51
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
52
|
Assadiasl S, Mooney N, Nicknam MH. Cytokines in Liver Transplantation. Cytokine 2021; 148:155705. [PMID: 34564024 DOI: 10.1016/j.cyto.2021.155705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
Cytokines, soluble mediators of the immune system, play a critical role in the pathogenesis of autoimmune, allergic and infectious diseases. They are also implicated in the initiation and development of allograft rejection. During recent years, there have been considerable advances in generating novel anti-cytokine agents with promoted efficacy and safety, which could be administrated for managing dysregulated cytokine secretion; besides, gene therapy for overexpression of immunomodulatory cytokines has shown substantial improvements. Liver transplantation has been established as a life-saving treatment for end-stage hepatic diseases but the growing number of recipients urge for improved post-transplant care including tolerance induction, infection control and resolving immunosuppressant drugs adverse effects. Cytokines with a wide range of proinflammatory and regulatory properties might be considered as potential therapeutic targets for selective suppression or enhancement of the immune responses in recipients. In the present review, we aimed to summarize the positive and negative effects of cytokines on liver allograft in addition to their prognostic and therapeutic values.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nuala Mooney
- Human Immunology and Immunopathology, Inserm UMR 976, Paris, France; Université de Paris, Paris, France
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, Medical School, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
53
|
Otsuka T, Kan HM, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
54
|
Yamashiro C, Tokuda K, Kobayashi Y, Higashijima F, Yoshimoto T, Ota M, Ogata T, Ashimori A, Kobayashi M, Hatano M, Uchi SH, Wakuta M, Teranishi S, Kimura K. Benzalkonium chloride-induced myofibroblastic transdifferentiation of Tenon's capsule fibroblasts is inhibited by coculture with corneal epithelial cells or by interleukin-10. Sci Rep 2021; 11:16096. [PMID: 34373467 PMCID: PMC8352883 DOI: 10.1038/s41598-021-94852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/04/2021] [Indexed: 11/09/2022] Open
Abstract
Benzalkonium chloride (BAC) is used as a preservative in eyedrops but induces subconjunctival fibrosis that can result in failure of glaucoma surgery. Tenon's capsule fibroblasts in subconjunctival tissue interact with the corneal epithelium through tear fluid. With the use of a coculture system, we have now investigated the effect of human corneal epithelial (HCE) cells on myofibroblastic transdifferentiation of human Tenon fibroblasts (HTFs) induced by BAC (5 × 10-6%). Immunofluorescence and immunoblot analyses revealed that the BAC-induced expression of α smooth muscle actin (αSMA) in HTFs was suppressed by coculture of these cells with HCE cells (p < 0.01). The concentration of interleukin-10 (IL-10) in culture supernatants of BAC-treated HTFs was increased by coculture with HCE cells (17.26-fold, vs. coculure, p < 0.001). Immunofluorescence and immunoblot analyses also showed that exogenous IL-10 (300 pg/ml) suppressed the BAC-induced expression of αSMA by 43.65% (p < 0.05) as well as the nuclear translocation of myocardin-related transcription factor-A (MRTF-A) by 39.32% (p < 0.01) in HTFs cultured alone. Our findings suggest that corneal epithelial cells may protect against subconjunctival fibrosis by maintaining IL-10 levels and preventing the MRTF-A-dependent transdifferentiation of HTFs into myofibroblasts.
Collapse
Affiliation(s)
- Chiemi Yamashiro
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Kazuhiro Tokuda
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yuka Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Manami Ota
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Tadahiko Ogata
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Atsushige Ashimori
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Masaaki Kobayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Makoto Hatano
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Sho-Hei Uchi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Makiko Wakuta
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Shinichiro Teranishi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
55
|
Zhang N, Li P, Lin H, Shuo T, Ping F, Su L, Chen G. IL-10 ameliorates PM2.5-induced lung injury by activating the AMPK/SIRT1/PGC-1α pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103659. [PMID: 33862202 DOI: 10.1016/j.etap.2021.103659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Exposure to fine particulate matter with a diameter ≤2.5 μm (PM2.5) can cause a number of respiratory diseases. However, there is currently no safe treatment for PM2.5-induced lung damage. This study investigated the protective effect of IL-10 against lung injury and the possible involvement of AMPK/SIRT1/PGC-1α signaling. The mean diameter, particle size distribution, and zeta potential of PM2.5 samples were assessed using a Zetasizer Nano ZS90 analyzer. Thereafter, Wistar rats were exposed to PM2.5 (1.8, 5.4, or 16.2 mg/kg) alone or high-dose PM2.5 with recombinant rat IL-10 (rrIL-10; 5 μg/rat). Treatment with rrIL-10 ameliorated PM2.5-induced acute lung injury, reduced mitochondrial damage, and inhibited inflammation, oxidative stress, and apoptosis in the PM2.5-treated rats. Moreover, the mRNA and protein expression of AMPK, SIRT1, and PGC-1α were upregulated by rrIL-10 treatment. In conclusion, rrIL-10 protected lung tissues against PM2.5-induced inflammation by reducing oxidative stress and apoptosis via activating AMPK/SIRT1/PGC-1α signaling.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China; Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Ping Li
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Hua Lin
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Tian Shuo
- Department of Urinary Surgery, The First Hospital of Shijiazhuang, Shijiazhuang, 050051, Hebei, China
| | - Fen Ping
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Li Su
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050051, Hebei, China
| | - Gang Chen
- Department of Respiratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
56
|
Gu P, Wang D, Zhang J, Wang X, Chen Z, Gu L, Liu M, Meng F, Yang J, Cai H, Xiao Y, Chen Y, Cao M. Protective function of interleukin-22 in pulmonary fibrosis. Clin Transl Med 2021; 11:e509. [PMID: 34459137 PMCID: PMC8387792 DOI: 10.1002/ctm2.509] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive scarring disease with unknown etiology. The evidence of a pathogenic role for transforming growth factor-beta (TGF-β) in the development and progression of IPF is overwhelming. In the present study, we investigated the role of interleukin-22 (IL-22) in the pathogenesis of IPF by regulating the TGF-β pathway. We measured parameters and tissue samples from a clinical cohort of IPF. IL-22R knock out (IL-22RA1-/- ) and IL-22 supplementation mouse models were used to determine if IL-22 is protective in vivo. For the mechanistic study, we tested A549, primary mouse type II alveolar epithelial cell, human embryonic lung fibroblast, and primary fibroblast for their responses to IL-22 and/or TGF-β1. In a clinical cohort, the expression level of IL-22 in the peripheral blood and lung tissues of IPF patients was lower than healthy controls, and the lower IL-22 expression was associated with poorer pulmonary function. IL-22R-/- mice demonstrated exacerbated inflammation and fibrosis. Reciprocally, IL-22 augmentation by intranasal instillation of recombinant IL-22 repressed inflammation and fibrotic phenotype. In vitro, IL-22 treatment repressed TGF-β1 induced gene markers representing epithelial-mesenchymal-transition and fibroblast-myofibroblast-transition, likely via the inhibition of TGF-β receptor expression and subsequent Smad2/3 activation. IL-22 appears to be protective against pulmonary fibrosis by inhibiting TGF-β1 signaling, and IL-22 augmentation may be a promising approach to treat IPF.
Collapse
Affiliation(s)
- Peiyu Gu
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Ji Zhang
- Wuxi Transplant CenterWuxi People's Hospital Affiliated to Nanjing Medical UniversityWuxiJiangsuChina
| | - Xin Wang
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhiyong Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Lina Gu
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| | - Mengying Liu
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Fanqing Meng
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Hourong Cai
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Yonglong Xiao
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Yin Chen
- Department of Pharmacology and ToxicologySchool of Pharmacy; University of ArizonaTucsonAZ
- Asthma & Airway Disease Research CenterUniversity of ArizonaTucsonAZ
| | - Mengshu Cao
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- Department of Respiratory and Critical Care MedicineNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
57
|
Qi X, Cao Y, Wu S, Wu Z, Bao W. miR-129a-3p Inhibits PEDV Replication by Targeting the EDA-Mediated NF-κB Pathway in IPEC-J2 Cells. Int J Mol Sci 2021; 22:ijms22158133. [PMID: 34360898 PMCID: PMC8347983 DOI: 10.3390/ijms22158133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that microRNAs (miRNAs) are closely related to many viral infections. However, the molecular mechanism of how miRNAs regulate porcine epidemic diarrhea virus (PEDV) infection remains unclear. In this study, we first constructed a PEDV-infected IPEC-J2 cytopathic model to validate the relationship between miR-129a-3p expression levels and PEDV resistance. Secondly, we explored the effect of miR-129a-3p on PEDV infection by targeting the 3′UTR region of the ligand ectodysplasin (EDA) gene. Finally, transcriptome sequencing was used to analyze the downstream regulatory mechanism of EDA. The results showed that after 48 h of PEDV infection, IPEC-J2 cells showed obvious pathological changes, and miR-129a-3p expression was significantly downregulated (p < 0.01). Overexpression of miR-129a-3p mimics inhibited PEDV replication in IPEC-J2 cells; silencing endogenous miR-129a-3p can promote viral replication. A dual luciferase assay showed that miR-129a-3p could bind to the 3′UTR region of the EDA gene, which significantly reduced the expression level of EDA (p < 0.01). Functional verification showed that upregulation of EDA gene expression significantly promoted PEDV replication in IPEC-J2 cells. Overexpression of miR-129a-3p can activate the caspase activation and recruitment domain 11 (CARD11) mediated NF-κB pathway, thus inhibiting PEDV replication. The above results suggest that miR-129a-3p inhibits PEDV replication in IPEC-J2 cells by activating the NF-κB pathway by binding to the EDA 3′UTR region. Our results have laid the foundation for in-depth study of the mechanism of miR-129a-3p resistance and its application in porcine epidemic diarrhea disease-resistance breeding.
