51
|
Zhao J, Wang Y, Wu X, Tong P, Yue Y, Gao S, Huang D, Huang J. Inhibition of CCL19 benefits non‑alcoholic fatty liver disease by inhibiting TLR4/NF‑κB‑p65 signaling. Mol Med Rep 2018; 18:4635-4642. [PMID: 30221732 DOI: 10.3892/mmr.2018.9490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/21/2018] [Indexed: 11/06/2022] Open
Abstract
Non‑alcoholic fatty liver disease (NAFLD), which affects approximately one‑third of the general population, has become a global health problem. Thus, more effective treatments for NAFLD are urgently required. In the present study, high levels of C‑C motif ligand 19 (CCL19), signaling pathways such as Toll‑like receptor 4 (TLR4)/nuclear factor‑κB (NF‑κB), and proinflammatory factors including interleukin‑6 (IL‑6) and tumor necrosis factor‑α (TNF‑α) were detected in NAFLD patients, thereby indicating that there may be an association between CCL19 and these factors in NAFLD progression. Using a high‑fat diet (HFD), the present study generated a Sprague‑Dawley rat model of NAFLD, which displayed dyslipidemia with increased levels of plasma aspartate aminotransferase, alanine aminotransferase, total cholesterol and triglyceride. Dyslipidemia, liver histopathology and gene expression analyses indicated that the NAFLD model was successfully induced by HFD, and metformin and berberine (BBR) were effective treatments for NAFLD. HFD‑induced CCL19 levels and associated factors were markedly reduced by the two drug treatments. In addition, metformin or BBR alone significantly promoted adenosine monophosphate‑activated protein kinase (AMPK) phosphorylation, which was inhibited by HFD. These results demonstrated that metformin and BBR could improve NAFLD, which may be via the activation of AMPK signaling, and the high expression of CCL19 in NAFLD was significantly reduced by metformin and BBR. It could be inferred that inhibition of CCL19 may be an effective treatment for NAFLD.
Collapse
Affiliation(s)
- Jiajing Zhao
- Department of Traditional Chinese Medicine, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Yingjue Wang
- Department of Traditional Chinese Medicine, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Xi Wu
- Department of Endocrinology, Huashan Hospital, Fu Dan University, Shanghai 200040, P.R. China
| | - Ping Tong
- Department of Endocrinology, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Yaohan Yue
- Department of Traditional Chinese Medicine, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Shurong Gao
- Department of Traditional Chinese Medicine, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Dongping Huang
- Department of General Surgery, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| | - Jianwei Huang
- Department of General Surgery, Putuo District People's Hospital of Shanghai City, Shanghai 200060, P.R. China
| |
Collapse
|
52
|
Choi DH, Jung CH, Mok JO, Kim CH, Kang SK, Kim BY. Effect of Dapagliflozin on Alanine Aminotransferase Improvement in Type 2 Diabetes Mellitus with Non-alcoholic Fatty Liver Disease. Endocrinol Metab (Seoul) 2018; 33:387-394. [PMID: 30229578 PMCID: PMC6145967 DOI: 10.3803/enm.2018.33.3.387] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/21/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT2i) are expected to improve the liver function of patients with non-alcoholic fatty liver disease (NAFLD) combined type 2 diabetes mellitus (T2DM) by its characteristic mechanism. This study was designed to investigate the effect of dapagliflozin, one of the SGLT2i, on the liver function of T2DM with NAFLD when combined with metformin. METHODS Among patients who received dual oral hypoglycemic agents within the 3 months of diagnosing NAFLD, patients who had abnormal alanine aminotransferase (ALT) level (>40 IU/L) were included. Patients were divided into two groups: metformin+dapagliflozin group and metformin+dipeptidyl peptidase-4 inhibitors (DPP4i) group. Demographic data, biochemical data and the clinical and treatment histories of all patients were reviewed. RESULTS A total of 102 patients were included (dapagliflozin group, n=50; DPP4i group, n=52). Dapagliflozin group showed more weight loss and more ALT decline than DPP4i group (-2.9 kg vs. -0.4 kg, P=0.005; -21.1 U/L vs. -9.5 U/L, P=0.008, respectively) and the proportion of patients with ALT normalization after treatment was also significantly higher in the dapagliflozin group (80.0% vs. 61.5%, P=0.041). The effect of dapagliflozin with metformin on ALT normalization remained significant after adjustment for confounding variables including body weight loss (odds ratio, 3.489; P=0.046). CONCLUSION ALT improvement was statistically significant in the dapagliflozin than the DPP4i when combined with metformin and the result was consistent after adjustment for confounding variables including body weight loss.
Collapse
Affiliation(s)
- Dug Hyun Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Chan Hee Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ji Oh Mok
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Chul Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Sung Koo Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Bo Yeon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea.
| |
Collapse
|
53
|
Puerarin Mitigates Diabetic Hepatic Steatosis and Fibrosis by Inhibiting TGF- β Signaling Pathway Activation in Type 2 Diabetic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4545321. [PMID: 30057680 PMCID: PMC6051041 DOI: 10.1155/2018/4545321] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/04/2018] [Accepted: 04/01/2018] [Indexed: 02/06/2023]
Abstract
Lipid metabolism disorder and inflammation are essential promoters in pathogenesis of liver injury in type 2 diabetes. Puerarin (PUR) has been reported to exert beneficial effects on many diabetic cardiovascular diseases and chemical-induced liver injuries, but its effects on diabetic liver injury and its mechanism are still unclear. The current study was designed to explore the therapeutic effect and mechanism of PUR on liver injury in a type 2 diabetic rat model induced by a high-fat diet combined with low-dose streptozotocin. The diabetic rats were treated with or without PUR (100 mg/kg/day) by gavaging for 8 weeks, and biochemical and histological changes in liver were examined. Results showed that treatment with PUR significantly attenuated hepatic steatosis by regulating blood glucose and ameliorating lipid metabolism disorder. Liver fibrosis was relieved by PUR treatment. PUR inhibited oxidative stress and inflammation which was associated with inactivation of NF-κB signaling, thereby blocking the upregulation of proinflammatory cytokines (IL-1β, TNF-α) and chemokine (MCP-1). This protection of PUR on diabetic liver injury is possibly related with inhibition on TGF-β/Smad signaling. In conclusion, the present study provides evidence that PUR attenuated type 2 diabetic liver injury by inhibiting NF-κB-driven liver inflammation and the TGF-β/Smad signaling pathway.
Collapse
|
54
|
Zhu X, Yan H, Xia M, Chang X, Xu X, Wang L, Sun X, Lu Y, Bian H, Li X, Gao X. Metformin attenuates triglyceride accumulation in HepG2 cells through decreasing stearyl-coenzyme A desaturase 1 expression. Lipids Health Dis 2018; 17:114. [PMID: 29759071 PMCID: PMC5952420 DOI: 10.1186/s12944-018-0762-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased worldwide. Metformin decreases triglyceride (TG) accumulation in hepatocytes in vivo and in vitro. Stearyl-coenzyme A desaturase 1 (SCD1) knockout mice also show decreased liver TG accumulation; however, whether SCD1 plays a role in the effect of metformin on TG accumulation is unknown. Therefore, the aim of this study was to investigate whether SCD1 mediated the effect of metformin on TG accumulation. METHODS HepG2 and AML12 cells were exposed to high glucose and high insulin with or without metformin. An adenovirus was used for the SCD1 knockdown and overexpression. The triglyceride level in cells was detected. The expression of related genes was detected by Western blot and quantitative real-time PCR. A dual-luciferase reporter assay was used to determine the effect of metformin on the transcriptional activity of the SCD1 promoter. RESULTS Metformin decreased TG accumulation to normal level in HepG2 cells exposed to high glucose and high insulin. The expression of SCD1 and fatty acid synthetase (FAS) was also decreased to normal level by metformin. Knockdown of SCD1 mimicked the effect of metformin on decreasing TG levels in AML12 cells, and the overexpression of SCD1 attenuated the effect of metformin on decreasing TG accumulation in HepG2 cells. The dual-luciferase reporter assay showed that the transcriptional activity of the SCD1 promoter (- 550/+ 199) after metformin treatment was 2-fold lower compared to control group in HepG2 cells. Additionally, the phosphorylation of AMPK after metformin treatment was 2-fold higher, and the expression of sterol regulatory element-binding protein-1c (SREBP-1c) after metformin treatment was about 2-fold lower compared to high glucose and high insulin group in HepG2 cells. CONCLUSIONS Together, these results reveal that metformin reduces TG accumulation in HepG2 cells via inhibiting the expression of SCD1.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Hongmei Yan
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Mingfeng Xia
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Xinxia Chang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Xi Xu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Liu Wang
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Xiaoyang Sun
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Yan Lu
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Hua Bian
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China.
| | - Xiaoying Li
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| | - Xin Gao
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute for Metabolic Disease, Fudan University, Shanghai, 200032, China
| |
Collapse
|
55
|
Metformin Decreases the Incidence of Pancreatic Ductal Adenocarcinoma Promoted by Diet-induced Obesity in the Conditional KrasG12D Mouse Model. Sci Rep 2018; 8:5899. [PMID: 29651002 PMCID: PMC5897574 DOI: 10.1038/s41598-018-24337-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a particularly deadly disease. Chronic conditions, including obesity and type-2 diabetes are risk factors, thus making PDAC amenable to preventive strategies. We aimed to characterize the chemo-preventive effects of metformin, a widely used anti-diabetic drug, on PDAC development using the KrasG12D mouse model subjected to a diet high in fats and calories (HFCD). LSL-KrasG12D/+;p48-Cre (KC) mice were given control diet (CD), HFCD, or HFCD with 5 mg/ml metformin in drinking water for 3 or 9 months. After 3 months, metformin prevented HFCD-induced weight gain, hepatic steatosis, depletion of intact acini, formation of advanced PanIN lesions, and stimulation of ERK and mTORC1 in pancreas. In addition to reversing hepatic and pancreatic histopathology, metformin normalized HFCD-induced hyperinsulinemia and hyperleptinemia among the 9-month cohort. Importantly, the HFCD-increased PDAC incidence was completely abrogated by metformin (p < 0.01). The obesogenic diet also induced a marked increase in the expression of TAZ in pancreas, an effect abrogated by metformin. In conclusion, administration of metformin improved the metabolic profile and eliminated the promoting effects of diet-induced obesity on PDAC formation in KC mice. Given the established safety profile of metformin, our findings have a strong translational potential for novel chemo-preventive strategies for PDAC.
