due to effects on diuresis and natriuresis. However, the natriuretic effect of SGLT2 inhibitors has been reported to be transient, and long-term data related to diuretic change are sparse. This study was performed to assess the renal effects of a 12-week treatment with empagliflozin (3 mg/kg) in diabetic OLETF rats by comparing it with other antihyperglycemic agents including lixisenatide (10 μg/kg), a glucagon-like peptide receptor-1 agonist, and voglibose (0.6 mg/kg), an α-glucosidase inhibitor. At 12 weeks of treatment, empagliflozin-treated diabetic rats produced still high urine volume and glycosuria, and showed significantly higher electrolyte-free water clearance than lixisenatide or voglibose-treated diabetic rats without significant change of serum sodium level and fractional excretion of sodium. In empagliflozin-treated rats, renal expression of Na+-Cl- cotransporter was unaltered, and expressions of Na+/H+ exchanger isoform 3, Na+-K+-2Cl- cotransporter, and epithelial Na+ channel were decreased compared with control diabetic rats. Empagliflozin increased an expression of aquaporin (AQP)7 but did not affect AQP3 and AQP1 protein expressions in diabetic kidneys. Despite the increased expression in vasopressin V2 receptor, protein and mRNA levels of AQP2 in empagliflozin-treated diabetic kidneys were significantly decreased compared to control diabetic kidneys. In addition, empagliflozin resulted in the increased phosphorylation of AQP2 at S261 through the increased cyclin-dependent kinases 1 and 5 and protein phosphatase 2B. These results suggest that empagliflozin may contribute in part to polyuria via its regulation of sodium channels and AQP2 in diabetic kidneys.
Collapse
Affiliation(s)
- Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soojeong Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mina Son
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Minyoung Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun Sil Koh
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok Joon Shin
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Hyun Ko
- Division of Endocrinology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ho-Shik Kim
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
77
|
Luo Y, Lu K, Liu G, Wang J, Laurent I, Zhou X. The Effects of Novel Antidiabetic Drugs on Albuminuria in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Clin Drug Investig 2019; 38:1089-1108. [PMID: 30255388 DOI: 10.1007/s40261-018-0707-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE The effects of novel antidiabetic drugs, including sodium-glucose cotransporter 2 (SGLT-2) inhibitors, glucagon-like peptide 1 (GLP-1) receptor agonists, and dipeptidyl peptidase 4 (DPP-4) inhibitors, on albuminuria in patients with type 2 diabetes mellitus (T2DM) are still controversial. Therefore, we performed a meta-analysis to evaluate the effects of novel antidiabetic drugs on albuminuria in patients with T2DM. METHODS We conducted a random-effects meta-analysis of randomized controlled trials (RCTs) by searching the MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials databases up to 16 August 2018. The effects of novel antidiabetic drugs on albuminuria were evaluated as percent changes from baseline to follow-up urinary albumin excretion/urinary albumin to creatinine ratio (UAE/UACR) levels in both the intervention and control groups. Data regarding percent changes were used to generate weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS In this meta-analysis, 26 RCTs involving 14,929 patients were included. Pooled analysis suggested that SGLT-2 inhibitors (WMD - 26.23%, 95% CI - 35.90 to - 16.56; p < 0.00001) and GLP-1 receptor agonists (WMD - 13.85%, 95% CI - 15.96 to - 11.74; p < 0.00001) were associated with a significant reduction in albuminuria compared with other conventional therapies or placebo. DPP-4 inhibitors (WMD - 6.19%, 95% CI - 14.03 to 1.66; p = 0.12) were not significantly associated with lower albuminuria than other conventional therapies or placebo. CONCLUSION This meta-analysis indicates that SGLT-2 inhibitors and GLP-1 receptor agonists were associated with a reduction in albuminuria compared with other conventional therapies or placebo, while DPP-4 inhibitors were not associated with albuminuria-reducing effects compared with other conventional therapies or placebo.
Collapse
Affiliation(s)
- Ya Luo
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Kai Lu
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Gang Liu
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Wang
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Irakoze Laurent
- Department of Endocrinology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoli Zhou
- Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
78
|
Dieter BP, Alicic RZ, Tuttle KR. GLP-1 receptor agonists in diabetic kidney disease: from the patient-side to the bench-side. Am J Physiol Renal Physiol 2018; 315:F1519-F1525. [PMID: 30110568 PMCID: PMC6337002 DOI: 10.1152/ajprenal.00211.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/27/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD), one of the most common and severe microvascular complications of diabetes, is the leading cause of chronic kidney disease and end-stage kidney disease worldwide. Since the development of renin-angiotensin system inhibition nearly three decades ago, no new therapeutic agents have received regulatory approval for treatment of DKD. Glucagon-like peptide-1 (GLP-1) receptor agonists, a class of newer antihyperglycemic agents, have shown promise for prevention of DKD onset and progression. This perspective summarizes clinical and experimental observations to give insight into biological mechanisms beyond glycemic control, such as natriuresis and anti-inflammatory actions, for preservation of kidney function in patients with diabetes.