Collapse
Affiliation(s)
- Xiaoyi Qi
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (X.Q.); (Y.C.); (S.W.); (Z.W.)
| | - Yue Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (X.Q.); (Y.C.); (S.W.); (Z.W.)
| | - Shenglong Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (X.Q.); (Y.C.); (S.W.); (Z.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, The Ministry of Education of China, Yangzhou 225000, China
| | - Zhengchang Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (X.Q.); (Y.C.); (S.W.); (Z.W.)
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China; (X.Q.); (Y.C.); (S.W.); (Z.W.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, The Ministry of Education of China, Yangzhou 225000, China
- Correspondence:
| |
Collapse
|
58
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|
59
|
Pinheiro D, Dias I, Freire T, Thole AA, Stumbo AC, Cortez EAC, de Carvalho L, de Carvalho SN. Effects of mesenchymal stem cells conditioned medium treatment in mice with cholestatic liver fibrosis. Life Sci 2021; 281:119768. [PMID: 34186042 DOI: 10.1016/j.lfs.2021.119768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
AIMS The purpose of this work was to study the effects of mesenchymal stem cells conditioned medium (MSC CM) treatment in animals with cholestatic liver fibrosis. MATERIALS AND METHODS We induced cholestatic liver fibrosis by bile duct ligation in C57Bl/6 mice. In the 5th and 6th days after bile duct ligation proceeding, conditioned medium obtained of cultures of mesenchymal stem cells derived from adipose tissue was injected in the animals. Blood levels of hepatic transaminases, alkaline phosphatase and albumin were measured in each group. Analysis of collagen deposition was realized by Picro Sirius red staining and cytokine profiling was performed by cytometric bead array (CBA). KEY FINDINGS Our results showed that MSC CM treatment decreased levels of hepatic enzymes and collagen deposition in the liver. After MSC CM treatment, profibrotic IL-17A was decreased andIL-6 and IL-4 were increased. SIGNIFICANCE In summary, MSC CM treatment demonstrated therapeutic potential to cholestatic liver fibrosis, favoring matrix remodeling and cytokine profile towards liver regeneration.
Collapse
Affiliation(s)
- Daphne Pinheiro
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Isabelle Dias
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/5186306427154406
| | - Thiago Freire
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/3641433792304902
| | - Alessandra Alves Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/1579417282254465
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/0705651820739519
| | - Erika Afonso Costa Cortez
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/3564525125398107
| | - Lais de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/5375673766053793
| | - Simone Nunes de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute Roberto Alcântara Gomes, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil. http://lattes.cnpq.br/2268672866323829
| |
Collapse
|
60
|
Neshat SY, Quiroz VM, Wang Y, Tamayo S, Doloff JC. Liver Disease: Induction, Progression, Immunological Mechanisms, and Therapeutic Interventions. Int J Mol Sci 2021; 22:ijms22136777. [PMID: 34202537 PMCID: PMC8267746 DOI: 10.3390/ijms22136777] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The liver is an organ with impressive regenerative potential and has been shown to heal sizable portions after their removal. However, certain diseases can overstimulate its potential to self-heal and cause excessive cellular matrix and collagen buildup. Decompensation of liver fibrosis leads to cirrhosis, a buildup of fibrotic ECM that impedes the liver’s ability to efficiently exchange fluid. This review summarizes the complex immunological activities in different liver diseases, and how failure to maintain liver homeostasis leads to progressive fibrotic tissue development. We also discuss a variety of pathologies that lead to liver cirrhosis, such as alcoholic liver disease and chronic hepatitis B virus (HBV). Mesenchymal stem cells are widely studied for their potential in tissue replacement and engineering. Herein, we discuss the potential of MSCs to regulate immune response and alter the disease state. Substantial efforts have been performed in preclinical animal testing, showing promising results following inhibition of host immunity. Finally, we outline the current state of clinical trials with mesenchymal stem cells and other cellular and non-cellular therapies as they relate to the detection and treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Sarah Y. Neshat
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Victor M. Quiroz
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Yuanjia Wang
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Sebastian Tamayo
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
| | - Joshua C. Doloff
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (S.Y.N.); (V.M.Q.); (Y.W.); (S.T.)
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Oncology-Cancer Immunology Sidney Kimmel Comprehensive Cancer Center and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Correspondence:
| |
Collapse
|
61
|
Chen R, Liu F, Xia L, Che N, Tian Y, Cao Y, Zhang S, Xu H, Su Z. B10 cells decrease fibrosis progression following cardiac injury partially by IL-10 production and regulating hyaluronan secretion. J Leukoc Biol 2021; 111:415-425. [PMID: 34013598 DOI: 10.1002/jlb.3a0121-003rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
B10 cells play negative roles in inflammatory disorders by producing IL-10. However, their effects on fibrosis have not been elucidated. Therefore, this study was conducted to examine the dynamic changes of B10 cell frequency and their potential role in cardiac fibrosis. We found that the frequency of B10 cells was significantly increased, and they participated in the regression of fibrosis via IL-10, particularly by accelerating hyaluronan secretion and inhibiting collagen deposition. In vivo, hyaluronan ablation or treatment significantly restricted cardiac fibrosis development. hyaluronan-induced conversion of M1/M2 Mc was dependent on the size of hyaluronan. Low molecular weight hyaluronan promoted the conversion to M1 Mϕ, whereas medium and high molecular weight hyaluronan accelerated Mϕ transdifferentiation into the M2 phenotype. Adoptive transfer of B10 cells significantly attenuated collagen deposition whereas CD19-/- mice with reduced B10 cells exacerbated fibrosis following cardiac injury. Our results provide new evidence suggesting that B10 cells exert antifibrotic effects by regulating the extracellular matrix composition during cardiac injury, and also highlight that B10 cells may serve as a promising therapeutic candidate for managing cardiac fibrosis-associated disorders.
Collapse
Affiliation(s)
- Rong Chen
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Nan Che
- Department of Rheumatology, The First affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Tian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuwen Cao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shiqing Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China.,Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
62
|
Fang S, Cheng Y, Deng F, Zhang B. RNF34 ablation promotes cerebrovascular remodeling and hypertension by increasing NADPH-derived ROS generation. Neurobiol Dis 2021; 156:105396. [PMID: 34015492 DOI: 10.1016/j.nbd.2021.105396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022] Open
Abstract
Cerebrovascular remodeling is the most common cause of hypertension and stroke. Ubiquitin E3 ligase RING finger protein 34 (RNF34) is suggested to be associated with the development of multiple neurological diseases. However, the importance of RNF34 in cerebrovascular remodeling and hypertension is poorly understood. Herein, we used mice with a global RNF34 knockout as well as RNF34 floxed mice to delete RNF34 in endothelial cells and smooth muscle cells (SMCs). Our results showed that global RNF34 knockout mice substantially promoted angiotensin II (AngII)-induced middle cerebral artery (MCA) remodeling, hypertension, and neurological dysfunction. Endothelial cell RNF34 did not regulate the development of hypertension. Rather, SMC RNF34 expression is a critical regulator of hypertension and MCA remodeling. Loss of RNF34 enhanced AngII-induced mouse brain vascular SMCs (MBVSMCs) proliferation, migration and invasion. Furthermore, MCA and MBVSMCs from SMC RNF34-deficient mice showed increased superoxide anion and reactive oxygen species (ROS) generation as well as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, but exhibited no marked effect on mitochondria-derived ROS. Knockout of RNF34 promoted p22phox expression, leading to increased binding of p22phox/p47phox and p22phox/NOX2, and eventually NADPH oxidase complex formation. Immunoprecipitation assay identified that RNF34 interacted with p22phox. RNF34 deletion increased p22phox protein stability by inhibiting ubiquitin-mediated degradation. Blockade of NADPH oxidase activity or knockdown of p22phox significantly abolished the effects of RNF34 deletion on cerebrovascular remodeling and hypertension. Collectively, our study demonstrates that SMC RNF34 deficiency promotes cerebrovascular SMC hyperplasia and remodeling by increased NADPH-derived ROS generation via reducing p22phox ubiquitin-dependent degradation.
Collapse
Affiliation(s)
- Shaokuan Fang
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yingying Cheng
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Fang Deng
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Beilin Zhang
- Department of Neurology, The First Teaching Hospital of Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
63
|
Khanam A, Saleeb PG, Kottilil S. Pathophysiology and Treatment Options for Hepatic Fibrosis: Can It Be Completely Cured? Cells 2021; 10:cells10051097. [PMID: 34064375 PMCID: PMC8147843 DOI: 10.3390/cells10051097] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis is a dynamic process that occurs as a wound healing response against liver injury. During fibrosis, crosstalk between parenchymal and non-parenchymal cells, activation of different immune cells and signaling pathways, as well as a release of several inflammatory mediators take place, resulting in inflammation. Excessive inflammation drives hepatic stellate cell (HSC) activation, which then encounters various morphological and functional changes before transforming into proliferative and extracellular matrix (ECM)-producing myofibroblasts. Finally, enormous ECM accumulation interferes with hepatic function and leads to liver failure. To overcome this condition, several therapeutic approaches have been developed to inhibit inflammatory responses, HSC proliferation and activation. Preclinical studies also suggest several targets for the development of anti-fibrotic therapies; however, very few advanced to clinical trials. The pathophysiology of hepatic fibrosis is extremely complex and requires comprehensive understanding to identify effective therapeutic targets; therefore, in this review, we focus on the various cellular and molecular mechanisms associated with the pathophysiology of hepatic fibrosis and discuss potential strategies to control or reverse the fibrosis.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Paul G. Saleeb
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: ; Tel.: +1-410-706-4872
| |
Collapse
|
64
|
Effect of LPS on Cytokine Secretion from Peripheral Blood Monocytes in Juvenile Idiopathic Arthritis-Associated Uveitis Patients with Positive Antinuclear Antibody. J Immunol Res 2021; 2021:6691681. [PMID: 34056011 PMCID: PMC8112907 DOI: 10.1155/2021/6691681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives Antinuclear antibody (ANA) positivity is a key finding in JIA-associated uveitis (JIAU), but there are quite a few patients with negative ANA. There is no relevant report on the difference of their clinical manifestations. Previous animal model studies have found that the occurrence of uveitis is related to macrophage activation. In this article, our goal is to investigate changes in the morphology and cytokines of peripheral blood mononuclear cells (PBMCs) in uveitis patients testing positive or negative for ANAs after lipopolysaccharide (LPS) stimulation. Methods A total of 30 patients were included in this study (10 in each group). They were divided into three groups (the ANA-positive [ANA+] group, ANA-negative [ANA-] group, and control group). There were ten patients (6 females and 4 males) in each group. Peripheral venous blood was collected into a heparinized tube, and PBMCs were isolated as soon as possible by the Ficoll-Hypaque density gradient separation method. Isolated cells were mixed with RPMI-1640 medium, and the cell concentration was adjusted to ensure that each patient had the same number of cells entering the study. After putting the extracted PBMC into the culture plate, LPS was added carefully to the plate. The cell culture supernatants were collected at 0 h, 3 h, 6 h, 12 h, and 24 h after LPS stimulation to detect the concentrations of IL-6, IL-1, TNF-α, and IL-10. Immunofluorescence was used to discover the deformation of macrophages after LPS stimulation. Results The newly isolated cells were approximately round. 6 h after LPS stimulation, the ratio of noncircular cells/circular cells was the highest in the ANA+ group. Unlike IL-10 that has been rising during the observation period, IL-6, IL-1, and TNF-α peaked at 6 h after LPS stimulation. Conclusion With LPS motivation, cytokines in the ANA+ group increased the most violently.