Collapse
|
56
|
Boudaba N, Marion A, Huet C, Pierre R, Viollet B, Foretz M. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development. EBioMedicine 2018; 28:194-209. [PMID: 29343420 PMCID: PMC5835560 DOI: 10.1016/j.ebiom.2018.01.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease is a highly prevalent component of disorders associated with disrupted energy homeostasis. Although dysregulation of the energy sensor AMP-activated protein kinase (AMPK) is viewed as a pathogenic factor in the development of fatty liver its role has not been directly demonstrated. Unexpectedly, we show here that liver-specific AMPK KO mice display normal hepatic lipid homeostasis and are not prone to fatty liver development, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Mechanistically, AMPK activation reduces hepatic triglyceride content both by inhibiting lipid synthesis and by stimulating fatty acid oxidation in an LKB1-dependent manner, through a transcription-independent mechanism. Furthermore, the effect of the antidiabetic drug metformin on lipogenesis inhibition and fatty acid oxidation stimulation was enhanced by combination treatment with small-molecule AMPK activators in primary hepatocytes from mice and humans. Overall, these results demonstrate that AMPK downregulation is not a triggering factor in fatty liver development but in contrast, establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease. Hepatic AMPK deficiency is not sufficient to trigger fatty liver development Re-activation of downregulated AMPK in fatty liver normalizes hepatic lipid content Hepatic AMPK activation both inhibits lipogenesis and stimulates fatty acid oxidation AMPK activation modulates lipid metabolism via a transcription-independent mechanism Small-molecule AMPK activators enhance metformin effects on hepatic lipid metabolism
Nonalcoholic fatty liver disease is a highly prevalent component of metabolic syndrome, for which treatment options are limited. Downregulation of the energy sensor AMPK is viewed as a pathogenic factor in the development of fatty liver. However, we show here hepatic AMPK suppression is not sufficient to promote hepatic lipid accumulation, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Thus, these results establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Nadia Boudaba
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Allison Marion
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Camille Huet
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Rémi Pierre
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris 75014, France; CNRS, UMR8104, Paris 75014, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75014, France.
| |
Collapse
|
57
|
Mills EP, Brown KPD, Smith JD, Vang PW, Trotta K. Treating nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: a review of efficacy and safety. Ther Adv Endocrinol Metab 2018; 9:15-28. [PMID: 29344336 PMCID: PMC5761952 DOI: 10.1177/2042018817741852] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To review current literature for the efficacy and safety of treatment for nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM). DATA SOURCES A PubMed literature search from January 1990 to June 2017 was conducted using the search terms nonalcoholic fatty liver disease, diabetes mellitus, type 2, therapy, treatment, treat, therapeutics, nonalcoholic fatty liver, nonalcoholic hepatosteatosis, NASH, NAFLD, metformin, and statin. Bibliographies of chosen articles were reviewed. STUDY SELECTION AND DATA EXTRACTION Relevant articles on metformin, thiazolidinediones (TZD), glucagon-like peptide-1 receptor agonists (GLP-1 RA), and statins for the treatment of NAFLD which included patients with T2DM were reviewed. A total of 23 relevant studies were found and included randomized controlled, observational, and open-label designs, as well as three meta-analyses. DATA SYNTHESIS Metformin combined with weight loss provides a modest improvement in steatosis and no improvement in fibrosis in patients with NAFLD and T2DM. TZDs showed positive results on fibrosis and resolution of NASH but at least half of patients studied were nonresponders. GLP-1 RAs also showed favorable results on reductions in transaminases and steatosis and improvements in insulin sensitivity and weight loss but lack efficacy data for resolution of NASH or improvement in fibrosis scores. Statins showed favorable results on reductions in transaminases but mixed results for improvement in steatosis and fibrosis scores. CONCLUSION All reviewed treatment options are safe for management of NAFLD in patients with T2DM but long-term histological improvements are minimal. TZDs are efficacious for resolution of NASH and improvements in fibrosis but long-term use is required to maintain these results.
Collapse
Affiliation(s)
| | - K. Paige D. Brown
- Campbell University College of Pharmacy & Health Sciences, Pharmacy Practice, Buies Creek, NC, USA
| | - Jennifer D. Smith
- William Jennings Bryan Dorn VA Medical Center, Columbia, SC 29209, USA
| | - Phillip W. Vang
- Campbell University College of Pharmacy & Health Sciences, Pharmacy Practice, Buies Creek, NC, USA
| | - Katie Trotta
- Campbell University College of Pharmacy & Health Sciences, Pharmacy Practice, Buies Creek, NC, USA
| |
Collapse
|
58
|
Natural modulators of nonalcoholic fatty liver disease: Mode of action analysis and in silico ADME-Tox prediction. Toxicol Appl Pharmacol 2017; 337:45-66. [DOI: 10.1016/j.taap.2017.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
|
59
|
Scott CH, Cha KM, Ngai J, Jiang C, Cheng K, Stokes RA, Ho KWK, George J, Gonzalez FJ, Gunton JE. Hepatic Aryl hydrocarbon Receptor Nuclear Translocator (ARNT) regulates metabolism in mice. PLoS One 2017; 12:e0186543. [PMID: 29190746 PMCID: PMC5708799 DOI: 10.1371/journal.pone.0186543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/11/2017] [Indexed: 01/09/2023] Open
Abstract
Background & aims Aryl hydrocarbon Receptor Nuclear Translocator (ARNT) and its partners hypoxia-inducible factors (HIF)-1α and HIF-2α are candidate factors for the well-known link between the liver, metabolic dysfunction and elevation in circulating lipids and glucose. Methods: Hepatocyte-specific ARNT-null (LARNT), HIF-1α-null (LHIF1α) and HIF-2α-null (LHIF2α) mice were created. Results LARNT mice had increased fasting glucose, impaired glucose tolerance, increased glucose production, raised post-prandial serum triglycerides (TG) and markedly lower hepatic ATP versus littermate controls. There was increased expression of G6Pase, Chrebp, Fas and Scd-1 mRNAs in LARNT animals. Surprisingly, LHIF1α and LHIF2α mice exhibited no alterations in any metabolic parameter assessed. Conclusions These results provide convincing evidence that reduced hepatic ARNT can contribute to inappropriate hepatic glucose production and post-prandial dyslipidaemia. Hepatic ARNT may be a novel therapeutic target for improving post-prandial hypertriglyceridemia and glucose homeostasis.
Collapse
Affiliation(s)
- Christopher H. Scott
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW. Australia
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kuan-Minn Cha
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW. Australia
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jason Ngai
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Changtao Jiang
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kim Cheng
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW. Australia
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Rebecca A. Stokes
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW. Australia
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kenneth W. K. Ho
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jacob George
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW. Australia
- Storr Liver Unit, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW. Australia
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jenny E. Gunton
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW. Australia
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St. Vincent’s Clinical School, University of NSW, Sydney, NSW, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW Australia
- * E-mail:
| |
Collapse
|
60
|
Gong Z, Tas E, Yakar S, Muzumdar R. Hepatic lipid metabolism and non-alcoholic fatty liver disease in aging. Mol Cell Endocrinol 2017; 455:115-130. [PMID: 28017785 DOI: 10.1016/j.mce.2016.12.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/23/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023]
Abstract
Aging is associated with dysregulation of glucose and lipid metabolism. Various factors that contribute to the dysregulation include both modifiable (e.g. obesity, insulin resistance) and non-modifiable risk factors (age-associated physiologic changes). Although there is no linear relationship between aging and prevalence of non-alcoholic fatty liver disease, current data strongly suggests that advanced age leads to more severe histological changes and poorer clinical outcomes. Hepatic lipid accumulation could lead to significant hepatic and systemic consequences including steatohepatitis, cirrhosis, impairment of systemic glucose metabolism and metabolic syndrome, thereby contributing to age-related diseases. Insulin, leptin and adiponectin are key regulators of the various physiologic processes that regulate hepatic lipid metabolism. Recent advances have expanded our understanding in this field, highlighting the role of novel mediators such as FGF 21, and mitochondria derived peptides. In this review, we will summarize the mediators of hepatic lipid metabolism and how they are altered in aging.
Collapse
Affiliation(s)
- Zhenwei Gong
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Emir Tas
- Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Shoshana Yakar
- David B. Kriser Dental Center, Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY 10010, USA
| | - Radhika Muzumdar
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Children's Hospital of Pittsburgh of UPMC, One Children's Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, 5362 Biomedical Sciences Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
61
|
Lin MJ, Dai W, Scott MJ, Li R, Zhang YQ, Yang Y, Chen LZ, Huang XS. Metformin improves nonalcoholic fatty liver disease in obese mice via down-regulation of apolipoprotein A5 as part of the AMPK/LXRα signaling pathway. Oncotarget 2017; 8:108802-108809. [PMID: 29312569 PMCID: PMC5752482 DOI: 10.18632/oncotarget.22163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein A5 (apoA5) has been implicated in the formation of hepatocyte lipid droplets, a histological hallmark of non-alcoholic fatty liver disease (NAFLD). Recent evidence demonstrated that liver X receptor α (LXRα), a transcription factor involved in down-regulation of APOA5 mRNA, is activated by AMP-activated protein kinase (AMPK) that contributes to metformin-related antihyperglycemic effects. In this study we investigated the role of apoA5 and AMPK/LXRα signaling pathway in metformin-related improvement of NAFLD. Leptin-deficient (ob/ob) obese mice with NAFLD were treated with metformin, and signaling pathways were compared with non-metformin treated mice. Additionally, we determined cellular apoA5 and triglyceride (TG) levels in mouse hepatocytes in vitro and the effects of metformin, with or without an AMPK inhibitor or LXRα siRNA, on these levels. We found that metformin dose-dependently ameliorated hepatosteatosis and liver dysfunction in ob/ob mice, with a significant reduction in hepatic apoA5 expression and TG level. Metformin also dose-dependently increased phosphorylation of hepatic AMPK and LXRα in ob/ob mice. Similarly, metformin decreased apoA5 expression and TG level in mouse hepatocytes, with increased phosphorylation of cellular AMPK and LXRα. Addition of AMPK inhibitor or siRNA knockdown of LXRα significantly attenuated metformin-induced down-regulation of cellular apoA5 expression and TG level. AMPK inhibitor also significantly inhibited metformin-induced LXRα phosphorylation in these hepatocytes. Therefore, our findings indicate that metformin improves obesity-related NAFLD via inhibition of hepatic apoA5 synthesis as part of the AMPK/LXRα signaling pathway.