Collapse
Affiliation(s)
- Brad P Dieter
- Providence Medical Research Center, Providence Health Care, Spokane, Washington
| | - Radica Z Alicic
- Providence Medical Research Center, Providence Health Care, Spokane, Washington
- Department of Medicine, Nephrology Division, University of Washington , Spokane, Washington
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, Washington
- Department of Medicine, Nephrology Division, University of Washington , Spokane, Washington
- Kidney Research Institute , Spokane, Washington
- Institute of Translational Health Sciences, University of Washington, Spokane, Washington
| |
Collapse
|
79
|
Kuriyama S. Protection of the kidney with sodium–glucose cotransporter 2 inhibitors: potential mechanisms raised by the large-scaled randomized control trials. Clin Exp Nephrol 2018; 23:304-312. [DOI: 10.1007/s10157-018-1673-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
|
80
|
Rowlands J, Heng J, Newsholme P, Carlessi R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front Endocrinol (Lausanne) 2018; 9:672. [PMID: 30532733 PMCID: PMC6266510 DOI: 10.3389/fendo.2018.00672] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
The incretin hormone Glucagon-Like Peptide-1 (GLP-1) is best known for its "incretin effect" in restoring glucose homeostasis in diabetics, however, it is now apparent that it has a broader range of physiological effects in the body. Both in vitro and in vivo studies have demonstrated that GLP-1 mimetics alleviate endoplasmic reticulum stress, regulate autophagy, promote metabolic reprogramming, stimulate anti-inflammatory signaling, alter gene expression, and influence neuroprotective pathways. A substantial body of evidence has accumulated with respect to how GLP-1 and its analogs act to restore and maintain normal cellular functions. These findings have prompted several clinical trials which have reported GLP-1 analogs improve cardiac function, restore lung function and reduce mortality in patients with obstructive lung disease, influence blood pressure and lipid storage, and even prevent synaptic loss and neurodegeneration. Mechanistically, GLP-1 elicits its effects via acute elevation in cAMP levels, and subsequent protein kinase(s) activation, pathways well-defined in pancreatic β-cells which stimulate insulin secretion in conjunction with elevated Ca2+ and ATP. More recently, new studies have shed light on additional downstream pathways stimulated by chronic GLP-1 exposure, findings which have direct relevance to our understanding of the potential therapeutic effects of longer lasting analogs recently developed for clinical use. In this review, we provide a comprehensive description of the diverse roles for GLP-1 across multiple tissues, describe downstream pathways stimulated by acute and chronic exposure, and discuss novel pleiotropic applications of GLP-1 mimetics in the treatment of human disease.
Collapse
Affiliation(s)
| | | | - Philip Newsholme
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| | - Rodrigo Carlessi
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Perth, WA, Australia
| |
Collapse
|
81
|
Scheen AJ. Effects of glucose-lowering agents on surrogate endpoints and hard clinical renal outcomes in patients with type 2 diabetes. DIABETES & METABOLISM 2018; 45:110-121. [PMID: 30477733 DOI: 10.1016/j.diabet.2018.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Diabetic kidney disease (DKD) represents an enormous burden in patients with type 2 diabetes mellitus (T2DM). Preclinical studies using most glucose-lowering agents have suggested renal-protective effects, but the proposed mechanisms of renoprotection have yet to be defined, and the promising results from experimental studies remain to be translated into human clinical findings to improve the prognosis of patients at risk of DKD. Also, it is important to distinguish effects on surrogate endpoints, such as decreases in albuminuria and estimated glomerular filtration rate (eGFR), and hard clinical endpoints, such as progression to end-stage renal disease (ESRD) and death from renal causes. Data regarding insulin therapy are surprisingly scarce, and it is nearly impossible to separate the effects of better glucose control from those of insulin per se, whereas favourable preclinical data with metformin, thiazolidinediones and dipeptidyl peptidase (DPP)-4 inhibitors are plentiful, and positive effects have been observed in clinical studies, at least for surrogate endpoints. The most favourable renal results have been reported with glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter type-2 inhibitors (SGLT2is). Significant reductions in both albuminuria and eGFR decline have been reported with these classes of glucose-lowering medications compared with placebo and other glucose-lowering agents. Moreover, in large prospective cardiovascular outcome trials using composite renal outcomes as secondary endpoints, both GLP-1RAs and SGLT2is added to standard care reduced renal outcomes combining persistent macro-albuminuria, doubling of serum creatinine, progression to ESRD and kidney-related death; however, to date, only SGLT2is have been clearly shown to reduce such hard clinical outcomes. Yet, as the renoprotective effects of SGLT2is and GLP-1RAs appear to be independent of glucose-lowering activity, the underlying mechanisms are still a matter of debate. For this reason, further studies with renal outcomes as primary endpoints are now awaited in T2DM patients at high risk of DKD, including trials evaluating the potential add-on benefits of combined GLP-1RA-SGLT2i therapies.