Collapse
|
65
|
Cranial Mandibular Fibrosis Syndrome in Adult Farmed Rainbow Trout Oncorhynchus mykiss. Pathogens 2021; 10:pathogens10050542. [PMID: 33946332 PMCID: PMC8145062 DOI: 10.3390/pathogens10050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022] Open
Abstract
An unusual condition affecting market size rainbow trout was investigated. This condition was prevalent for several years at low levels but affected a large proportion of stock during 2018 and 2019. Chronic fibrosis affecting cranial tissues and the jaw was observed in samples collected in 2018. A larger sampling was then conducted in 2019 to investigate the presence of an infectious agent(s). An extensive inflammatory response in the mandibular region was the main finding, however infectious agents in the lesions were not identified through classical virology and bacteriology analysis. Tetracapsuloides bryosalmonae infection, calcinosis, and a Gram-positive bacterial infection of a single fish cardiac tissue was observed, however, a correlation of these pathologies and the cranial mandibular fibrosis (CMF) syndrome was not established. The gene expression of a panel of 16 immune-related genes was studied. Among these, tgf-b, sIgM, il11, hspa, and the antimicrobial peptides lys and cath1 were up-regulated in jaw sections of CMF-affected fish, showing a strong positive correlation with the severity of the lesions. Idiopathic chronic fibrosis with the activation of the Tfg-B pathway and local hyper-immunoglobulaemia was therefore diagnosed. Initiating factors and causative agent(s) (biotic or abiotic) of CMF remain, at present, unclear.
Collapse
|
66
|
Adamcakova J, Mokra D. New Insights into Pathomechanisms and Treatment Possibilities for Lung Silicosis. Int J Mol Sci 2021; 22:ijms22084162. [PMID: 33920534 PMCID: PMC8072896 DOI: 10.3390/ijms22084162] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Inhalation of silica particles is an environmental and occupational cause of silicosis, a type of pneumoconiosis. Development of the lung silicosis is a unique process in which the vicious cycle of ingestion of inhaled silica particles by alveolar macrophages and their release triggers inflammation, generation of nodular lesions, and irreversible fibrosis. The pathophysiology of silicosis is complex, and interactions between the pathomechanisms have not been completely understood. However, elucidation of silica-induced inflammation cascades and inflammation-fibrosis relations has uncovered several novel possibilities of therapeutic targeting. This article reviews new information on the pathophysiology of silicosis and points out several promising treatment approaches targeting silicosis-related pathways.
Collapse
|
67
|
Mould KJ, Moore CM, McManus SA, McCubbrey AL, McClendon JD, Griesmer CL, Henson PM, Janssen WJ. Airspace Macrophages and Monocytes Exist in Transcriptionally Distinct Subsets in Healthy Adults. Am J Respir Crit Care Med 2021; 203:946-956. [PMID: 33079572 PMCID: PMC8048748 DOI: 10.1164/rccm.202005-1989oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/15/2020] [Indexed: 01/06/2023] Open
Abstract
Rationale: Macrophages are the most abundant immune cell in the alveoli and small airways and are traditionally viewed as a homogeneous population during health. Whether distinct subsets of airspace macrophages are present in healthy humans is unknown. Single-cell RNA sequencing allows for examination of transcriptional heterogeneity between cells and between individuals. Understanding the conserved repertoire of airspace macrophages during health is essential to understanding cellular programing during disease.Objectives: We sought to determine the transcriptional heterogeneity of human cells obtained from BAL of healthy adults.Methods: Ten subjects underwent bronchoscopy with BAL. Cells from lavage were subjected to single-cell RNA sequencing. Unique cell populations and putative functions were identified. Transcriptional profiles were compared across individuals.Measurements and Main Results: We identify two novel subgroups of resident airspace macrophages-defined by proinflammatory and metallothionein gene expression profiles. We define subsets of monocyte-like cells and compare them with peripheral blood mononuclear cells. Finally, we compare global macrophage and monocyte programing between males and females.Conclusions: Healthy human airspaces contain multiple populations of myeloid cells that are highly conserved between individuals and between sexes. Resident macrophages make up the largest population and include novel subsets defined by inflammatory and metal-binding profiles. Monocyte-like cells within the airspaces are transcriptionally aligned with circulating blood cells and include a rare population defined by expression of cell-matrix interaction genes. This study is the first to delineate the conserved heterogeneity of airspace immune cells during health and identifies two previously unrecognized macrophage subsets.
Collapse
Affiliation(s)
- Kara J. Mould
- Department of Medicine
- Department of Biomedical Research, and
| | - Camille M. Moore
- Department of Pediatrics, National Jewish Health, Denver, Colorado
- Department of Medicine, University of Colorado, Aurora, Colorado; and
| | | | | | | | | | - Peter M. Henson
- Department of Biomedical Research, and
- Department of Biostatistics and Informatics, University of Colorado, Denver, Colorado
| | | |
Collapse
|
68
|
Arman T, Lynch KD, Goedken M, Clarke JD. Sub-chronic microcystin-LR renal toxicity in rats fed a high fat/high cholesterol diet. CHEMOSPHERE 2021; 269:128773. [PMID: 33143886 PMCID: PMC8276626 DOI: 10.1016/j.chemosphere.2020.128773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/24/2020] [Accepted: 10/25/2020] [Indexed: 05/16/2023]
Abstract
Microcystin-LR (MCLR) is a liver and kidney toxin produced by cyanobacteria. Recently, it was demonstrated that MCLR exposure drives the progression of high fat/high cholesterol (HFHC) induced nonalcoholic fatty liver disease (NAFLD) to a more severe state. NAFLD is also a risk factor for chronic kidney disease (CKD), and the current study investigated MCLR renal toxicity in the context of an HFHC diet. Sprague Dawley rats were fed either a control diet or an HFHC diet for 10 weeks. After 6 weeks of diet, animals were administered either vehicle, 10 μg/kg, or 30 μg/kg MCLR via intraperitoneal injection every other day for 4 weeks. HFHC diet alone increased the renal glomerular change histopathology score, and 30 μg/kg MCLR exposure increased this score in both the control group and the HFHC group. In contrast, 30 μg/kg MCLR caused greater proteinuria and cast formation and decreased protein phosphatase 1 and 2A protein expression in the HFHC group. Urinary excretion of KIM-1 increased, but albumin and tamm-horsfall protein did not change after MCLR exposure. The general concordance between KIM-1, polyuria, proteinuria, and renal casts after MCLR exposure suggests that proximal tubule cell damage contributed to these connected pathologies. The control group adapted to repeated MCLR exposure by increasing the urinary elimination of MCLR and its metabolites, whereas this adaptation was blunted in the HFHC group. These data suggest an HFHC diet may increase the severity of certain MCLR-elicited renal toxicities.
Collapse
Affiliation(s)
- Tarana Arman
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Katherine D Lynch
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Michael Goedken
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, 08901, USA
| | - John D Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA.
| |
Collapse
|
69
|
Li Y, Zhang Z, Xu K, Du S, Gu X, Cao R, Cui S. Minocycline alleviates peripheral nerve adhesion by promoting regulatory macrophage polarization via the TAK1 and its downstream pathway. Life Sci 2021; 276:119422. [PMID: 33781833 DOI: 10.1016/j.lfs.2021.119422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 12/20/2022]
Abstract
AIMS Inflammation plays a key role in peripheral nerve adhesion and often leads to severe pain and nerve dysfunction. Minocycline was reported to have potent anti-inflammatory effects and might be a promising drug to prevent or attenuate peripheral nerve adhesion. The present study aimed to clarify whether minocycline contributes to nerve adhesion protection and its underlying mechanism. MATERIALS AND METHODS Rats with sciatic nerve adhesion induced by glutaraldehyde glue (GG) were intraperitoneally injected with minocycline or saline every 12 h for 7 consecutive days. After that, the adhesion score, Ashcroft score, demyelination, macrophage polarization and inflammatory factors in peripheral nerve adhesion tissues or tissues in sham group were determined with histological staining, western blot and real time-PCR. Murine macrophage RAW264.7 cells were stimulated by LPS alone or together with minocycline at different concentrations and time duration to study the mechanism of minocycline in alleviating nerve adhesion. KEY FINDINGS We found that minocycline treatment reduced the adhesion score, Ashcroft score, the growth of scar tissue, demyelination, and macrophage recruitment. Moreover, minocycline significantly and dose-dependently promoted regulatory macrophage polarization but decreased pro-inflammatory macrophage polarization. Furthermore, mechanism studies showed that TAK1 and its downstream pathway p38/JNK/ERK1/2/p65 were inhibited by minocycline, which led to lower IL-1β and TNFα expression, but increased IL-10 expression. SIGNIFICANCE Altogether, these results suggest that minocycline is highly effective against peripheral nerve adhesion through anti-fibrosis, anti-inflammation, and myelination protection, making it a highly promising candidate for treating adhesion-related disorders.