Collapse
Affiliation(s)
- Min-Jie Lin
- Clinical Skills Training Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wen Dai
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Melanie J Scott
- Department of Surgery Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rong Li
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi-Qi Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yang Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lu-Zhu Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xian-Sheng Huang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
62
|
Santos IB, de Bem GF, Cordeiro VSC, da Costa CA, de Carvalho LCRM, da Rocha APM, da Costa GF, Ognibene DT, de Moura RS, Resende AC. Supplementation with Vitis vinifera L. skin extract improves insulin resistance and prevents hepatic lipid accumulation and steatosis in high-fat diet-fed mice. Nutr Res 2017; 43:69-81. [PMID: 28739056 DOI: 10.1016/j.nutres.2017.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease is one of the most common complications of obesity. The Vitis vinifera L. grape skin extract (ACH09) is an important source of polyphenols, which are related to its antioxidant and antihyperglycemic activities. We hypothesized that ACH09 could also exert beneficial effects on metabolic disorders associated with obesity and evaluated ACH09's influence on high-fat (HF) diet-induced hepatic steatosis and insulin resistance in C57BL/6 mice. The animals were fed a standard diet (10% fat, control) or an HF diet (60% fat, HF) with or without ACH09 (200mg/[kg d]) for 12weeks. Our results showed that ACH09 reduced HF diet-induced body weight gain, prevented hepatic lipid accumulation and steatosis, and improved hyperglycemia and insulin resistance. The underlying mechanisms of these beneficial effects of ACH09 may involve the activation of hepatic insulin-signaling pathway because the expression of phosphorylated insulin receptor substrate-1, phosphatidylinositol 3-kinase, phosphorylated Akt serine/threonine kinase 1, and glucose transporter 2 was increased by ACH09 and correlated with improvement of hyperglycemia, hyperinsulinemia, and insulin resistance. ACH09 reduced the expression of the lipogenic factor sterol regulatory-element binding protein-1c in the liver and upregulated the lipolytic pathway (phosphorylated liver kinase B1/phosphorylated adenosine-monophosphate-activated protein kinase), which was associated with normal hepatic levels of triglyceride and cholesterol and prevention of steatosis. ACH09 prevented the hepatic oxidative damage in HF diet-fed mice probably by restoration of antioxidant activity. In conclusion, ACH09 protected mice from HF diet-induced obesity, insulin resistance, and hepatic steatosis. The regulation of hepatic insulin signaling pathway, lipogenesis, and oxidative stress may contribute to ACH09's protective effect.
Collapse
Affiliation(s)
- Izabelle Barcellos Santos
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Graziele Freitas de Bem
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cristiane Aguiar da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Ana Paula Machado da Rocha
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil; Department of Physiological Sciences, Biomedical Institute, Federal University of the State of Rio de Janeiro, Brazil
| | - Gisele França da Costa
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Dayane Teixeira Ognibene
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela Castro Resende
- Department of Pharmacology, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
63
|
Podell BK, Ackart DF, Richardson MA, DiLisio JE, Pulford B, Basaraba RJ. A model of type 2 diabetes in the guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment. Dis Model Mech 2017; 10:151-162. [PMID: 28093504 PMCID: PMC5312002 DOI: 10.1242/dmm.025593] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023] Open
Abstract
Type 2 diabetes is a leading cause of morbidity and mortality among noncommunicable diseases, and additional animal models that more closely replicate the pathogenesis of human type 2 diabetes are needed. The goal of this study was to develop a model of type 2 diabetes in guinea pigs, in which diet-induced glucose intolerance precedes β-cell cytotoxicity, two processes that are crucial to the development of human type 2 diabetes. Guinea pigs developed impaired glucose tolerance after 8 weeks of feeding on a high-fat, high-carbohydrate diet, as determined by oral glucose challenge. Diet-induced glucose intolerance was accompanied by β-cell hyperplasia, compensatory hyperinsulinemia, and dyslipidemia with hepatocellular steatosis. Streptozotocin (STZ) treatment alone was ineffective at inducing diabetic hyperglycemia in guinea pigs, which failed to develop sustained glucose intolerance or fasting hyperglycemia and returned to euglycemia within 21 days after treatment. However, when high-fat, high-carbohydrate diet-fed guinea pigs were treated with STZ, glucose intolerance and fasting hyperglycemia persisted beyond 21 days post-STZ treatment. Guinea pigs with diet-induced glucose intolerance subsequently treated with STZ demonstrated an insulin-secretory capacity consistent with insulin-independent diabetes. This insulin-independent state was confirmed by response to oral antihyperglycemic drugs, metformin and glipizide, which resolved glucose intolerance and extended survival compared with guinea pigs with uncontrolled diabetes. In this study, we have developed a model of sequential glucose intolerance and β-cell loss, through high-fat, high-carbohydrate diet and extensive optimization of STZ treatment in the guinea pig, which closely resembles human type 2 diabetes. This model will prove useful in the study of insulin-independent diabetes pathogenesis with or without comorbidities, where the guinea pig serves as a relevant model species.
Collapse
Affiliation(s)
- Brendan K Podell
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - David F Ackart
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael A Richardson
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - James E DiLisio
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Bruce Pulford
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Randall J Basaraba
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
64
|
Reyes-García R, Rozas-Moreno P, Llamoza-Torres CJ, Mezquita-Raya P. Hígado graso no alcohólico y diabetes. Med Clin (Barc) 2017; 148:33-38. [DOI: 10.1016/j.medcli.2016.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
|
65
|
Abstract
Metformin has been widely used for over 5 decades. New preparations have been developed for possible enhancement of efficiency, tolerability, and pleiotropic nonglycemic effects. Extended-release metformin has contributed to adherence and improved gastrointestinal tolerability. Delayed-release metformin acts in the lower gastrointestinal tract and exerts glucose-lowering effects at lower plasma metformin levels, which might suggest use of this biguanide in patients with chronic kidney disease. Metformin is also known to have numerous nonglycemic effects. Results of the UK Prospective Diabetes Study indicate improvements in cardiovascular outcome and reduced total mortality independent of glycemic control. Anticancer effects of metformin have been discussed and many clinical trials are on-going. Metformin is noted for its beneficial effects on lifespan extension and on disorders due to increased insulin resistance. Further investigations, including randomized control trials in nondiabetic individuals, are required to demonstrate the nonglycemic effects of metformin.
Collapse
Affiliation(s)
- Yoshihito Fujita
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
66
|
Núñez KG, Gonzalez-Rosario J, Thevenot PT, Cohen AJ. Cyclin D1 in the Liver: Role of Noncanonical Signaling in Liver Steatosis and Hormone Regulation. Ochsner J 2017; 17:56-65. [PMID: 28331449 PMCID: PMC5349637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Cyclin D1 is an important protein for cell cycle progression; however, functions independent of the cell cycle have been described in the liver. Cyclin D1 is also involved in DNA repair, is overexpressed in many cancers, and functions as a proto-oncogene. The lesser-known roles of Cyclin D1, specifically in hepatocytes, impact liver steatosis and hormone regulation in the liver. METHODS A comprehensive search of PubMed was conducted using the keywords Cyclin D1, steatosis, lipogenesis, and liver transplantation. In this article, we review the results from this literature search, with a focus on the role of Cyclin D1 in hepatic lipogenesis and gluconeogenesis, as well as the impact and function of this protein in hepatic steatosis. RESULTS Cyclin D1 represses carbohydrate response element binding protein (ChREBP) and results in a decrease in transcription of fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC). Cyclin D1 also inhibits peroxisome proliferator-activated receptor gamma (PPARγ) which is involved in hepatic lipogenesis. Cyclin D1 inhibits both hepatocyte nuclear factor 4 alpha (HNF4α) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) and represses transcription of lipogenic genes FAS and liver-type pyruvate kinase (Pklr), along with the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). CONCLUSION Cyclin D1 represses multiple proteins involved in both lipogenesis and gluconeogenesis in the liver. Targeting Cyclin D1 to decrease hepatic steatosis in patients with nonalcoholic fatty liver disease or alcoholic fatty liver disease may help improve patient health and the quality of the donor liver pool.
Collapse
Affiliation(s)
- Kelley G. Núñez
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
| | | | - Paul T. Thevenot
- Institute of Translational Research, Ochsner Clinic Foundation, New Orleans, LA
| | - Ari J. Cohen
- Multi-Organ Transplant Institute, Ochsner Clinic Foundation, New Orleans, LA
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| |
Collapse
|
67
|
Gujjala S, Putakala M, Ramaswamy R, Desireddy S. Preventive effect of Caralluma fimbriata vs. Metformin against high-fat diet-induced alterations in lipid metabolism in Wistar rats. Biomed Pharmacother 2016; 84:215-223. [DOI: 10.1016/j.biopha.2016.09.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/25/2022] Open
|
68
|
The paraoxonase 1 (PON1), platelet-activating factor acetylohydrolase (PAF-AH) and dimethylarginine dimethylaminohydrolase (DDAH) activity in the metformin treated normal and diabetic rats. Eur J Pharmacol 2016; 789:187-194. [DOI: 10.1016/j.ejphar.2016.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/28/2022]
|
69
|
Smith BK, Marcinko K, Desjardins EM, Lally JS, Ford RJ, Steinberg GR. Treatment of nonalcoholic fatty liver disease: role of AMPK. Am J Physiol Endocrinol Metab 2016; 311:E730-E740. [PMID: 27577854 DOI: 10.1152/ajpendo.00225.2016] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/28/2016] [Indexed: 01/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing worldwide epidemic and an important risk factor for the development of insulin resistance, type 2 diabetes, nonalcoholic steatohepatitis (NASH), and hepatic cellular carcinoma (HCC). Despite the prevalence of NAFLD, lifestyle interventions involving exercise and weight loss are the only accepted treatments for this disease. Over the last decade, numerous experimental compounds have been shown to improve NAFLD in preclinical animal models, and many of these therapeutics have been shown to increase the activity of the cellular energy sensor AMP-activated protein kinase (AMPK). Because AMPK activity is reduced by inflammation, obesity, and diabetes, increasing AMPK activity has been viewed as a viable therapeutic strategy to improve NAFLD. In this review, we propose three primary mechanisms by which AMPK activation may improve NAFLD. In addition, we examine the mechanisms by which AMPK is activated. Finally, we identify 27 studies that have used AMPK activators to reduce NAFLD. Future considerations for studies examining the relationship between AMPK and NAFLD are highlighted.