Collapse
Affiliation(s)
- A J Scheen
- Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium; Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, CHU de Liège, Liège, Belgium.
| |
Collapse
|
82
|
Tonneijck L, Muskiet MHA, Blijdorp CJ, Smits MM, Twisk JW, Kramer MHH, Danser AHJ, Diamant M, Joles JA, Hoorn EJ, van Raalte DH. Renal tubular effects of prolonged therapy with the GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes mellitus. Am J Physiol Renal Physiol 2018; 316:F231-F240. [PMID: 30353743 DOI: 10.1152/ajprenal.00432.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) are well-established glucose-lowering drugs for type 2 diabetes mellitus (T2DM) management. Acute GLP-1RA administration increases urinary excretion of sodium and other electrolytes. However, the renal tubular effects of prolonged GLP-1RA treatment are largely unknown. In this secondary analysis of a randomized trial, we determined the renal tubular effects of 8-wk treatment with 20 μg lixisenatide, a short-acting (prandial) GLP-1RA, versus titrated once-daily insulin glulisine in 35 overweight T2DM-patients on stable insulin glargine background therapy (age: 62 ± 7 yr, glycated hemoglobin: 8.0 ± 0.9%, estimated glomerular filtration rate: >60 ml·min-1·1.73 m-2). After a standardized breakfast, lixisenatide increased absolute and fractional excretions of sodium, chloride, and potassium and increased urinary pH. In contrast, lixisenatide reduced absolute and fractional excretions of magnesium, calcium, and phosphate. At week 8, patients treated with lixisenatide had significantly more phosphorylated sodium-hydrogen exchanger isoform 3 (NHE3) in urinary extracellular vesicles than those on insulin glulisine treatment, which suggested decreased NHE3 activity in the proximal tubule. A rise in postprandial blood pressure with lixisenatide partly explained the changes in the urinary excretion of sodium, potassium, magnesium, and phosphate and the changes in urinary pH. In conclusion, lixisenatide affects postprandial urinary excretion of several electrolytes and increases urinary pH compared with insulin glulisine in T2DM patients after 8 wk of treatment. This is most likely explained by a drug-induced rise in blood pressure or direct inhibitory effects on NHE3 in the proximal tubule.
Collapse
Affiliation(s)
- Lennart Tonneijck
- Diabetes Center, Department of Internal Medicine, VU University Medical Center , Amsterdam , The Netherlands
| | - Marcel H A Muskiet
- Diabetes Center, Department of Internal Medicine, VU University Medical Center , Amsterdam , The Netherlands
| | - Charles J Blijdorp
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Mark M Smits
- Diabetes Center, Department of Internal Medicine, VU University Medical Center , Amsterdam , The Netherlands
| | - Jos W Twisk
- Department of Health Sciences and the EMGO Institute for Health and Care Research, VU University Amsterdam , Amsterdam , The Netherlands ; Department of Epidemiology and Biostatistics, VU University Medical Center , Amsterdam , The Netherlands
| | - Mark H H Kramer
- Diabetes Center, Department of Internal Medicine, VU University Medical Center , Amsterdam , The Netherlands
| | - A H J Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Michaela Diamant
- Diabetes Center, Department of Internal Medicine, VU University Medical Center , Amsterdam , The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht , Utrecht , The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
83
|
Hiramatsu T, Asano Y, Mabuchi M, Imai K, Iguchi D, Furuta S. Liraglutide relieves cardiac dilated function than DPP-4 inhibitors. Eur J Clin Invest 2018; 48:e13007. [PMID: 30054920 PMCID: PMC6175244 DOI: 10.1111/eci.13007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/14/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Diabetes mellitus is a progressive disease with cardiovascular complications. This study evaluated the effects of liraglutide, a glucagon-like peptide-1 analogue and the dipeptidyl peptidase 4 inhibitors sitagliptin and linagliptin on cardiac function in type 2 diabetes patients with renal impairment. MATERIALS AND METHODS A total of 139 patients who were referred because of suboptimal glycaemic control were randomly assigned to liraglutide 0.9 mg/d (n = 45), sitagliptin 50 mg/d, (n = 49) or linagliptin 5 mg/d (n = 45) at enrolment and were evaluated. Blood glucose, glycosylated haemoglobin and serum creatinine were assayed every 3 months for 48 months. Echocardiography was performed every 12 months for 48 months. RESULTS Compared with baseline, fasting glucose, postprandial glucose, and systolic and diastolic pressure, but not estimated glomerular filtration rate, significantly decreased in all three groups. Albuminuria decreased from 24 to 48 months with liraglutide, but only from 24 to 30 months with sitagliptin and linagliptin. Diastolic function, assessed by E/e' or left atrial dimension improved only with liraglutide. CONCLUSIONS Liraglutide was effective for glucose and blood pressure control, reduced albuminuria and improved diastolic function. Diastolic function was not improved by sitagliptin and linagliptin.