Collapse
Affiliation(s)
- Yueying Li
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Zhan Zhang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Ke Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Shuang Du
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China
| | - Xiaosong Gu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China.
| | - Rangjuan Cao
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China.
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, PR China.
| |
Collapse
|
70
|
An SY, Petrescu AD, DeMorrow S. Targeting Certain Interleukins as Novel Treatment Options for Liver Fibrosis. Front Pharmacol 2021; 12:645703. [PMID: 33841164 PMCID: PMC8024568 DOI: 10.3389/fphar.2021.645703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
The liver is a major metabolic organ and an immunologically complex organ. It produces and uses many substances such as acute phase proteins, cytokines, chemokines, and complementary components to maintain the balance between immunity and tolerance. Interleukins are important immune control cytokines, that are produced by many body cells. In liver injury, interleukins are produced in large amount by various cell types, and act as pro-inflammatory (e.g. interleukin (IL)-6, IL-13, IL-17, and IL-33) as well as anti-inflammatory (e.g. IL-10) functions in hepatic cells. Recently, interleukins are regarded as interesting therapeutic targets for the treatment of liver fibrosis patients. Hepatic cells such as hepatocytes, hepatic stellate cells, and hepatic macrophages are involved to the initiation, perpetuation, and resolution of fibrosis. The understanding of the role of interleukins in such cells provides opportunity for the development of therapeutic target drugs. This paper aims to understand the functional roles of interleukins in hepatic and immune cells when the liver is damaged, and suggests the possibility of interleukins as a new treatment target in liver fibrosis.
Collapse
Affiliation(s)
- Su Yeon An
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Anca D Petrescu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.,Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.,Research Division, Central Texas Veterans Healthcare System, Temple, TX, United States
| |
Collapse
|
71
|
Dong Y, Hu C, Huang C, Gao J, Niu W, Wang D, Wang Y, Niu C. Interleukin-22 Plays a Protective Role by Regulating the JAK2-STAT3 Pathway to Improve Inflammation, Oxidative Stress, and Neuronal Apoptosis following Cerebral Ischemia-Reperfusion Injury. Mediators Inflamm 2021; 2021:6621296. [PMID: 33790691 PMCID: PMC7984880 DOI: 10.1155/2021/6621296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/07/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
The interleukins (ILs) are a pluripotent cytokine family that have been reported to regulate ischemic stroke and cerebral ischemia/reperfusion (I/R) injury. IL-22 is a member of the IL-10 superfamily and plays important roles in tissue injury and repair. However, the effects of IL-22 on ischemic stroke and cerebral I/R injury remain unclear. In the current study, we provided direct evidence that IL-22 treatment decreased infarct size, neurological deficits, and brain water content in mice subjected to cerebral I/R injury. IL-22 treatment remarkably reduced the expression of inflammatory cytokines, including IL-1β, monocyte chemotactic protein- (MCP-) 1, and tumor necrosis factor- (TNF-) α, both in serum and the ischemic cerebral cortex. In addition, IL-22 treatment also decreased oxidative stress and neuronal apoptosis in mice after cerebral I/R injury. Moreover, IL-22 treatment significantly increased Janus tyrosine kinase (JAK) 2 and signal transducer and activator of transcription (STAT) 3 phosphorylation levels in mice and PC12 cells, and STAT3 knockdown abolished the IL-22-mediated neuroprotective function. These findings suggest that IL-22 might be exploited as a potential therapeutic agent for ischemic stroke and cerebral I/R injury.
Collapse
Affiliation(s)
- Yongfei Dong
- Department of Neurosurgery, Anhui Provincial Hospital, Cheeloo College of Medicine, Shangdong University, Jinan, Shangdong, 250021, China
| | - Chengyun Hu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chunxia Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jie Gao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Wanxiang Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Di Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chaoshi Niu
- Department of Neurosurgery, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| |
Collapse
|
72
|
Xu S, Zhang J, Liu J, Ye J, Xu Y, Wang Z, Yu J, Ye D, Zhao M, Feng Y, Pan W, Wang M, Wan J. The role of interleukin-10 family members in cardiovascular diseases. Int Immunopharmacol 2021; 94:107475. [PMID: 33662690 DOI: 10.1016/j.intimp.2021.107475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-10 cytokine family members, including IL-10, IL-19, IL-20, IL-22, IL-24, IL-26 and the distantly related IL-28A, IL-28B, and IL-29, play critical roles in the regulation of inflammation. The occurrence and progression of cardiovascular diseases closely correlate with the regulation of inflammation, which may provide novel strategies for the treatment of cardiovascular diseases. In recent years, studies have focused on the association between the IL-10 cytokine family and the physiological and pathological progression of cardiovascular diseases. The aim of this review is to summarize relevant studies and clarify whether the IL-10 cytokine family contributes to the regulation of cardiovascular diseases.
Collapse
Affiliation(s)
- Shuwan Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jishou Zhang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jianfang Liu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yao Xu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhen Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Junping Yu
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mengmeng Zhao
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Pan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Menglong Wang
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Jun Wan
- The First Clinical College of Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
73
|
Interleukin-24 therapy- a potential new strategy against liver fibrosis. EBioMedicine 2021; 65:103245. [PMID: 33639397 PMCID: PMC7921474 DOI: 10.1016/j.ebiom.2021.103245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
|
74
|
Petreski T, Piko N, Ekart R, Hojs R, Bevc S. Review on Inflammation Markers in Chronic Kidney Disease. Biomedicines 2021; 9:182. [PMID: 33670423 PMCID: PMC7917900 DOI: 10.3390/biomedicines9020182] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the major health problems of the modern age. It represents an important public health challenge with an ever-lasting rising prevalence, which reached almost 700 million by the year 2017. Therefore, it is very important to identify patients at risk for CKD development and discover risk factors that cause the progression of the disease. Several studies have tackled this conundrum in recent years, novel markers have been identified, and new insights into the pathogenesis of CKD have been gained. This review summarizes the evidence on markers of inflammation and their role in the development and progression of CKD. It will focus primarily on cytokines, chemokines, and cell adhesion molecules. Nevertheless, further large, multicenter studies are needed to establish the role of these markers and confirm possible treatment options in everyday clinical practice.
Collapse
Affiliation(s)
- Tadej Petreski
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia; (T.P.); (N.P.); (R.H.)
- Department of Internal Medicine and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Nejc Piko
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia; (T.P.); (N.P.); (R.H.)
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Robert Ekart
- Department of Internal Medicine and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
- Department of Dialysis, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Radovan Hojs
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia; (T.P.); (N.P.); (R.H.)
- Department of Internal Medicine and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Sebastjan Bevc
- Department of Nephrology, Clinic for Internal Medicine, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia; (T.P.); (N.P.); (R.H.)
- Department of Internal Medicine and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
75
|
Kim DH, Chun SY, Lee E, Kim B, Yoon B, Gil H, Han MH, Ha YS, Lee JN, Kwon TG, Kim BS, Jang BI. IL-10 Deficiency Aggravates Renal Inflammation, Fibrosis and Functional Failure in High-Fat Dieted Obese Mice. Tissue Eng Regen Med 2021; 18:399-410. [PMID: 33547567 PMCID: PMC8169746 DOI: 10.1007/s13770-020-00328-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND: High-fat diet-induced obesity is one of the major cause of chronic renal failure. This obesity-related renal failure is mainly caused by inflammatory processes. However, the role of the major anti-inflammatory cytokine interleukin (IL)-10 has not been researched intensively. METHODS: To evaluate the effect of IL-10 deficiency on obesity-related renal failure, the in vivo study was carried with four animal groups; (1) Low-fat dieted C57BL/6 mice, (2) Low-fat dieted IL-10 knockout (KO) mice, (3) High‐fat dieted C57BL/6 mice and (4) High‐fat dieted IL-10 KO mice group. The analysis was carried with blood/urine chemistry, H&E, Oil-Red-O, periodic acid-Schiff and Masson’s trichrome staining immunohistochemistry and real-time PCR methods. RESULTS: At week 12, high‐fat dieted IL-10 KO mice showed 1) severe lipid accumulation in kidneys, cholesterol elevation (in total, serum kidney) and low-density lipoprotein increasion through the SCAP-SREBP2-LDLr pathway; (2) serious histopathologic alterations showing glomerulosclerosis, tubulointerstitial fibrosis and immune cell infiltration; (3) increased pro‐inflammatory cytokines and chemokines expression; (4) enhanced renal fibrosis; and (5) serious functional failure with high serum creatinine and BUN and proteinuria excretion compared to other groups. CONCLUSION: IL-10 deficiency aggravates renal inflammation, fibrosis and functional failure in high-fat dieted obese mice, thus IL-10 therapy could be applied to obesity-related chronic renal failure.