Collapse
Affiliation(s)
- Brennan K Smith
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Katarina Marcinko
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Eric M Desjardins
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - James S Lally
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Rebecca J Ford
- Division of Endocrinology and Metabolism, Department of Medicine; and
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine; and Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
70
|
DPP-4 inhibitors in diabetic complications: role of DPP-4 beyond glucose control. Arch Pharm Res 2016; 39:1114-28. [PMID: 27502601 DOI: 10.1007/s12272-016-0813-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 (DPP-4) inhibitors (gliptins) are an emerging class of antidiabetic drugs that constitutes approximately fifty percent of the market share of the oral hypoglycemic drugs. Its mechanism of action for lowering blood glucose is essentially via inhibition of the rapid degradation of incretin hormones, such as glucagon-like peptide (GLP)-1 and gastric inhibitory polypeptide (GIP), thus the plasma concentration of GLP-1 increases, which promotes insulin secretion from the pancreatic β cells and suppresses glucagon secretion from the α cells. In addition to the direct actions on the pancreas, GLP-1 exhibits diverse actions on different tissues through its action on GLP-1 receptor, which is expressed ubiquitously. Moreover, DPP-4 has multiple substrates besides GLP-1 and GIP, including cytokines, chemokines, neuropeptides, and growth factors, which are involved in many pathophysiological conditions. Recently, it was suggested that DPP-4 is a new adipokine secreted from the adipose tissue, which plays an important role in the regulation of the endocrine function in obesity-associated type 2 diabetes. Consequently, DPP-4 inhibitors have been reported to exhibit cytoprotective functions against various diabetic complications affecting the liver, heart, kidneys, retina, and neurons. This review outlines the current understanding of the effect of DPP-4 inhibitors on the complications associated with type 2 diabetes, such as liver steatosis and inflammation, dysfunction of the adipose tissue and pancreas, cardiovascular diseases, nephropathy, and neuropathy in preclinical and clinical studies.
Collapse
|
71
|
Paulus JK, Williams CD, Cossor FI, Kelley MJ, Martell RE. Metformin, Diabetes, and Survival among U.S. Veterans with Colorectal Cancer. Cancer Epidemiol Biomarkers Prev 2016; 25:1418-1425. [PMID: 27496094 DOI: 10.1158/1055-9965.epi-16-0312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/26/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Metformin has been associated with improved colorectal cancer survival, but investigations are limited by small numbers of patients and confounding by diabetic severity. We examined the association between metformin use and overall survival (OS) in patients with diabetes and colorectal cancer in a large population of U.S. veterans, while adjusting for measures of diabetic severity. METHODS Patients diagnosed with colorectal cancer from January 2001 to December 2008 were identified from the Veterans Affairs Central Cancer Registry. Multivariable models were used to examine the adjusted association of OS with diabetes and use of antidiabetic medications. RESULTS There were 21,352 patients diagnosed with colorectal cancer identified (n = 16,355 nondiabetic patients, n = 2,038 diabetic patients on metformin, n = 2,136 diabetic patients on medications other than metformin, n = 823 diabetic patients not on antidiabetic medication). Diabetic patients had a significantly worse OS than nondiabetic patients, but metformin users had only a 10% increase in death (HRadj 1.10; 95% CI, 1.03-1.17, P = 0.004), as compared with 22% for users of other antidiabetic medications (HRadj 1.22; 95% CI, 1.15-1.29, P < 0.0001). Among colorectal cancer patients with diabetes, metformin users had a 13% improved OS versus patients taking other antidiabetic medications (HRadj 0.87; 95% CI, 0.79-0.95, P = 0.003), while diabetic patients not on any antidiabetic medications did not differ with respect to OS (HRadj 1.02; 95% CI, 0.90-1.15, P = 0.76). CONCLUSIONS Among diabetics with colorectal cancer, metformin use is associated with improved survival, despite adjustments for diabetes severity and other risk factors. IMPACT These data lend further support to the conduct of randomized studies of possible anticancer effects of metformin among patients with colorectal cancer. Cancer Epidemiol Biomarkers Prev; 25(10); 1418-25. ©2016 AACR.
Collapse
Affiliation(s)
- Jessica K Paulus
- Predictive Analytics and Comparative Effectiveness (PACE) Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts.
| | - Christina D Williams
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, North Carolina. Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina
| | - Furha I Cossor
- Department of Hematology and Oncology, Lahey Clinic, Burlington, Massachusetts
| | - Michael J Kelley
- Division of Hematology-Oncology, Durham VA Medical Center, Durham, North Carolina. Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina
| | - Robert E Martell
- Division of Hematology-Oncology, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
72
|
Rana H, Yadav SS, Reddy HD, Singhal S, Singh DK, Usman K. Comparative Effect of Insulin Sensitizers and Statin on Metabolic Profile and Ultrasonographical Score in Non Alcoholic Fatty Liver Disease. J Clin Diagn Res 2016; 10:OC19-23. [PMID: 27656480 DOI: 10.7860/jcdr/2016/19887.8336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/27/2016] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Non Alcoholic Fatty Liver Disease (NAFLD) is a metabolic disorder involving fat accumulation in the liver. The initial management for patients with NAFLD includes lifestyle modification and weight loss in overweight or obese patients. AIM The present study was conducted to compare the efficacy of insulin sensitizers and statin in the patients of NAFLD. MATERIALS AND METHODS The study included 98 patients diagnosed with NAFLD on USG (Ultrasonography) abdomen, divided into three Groups randomly and administered Metformin (Group I), Rosuvastatin (Group II) or Pioglitazone (Group III) along with dietary intervention and lifestyle modification. Their Body Mass Index (BMI), liver function tests, fasting lipid profile, USG scores for fatty liver were done and followed up at 4 weeks, 12 weeks and 24 week for change in above parameters. RESULTS Out of the three Groups, Group II showed a maximum improvements in usg scores for NAFLD (p<0.001) and fasting lipid profile. Group II also showed maximum derangement of liver enzymes at 24 weeks though none of the subjects had more than three times elevation of liver enzymes. CONCLUSION Rosuvastatin may be an effective therapy as add on treatment to dietary and lifestyle intervention in patients of NAFLD. As an add-on treatment Rosuvastatin was superior to Pioglitazone or Metformin and acute decompensation is unlikely with this drug. Metformin was not effective as add on therapy for NAFLD, rather rapid weight loss in short period of time resulted in worsening of hepatic steatosis.
Collapse
Affiliation(s)
- Himanshu Rana
- Junior Resident, Department of Medicine, King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Suraj Singh Yadav
- Senior Resident, Department of Pharmacology, King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Himanshu D Reddy
- Associate Professor, Department of Medicine, King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Shubham Singhal
- Junior Resident, Department of Medicine, King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar Singh
- Junior Resident, Department of Medicine, King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Kauser Usman
- Professor, Department of Medicine, King George's Medical University , Lucknow, Uttar Pradesh, India
| |
Collapse
|
73
|
Bayliss JA, Lemus MB, Santos VV, Deo M, Davies JS, Kemp BE, Elsworth JD, Andrews ZB. Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons. PLoS One 2016; 11:e0159381. [PMID: 27467571 PMCID: PMC4965122 DOI: 10.1371/journal.pone.0159381] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/03/2016] [Indexed: 12/25/2022] Open
Abstract
Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson's Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin's neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD.
Collapse
Affiliation(s)
- Jacqueline A. Bayliss
- Department of Physiology, School of Biomedical and Psychological Sciences, Monash University, Clayton, Melbourne, Vic., 3800, Australia
| | - Moyra B. Lemus
- Department of Physiology, School of Biomedical and Psychological Sciences, Monash University, Clayton, Melbourne, Vic., 3800, Australia
| | - Vanessa V. Santos
- Department of Physiology, School of Biomedical and Psychological Sciences, Monash University, Clayton, Melbourne, Vic., 3800, Australia
| | - Minh Deo
- Department of Physiology, School of Biomedical and Psychological Sciences, Monash University, Clayton, Melbourne, Vic., 3800, Australia
| | - Jeffrey S. Davies
- Molecular Neurobiology, Institute of Life Science, Swansea University, Swansea, SA28PP, United Kingdom
| | - Bruce E. Kemp
- St Vincent’s Institute & Department of Medicine, The University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | - John D. Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06520, United States of America
| | - Zane B. Andrews
- Department of Physiology, School of Biomedical and Psychological Sciences, Monash University, Clayton, Melbourne, Vic., 3800, Australia
| |
Collapse
|
74
|
Chiang WD, Huang CY, Paul CR, Lee ZY, Lin WT. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats. Food Nutr Res 2016; 60:31417. [PMID: 27415158 PMCID: PMC4944597 DOI: 10.3402/fnr.v60.31417] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. OBJECTIVE In this study, alcalase treatment derived potato protein hydrolysate (APPH) with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD)-fed aging rats. DESIGN Twenty-four-month-old SD rats were randomly divided into six groups (n=8): aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day) APPH treatment, HFD with moderate (45 mg/kg/day) APPH treatment, HFD with high (75 mg/kg/day) APPH treatment, and HFD with probucol. RESULTS APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day), moderate (45 mg/kg/day), and high (75 mg/kg/day) doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. CONCLUSIONS Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.