Collapse
Affiliation(s)
- Takeyuki Hiramatsu
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation Konan Kosei Hospital, Konan-city, Aichi, Japan
| | - Yuko Asano
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation Konan Kosei Hospital, Konan-city, Aichi, Japan
| | - Masatsuna Mabuchi
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation Konan Kosei Hospital, Konan-city, Aichi, Japan
| | - Kentaro Imai
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation Konan Kosei Hospital, Konan-city, Aichi, Japan
| | - Daiki Iguchi
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation Konan Kosei Hospital, Konan-city, Aichi, Japan
| | - Shinji Furuta
- Department of Nephrology, Aichi Welfare Cooperative Agricultural Federation Konan Kosei Hospital, Konan-city, Aichi, Japan
| |
Collapse
|
84
|
Tamura K, Yamaji T, Yamada T, Ohsawa M, Wakui H. An interesting cross-talk between the glucagon-like peptide-1 receptor axis and angiotensin receptor pathway for modulation of renal sodium handling in obesity. Hypertens Res 2018; 41:784-786. [DOI: 10.1038/s41440-018-0085-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 12/25/2022]
|
85
|
Ronn J, Jensen EP, Wewer Albrechtsen NJ, Holst JJ, Sorensen CM. Glucagon-like peptide-1 acutely affects renal blood flow and urinary flow rate in spontaneously hypertensive rats despite significantly reduced renal expression of GLP-1 receptors. Physiol Rep 2018; 5. [PMID: 29233907 PMCID: PMC5727271 DOI: 10.14814/phy2.13503] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023] Open
Abstract
Glucagon‐like peptide‐1 (GLP‐1) is an incretin hormone increasing postprandial insulin release. GLP‐1 also induces diuresis and natriuresis in humans and rodents. The GLP‐1 receptor is extensively expressed in the renal vascular tree in normotensive rats where acute GLP‐1 treatment leads to increased mean arterial pressure (MAP) and increased renal blood flow (RBF). In hypertensive animal models, GLP‐1 has been reported both to increase and decrease MAP. The aim of this study was to examine expression of renal GLP‐1 receptors in spontaneously hypertensive rats (SHR) and to assess the effect of acute intrarenal infusion of GLP‐1. We hypothesized that GLP‐1 would increase diuresis and natriuresis and reduce MAP in SHR. Immunohistochemical staining and in situ hybridization for the GLP‐1 receptor were used to localize GLP‐1 receptors in the kidney. Sevoflurane‐anesthetized normotensive Sprague–Dawley rats and SHR received a 20 min intrarenal infusion of GLP‐1 and changes in MAP, RBF, heart rate, dieresis, and natriuresis were measured. The vasodilatory effect of GLP‐1 was assessed in isolated interlobar arteries from normo‐ and hypertensive rats. We found no expression of GLP‐1 receptors in the kidney from SHR. However, acute intrarenal infusion of GLP‐1 increased MAP, RBF, dieresis, and natriuresis without affecting heart rate in both rat strains. These results suggest that the acute renal effects of GLP‐1 in SHR are caused either by extrarenal GLP‐1 receptors activating other mechanisms (e.g., insulin) to induce the renal changes observed or possibly by an alternative renal GLP‐1 receptor.
Collapse
Affiliation(s)
- Jonas Ronn
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elisa P Jensen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,NNF Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
86
|
Rodriguez R, Moreno M, Lee AY, Godoy-Lugo JA, Nakano D, Nishiyama A, Parkes D, Awayda MS, Ortiz RM. Simultaneous GLP-1 receptor activation and angiotensin receptor blockade increase natriuresis independent of altered arterial pressure in obese OLETF rats. Hypertens Res 2018; 41:798-808. [PMID: 29985448 DOI: 10.1038/s41440-018-0070-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 01/08/2023]
Abstract
Obesity is associated with an inappropriately activated renin-angiotensin-aldosterone system, suppressed glucagon-like peptide-1 (GLP-1), increased renal Na+ reabsorption, and hypertension. To assess the link between GLP-1 and angiotensin receptor type 1 (AT1) signaling on obesity-associated impairment of urinary Na+ excretion (UNaV) and elevated arterial pressure, we measured mean arterial pressure (MAP) and heart rate by radiotelemetry and metabolic parameters for 40 days. We tested the hypothesis that stimulation of GLP-1 signaling provides added benefit to blockade of AT1 by increasing UNaV and further reducing arterial pressure in the following groups: (1) untreated Long-Evans Tokushima Otsuka (LETO) rats (n = 7); (2) untreated Otsuka Long-Evans Tokushima Fatty (OLETF) rats (n = 9); (3) OLETF + ARB (ARB; 10 mg olmesartan/kg/day; n = 9); (4) OLETF + GLP-1 receptor agonist (EXE; 10 µg exenatide/kg/day; n = 7); and (5) OLETF + ARB + EXE (Combo; n = 6). On day 2, UNaV was 60% and 62% reduced in the EXE and Combo groups, respectively, compared with that in the OLETF rats. On day 40, UNaV was increased 69% in the Combo group compared with that in the OLETF group. On day 40, urinary angiotensinogen was 4.5-fold greater in the OLETF than in the LETO group and was 56%, 62%, and 58% lower in the ARB, EXE, and Combo groups, respectively, than in the OLETF group. From day 2 to the end of the study, MAP was lower in the ARB and Combo groups than in the OLETF rats. These results suggest that GLP-1 receptor activation may reduce intrarenal angiotensin II activity, and that simultaneous blockade of AT1 increases UNaV in obesity; however, these beneficial effects do not translate to a further reduction in MAP.