Collapse
Affiliation(s)
- Dae Hwan Kim
- Department of Laboratory Animal Research Support Team, Yeungnam University Medical Center, Daegu, 42415, Republic of Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - EunHye Lee
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Bomi Kim
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - BoHyun Yoon
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Haejung Gil
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Yun-Sok Ha
- Department of Urology, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Byung Ik Jang
- Department of Internal Medicine, School of Medicine, Yeungnam University, Daegu, Republic of Korea.
| |
Collapse
|
76
|
Sun S, Jin Y, Yang J, Zhao Z, Rao Q. Nephrotoxicity and possible mechanisms of decabrominated diphenyl ethers (BDE-209) exposure to kidney in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111638. [PMID: 33396158 DOI: 10.1016/j.ecoenv.2020.111638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The flame retardant decabrominated diphenyl ether (BDE-209) is a widely used chemical in a variety of products and exists extensively in the environment. BDE-209 has been reported to induce kidney injury and dysfunction. However, the causes and mechanisms of its nephrotoxicity are still under investigation. In this study, 150 male broilers were exposed to BDE-209 concentrations of 0, 0.004, 0.04, 0.4, 4.0 g/kg for 42 days. The relative kidney weight, histopathology, markers of renal injury, oxidative stress, inflammation, apoptosis and the expression of MAPK signaling pathways-related proteins were assessed. The results showed that the concentrations of blood urea nitrogen (BUN), creatinine (CRE) and the neutrophil gelatinase-associated lipocalin (NGAL), significantly increased after exposure to BDE-209 with the doses more than 0.04 g/kg. Similarly, severe damage of renal morphology was observed, including atrophy and necrosis of glomeruli, and swelling and granular degeneration of the renal tubular epithelium. In the renal homogenates, the oxidative stress was evidenced by the elevated concentrations of MDA and NO, and decreased levels of GSH-Px, GSH and SOD. Due to the inflammatory response, the level of NF-κB and the pro-inflammatory cytokines TNF-α, IL-1β, IL-18 were remarkably upregulated, while the content of the anti-inflammatory cytokine IL-10 decreased. Additionally, the apoptotic analysis showed notable upregulations of Bax/Bcl-2 ratio, the relative expression of p-ERK1/2 and p-JNK1/2, and the expression of Bax, cytochrome c and caspase 3. The present study indicates that BDE-209 exposure can cause nephrotoxicity in broilers through oxidative stress and inflammation, which activate the phosphorylation of key proteins of the MAPK signaling pathways, and subsequently induce mitochondria-mediated kidney apoptosis.
Collapse
Affiliation(s)
- Shiyao Sun
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yuhong Jin
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Zhihui Zhao
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qinxiong Rao
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
77
|
Klouda T, Yuan K. Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:351-372. [PMID: 33788202 DOI: 10.1007/978-3-030-63046-1_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary artery hypertension (PAH) is a devastating cardiopulmonary disease characterized by vascular remodeling and obliteration of the precapillary pulmonary arterioles. Alterations in the structure and function of pulmonary vessels result in the resistance of blood flow and can progress to right-sided heart failure, causing significant morbidity and mortality. There are several types of PAH, and the disease can be familial or secondary to an underlying medical condition such as a connective tissue disorder or infection. Regardless of the cause, the exact pathophysiology and cellular interactions responsible for disease development and progression are largely unknown.There is significant evidence to suggest altered immune and vascular cells directly participate in disease progression. Inflammation has long been hypothesized to play a vital role in the development of PAH, as an altered or skewed immune response favoring a proinflammatory environment that can lead to the infiltration of cells such as lymphocytes, macrophages, and neutrophils. Current treatment strategies focus on the dilation of partially occluded vessels; however, such techniques have not resulted in an effective strategy to reverse or prevent vascular remodeling. Therefore, current studies in human and animal models have attempted to understand the underlying pathophysiology of pulmonary hypertension (PH), specifically focusing on the inflammatory cascade predisposing patients to disease so that better therapeutic targets can be developed to potentially reverse or prevent disease progression.The purpose of this chapter is to provide a comprehensive review of the expanding literature on the inflammatory process that participates in PH development while highlighting important and current studies in both animal and human models. While our primary focus will be on cells found in the adaptive and innate immune system, we will review all potential causes of PAH, including cells of the endothelium, pulmonary lymphatics, and genetic mutations predisposing patients. In addition, we will discuss current therapeutic options while highlighting potential future treatments and the questions that still remain unanswered.
Collapse
Affiliation(s)
- Timothy Klouda
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ke Yuan
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
78
|
Hermansyah D, Putra A, Muhar AM, Retnaningsih, Wirastuti K, Dirja BT. Mesenchymal Stem Cells Suppress TGF-β Release to Decrease α-SMA Expression in Ameliorating CCl4-Induced Liver Fibrosis. Med Arch 2021; 75:16-22. [PMID: 34012193 PMCID: PMC8116080 DOI: 10.5455/medarh.2021.75.16-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction: Liver fibrosis (LF) is the excessive deposition of extracellular matrix (ECM), produced by overactivated hepatic stellate cells, following prolonged transforming growth factor-β (TGF-β) stimulation. The ability of mesenchymal stem cells (MSCs) to improve LF has been reported. However, the mechanisms of MSCs to ameliorate LF through suppressing TGF-β and α-smooth muscle actin (α-SMA) remains unclear. Aim: To investigate the effects of MSCs treatment on suppressing TGF-β levels and decreasing α-SMA expression in an LF model. Methods: In this study, wenty-four male Wistar rats were injected intraperitoneal (IP) with carbon tetrachloride (CCL4), twice weekly, for eight weeks, to induce LF. Rats were randomly assigned to six groups: Sham, Control, Sham-lo, Sham-hi, and MSC-treated groups, at doses of 1 x 106 (T1) and 2x106 (T2) cells. TGF-β levels were analyzed by enzyme-linked immunosorbent assay (ELISA), whereas α-SMA expression was determined by immunohistochemistry staining. Results: MSCs decreased the expression of TGF-β in T1 and T2 groups on day 3 and 14. The T2 group showed lower TGF-β levels than that in the T1 group. This finding was in line with the observed decrease in α-SMA expression and the number of collagen. Conclusion: MSCs treatment ameliorated LF by suppressing TGF-β production, leading to decreased α-SMA expression in a CCL4-induced LF animal model.
Collapse
Affiliation(s)
- Dedy Hermansyah
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Agung Putra
- Stem Cell and Cancer Research (SCCR), Faculty of Medicine, Sultan Agung Islamic University (UNISSULA), Semarang, Central Java, Indonesia.,Department of Postgraduate Biomedical Science, Faculty of Medicine, Sultan Agung Islamic University (UNISSULA), Semarang, Central Java, Indonesia.,Department of Pathological Anatomy, Faculty of Medicine, Sultan Agung Islamic University (UNISSULA), Semarang, Central Java, Indonesia
| | - Adi Muradi Muhar
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan, North Sumatera, Indonesia
| | - Retnaningsih
- Department of Neurology and Intensive Care Unit, Kariadi Hospital, Diponegoro University, Semarang, Central Java, Indonesia
| | - Ken Wirastuti
- Department of Neurology, Faculty of Medicine, Sultan Agung Islamic University (UNISSULA), Semarang, Central Java, Indonesia
| | - Bayu Tirta Dirja
- Biomedical Science Doctoral Program, Faculty of Medicine, Universitas Udayana, Bali, Indonesia
| |
Collapse
|
79
|
Kaplan A, Abidi E, Habeichi NJ, Ghali R, Alawasi H, Fakih C, Zibara K, Kobeissy F, Husari A, Booz GW, Zouein FA. Gender-biased kidney damage in mice following exposure to tobacco cigarette smoke: More protection in premenopausal females. Physiol Rep 2021; 8:e14339. [PMID: 31981316 PMCID: PMC6981307 DOI: 10.14814/phy2.14339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple clinical studies documented renal damage in chronic cigarette smokers (CS) irrespective of their age and gender. Premenopausal female smokers are known to exert a certain cardiovascular and renal protection with undefined mechanisms. Given the multiple demographic variables within clinical studies, this experimental study was designed to be the first to assess whether gender‐biased CS‐induced kidney damage truly exists between premenopausal female and age‐matched C57Bl6J male mice when compared to their relative control groups. Following 6 weeks of CS exposure, cardiac function, inflammatory marker production, fibrosis formation, total and glomerular ROS levels, and glomerulotubular homeostasis were assessed in both genders. Although both CS‐exposed male and female mice exhibited comparable ROS fold change relative to their respective control groups, CS‐exposed male mice showed a more pronounced fibrotic deposition, inflammation, and glomerulotubular damage profile. However, the protection observed in CS‐exposed female group was not absolute. CS‐exposed female mice exhibited a significant increase in fibrosis, ROS production, and glomerulotubular alteration but with a pronounced anti‐inflammatory profile when compared to their relative control groups. Although both CS‐exposed genders presented with altered glomerulotubular homeostasis, the alteration phenotype between genders was different. CS‐exposed males showed a significant decrease in Bowman's space along with reduced tubular diameter consistent with an endocrinization pattern of chronic tubular atrophy, suggestive of an advanced stage of glomerulotubular damage. CS‐exposed female group, on the other hand, displayed glomerular hypertrophy with a mild tubular dilatation profile suggestive of an early stage of glomerulotubular damage that generally precedes collapse. In conclusion, both genders are prone to CS‐induced kidney damage with pronounced female protection due to a milder damage slope.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Emna Abidi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana Ghali
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiam Alawasi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Christina Fakih
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Kazem Zibara
- Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmad Husari
- Department of Internal Medicine, Respiratory Diseases and Sleep Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
80
|
Li H, Wang B, Li D, Li J, Luo Y, Dan J. Roles of telomeres and telomerase in age‑related renal diseases (Review). Mol Med Rep 2020; 23:96. [PMID: 33300081 PMCID: PMC7723152 DOI: 10.3892/mmr.2020.11735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023] Open
Abstract
Age‑related renal diseases, which account for various progressive renal disorders associated with cellular and organismal senescence, are becoming a substantial public health burden. However, their aetiologies are complicated and their pathogeneses remain poorly understood. Telomeres and telomerase are known to be essential for maintaining the integrity and stability of eukaryotic genomes and serve crucial roles in numerous related signalling pathways that activate renal functions, such as repair and regeneration. Previous studies have reported that telomere dysfunction served a role in various types of age‑related kidney disease through various different molecular pathways. The present review aimed to summarise the current knowledge of the association between telomeres and ageing‑related kidney diseases and explored the contribution of dysfunctional telomeres to these diseases. The findings may help to provide novel strategies for treating patients with renal disease.