Collapse
Affiliation(s)
- Wen-Dee Chiang
- Department of Food Science, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Chih Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Catherine Reena Paul
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Zong-Yan Lee
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture, Tunghai University, Taichung, Taiwan;
| |
Collapse
|
75
|
Lorbek G, Urlep Ž, Rozman D. Pharmacogenomic and personalized approaches to tackle nonalcoholic fatty liver disease. Pharmacogenomics 2016; 17:1273-1288. [PMID: 27377717 DOI: 10.2217/pgs-2016-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a raising liver disease with increasing prevalence due to the epidemics of obesity and diabetes, with end points in cirrhosis or hepatocellular carcinoma. A multitude of genetic and metabolic perturbations, together with environmental factors, likely drive the disease. However, to date only a few genes, primarily PNPLA3 and TM6SF2, associate with NAFLD and there is no specific treatment. In this review we focus on the therapeutical aspects of NAFLD, taking into account drugs and lifestyle interventions. Sex also influences disease progression and treatment outcomes. Lastly, we discuss the present and potential future of personalized approaches to tackle NAFLD and how the known polymorphisms of NAFLD associated genes influence the choice and success of therapy.
Collapse
Affiliation(s)
- Gregor Lorbek
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
76
|
Itoh N, Nakayama Y, Konishi M. Roles of FGFs As Paracrine or Endocrine Signals in Liver Development, Health, and Disease. Front Cell Dev Biol 2016; 4:30. [PMID: 27148532 PMCID: PMC4829580 DOI: 10.3389/fcell.2016.00030] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/27/2016] [Indexed: 12/11/2022] Open
Abstract
The liver plays important roles in multiple processes including metabolism, the immune system, and detoxification and also has a unique capacity for regeneration. FGFs are growth factors that have diverse functions in development, health, and disease. The FGF family now comprises 22 members. Several FGFs have been shown to play roles as paracrine signals in liver development, health, and disease. FGF8 and FGF10 are involved in embryonic liver development, FGF7 and FGF9 in repair in response to liver injury, and FGF5, FGF8, FGF9, FGF17, and FGF18 in the development and progression of hepatocellular carcinoma. In contrast, FGF15/19 and FGF21 are endocrine signals. FGF15/19, which is produced in the ileum, is a negative regulator of bile acid metabolism and a stimulator of gallbladder filling. FGF15/19 is a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. It is also required for hepatocellular carcinoma and liver regeneration. FGF21 is a hepatokine produced in the liver. FGF21 regulates glucose and lipid metabolism in white adipose tissue. Serum FGF21 levels are elevated in non-alcoholic fatty liver. FGF21 also protects against non-alcoholic fatty liver. These findings provide new insights into the roles of FGFs in the liver and potential therapeutic strategies for hepatic disorders.
Collapse
Affiliation(s)
- Nobuyuki Itoh
- Medical Innovation Center, Kyoto University Graduate School of Medicine Kyoto, Japan
| | - Yoshiaki Nakayama
- Department of Microbial Chemistry, Kobe Pharmaceutical University Kobe, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University Kobe, Japan
| |
Collapse
|
77
|
A Comprehensive Updated Review of Pharmaceutical and Nonpharmaceutical Treatment for NAFLD. Gastroenterol Res Pract 2016; 2016:7109270. [PMID: 27006654 PMCID: PMC4781972 DOI: 10.1155/2016/7109270] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/27/2016] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in the western world with prevalence of 20–33%. NAFLD comprises a pathological spectrum. Nonalcoholic fatty liver (NAFL) is at one end and consists of simple hepatic steatosis. On the contrary, nonalcoholic steatohepatitis (NASH) consists of steatosis, inflammation, and ballooning degeneration and can progress to cirrhosis. Despite the rising incidence, definitive treatment for NAFLD, specifically NASH, has not yet been established. Lifestyle modification with dietary changes combined with regular aerobic exercise, along with multidisciplinary approach including cognitive behavior therapy, has been shown to be an effective therapeutic option, even without a significant weight loss. Pioglitazone and vitamin E have shown to be most effective in NASH patients. Surgery and weight loss medication are effective means of weight loss but can potentially worsen NASH related fibrosis. Other agents such as n-3 polyunsaturated fatty acids, probiotics, and pentoxifylline along with herbal agent such as milk thistle as well as daily intake of coffee have shown potential benefits, but further well organized studies are definitely warranted. This review focuses on the available evidence on pharmaceutical and nonpharmaceutical therapy in the treatment and the prevention of NAFLD, primarily NASH.
Collapse
|
78
|
Vergès B, Petit JM, Bouillet B. Improvement of liver function tests by antidiabetic agents: The need for multidirectional analysis. DIABETES & METABOLISM 2016; 42:1-3. [PMID: 26677771 DOI: 10.1016/j.diabet.2015.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 06/05/2023]
Affiliation(s)
- B Vergès
- Department of Endocrinology-Diabetology, University Hospital, 21000 Dijon, France; Inserm CRI 866, 21000 Dijon, France.
| | - J-M Petit
- Department of Endocrinology-Diabetology, University Hospital, 21000 Dijon, France; Inserm CRI 866, 21000 Dijon, France
| | - B Bouillet
- Department of Endocrinology-Diabetology, University Hospital, 21000 Dijon, France; Inserm CRI 866, 21000 Dijon, France
| |
Collapse
|
79
|
Dajani A, AbuHammour A. Treatment of nonalcoholic fatty liver disease: Where do we stand? an overview. Saudi J Gastroenterol 2016; 22:91-105. [PMID: 26997214 PMCID: PMC4817303 DOI: 10.4103/1319-3767.178527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide, the prevalence of which had progressively increased over the past 10 years where other liver diseases remained at the same prevalence rates or are expected to decrease as in the case of hepatitis C virus (HCV). The treatment of NAFLD is of prime concern to health care professionals and patients due to the significant mortality and morbidity it implies; the problem is further escalated by the fact that standard of care medications targeting NAFLD remain experimental and without evidence base. Treatment nowadays is focused on lifestyle modification and managing the comorbid associated diseases, with a possible role for some hepatic protective agents. This review presents all the medications that had been proposed and used for the treatment of NAFLD with or without scientific rationale and includes agents for weight loss, insulin sensitizers, drugs that reduce blood lipids, glucagon-mimetics, drugs that may reduce fibrosis, angiotensin receptor blockers, and medicines believed to reduce endoplasmic reticular stress such as vitamin E, ursodeoxycholic acid, and S-adenosyl methionine. A quick review of the newer agents that proved to be promising such as obeticholic acid and GFT505 and the medicines that are still in the pipeline is also presented.
Collapse
Affiliation(s)
- Asad Dajani
- Department of Gastroenterology and Hepatology, Asad Dajani Specialized Center, Sharjah, UAE,Address for correspondence: Dr. Asad Dajani, Department of Gastroenterology and Hepatology, Asad Dajani Specialized Center, P.O. Box 6328, Sharjah, United Arab Emirates. E-mail:
| | - Adnan AbuHammour
- Department of Gastroenterology and Hepatology, Abuhammour Medical Center, Dubai, UAE
| |
Collapse
|
80
|
de Oliveira PRB, da Costa CA, de Bem GF, Cordeiro VSC, Santos IB, de Carvalho LCRM, da Conceição EPS, Lisboa PC, Ognibene DT, Sousa PJC, Martins GR, da Silva AJR, de Moura RS, Resende AC. Euterpe oleracea Mart.-Derived Polyphenols Protect Mice from Diet-Induced Obesity and Fatty Liver by Regulating Hepatic Lipogenesis and Cholesterol Excretion. PLoS One 2015; 10:e0143721. [PMID: 26630290 PMCID: PMC4668108 DOI: 10.1371/journal.pone.0143721] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/08/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to investigate the effect of a polyphenol-rich Açaí seed extract (ASE, 300 mg/kg-1d-1) on adiposity and hepatic steatosis in mice that were fed a high-fat (HF) diet and its underlying mechanisms based on hepatic lipid metabolism and oxidative stress. Four groups were studied: C57BL/6 mice that were fed with standard diet (10% fat, Control), 10% fat + ASE (ASE), 60% fat (HF), and 60% fat + ASE (HF + ASE) for 12 weeks. We evaluated the food intake, body weight gain, serum glucose and lipid profile, hepatic cholesterol and triacyglycerol (TG), hepatic expression of pAMPK, lipogenic proteins (SREBP-1c, pACC, ACC, HMG-CoA reductase) and cholesterol excretion transporters, ABCG5 and ABCG8. We also evaluated the steatosis in liver sections and oxidative stress. ASE reduced body weight gain, food intake, glucose levels, accumulation of cholesterol and TG in the liver, which was associated with a reduction of hepatic steatosis. The increased expressions of SREBP-1c and HMG-CoA reductase and reduced expressions of pAMPK and pACC/ACC in HF group were antagonized by ASE. The ABCG5 and ABCG8 transporters expressions were increased by the extract. The antioxidant effect of ASE was demonstrated in liver of HF mice by restoration of SOD, CAT and GPx activities and reduction of the increased levels of malondialdehyde and protein carbonylation. In conclusion, ASE substantially reduced the obesity and hepatic steatosis induced by HF diet by reducing lipogenesis, increasing cholesterol excretion and improving oxidative stress in the liver, providing a nutritional resource for prevention of obesity-related adiposity and hepatic steatosis.