Collapse
Affiliation(s)
- Ruben Rodriguez
- Department of Molecular and Cellular Biology, University of California Merced, Merced, CA, USA.
| | - Meagan Moreno
- Department of Molecular and Cellular Biology, University of California Merced, Merced, CA, USA
| | - Andrew Y Lee
- Department of Molecular and Cellular Biology, University of California Merced, Merced, CA, USA
| | - Jose A Godoy-Lugo
- Department of Molecular and Cellular Biology, University of California Merced, Merced, CA, USA
| | - Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan
| | | | - Mouhamed S Awayda
- Department of Physiology and Biophysics, University of Buffalo, Buffalo, NY, USA
| | - Rudy M Ortiz
- Department of Molecular and Cellular Biology, University of California Merced, Merced, CA, USA
| |
Collapse
|
87
|
Hussien NI, Sorour SM, El-Kerdasy HI, Abdelrahman BA. The glucagon-like peptide-1 receptor agonist Exendin-4, ameliorates contrast-induced nephropathy through suppression of oxidative stress, vascular dysfunction and apoptosis independent of glycaemia. Clin Exp Pharmacol Physiol 2018; 45:808-818. [PMID: 29637584 DOI: 10.1111/1440-1681.12944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
Abstract
Contrast-induced nephropathy (CIN) is a leading cause of hospital-acquired acute kidney injury, particularly in diabetic patients. Previous studies have shown renoprotective effects of glucagon-like peptide-1 (GLP-1) signalling; however, its role in CIN remains unexplored. This study investigates the prophylactic effect of exendin-4, a GLP-1R agonist, against CIN in a rat model mimicking both healthy and diabetic conditions. Animals were randomly divided into 7 groups: a control sham group (n = 8), and 2 identical sets of 3 disease groups, one received exendin-4 before exposure to contrast medium (CM), while the other served as untreated control. The 3 disease groups represented diabetes (n = 8), CIN (n = 8), or diabetes and CIN combined (n = 8). Untreated groups showed deteriorating renal function as indicated by significantly higher levels of serum creatinine and blood urea nitrogen, malondialdehyde, and endothelin-1 and caspase-3 expression compared to the sham control group. This was accompanied by a significant decrease in tissue reserves of reduced glutathione, superoxide dismutase, nitrate and endothelin nitric oxide synthase as well as deteriorating renal histology. The CM-induced changes in diabetic rats indicate impaired renal function, oxidative stress, vascular dysfunction, and apoptosis, and were significance higher in intensity compared to non-diabetic rats. Pretreatment with exendin-4 ameliorated all the aforementioned CM-induced nephropathic effects independent of the glycemic state. To our knowledge, this is the first study describing the prophylactic renoprotective effects of exendin-4 against CIN. With the current pharmaceutical use of exendin-4 as a hypoglycaemic agent, the GLP-1R agonist becomes an interesting candidate for human clinical trials on CIN prevention.
Collapse
Affiliation(s)
- Noha I Hussien
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Safwa M Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hanan I El-Kerdasy
- Department of Anatomy, Faculty of Medicine, Benha University, Benha, Egypt
| | - Bakr A Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
88
|
Thomson SC, Vallon V. Renal Effects of Incretin-Based Diabetes Therapies: Pre-clinical Predictions and Clinical Trial Outcomes. Curr Diab Rep 2018; 18:28. [PMID: 29654381 PMCID: PMC6426321 DOI: 10.1007/s11892-018-0991-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to correlate predictions based on pre-clinical data with outcomes from clinical trials that examine the effects of incretin-based diabetes treatments on the kidney. The incretin-based treatments include agonists of the glucagon-like peptide 1 receptor (GLP-1R) and inhibitors of the enzyme, dipeptidyl peptidase-4 (DPP-4). In addition, what is known about the incretin-based therapies will be compared to what is known about the renal effects of SGLT2 inhibitors. RECENT FINDINGS Large-scale clinical trials have shown that SGLT2 inhibitors reduce albuminuria and preserve estimated glomerular filtration rate (eGFR) in patients with diabetic nephropathy. A concise and plausible hemodynamic mechanism is supported by pre-clinical research on the physiology and pharmacology of SGLT2. Large-scale clinical trials have shown that incretin-based therapies mitigate albuminuria but have not shown beneficial effects on eGFR. Research on the incretin-based therapies has yielded a diverse array of direct effects throughout the body, which fuels speculation as to how these drugs might benefit the diabetic kidney and affect its function(s). But in vivo experiments have yet to confirm that the proposed mechanisms underlying emergent phenomena, such as proximal tubular fluid reabsorption, are the ones predicted by cell and molecular experiments. There may be salutary effects of incretin-based treatments on the diabetic kidney, but the system is complex and not amenable to simple explanation or prior prediction. This contrasts with the renal effects of SGLT2 inhibitors, which can be explained concisely.