Collapse
Affiliation(s)
- Haili Li
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Boyuan Wang
- The Key Lab of Sports and Rehabilitation, Faculty of Physical Education, Yuxi Normal University, Yuxi, Yunnan 653100, P.R. China
| | - Daoqun Li
- Department of Human Anatomy, School of Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Science, Jinan, Shandong 250014, P.R. China
| | - Jinyuan Li
- Department of General Surgery, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
81
|
Khan MA. Regulatory T cells mediated immunomodulation during asthma: a therapeutic standpoint. J Transl Med 2020; 18:456. [PMID: 33267824 PMCID: PMC7713035 DOI: 10.1186/s12967-020-02632-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
Asthma is an inflammatory disease of the lung airway network, which is initiated and perpetuated by allergen-specific CD4+ T cells, IgE antibodies, and a massive release of Th2 cytokines. The most common clinical manifestations of asthma progression include airway inflammation, pathological airway tissue and microvascular remodeling, which leads to airway hyperresponsiveness (AHR), and reversible airway obstruction. In addition to inflammatory cells, a tiny population of Regulatory T cells (Tregs) control immune homeostasis, suppress allergic responses, and participate in the resolution of inflammation-associated tissue injuries. Preclinical and clinical studies have demonstrated a tremendous therapeutic potential of Tregs in allergic airway disease, which plays a crucial role in immunosuppression, and rejuvenation of inflamed airways. These findings supported to harness the immunotherapeutic potential of Tregs to suppress airway inflammation and airway microvascular reestablishment during the progression of the asthma disease. This review addresses the therapeutic impact of Tregs and how Treg mediated immunomodulation plays a vital role in subduing the development of airway inflammation, and associated airway remodeling during the onset of disease.
Collapse
Affiliation(s)
- Mohammad Afzal Khan
- Organ Transplant Research Section, Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
82
|
Freitas RA, Junior RRP, Justina VD, Bressan AFM, Bomfim GF, Carneiro FS, Giachini FR, Lima VV. Angiotensin (1-7)-attenuated vasoconstriction is associated with the Interleukin-10 signaling pathway. Life Sci 2020; 262:118552. [PMID: 33035583 DOI: 10.1016/j.lfs.2020.118552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
AIMS Angiotensin-1-7 [Ang-(1-7)] is an essential peptide of the renin-angiotensin system that promotes benefits modulating effects in different tissues. Similarly, interleukin-10 (IL-10) exhibits an immunomodulatory action on the vasculature. This study aimed to evaluate whether Ang-(1-7) levels attenuates vascular contractile response, mediated by IL-10-pathway (JAK1/STAT3/IL-10). MAIN METHODS Aortas from male mice C57BL/6J and knockout for IL-10 (IL-10-/-) were incubated with Ang-(1-7) [10 μM] or vehicle, during 5 min, 1 h, 6 h, 12 h, and 24 h. Concentration-response curves to phenylephrine, western blotting, and flow cytometry analysis was performed to evaluate the contractile response, protein expression, and IL-10 levels, respectively. KEY FINDINGS Incubation with Ang-(1-7) produced a time-dependent increase in Janus kinases 1 (JAK1) expression, as well as increased expression and activity of the signal transducer and activator of transcription 3 (STAT3) protein. However, this effect was not observed in knockout animals for IL-10. After 12 h of Ang-(1-7) treatment, arteries from control mice displayed decreased vascular reactivity to phenylephrine, but this effect was not observed in the absence of endogenous IL-10. Additionally, incubation with Ang-(1-7) augments IL-10 levels after 6 h, 12 h, and 24 h of incubation. SIGNIFICANCE These results demonstrated the role of Ang-(1-7) in the IL-10 signaling pathway and its effects in the vascular contractility response. Thus, these findings suggest a new synergic action where Ang-(1-7) and IL-10 converge into a protective mechanism against vascular dysfunction.
Collapse
Affiliation(s)
- Raiany A Freitas
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Rinaldo R P Junior
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Vanessa D Justina
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Alecsander F M Bressan
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gisele F Bomfim
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda R Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil
| | - Victor V Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, MT, Brazil.
| |
Collapse
|
83
|
Sun C, Zhang H, Liu X. Emerging role of CCN family proteins in fibrosis. J Cell Physiol 2020; 236:4195-4206. [PMID: 33222181 DOI: 10.1002/jcp.30171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Fibrosis is a common pathological change characterized by the excessive accumulation of fibrous connective tissue. Once uncontrolled, this pathological progress can lead to irreversible damage to the structure and function of organs, which is a serious threat to human health and life. Actually, the disability and death of patients caused by many chronic diseases have a closed relationship with fibrosis. The CCN protein family, including six members, is a small group of matrix proteins exhibiting structurally similar features. In the past 20 years, different biological functions of CCN proteins have been identified in various diseases. Of note, it has been recently shown that they are implicated in the key pathological process of fibrosis. In this review, we summarize the current status of knowledge regarding the role of CCN proteins involved in the pathogenesis of fibrosis diseases in detail. Furthermore, we highlight some of the underlying interaction mechanisms of CCN protein acting in fibrosis that helps to develop new drugs and determine appropriate clinical strategies for fibrotic diseases.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Han Zhang
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhui Liu
- Department of Spine Surgery, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
84
|
Wang H, Xu Y, Xu A, Wang X, Cheng L, Lee S, Tse G, Li G, Liu T, Fu H. PKCβ/NF-κB pathway in diabetic atrial remodeling. J Physiol Biochem 2020; 76:637-653. [PMID: 33085045 DOI: 10.1007/s13105-020-00769-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Atrial remodeling in diabetes is partially attributed to NF-κB/TGF-β signal transduction pathway activation. We examined whether the hyperglycemia-induced increased expression of NF-κB/TGF-β was dependent upon protein kinase C-β (PKCβ) and tested the hypothesis that selective inhibition of PKCβ using ruboxistaurin (RBX) can reduce NF-κB/TGF-β expression and inhibit abnormal atrial remodeling in streptozotocin (STZ)-induced diabetic rats. The effects of PKCβ inhibition on NF-κB/TGF-β signal transduction pathway-mediated atrial remodeling were investigated in STZ-induced diabetic rats. Mouse atrial cardiomyocytes (HL-1 cells) were cultured in low- or high-glucose or mannitol conditions in the presence or absence of small interference RNA that targeted PKCβ. PKCβ inhibition using ruboxistaurin (RBX, 1 mg/kg/day) decreased the expression of NF-κBp65, p-IκB, P38MARK, TNF-α, TGF-β, Cav1.2, and NCX proteins and inducibility of atrial fibrillation (AF) in STZ-induced diabetic rats. Exposure of cardiomyocytes to high-glucose condition activated PKCβ and increased NF-κB/TGF-β expression. Suppression of PKCβ expression by small interference RNA decreased high-glucose-induced NF-κB and extracellular signal-related kinase activation in HL-1 cells. Pharmacological inhibition of PKCβ is an effective method to reduce AF incidence in diabetic rat models by preventing NF-κB/TGF-β-mediated atrial remodeling.
Collapse
Affiliation(s)
- Haili Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.,Beijing Capital International Airport Hospital, Beijing, People's Republic of China
| | - Yuanyuan Xu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Aiqing Xu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Xinghua Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Lijun Cheng
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Sharen Lee
- Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Guangping Li
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| | - Huaying Fu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
85
|
Dawood RM, El-Meguid MA, Salum GM, El Awady MK. Key Players of Hepatic Fibrosis. J Interferon Cytokine Res 2020; 40:472-489. [DOI: 10.1089/jir.2020.0059] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Reham M. Dawood
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mai A. El-Meguid
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Ghada Maher Salum
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| | - Mostafa K. El Awady
- Genetic Engineering Division, Department of Microbial Biotechnology, National Research Centre, Giza, Egypt
| |
Collapse
|
86
|
Chen J, Lodi R, Zhang S, Su Z, Wu Y, Xia L. The double-edged role of IL-22 in organ fibrosis. Immunopharmacol Immunotoxicol 2020; 42:392-399. [PMID: 32689851 DOI: 10.1080/08923973.2020.1799388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Fibrosis is unregulated tissue repair in damaged or diseased organs, and the accumulation of excess extracellular matrix (ECM) impacts the structure and functions of organs, leading to death. Fibrosis is usually triggered by inflammation and tissue damage, and inflammatory mediators stimulate the proliferation of myofibroblasts and the excessive production of ECM. The IL-10 family cytokines play important roles in the development of fibrosis, and its member IL-22 has recently attracted specific attention. IL-22 plays great roles in preventing pathogens invasion and tissue damage, as well as making a contribution to pathogenic processes. Increasing evidence suggested that IL-22 is a key molecule in tissue repair, proliferation and mucosal barrier defense, and it has also been suggested to play both pro-fibrotic and anti-fibrotic roles in tissues. In this review, we summarized the pro-fibrotic and anti-fibrotic functions of IL-22 in various organs which may be of great significance for the development of potential therapeutic strategies for fibrosis-related diseases.
Collapse
Affiliation(s)
- Jia Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | | | - Shiqing Zhang
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Yan Wu
- Central Laboratory, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lin Xia
- International Genome Center, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
87
|
Li L, Yu R, Cai T, Chen Z, Lan M, Zou T, Wang B, Wang Q, Zhao Y, Cai Y. Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol 2020; 88:106939. [PMID: 33182039 DOI: 10.1016/j.intimp.2020.106939] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/17/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation and immune responses are two core element that characterize the tumor microenvironment. A large number of immune/inflammatory cells (including tumor associated macrophages, neutrophils and myeloid derived suppressor cells) as well as cytokines (such as IL-6, IL-10, TGF-β) are present in the tumor microenvironment, which results in both a chronic inflammatory state and immunosuppression. As a consequence tumor cell migration, invasion, metastasis and anticancer drug sensitivity are modulated. On the one hand, secreted cytokines change the function of cytotoxic T lymphocytes and antigen presenting cells, thereby inhibiting tumor specific immune responses and consequently inducing a special immunosuppressive microenvironment for tumor cells. On the other hand, tumor cells change the differentiation and function of immune/inflammatory cells in the tumor microenvironment especially via the NF-κB and STAT3 signaling pathways. This may promote proliferation of tumor cells. Here we review these double edged effects of immune/inflammatory cells and cytokines on tumor cells, and explored their interactions with inflammation, hypoxia, and immune responses in the tumor microenvironment. The tumor inflammatory or immunosuppressive reactions mediated by the high activity of NF-κB or STAT3 can occur alone or simultaneously, and there is a certain connection between them. Inhibiting the NF-κB or STAT3 signaling pathway is likely to curb the growth of tumor cells, reduce the secretion of pro-inflammatory factors, and enhance the anti-tumor immune response.