Collapse
Affiliation(s)
- Paola Raquel B. de Oliveira
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane A. da Costa
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Graziele F. de Bem
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane S. C. Cordeiro
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Izabelle B. Santos
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lenize C. R. M. de Carvalho
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ellen Paula S. da Conceição
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Department of Physiological Sciences, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayane T. Ognibene
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Roberto S. de Moura
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Angela C. Resende
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
81
|
Effect of canagliflozin on liver function tests in patients with type 2 diabetes. DIABETES & METABOLISM 2015; 42:25-32. [PMID: 26575250 DOI: 10.1016/j.diabet.2015.10.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 12/29/2022]
Abstract
AIMS To report changes in liver function tests observed with canagliflozin, a sodium glucose co-transporter 2 inhibitor, across phase 3 studies in patients with type 2 diabetes, and to examine the relationship between changes in liver function tests and the weight loss and glycaemic improvements observed with canagliflozin. METHODS Data were pooled from four 26-week, placebo-controlled studies of canagliflozin 100 and 300mg (n=2313) and two 52-week, active-controlled studies of canagliflozin 300mg versus sitagliptin 100mg (n=1488). Analysis of covariance was performed to determine the contribution of changes in body weight and HbA1c to the changes in liver function tests. RESULTS Reductions in alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and gamma-glutamyl transferase, and increases in bilirubin were seen with canagliflozin 100 and 300mg versus placebo (nominal P<0.001 for alanine aminotransferase, aspartate aminotransferase and gamma-glutamyl transferase [both doses]; P<0.001 for alkaline phosphatase and P=0.015 for bilirubin [canagliflozin 300mg only]) at week 26 and with canagliflozin 300mg versus sitagliptin 100mg (nominal P<0.001 for alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase and bilirubin, and P<0.01 for alkaline phosphatase) at week 52. Few patients met predefined limits of change criteria for liver function tests, and none met Hy's law criteria. In both populations, alanine aminotransferase, aspartate aminotransferase and gamma-glutamyl transferase reductions were fully explained by HbA1c and body weight reductions. CONCLUSIONS Canagliflozin provided improvements in liver function tests versus either placebo or sitagliptin treatments that were fully explained by the combined effects of HbA1c and body weight reductions with canagliflozin.
Collapse
|
82
|
Karavia EA, Hatziri A, Kalogeropoulou C, Papachristou NI, Xepapadaki E, Constantinou C, Natsos A, Petropoulou PI, Sasson S, Papachristou DJ, Kypreos KE. Deficiency in apolipoprotein A-I ablates the pharmacological effects of metformin on plasma glucose homeostasis and hepatic lipid deposition. Eur J Pharmacol 2015; 766:76-85. [DOI: 10.1016/j.ejphar.2015.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 12/25/2022]
|
83
|
Abstract
Dipeptidyl-peptidase 4 (DPP4) is a glycoprotein of 110 kDa, which is ubiquitously expressed on the surface of a variety of cells. This exopeptidase selectively cleaves N-terminal dipeptides from a variety of substrates, including cytokines, growth factors, neuropeptides, and the incretin hormones. Expression of DPP4 is substantially dysregulated in a variety of disease states including inflammation, cancer, obesity, and diabetes. Since the incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide (GIP), are major regulators of post-prandial insulin secretion, inhibition of DPP4 by the gliptin family of drugs has gained considerable interest for the therapy of type 2 diabetic patients. In this review, we summarize the current knowledge on the DPP4–incretin axis and evaluate most recent findings on DPP4 inhibitors. Furthermore, DPP4 as a type II transmembrane protein is also known to be cleaved from the cell membrane involving different metalloproteases in a cell-type-specific manner. Circulating, soluble DPP4 has been identified as a new adipokine, which exerts both para- and endocrine effects. Recently, a novel receptor for soluble DPP4 has been identified, and data are accumulating that the adipokine-related effects of DPP4 may play an important role in the pathogenesis of cardiovascular disease. Importantly, circulating DPP4 is augmented in obese and type 2 diabetic subjects, and it may represent a molecular link between obesity and vascular dysfunction. A critical evaluation of the impact of circulating DPP4 is presented, and the potential role of DPP4 inhibition at this level is also discussed.
Collapse
Affiliation(s)
- Diana Röhrborn
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| | - Nina Wronkowitz
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| | - Juergen Eckel
- Paul-Langerhans-Group for Integrative Physiology, German Diabetes Center , Düsseldorf , Germany
| |
Collapse
|
84
|
Bhat A, Sebastiani G, Bhat M. Systematic review: Preventive and therapeutic applications of metformin in liver disease. World J Hepatol 2015; 7:1652-1659. [PMID: 26140084 PMCID: PMC4483546 DOI: 10.4254/wjh.v7.i12.1652] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/05/2015] [Accepted: 06/08/2015] [Indexed: 02/06/2023] Open
Abstract
Metformin, a biguanide derivative, is the most commonly prescribed medication in the treatment of type 2 diabetes mellitus. More recently, the use of metformin has shown potential as a preventive and therapeutic agent for a broad spectrum of conditions, including liver disease and hepatic malignancies. In this systematic review, we critically analyze the literature behind the potential use of metformin across the spectrum of liver disease and malignancies. The PubMed and Ovid MEDLINE databases were searched from 2000 to March 2015, using a combination of relevant text words and MeSH terms: metformin and mammalian target of rapamycin, hepatitis B virus (HBV), hepatitis B virus (HCV), non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC) or cholangiocarcinoma. The search results were evaluated for pertinence to the issue of metformin in liver disease as well as for quality of study design. Metformin has a number of biochemical effects that would suggest a benefit in treating chronic liver diseases, particularly in the context of insulin resistance and inflammation. However, the literature thus far does not support any independent therapeutic role in NAFLD or HCV. Nonetheless, there is Level III evidence for a chemopreventive role in patients with diabetes and chronic liver disease, with decreased incidence of HCC and cholangiocarcinoma. The use of metformin seems to be safe in patients with cirrhosis, and provides a survival benefit. Once hepatic malignancies are already established, metformin does not offer any therapeutic potential. In conclusion, there is insufficient evidence to recommend use of metformin in the adjunctive treatment of chronic liver diseases, including NAFLD and HCV. However, there is good evidence for a chemopreventive role against HCC among patients with diabetes and chronic liver disease, and metformin should be continued in patients even with cirrhosis to provide this benefit.
Collapse
|
85
|
Linden MA, Lopez KT, Fletcher JA, Morris EM, Meers GM, Siddique S, Laughlin MH, Sowers JR, Thyfault JP, Ibdah JA, Rector RS. Combining metformin therapy with caloric restriction for the management of type 2 diabetes and nonalcoholic fatty liver disease in obese rats. Appl Physiol Nutr Metab 2015; 40:1038-47. [PMID: 26394261 DOI: 10.1139/apnm-2015-0236] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Weight loss is recommended for patients with nonalcoholic fatty liver disease (NAFLD), while metformin may lower liver enzymes in type 2 diabetics. Yet, the efficacy of the combination of weight loss and metformin in the treatment of NAFLD is unclear. We assessed the effects of metformin, caloric restriction, and their combination on NAFLD in diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Male OLETF rats (age 20 weeks; n = 6-8 per group) were fed ad libitum (AL), given metformin (300 mg·kg(-1)·day(-1); Met), calorically restricted (70% of AL; CR), or calorically restricted and given metformin (CR+Met) for 12 weeks. Met lowered adiposity compared with AL but not to the same magnitude as CR or CR+Met (p < 0.05). Although only CR improved fasting insulin and glucose, the combination of CR+Met was needed to improve post-challenge glucose tolerance. All treatments lowered hepatic triglycerides, but further improvements were observed in the CR groups (p < 0.05, Met vs. CR or CR+Met) and a further reduction in serum alanine aminotransferases was observed in CR+Met rats. CR lowered markers of hepatic de novo lipogenesis (fatty acid synthase, acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase-1 (SCD-1)) and increased hepatic mitochondrial activity (palmitate oxidation and β-hydroxyacyl CoA dehydrogenase (β-HAD) activity). Changes were enhanced in the CR+Met group for ACC, SCD-1, β-HAD, and the mitophagy marker BNIP3. Met decreased total hepatic mTOR content and inhibited mTOR complex 1, which may have contributed to Met-induced reductions in de novo lipogenesis. These findings in the OLETF rat suggest that the combination of caloric restriction and metformin may provide a more optimal approach than either treatment alone in the management of type 2 diabetes and NAFLD.
Collapse
Affiliation(s)
- Melissa A Linden
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,b Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - Kristi T Lopez
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,c Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| | - Justin A Fletcher
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,b Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
| | - E Matthew Morris
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,c Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| | - Grace M Meers
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,c Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| | - Sameer Siddique
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,c Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| | - M Harold Laughlin
- e Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - James R Sowers
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,d Department of Medicine, Division of Endocrinology, University of Missouri, Columbia, MO 65212, USA
| | - John P Thyfault
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,b Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA.,c Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| | - Jamal A Ibdah
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,b Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA.,c Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| | - R Scott Rector
- a Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.,b Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA.,c Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
86
|
Zheng J, Woo SL, Hu X, Botchlett R, Chen L, Huo Y, Wu C. Metformin and metabolic diseases: a focus on hepatic aspects. Front Med 2015; 9:173-86. [PMID: 25676019 PMCID: PMC4567274 DOI: 10.1007/s11684-015-0384-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/24/2014] [Indexed: 12/25/2022]
Abstract
Metformin has been widely used as a first-line anti-diabetic medicine for the treatment of type 2 diabetes (T2D). As a drug that primarily targets the liver, metformin suppresses hepatic glucose production (HGP), serving as the main mechanism by which metformin improves hyperglycemia of T2D. Biochemically, metformin suppresses gluconeogenesis and stimulates glycolysis. Metformin also inhibits glycogenolysis, which is a pathway that critically contributes to elevated HGP. While generating beneficial effects on hyperglycemia, metformin also improves insulin resistance and corrects dyslipidemia in patients with T2D. These beneficial effects of metformin implicate a role for metformin in managing non-alcoholic fatty liver disease. As supported by the results from both human and animal studies, metformin improves hepatic steatosis and suppresses liver inflammation. Mechanistically, the beneficial effects of metformin on hepatic aspects are mediated through both adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. In addition, metformin is generally safe and may also benefit patients with other chronic liver diseases.