Collapse
Affiliation(s)
- Scott C Thomson
- University of California, 3350 La Jolla Village Drive 9151, San Diego, CA, 92161, USA.
- VA San Diego Healthcare System, San Diego, USA.
| | - Volker Vallon
- University of California, 3350 La Jolla Village Drive 9151, San Diego, CA, 92161, USA
- VA San Diego Healthcare System, San Diego, USA
| |
Collapse
|
89
|
Panchapakesan U, Pollock C. Drug repurposing in kidney disease. Kidney Int 2018; 94:40-48. [PMID: 29628139 DOI: 10.1016/j.kint.2017.12.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Drug repurposing, is the re-tasking of known medications for new clinical indications. Advantages, compared to de novo drug development, include reduced cost and time to market plus the added benefit of a known pharmacokinetic and safety profiles. Suitable drug candidates are identified through serendipitous observations, data mining, or increased understanding of disease mechanisms. This review highlights drugs suited for repurposing in kidney disease. The main cause of mortality in patients with chronic kidney disease is cardiovascular disease. Hence, we have included CV endpoints for the drugs. This review begins with candidates in acute kidney injury: vasodilators levosimendan and vitamin D, followed by candidates in CKD, with particular focus on diabetic kidney disease, autosomal dominant polycystic kidney disease, and focal segmental glomerulosclerosis. Examples include glucose-lowering drugs (sodium glucose co-transporter 2 inhibitors, glucagon-like peptide 1 agonists, and metformin), which have mechanistic potential for cardiac and/or renal protection beyond glucose lowering, with broader applicability to the nondiabetic population; xanthine oxidase inhibitors (allopurinol, febuxostat), selective endothelin receptor A antagonist (atrasentan), Janus kinase inhibitor (baricitinib), selective costimulation modulator (abatacept), pentoxyfylline, and the DNA demethylating agent/vasodilator (hydralazine).
Collapse
Affiliation(s)
- Usha Panchapakesan
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, New South Wales 2065, Australia.
| | - Carol Pollock
- Renal Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, New South Wales 2065, Australia
| |
Collapse
|
90
|
Packer M. Role of the sodium-hydrogen exchanger in mediating the renal effects of drugs commonly used in the treatment of type 2 diabetes. Diabetes Obes Metab 2018; 20:800-811. [PMID: 29227582 DOI: 10.1111/dom.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/19/2023]
Abstract
Diabetes is characterized by increased activity of the sodium-hydrogen exchanger (NHE) in the glomerulus and renal tubules, which contributes importantly to the development of nephropathy. Despite the established role played by the exchanger in experimental studies, it has not been specifically targeted by those seeking to develop novel pharmacological treatments for diabetes. This review demonstrates that many existing drugs that are commonly prescribed to patients with diabetes act on the NHE1 and NHE3 isoforms in the kidney. This action may explain their effects on sodium excretion, albuminuria and the progressive decline of glomerular function in clinical trials; these responses cannot be readily explained by the influence of these drugs on blood glucose. Agents that may affect the kidney in diabetes by virtue of an action on NHE include: (1) insulin and insulin sensitizers; (2) incretin-based agents; (3) sodium-glucose cotransporter 2 inhibitors; (4) antagonists of the renin-angiotensin system (angiotensin converting-enzyme inhibitors, angiotensin receptor blockers and angiotensin receptor neprilysin inhibitors); and (5) inhibitors of aldosterone action and cholesterol synthesis (spironolactone, amiloride and statins). The renal effects of each of these drug classes in patients with type 2 diabetes may be related to a single shared biological mechanism.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
91
|
Xiong S, Li Q, Liu D, Zhu Z. Gastrointestinal Tract: a Promising Target for the Management of Hypertension. Curr Hypertens Rep 2018; 19:31. [PMID: 28349378 DOI: 10.1007/s11906-017-0726-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The pathogenesis of hypertension remains elusive. Current treatments on hypertension have only achieved modest reductions. Facilitating theoretical research and looking for new therapeutic strategy are urgently needed. Besides food digestion and nutrients absorption, the gastrointestinal tract (GI) has been shown to influence the status of the central nervous system, immune system, metabolism, and cardiovascular homeostasis. Emerging findings demonstrate that endogenous factors derived from GI including gut hormones, autonomic nerve, and gut microbiota play important roles in the regulation of vascular function and/or blood pressure. Meanwhile, evidences from clinical practice and experimental study have found that intervention in GI through metabolic surgery, probiotics consumption, and dietary modification can efficiently ameliorate or even remit hypertension and related cardiometabolic diseases. Thus, we propose that GI might be an initiating organ of hypertension and a promising target for the management of hypertension. Further, illuminating this concept may aid to understand the pathogenesis and control of hypertension.