Collapse
Affiliation(s)
- Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rui Yu
- Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Zhen Chen
- Department of Integrative Oncology, Cancer Center, Fudan University, Shanghai 200032, China; Department of Integrative Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Bingyue Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Qi Wang
- Guangzhou Jiayuan Pharmaceutical Technology Co., Ltd., Guangzhou 510663, China
| | - Yiye Zhao
- Integrated Hospital of Traditonal Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Cancer Research Institute of Jinan University, Guangzhou 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
88
|
Miró J, Gutiérrez-Reinoso M, da Silva JA, Fernandes C, Rebordão MR, Alexandre-Pires G, Catalán J, Ferreira-Dias G. Collagen and Eosinophils in Jenny's Endometrium: Do They Differ With Endometrial Classification? Front Vet Sci 2020; 7:631. [PMID: 33134338 PMCID: PMC7511575 DOI: 10.3389/fvets.2020.00631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
Collagen fibers and inflammatory cells are the basis for jenny endometrium Kenney and Doig's classification developed for the mare. The infiltration of a large number of eosinophils in the jenny endometrium is intriguing. Eosinophil and fibroblast produced IL33, which has been related to fibrosis development and chronicity. This work on the endometrium consisted of (i) quantification of collagen type I (COL1A2), type III (COL3A1), and IL33 transcripts; (ii) histological localization and quantification of COL1 and COL3 proteins; and (iii) eosinophil and neutrophil count and correlation with collagen area and IL33 transcripts. Localization of COL protein in the jenny endometrium was also compared to the mare endometrium. As fibrosis increased, eosinophil and neutrophil count decreased (P < 0.05). A 5-fold increase in IL33 transcripts was noted from categories IIA to III. There was a tendency toward a positive correlation between eosinophil count and IL33 transcripts in category IIA endometrium (P = 0.055). Neither transcripts of COL1A2 nor COL3A1 nor the areas of COL1 or COL3 differed with endometrial categories. Unlike for the mare, and regardless of the jenny endometrium classification, COL3 was always found to different extents in the stratum compactum, while COL1 was mainly present in deep stroma. As fibrosis progressed in the mare, an extensive increase in COL1 fibers was notorious under the surface epithelium. Correlations between neutrophil count and COL1 and COL3 areas were observed in the jenny endometrium, although no correlation was found for eosinophil count. Neutrophil count positive correlation with the COL1 area and negative correlation with the COL3 area in endometria with mild lesions suggest that neutrophils in the jenny endometrium may be involved in fibrogenesis. In addition, when eosinophilia subsides, the endometrium reacts with fibrosis establishment, which could be stimulated by the pro-fibrotic cytokine IL33, whose release might then be ascribed to fibroblasts. Further studies are needed to analyze the effect of the presence of COL3 next to the surface epithelium in the stratum compactum, or around the endometrial glands on jenny's endometrial function and fertility.
Collapse
Affiliation(s)
- Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Miguel Gutiérrez-Reinoso
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Joana Aguiar da Silva
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Carina Fernandes
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Rosa Rebordão
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal.,Coimbra College of Agriculture, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Graça Alexandre-Pires
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Jaime Catalán
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Graça Ferreira-Dias
- Faculdade de Medicina Veterinária, CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
89
|
Lucarini L, Durante M, Sgambellone S, Lanzi C, Bigagli E, Akgul O, Masini E, Supuran CT, Carta F. Effects of New NSAID-CAI Hybrid Compounds in Inflammation and Lung Fibrosis. Biomolecules 2020; 10:biom10091307. [PMID: 32927723 PMCID: PMC7564963 DOI: 10.3390/biom10091307] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Pulmonary fibrosis is a severe lung disease with progressive worsening of dyspnea, characterized by chronic inflammation and remodeling of lung parenchyma. Carbonic anhydrases are a family of zinc-metallo-enzymes that catalyze the reversible interconversion of carbon-dioxide and water to bicarbonate and protons. Carbonic Anhydrase Inhibitor (CAI) exhibited anti-inflammatory effects in animals with permanent-middle-cerebral artery occlusion, arthritis and neuropathic pain. The pharmacological profile of a new class of hybrid compounds constituted by a CAI connected to a Nonsteroidal-Anti-Inflammatory Drug (NSAID) was studied in the modulation of inflammation and fibrosis. In-vitro tests were performed to assess their effects on cyclo-oxygenase enzyme (COX)-1 and COX-2, namely inhibition of platelet aggregation and thromboxane B2 production in the human-platelet-rich plasma, and reduction of Prostaglandin-E2 production in lipopolysaccharide-treated-RAW-264.7 macrophage cell line. The activity of compound 3, one of the most active, was studied in a model of bleomycin-induced lung fibrosis in C57BL/6 mice. The hybrid compounds showed a higher potency in inhibiting PGE2 production, but not in modifying the platelet aggregation and the TXB2 production in comparison to the reference molecules, indicating an increased activity in COX-2 inhibition. In the in-vivo murine model, the compound 3 was more effective in decreasing inflammation, lung stiffness and oxidative stress in comparison to the reference drugs given alone or in association. In conclusion, these CAI-NSAID hybrid compounds are promising new anti-inflammatory drugs for the treatment of lung chronic inflammatory diseases.
Collapse
Affiliation(s)
- Laura Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
- Correspondence: ; Tel.: +39-055-2758299
| | - Mariaconcetta Durante
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Silvia Sgambellone
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Cecilia Lanzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Ozlem Akgul
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Ege University Bornova, 35100 Izmir, Turkey;
| | - Emanuela Masini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence, Viale G. Pieraccini n. 6, 50139 Florence, Italy; (M.D.); (S.S.); (C.L.); (E.B.); (E.M.)
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Pharmaceutical Science Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (F.C.)
| | - Fabrizio Carta
- Department of NEUROFARBA, Pharmaceutical Science Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (C.T.S.); (F.C.)
| |
Collapse
|
90
|
Sunda F, Arowolo A. A molecular basis for the anti-inflammatory and anti-fibrosis properties of cannabidiol. FASEB J 2020; 34:14083-14092. [PMID: 32885502 DOI: 10.1096/fj.202000975r] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
Cannabidiol (CBD) is considered a non-psychoactive, antioxidant, and anti-inflammatory compound derived from the Cannabis sativa plant. There are various reports on the versatile function of CBD, including ameliorating chronic inflammation and fibrosis formation in several tissue types. However, only a hand full of studies have proposed or provided a molecular justification for the beneficial properties of this Phyto-compound. This review focused on the anti-inflammation and anti-fibrotic effects of CBD based on modulating the associated chemokines/cytokines and receptor-mediated pathways. We also highlighted the regulatory impact of CBD on reactive oxygen species (ROS) producing-NADPH oxidase (Nox), and ROS scavenging-superoxide dismutase (SOD) enzymes. Although CBD has a low affinity to Cannabinoid receptors 1 and 2 (CB1 and CB2 ), we reported on the activation of these receptors by other CBD analogs, and CBD on non-CBD receptors. CBD downregulates pro-inflammatory and pro-fibrotic chemokines/cytokines by acting as direct or indirect agonists of Adenosine A2A /equilibrative nucleoside transporter receptors, Peroxisome proliferator-activated receptor gamma, and Transient receptor potential vanilloid receptors or channels, and as an antagonist of GPR55 receptors. CBD also caused the reduction and enhancement of the ROS producing, Nox and ROS-scavenging, SOD enzyme activities, respectively. This review thus recommends the continued study of CBD's molecular mechanism in treating established and emerging inflammatory and fibrosis-related diseases.
Collapse
Affiliation(s)
- Falone Sunda
- Hair and Skin Research Laboratory, Division of Medical Biochemistry and Dermatology, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Afolake Arowolo
- Hair and Skin Research Laboratory, Division of Medical Biochemistry and Dermatology, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
91
|
Huai B, Ding J. Atractylenolide III attenuates bleomycin-induced experimental pulmonary fibrosis and oxidative stress in rat model via Nrf2/NQO1/HO-1 pathway activation. Immunopharmacol Immunotoxicol 2020; 42:436-444. [PMID: 32762376 DOI: 10.1080/08923973.2020.1806871] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bleomycin (BLM) is a chemotherapy drug used to treat cancer, one of which side effects is that it can lead to pulmonary fibrosis (PF). Atractylenoide III (AtrIII), derived from the dried roots of rhizoma atractylodis of compositae, is one of the main active substances of rhizoma atractylodis. It has anti-inflammatory, anti-tumor and other effects. This study aimed to investigate whether AtrIII alleviated BLM-induced PF and oxidative stress in rats through the nuclear factor erythroid-2-related factor 2/NQO1,NAD(P)H:quinine oxidoreductase 1/Heme oxygenase-1 (Nrf2/NQO1/HO-1) pathway. METHODS A BLM-induced pulmonary fibrosis model in SD rats was established. The respiratory dynamics were evaluated by using Wholebody flow-through plethysmography. Lung injury and pulmonary fibrosis were observed by Hematoxylin-eosin (HE) and Masson staining. Apoptosis was assay by Tunel assay. Inflammatory factors were detected with commercial kits. Expression of mRNAs and proteins were detected by RT-qPCR and Western blot, respectively. RESULTS AtrIII (1.2, 2.4 mg/kg) improved the lung injury and lung function in the BLM-induced Sprague-Dawley (SD) rats. AtrIII reduced the apoptosis rate and protein expression of Caspase-3 and Caspase-9. AtrIII (1.2, 2.4 mg/kg) decrease the pulmonary fibrosis damage and protein expression transforming growth factor-β (TGF-β) and α-smooth muscle actin (α-SMA). AtrIII also down-regulated the levels of interleukin 6 (IL-6), inductible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α), while up-regulated the level of IL-10 in peripheral blood serum. Moreover, AtrIII (1.2, 2.4 mg/kg) increased the activity of superoxide dismutase (SOD) and glutathione (GSH), while decreased the malondialdehyde (MDA) content and lactate dehydrogenase (LDH) activity. AtrIII (1.2, 2.4 mg/kg) increased the levels of Nrf2, NQO1 and HO-1. In addition, AtrIII reversed the effects of Nrf2 interference on pulmonary fibrosis damage, decreased SOD and GSH activity, and increased MDA content. CONCLUSION AtrIII could attenuate the pulmonary fibrosis and reliev oxidative stress through the Nrf2/NQO1/ HO-1 pathway.