Collapse
Affiliation(s)
- Juan Zheng
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shih-Lung Woo
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Xiang Hu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rachel Botchlett
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Huo
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
87
|
Scheen AJ. Pharmacokinetics in patients with chronic liver disease and hepatic safety of incretin-based therapies for the management of type 2 diabetes mellitus. Clin Pharmacokinet 2015; 53:773-85. [PMID: 25091053 DOI: 10.1007/s40262-014-0157-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with type 2 diabetes mellitus have an increased risk of chronic liver disease (CLD) such as non-alcoholic fatty liver disease and steatohepatitis, and about one-third of cirrhotic patients have diabetes. However, the use of several antidiabetic agents, such as metformin and sulphonylureas, may be a concern in case of hepatic impairment (HI). New glucose-lowering agents targeting the incretin system are increasingly used for the management of type 2 diabetes. Incretin-based therapies comprise oral inhibitors of dipeptidyl peptidase-4 (DPP-4) (gliptins) or injectable glucagon-like peptide-1 (GLP-1) receptor agonists. This narrative review summarises the available data regarding the use of both incretin-based therapies in patients with HI. In contrast to old glucose-lowering agents, they were evaluated in specifically designed acute pharmacokinetic studies in patients with various degrees of HI and their hepatic safety was carefully analysed in large clinical trials. Only mild changes in pharmacokinetic characteristics of DPP-4 inhibitors were observed in patients with different degrees of HI, presumably without major clinical relevance. GLP-1 receptor agonists have a renal excretion rather than liver metabolism. Specific pharmacokinetic data in patients with HI are only available for liraglutide. No significant changes in liver enzymes were reported with DPP-4 inhibitors or GLP-1 receptor agonists, alone or in combination with various other glucose-lowering agents, in clinical trials up to 2 years in length. On the contrary, preliminary data suggested that incretin-based therapies may be beneficial in patients with CLD, more particularly in the presence of non-alcoholic fatty liver disease. Nevertheless, caution should be recommended, especially in patients with advanced cirrhosis, because of a lack of clinical experience with incretin-based therapies in these vulnerable patients.
Collapse
Affiliation(s)
- André J Scheen
- Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine, University of Liège, Liège, Belgium,
| |
Collapse
|
88
|
Conde de la Rosa L, Vrenken TE, Buist-Homan M, Faber KN, Moshage H. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis. Pharmacol Res Perspect 2015; 3:e00125. [PMID: 26038701 PMCID: PMC4448984 DOI: 10.1002/prp2.125] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/05/2015] [Accepted: 01/14/2015] [Indexed: 12/21/2022] Open
Abstract
The majority of chronic liver diseases are accompanied by oxidative stress, which induces apoptosis in hepatocytes and liver injury. Recent studies suggest that oxidative stress and insulin resistance are important in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the pathophysiology of diabetes complications. Metformin has been shown to be hepatoprotective in the insulin-resistant and leptin-deficient ob/ob mouse model of NAFLD. However, the mechanism involved in the protective effects of metformin has not been elucidated yet. Therefore, we investigated the protective effect of metformin against oxidative stress-induced apoptosis. Primary rat hepatocytes were exposed to the oxidative stress-generating compound menadione in the presence and absence of metformin. Apoptosis was determined by measuring caspase activity and poly(ADP-ribose) polymerase (PARP)-cleavage, and necrosis was measured by Sytox Green nuclear staining. We demonstrate that (1) Metformin inhibits menadione-induced caspase-9,-6,-3 activation and PARP-cleavage in a concentration-dependent manner. (2) Metformin increases menadione-induced heme oxygenase-1 (HO-1) expression and inhibits c-Jun N-terminal kinase (JNK)-phosphorylation. (3) Metformin does not induce necrosis in primary hepatocytes. Metformin protects hepatocytes against oxidative stress-induced caspase activation, PARP-cleavage and apoptosis. The anti-apoptotic effect of metformin is in part dependent on HO-1 and bcl-xl induction and inhibition of JNK activation and independent of insulin signaling. Our results elucidate novel protective mechanisms of metformin and indicate that metformin could be investigated as a novel therapeutic agent for the treatment of oxidative stress-related liver diseases.
Collapse
Affiliation(s)
- Laura Conde de la Rosa
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen Groningen, The Netherlands
| | - Titia E Vrenken
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen Groningen, The Netherlands
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen Groningen, The Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen Groningen, The Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen Groningen, The Netherlands
| |
Collapse
|
89
|
Abstract
Microsomal triglyceride transfer protein (MTP) is one of the promising targets for the therapy of dyslipidemia and MTP inhibition can lead to robust plasma low-density lipoprotein cholesterol (LDL-C) reduction. Lomitapide, a small-molecule MTP inhibitor, was recently approved by the US FDA as an additional treatment for homozygous familial hypercholesterolemia (hoFH). However, liver-related side effects, including hepatic fat accumulation and transaminase elevations, are the main safety concerns associated with MTP inhibitors. Here, we review recent knowledge on the mechanisms underlying liver toxicity of MTP inhibitors. The contribution of altered levels of intracellular triglycerides, cholesteryl esters, and free cholesterols toward cellular dysfunction is specifically addressed. On this basis, therapies targeted to attenuate cellular lipid accumulation, to reduce risk factors for non-alcoholic fatty liver disease (NAFLD) (i.e., insulin resistance and oxidative stress) and to specifically inhibit intestinal MTP may be useful for ameliorating liver damage induced by MTP inhibitors. In particular, weight loss through lifestyle interventions is expected to be the most effective and safest way to minimize the undesirable side effects. Specific dietary supplementation might also have protective effects against hepatosteatosis. Despite that, to date, few clinical data support these therapeutic options in MTP inhibition-related liver damage, such proposed approaches may be further explored in the future for their use in preventing unwanted effects of MTP inhibitors.
Collapse
|
90
|
Liu J, Xu Y, Hu Y, Wang G. The role of fibroblast growth factor 21 in the pathogenesis of non-alcoholic fatty liver disease and implications for therapy. Metabolism 2015; 64:380-90. [PMID: 25516477 DOI: 10.1016/j.metabol.2014.11.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/06/2014] [Accepted: 11/25/2014] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) includes a cluster of liver disorders ranging from simple fatty liver to non-alcoholic steatohepatitis (NASH) and cirrhosis. Due to its liver and vascular complications, NAFLD has become a public health problem with high morbidity and mortality. The pathogenesis of NAFLD is considered a "multi-hit hypothesis" that involves lipotoxicity, oxidative stress, endoplasmic reticulum stress, a chronic inflammatory state and mitochondrial dysfunction. Fibroblast growth factor 21 (FGF21) is a member of the fibroblast growth factor family with multiple metabolic functions. FGF21 directly regulates lipid metabolism and reduces hepatic lipid accumulation in an insulin-independent manner. Several studies have shown that FGF21 can ameliorate the "multi-hits" in the pathogenesis of NAFLD. The administration of FGF21 reverses hepatic steatosis, counteracts obesity and alleviates insulin resistance in rodents and nonhuman primates. Using several strategies, we show that the reversal of simple fatty liver and NASH is mediated by activation of the FGF21 signaling pathway. In this review, we describe the molecular mechanisms involved in the onset and/or progression of NAFLD, and review the current literature to highlight the therapeutic procedures associated with the FGF21 signaling pathway for simple fatty liver and NASH, which are the two most important types of NAFLD.
Collapse
Affiliation(s)
- Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Yuan Xu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Yanjin Hu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, No. 8, Gongti South Road, Chaoyang District, Beijing 100020, China.
| |
Collapse
|
91
|
|
92
|
Trovato FM, Catalano D, Musumeci G, Trovato GM. 4Ps medicine of the fatty liver: the research model of predictive, preventive, personalized and participatory medicine-recommendations for facing obesity, fatty liver and fibrosis epidemics. EPMA J 2014; 5:21. [PMID: 25937854 PMCID: PMC4417534 DOI: 10.1186/1878-5085-5-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/24/2014] [Indexed: 12/13/2022]
Abstract
Relationship between adipose tissue and fatty liver, and its possible evolution in fibrosis, is supported by clinical and research experience. Given the multifactorial pathogenesis of non-alcoholic fatty liver disease (NAFLD), treatments for various contributory risk factors have been proposed; however, there is no single validated therapy or drug association recommended for all cases which can stand alone. Mechanisms, diagnostics, prevention and treatment of obesity, fatty liver and insulin resistance are displayed along with recommendations and position points. Evidences and practice can get sustainable and cost-benefit valuable outcomes by participatory interventions. These recommendations can be enhanced by comprehensive research projects, addressed to societal issues and innovation, market appeal and industry development, cultural acceptance and sustainability. The basis of participatory medicine is a greater widespread awareness of a condition which is both a disease and an easy documented and inclusive clue for associated diseases and unhealthy lifestyle. This model is suitable for addressing prevention and useful for monitoring improvement, worsening and adherence with non-invasive imaging tools which allow targeted approaches. The latter include health psychology and nutritional and physical exercise prescription expertise disseminated by continuous medical education but, more important, by concrete curricula for training undergraduate and postgraduate students. It is possible and recommended to do it by early formal teaching of ultrasound imaging procedures and of practical lifestyle intervention strategies, including approaches aimed to healthier fashion suggestions. Guidelines and requirements of research project funding calls should be addressed also to NAFLD and allied conditions and should encompass the goal of training by research and the inclusion of participatory medicine topics. A deeper awareness of ethics of competences in health professionals and the articulation of knowledge, expertise and skills of medical doctors, dieticians, health psychologists and sport and physical exercise graduates are the necessary strategy for detectin a suboptimal health status and achieving realistically beneficial lifestyle changes. “The devil has put a penalty on all things we enjoy in life. Either we suffer in health or we suffer in soul or we get fat” (Albert Einstein); the task of medical research and intervention is to make possible to enjoy life also without things that make sufferance in health and souls and which excessively increase body fat.