Collapse
Affiliation(s)
- Shiqiang Xiong
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, 400042, China.
| |
Collapse
|
92
|
Coppolino G, Leporini C, Rivoli L, Ursini F, di Paola ED, Cernaro V, Arturi F, Bolignano D, Russo E, De Sarro G, Andreucci M. Exploring the effects of DPP-4 inhibitors on the kidney from the bench to clinical trials. Pharmacol Res 2018; 129:274-294. [DOI: 10.1016/j.phrs.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/15/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|
93
|
Brown E, Cuthbertson DJ, Wilding JP. Newer GLP-1 receptor agonists and obesity-diabetes. Peptides 2018; 100:61-67. [PMID: 29412833 DOI: 10.1016/j.peptides.2017.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023]
Abstract
Obesity is a major risk factor for type 2 diabetes and may complicate type 1 diabetes. In parallel with the global epidemic of obesity, the incidence of type 2 diabetes is increasing exponentially. To reverse these alarming trends, weight loss becomes a major therapeutic priority in prevention and treatment of type 2 diabetes. Given that glucagon-like peptide-1 receptor agonists (GLP-1 RAs) improve glycaemic control and cause weight loss, they are receiving increasing attention for the treatment of diabetes-obesity. This review discusses current and emerging therapeutic options with GLP-1 RAs and considers the next generation of novel peptide co-agonists with the potential for improved therapeutic outcomes in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Emily Brown
- Obesity & Endocrinology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Daniel J Cuthbertson
- Obesity & Endocrinology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - John P Wilding
- Obesity & Endocrinology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
94
|
Effects of incretin-based therapies on renal function. Eur J Pharmacol 2018; 818:103-109. [DOI: 10.1016/j.ejphar.2017.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/03/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
|
95
|
Packer M. Activation and Inhibition of Sodium-Hydrogen Exchanger Is a Mechanism That Links the Pathophysiology and Treatment of Diabetes Mellitus With That of Heart Failure. Circulation 2017; 136:1548-1559. [PMID: 29038209 DOI: 10.1161/circulationaha.117.030418] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the progression of diabetes mellitus and heart failure are closely intertwined, such that worsening of one condition is frequently accompanied by worsening of the other; the degree of clinical acceleration is marked when the 2 coexist. Activation of the sodium-hydrogen exchanger in the heart and vasculature (NHE1 isoform) and the kidneys (NHE3 isoform) may serve as a common mechanism that links both disorders and may underlie their interplay. Insulin insensitivity and adipokine abnormalities (the hallmarks of type 2 diabetes mellitus) are characteristic features of heart failure; conversely, neurohormonal systems activated in heart failure (norepinephrine, angiotensin II, aldosterone, and neprilysin) impair insulin sensitivity and contribute to microvascular disease in diabetes mellitus. Each of these neurohormonal derangements may act through increased activity of both NHE1 and NHE3. Drugs used to treat diabetes mellitus may favorably affect the pathophysiological mechanisms of heart failure by inhibiting either or both NHE isoforms, and drugs used to treat heart failure may have beneficial effects on glucose tolerance and the complications of diabetes mellitus by interfering with the actions of NHE1 and NHE3. The efficacy of NHE inhibitors on the risk of cardiovascular events may be enhanced when heart failure and glucose intolerance coexist and may be attenuated when drugs with NHE inhibitory actions are given concomitantly. Therefore, the sodium-hydrogen exchanger may play a central role in the interplay of diabetes mellitus and heart failure, contribute to the physiological and clinical progression of both diseases, and explain certain drug-drug and drug-disease interactions that have been reported in large-scale randomized clinical trials.
Collapse
Affiliation(s)
- Milton Packer
- From Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX.
| |
Collapse
|
96
|
Zheng WL, Chu C, Lv YB, Wang Y, Hu JW, Ma Q, Yan Y, Cao YM, Dang XL, Wang KK, Mu JJ. Effect of Salt Intake on Serum Glucagon-Like Peptide-1 Levels in Normotensive Salt-Sensitive Subjects. Kidney Blood Press Res 2017; 42:728-737. [PMID: 29050005 DOI: 10.1159/000484152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Excess dietary salt is a critical risk factor of salt-sensitive hypertension. Glucagon-like peptide-1 (GLP-1) , a gut incretin hormone, conferring benefits for blood pressure by natriuresis and diuresis. We implemented a randomized trial to verify the effect of altered salt intake on serum GLP-1 level in human beings. METHODS The 38 subjects were recruited from a rural community of Northern China. All subjects were sequentially maintained a baseline diet period for 3 days, a low-salt diet period for 7 days (3.0g/day of NaCl) , and a high-salt diet period for additional 7 days (18.0g/day of NaCl). RESULTS Serum GLP-1 level increased significantly with the change from the baseline period to the low-salt diet period and decreased with the change from the low-salt to high-salt diet in normotensive salt-sensitive (SS) but not salt-resistant (SR) individuals. There was a significant inverse correlation between the serum GLP-1 level and the MAP in SS subjects. Inverse correlation between the serum GLP-1 level and 24-h urinary sodium excretion was also found among different dietary interventions in SS subjects. CONCLUSIONS Our study indicates that variations in dietary salt intake affect the serum GLP-1 level in normotensive salt-sensitive Chinese adults.