Collapse
Affiliation(s)
- Francesca Maria Trovato
- Department of Clinical and Experimental Medicine, Internal Medicine Division, School of Medicine, University of Catania, Via S. Sofia, 78-95123 Catania, Italy
| | - Daniela Catalano
- Department of Clinical and Experimental Medicine, Internal Medicine Division, School of Medicine, University of Catania, Via S. Sofia, 78-95123 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia, 87-95123 Catania, Italy
| | - Guglielmo M Trovato
- Department of Clinical and Experimental Medicine, Internal Medicine Division, School of Medicine, University of Catania, Via S. Sofia, 78-95123 Catania, Italy
| |
Collapse
|
93
|
Sparkes ST, Patel DK, Goldman-Levine JD. Past, Present, and Future Research Avenues for Metformin: A Literature Review. J Pharm Technol 2014; 30:227-234. [PMID: 34860874 PMCID: PMC5990160 DOI: 10.1177/8755122514544527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024] Open
Abstract
Objective: To review why metformin is considered first-line therapy for type 2 diabetes mellitus (T2DM) and review newer avenues of research currently being evaluated. Data Sources: The Cochrane Library and Medline (to January 2014) were searched for case-control and cohort studies, clinical trials, and systematic reviews and meta-analyses involving metformin for any indication. Study Selection and Data Extraction: The literature search found 5 major avenues of research for metformin: reduction in mortality, delayed-onset or prevention of T2DM in the presence of prediabetes, nonalcoholic fatty liver disease (NAFLD), polycystic ovarian syndrome (PCOS), and decreased cancer risk. When available, multi-center, double-blind, controlled clinical trials or meta-analyses thereof were selected for review. If these types of studies did not exist, other types of studies were chosen for review. Data Synthesis: Metformin significantly decreases all-cause and diabetes-related mortality in overweight and obese patients with T2DM. It may also decrease risk of progression to T2DM in patients with prediabetes. Metformin has been studied for the treatment of NAFLD though data are limited. Metformin alone or combined with clomiphene may increase pregnancy and ovulation rates but has not yet been shown to increase live-birth rates in patients with PCOS. Metformin may decrease risk of colorectal cancer but not all-cancer risk. Conclusions: Metformin's clinical role in T2DM and prediabetes is well established. Other avenues of research being evaluated at this time are NAFLD, PCOS, and reduced risk of cancer; more data are needed before it has a clinical role in these indications.
Collapse
|
94
|
Chiang WD, Shibu MA, Lee KI, Wu JP, Tsai FJ, Pan LF, Huang CY, Lin WT. Lipolysis-stimulating peptide-VHVV ameliorates high fat diet induced hepatocyte apoptosis and fibrosis. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
95
|
Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice. PLoS One 2014; 9:e108408. [PMID: 25296035 PMCID: PMC4189915 DOI: 10.1371/journal.pone.0108408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 08/20/2014] [Indexed: 02/07/2023] Open
Abstract
To determine the metabolic effects of grapefruit juice consumption we established a model in which C57Bl/6 mice drank 25–50% sweetened GFJ, clarified of larger insoluble particles by centrifugation (cGFJ), ad libitum as their sole source of liquid or isocaloric and sweetened water. cGFJ and control groups consumed similar amounts of liquids and calories. Mice fed a high-fat diet and cGFJ experienced a 18.4% decrease in weight, a 13–17% decrease in fasting blood glucose, a three-fold decrease in fasting serum insulin, and a 38% decrease in liver triacylglycerol values, compared to controls. Mice fed a low-fat diet that drank cGFJ experienced a two-fold decrease in fasting insulin, but not the other outcomes observed with the high-fat diet. cGFJ consumption decreased blood glucose to a similar extent as the commonly used anti-diabetic drug metformin. Introduction of cGFJ after onset of diet-induced obesity also reduced weight and blood glucose. A bioactive compound in cGFJ, naringin, reduced blood glucose and improved insulin tolerance, but did not ameliorate weight gain. These data from a well-controlled animal study indicate that GFJ contains more than one health-promoting neutraceutical, and warrant further studies of GFJ effects in the context of obesity and/or the western diet.
Collapse
|
96
|
R H SP, B V B, Kudva N, H S, P R. INCIDENCE OF NON - ALCOHOLIC HEPATIC FATTY INFILTRATION IN WOMEN WITH POLYCYSTIC OVARY SYNDROME. ACTA ACUST UNITED AC 2014. [DOI: 10.18410/jebmh/2014/133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
97
|
Xun YH, Zhang YJ, Pan QC, Mao RC, Qin YL, Liu HY, Zhang YM, Yu YS, Tang ZH, Lu MJ, Zang GQ, Zhang JM. Metformin inhibits hepatitis B virus protein production and replication in human hepatoma cells. J Viral Hepat 2014; 21:597-603. [PMID: 24164660 DOI: 10.1111/jvh.12187] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/05/2013] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus surface antigen (HBsAg) plays an important role in maintaining the tolerance and may interfere with host innate and adaptive immune responses; therefore, novel therapeutic strategies to reduce HBsAg loads in patients infected with hepatitis B virus (HBV) are emerging as an attractive but challenging issue. Metformin could regulate hepatic metabolism while the latter interacts with HBV infection. We hypothesized that metformin could affect HBsAg expression and HBV replication and may work synergistically when combined with current antivirals. In our study, a notably inhibitory effect on HBsAg production, as well as a moderate inhibition in HBV replication and HBeAg expression was observed following metformin treatment. The 50% effective concentration (EC50) for extracellular HBsAg and intracellular HBsAg in HBV-producing HepG2.2.15 cells was 2.85 mm and 2.75 mm, respectively, with a similarly selective index of about 18. When administered in combination, metformin enhanced the inhibitory effects of interferon-α2b on HBsAg expression and HBV replication and provided a complimentary role in HBsAg expression for lamivudine (LMV). This novel action of metformin derives partially from its inhibition on multiple HBV cis-acting elements. By the virtues of preferably hepatocyte distribution and safety profile, collectively, our results suggest that metformin would be potentially clinically helpful as an HBsAg production inhibitor.
Collapse
Affiliation(s)
- Y-H Xun
- Department of Infectious Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Medical Molecular Virology of the Ministries of Education and Health, Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Liver Diseases, The Sixth People's Hospital affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Rouabhia S, Milic N, Abenavoli L. Metformin in the treatment of non-alcoholic fatty liver disease: safety, efficacy and mechanism. Expert Rev Gastroenterol Hepatol 2014; 8:343-9. [PMID: 24580044 DOI: 10.1586/17474124.2014.894880] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease etiology worldwide. It encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis. Although the physiopathology of NAFLD is partly known. Insulin-resistance plays a central role in the development and progression of NAFLD. Several studies have indicated that metformin, as an insulin sensitizer, effectively improves NAFLD and its related metabolic status. Metformin was effective in reducing enzyme levels in the short period, but very limited and controversial information are available on liver histology. Larger randomized controlled trials of sufficient duration using clearly defined histological endpoints are needed to fully assess the efficacy of this drug in modifying the natural history of NAFLD.
Collapse
Affiliation(s)
- Samir Rouabhia
- Department of Internal Medicine, University Hospital Center Touhami Benfis, Batna, Algeria
| | | | | |
Collapse
|
99
|
Scheen AJ. Pharmacokinetic and toxicological considerations for the treatment of diabetes in patients with liver disease. Expert Opin Drug Metab Toxicol 2014; 10:839-57. [PMID: 24669954 DOI: 10.1517/17425255.2014.902444] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Patients with type 2 diabetes have an increased risk of chronic liver disease (CLD) such as non-alcoholic fatty liver disease and steatohepatitis and about one-third of cirrhotic patients have diabetes. However, the use of several antidiabetic agents may be a cause for concern in the case of hepatic impairment (HI). AREAS COVERED An extensive literature search was performed to analyze the influence of HI on the pharmacokinetics (PK) of glucose-lowering agents and the potential consequences for clinical practice as far as the efficacy/safety balance of their use in diabetic patients with CLD is concerned. EXPERT OPINION Almost no PK studies have been published regarding metformin, sulfonylureas, thiazolidinediones and α-glucosidase inhibitors in patients with HI. Only mild changes in PK of glinides, dipeptidyl peptidase-4 inhibitors and sodium glucose cotransporters type 2 inhibitors were observed in dedicated PK studies in patients with various degrees of HI, presumably without major clinical relevance although large clinical experience is lacking. Glucagon-like peptide-1 receptor agonists have a renal excretion rather than liver metabolism. Rare anecdotal case reports of hepatotoxicity have been described with various glucose-lowering agents contrasting with numerous reassuring data. Nevertheless, caution should be recommended, especially in patients with advanced cirrhosis, including with the use of metformin.
Collapse
Affiliation(s)
- André J Scheen
- University of Liège, CHU Sart Tilman (B35), Center for Interdisciplinary Research on Medicines (CIRM), Division of Diabetes, Nutrition and Metabolic Disorders and Division of Clinical Pharmacology, Department of Medicine , B-4000 Liege 1 , Belgium +32 4 3667238 ; +32 4 3667068 ;
| |
Collapse
|
100
|
Kaji K, Yoshiji H, Ikenaka Y, Noguchi R, Aihara Y, Douhara A, Moriya K, Kawaratani H, Shirai Y, Yoshii J, Yanase K, Kitade M, Namisaki T, Fukui H. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol 2014; 49:481-91. [PMID: 23475323 DOI: 10.1007/s00535-013-0783-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 02/19/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Dipeptidyl peptidase-4 inhibitor (DPP4-I) is clinically used as a new oral antidiabetic agent. Although DPP4 is reportedly associated with the progression of chronic liver diseases, the effect of DPP4-I on liver fibrosis development is still obscure. This study was designed to elucidate the effect of DPP4-I on liver fibrosis development in conjunction with the activated hepatic stellate cells (Ac-HSCs). METHODS The antifibrotic effect of DPP4-I was assessed in vivo and in vitro using porcine serum-induced experimental liver fibrosis model. DPP4-I, sitagliptin, at a clinically comparable low dose was administered by gavage daily. RESULTS DPP4-I significantly attenuated liver fibrosis development along with the suppression of hepatic transforming growth factor (TGF)-β1, total collagen, and tissue inhibitor of metalloproteinases-1 in a dose-dependent manner. These suppressive effects occurred almost concurrently with the attenuation of HSCs activation. Our in vitro studies showed that DPP4-I inhibited platelet-derived growth factor-BB-mediated proliferation of the Ac-HSCs as well as upregulation of TGF-β1 and α1(I)-procollagen at magnitudes similar to those of the in vivo studies. The inhibitory effects of DPP4-I against HSCs proliferation and fibrogenic gene expression are mediated through the inhibition of the phosphorylation of ERK1/2, p38 and Smad2/3, respectively. CONCLUSIONS DPP4-I markedly inhibits liver fibrosis development in rats via suppression of HSCs proliferation and collagen synthesis. These suppressive effects are associated with dephosphorylation of ERK1/2, p38 and Smad2/3 in the HSCs. Since DPP4-I is widely used in clinical practice, this drug may represent a potential new therapeutic strategy against liver fibrosis in the near future.
Collapse
Affiliation(s)
- Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|