Collapse
|
97
|
Abstract
The gastrointestinal tract - the largest endocrine network in human physiology - orchestrates signals from the external environment to maintain neural and hormonal control of homeostasis. Advances in understanding entero-endocrine cell biology in health and disease have important translational relevance. The gut-derived incretin hormone glucagon-like peptide 1 (GLP-1) is secreted upon meal ingestion and controls glucose metabolism by modulating pancreatic islet cell function, food intake and gastrointestinal motility, amongst other effects. The observation that the insulinotropic actions of GLP-1 are reduced in type 2 diabetes mellitus (T2DM) led to the development of incretin-based therapies - GLP-1 receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors - for the treatment of hyperglycaemia in these patients. Considerable interest exists in identifying effects of these drugs beyond glucose-lowering, possibly resulting in improved macrovascular and microvascular outcomes, including in diabetic kidney disease. As GLP-1 has been implicated as a mediator in the putative gut-renal axis (a rapid-acting feed-forward loop that regulates postprandial fluid and electrolyte homeostasis), direct actions on the kidney have been proposed. Here, we review the role of GLP-1 and the actions of associated therapies on glucose metabolism, the gut-renal axis, classical renal risk factors, and renal end points in randomized controlled trials of GLP-1 receptor agonists and DPP-4 inhibitors in patients with T2DM.
Collapse
|
98
|
Urinary sodium excretion after gastric bypass surgery. Surg Obes Relat Dis 2017; 13:1506-1514. [DOI: 10.1016/j.soard.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/09/2017] [Accepted: 04/03/2017] [Indexed: 12/28/2022]
|
99
|
Chen H, Busse LW. Novel Therapies for Acute Kidney Injury. Kidney Int Rep 2017; 2:785-799. [PMID: 29270486 PMCID: PMC5733745 DOI: 10.1016/j.ekir.2017.06.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) is a common disease with a complex pathophysiology. The old paradigm of identifying renal injury based on location-prerenal, intrarenal, and postrenal-is now being supplanted with a new paradigm based on observable kidney injury patterns. The pathophysiology of AKI on a molecular and microanatomical level includes inflammation, immune dysregulation, oxidative injury, and impaired microcirculation. Treatment has traditionally been supportive, including the avoidance of nephrotoxins, judicious volume and blood pressure management, hemodynamic monitoring, and renal replacement therapy. Fluid overload and chloride-rich fluids are now implicated in the development of AKI, and resuscitation with a balanced, buffered solution at a conservative rate will mitigate risk. Novel therapies, which address specific observable kidney injury patterns include direct oxygen-free radical scavengers such as α-lipoic acid, curcumin, sodium-2-mercaptoethane sulphonate, propofol, and selenium. In addition, angiotensin II and adenosine receptor antagonists hope to ameliorate kidney injury via manipulation of renal hemodynamics and tubulo-glomerular feedback. Alkaline phosphatase, sphingosine 1 phosphate analogues, and dipeptidylpeptidase-4 inhibitors counteract kidney injury via manipulation of inflammatory pathways. Finally, genetic modifiers such as 5INP may mitigate AKI via transcriptive processes.
Collapse
Affiliation(s)
- Huaizhen Chen
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Laurence William Busse
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
100
|
Botfield HF, Uldall MS, Westgate CSJ, Mitchell JL, Hagen SM, Gonzalez AM, Hodson DJ, Jensen RH, Sinclair AJ. A glucagon-like peptide-1 receptor agonist reduces intracranial pressure in a rat model of hydrocephalus. Sci Transl Med 2017; 9:eaan0972. [PMID: 28835515 DOI: 10.1126/scitranslmed.aan0972] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 03/03/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
Current therapies for reducing raised intracranial pressure (ICP) under conditions such as idiopathic intracranial hypertension or hydrocephalus have limited efficacy and tolerability. Thus, there is a pressing need to identify alternative drugs. Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat diabetes and promote weight loss but have also been shown to affect fluid homeostasis in the kidney. We investigated whether exendin-4, a GLP-1R agonist, is able to modulate cerebrospinal fluid (CSF) secretion at the choroid plexus and subsequently reduce ICP in rats. We used tissue sections and cell cultures to demonstrate expression of GLP-1R in the choroid plexus and its activation by exendin-4, an effect blocked by the GLP-1R antagonist exendin 9-39. Acute treatment with exendin-4 reduced Na+- and K+-dependent adenosine triphosphatase activity, a key regulator of CSF secretion, in cell cultures. Finally, we demonstrated that administration of exendin-4 to female rats with raised ICP (hydrocephalic) resulted in a GLP-1R-mediated reduction in ICP. These findings suggest that GLP-1R agonists can reduce ICP in rodents. Repurposing existing GLP-1R agonist drugs may be a useful therapeutic strategy for treating raised ICP.
Collapse
Affiliation(s)
- Hannah F Botfield
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Maria S Uldall
- Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Connar S J Westgate
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - James L Mitchell
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Snorre M Hagen
- Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Ana Maria Gonzalez
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston B15 2TT, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Rigmor H Jensen
- Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Nordre Ringvej 69, 2600 Glostrup, Denmark
| | - Alexandra J Sinclair
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston B15 2TT, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| |
Collapse
|