Collapse
Affiliation(s)
- Bin Huai
- Department of Pharmacy, Jinan Second People's Hospital, Jinan, Shandong, China
| | - Jiyu Ding
- Department of Pharmacy, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
92
|
Sun ZL, Feng Y, Zou ML, Zhao BH, Liu SY, Du Y, Yu S, Yang ML, Wu JJ, Yuan ZD, Lv GZ, Zhang JR, Yuan FL. Emerging Role of IL-10 in Hypertrophic Scars. Front Med (Lausanne) 2020; 7:438. [PMID: 32974363 PMCID: PMC7481393 DOI: 10.3389/fmed.2020.00438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/06/2020] [Indexed: 12/31/2022] Open
Abstract
Hypertrophic scars (HS) arise from traumatic or surgical injuries and the subsequent abnormal wound healing, which is characterized by continuous and histologically localized inflammation. Therefore, inhibiting local inflammation is an effective method of treating HS. Recent insight into the role of interleukin-10 (IL-10), an important anti-inflammatory cytokine, in fibrosis has increased our understanding of the pathophysiology of HS and has suggested new therapeutic targets. This review summarizes the recent progress in elucidating the role of IL-10 in the formation of HS and its therapeutic potential based on current research. This knowledge will enhance our understanding of the role of IL-10 in scar formation and shed new light on the regulation and potential treatment of HS.
Collapse
Affiliation(s)
- Zi-Li Sun
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yi Feng
- Department of Pharmacology, Medical School, Yangzhou University, Yangzhou, China
| | - Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Bin-Hong Zhao
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yong Du
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Shun Yu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Min-Lie Yang
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Guo-Zhong Lv
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ji-Ru Zhang
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Department of Burns and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
93
|
Farooq M, Rauf M, Tahir F, Manzoor S. A comparative analysis of interferons and direct-acting antivirals on the expression of genes involved in hepatitis C pathogenesis. J Med Virol 2020; 93:6241-6246. [PMID: 32706418 DOI: 10.1002/jmv.26351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
The discovery of direct-acting antivirals (DAAs) has revolutionized the treatment of hepatitis C worldwide. In contrast, pegylated interferon-alpha (PEG IFN-α), the older regimen, had limited success. However, the effect of DAAs on the expression of immunomodulatory genes involved in liver pathologies remains ambiguous. The objective of this study was to explore and contrast the effects of DAAs and PEG IFN-α on the expression of selected immunomodulatory genes. Fifty individuals were enrolled in the study and they were divided into five categories; healthy individuals, treatment-naive, DAAs-responders, DAAs-nonresponders, and interferon-relapsers. The effect of the therapies on the expression of transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α), suppressor of cytokine signaling 3 (SOCS-3), copper/zinc superoxide dismutase (Cu/Zn SOD), interleukin 10 (IL-10), and collagen type 1 was analyzed. Expression analysis of the selected genes was done through real time polymerase chain reaction. A significantly increased expression of TGF-β was observed in the patients who received DAAs or PEG IFN-α, which suggests that patients receiving anti-HCV therapies are prone to developing fibrosis. Moreover, DAAs-nonresponders had higher expression of TNF-α, SOCS-3, and IL-10. The elevated expression of TNF-α and SOCS-3 insinuates that DAAs-nonresponders may develop insulin resistance and steatosis in the future. Finally, in addition to TGF-β, high expression of collagen was found in interferon relapsers, which suggests that these patients are the most susceptible to developing cirrhosis.
Collapse
Affiliation(s)
- Mariya Farooq
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mahd Rauf
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fatima Tahir
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sobia Manzoor
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
94
|
Zeng Z, Chen H, Cai J, Huang Y, Yue J. IL-10 regulates the malignancy of hemangioma-derived endothelial cells via regulation of PCNA. Arch Biochem Biophys 2020; 688:108404. [PMID: 32416101 DOI: 10.1016/j.abb.2020.108404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Hemangioma (HA) is the most common benign tumor and formed by the proliferating endothelial cells of blood vessels. Interleukins (ILs) have been reported to be critical for HA progression. Our present study found that the expression of IL-10 was decreased in HA cells and tissues as compared to their corresponding controls. Treatment with recombinant IL-10 (rIL-10) can suppress the proliferation of HA cells via suppression of proliferating cell nuclear antigen (PCNA), while over expression of PCNA can attenuate rIL-10-inhibited cell proliferation. Further, rIL-10 can decrease the promoter activity and mRNA stability of PCNA in HA cells. Mechanistically, rIL-10 can increase expression of miR-27b-3p to decrease mRNA stability of PCNA, while down regulation of YY1 is involved in rIL-10 suppressed transcription of PCNA. Collectively, IL-10 can suppress the expression of PCNA via miR-27b-3p mediated suppression of mRNA stability and YY1 mediated down regulation of transcription. It suggested that rIL-10 might be a potential therapeutic approach for HA development and progression.
Collapse
Affiliation(s)
- Zhaofan Zeng
- Department of Vascular Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China
| | - Hao Chen
- Department of Vascular Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China
| | - Junhong Cai
- Molecular Laboratory Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China
| | - Yanjing Huang
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, Hainan Province, PR China
| | - Jie Yue
- Department of Cardiovascula Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, PR China.
| |
Collapse
|
95
|
Hsieh SC, Shen CY, Liao HT, Chen MH, Wu CH, Li KJ, Lu CS, Kuo YM, Tsai HC, Tsai CY, Yu CL. The Cellular and Molecular Bases of Allergy, Inflammation and Tissue Fibrosis in Patients with IgG4-related Disease. Int J Mol Sci 2020; 21:ijms21145082. [PMID: 32708432 PMCID: PMC7404109 DOI: 10.3390/ijms21145082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
IgG4-related disease (IgG4-RD) is a spectrum of complex fibroinflammatory disorder with protean manifestations mimicking malignant neoplasms, infectious or non-infectious inflammatory process. The histopathologic features of IgG4-RD include lymphoplasmacytic infiltration, storiform fibrosis and obliterative phlebitis together with increased in situ infiltration of IgG4 bearing-plasma cells which account for more than 40% of all IgG-producing B cells. IgG4-RD can also be diagnosed based on an elevated serum IgG4 level of more than 110 mg/dL (normal < 86.5 mg/mL in adult) in conjunction with protean clinical manifestations in various organs such as pancreato–hepatobiliary inflammation with/without salivary/lacrimal gland enlargement. In the present review, we briefly discuss the role of genetic predisposition, environmental factors and candidate autoantibodies in the pathogenesis of IgG4-RD. Then, we discuss in detail the immunological paradox of IgG4 antibody, the mechanism of modified Th2 response for IgG4 rather than IgE antibody production and the controversial issues in the allergic reactions of IgG4-RD. Finally, we extensively review the implications of different immune-related cells, cytokines/chemokines/growth factors and Toll-like as well as NOD-like receptors in the pathogenesis of tissue fibro-inflammatory reactions. Our proposals for the future investigations and prospective therapeutic strategies for IgG4-RD are shown in the last part.
Collapse
Affiliation(s)
- Song-Chou Hsieh
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
| | - Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Ko-Jen Li
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Cheng-Shiun Lu
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
| | - Hung-Cheng Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
| | - Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, Taipei 11217, Taiwan; (H.-T.L.); (M.-H.C.); (H.-C.T.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Tel.: +886-2-28712121 (ext. 3366) (C.-Y.T.); +886-2-23123456 (ext. 65011) (C.-L.Y.)
| | - Chia-Li Yu
- Division of Rheumatology, Immunology & Allergy, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-Y.S.); (C.-H.W.); (K.-J.L.); (C.-S.L.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Tel.: +886-2-28712121 (ext. 3366) (C.-Y.T.); +886-2-23123456 (ext. 65011) (C.-L.Y.)
| |
Collapse
|
96
|
Singampalli KL, Balaji S, Wang X, Parikh UM, Kaul A, Gilley J, Birla RK, Bollyky PL, Keswani SG. The Role of an IL-10/Hyaluronan Axis in Dermal Wound Healing. Front Cell Dev Biol 2020; 8:636. [PMID: 32850791 PMCID: PMC7396613 DOI: 10.3389/fcell.2020.00636] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Scar formation is the typical endpoint of postnatal dermal wound healing, which affects more than 100 million individuals annually. Not only do scars cause a functional burden by reducing the biomechanical strength of skin at the site of injury, but they also significantly increase healthcare costs and impose psychosocial challenges. Though the mechanisms that dictate how dermal wounds heal are still not completely understood, they are regulated by extracellular matrix (ECM) remodeling, neovascularization, and inflammatory responses. The cytokine interleukin (IL)-10 has emerged as a key mediator of the pro- to anti-inflammatory transition that counters collagen deposition in scarring. In parallel, the high molecular weight (HMW) glycosaminoglycan hyaluronan (HA) is present in the ECM and acts in concert with IL-10 to block pro-inflammatory signals and attenuate fibrotic responses. Notably, high concentrations of both IL-10 and HMW HA are produced in early gestational fetal skin, which heals scarlessly. Since fibroblasts are responsible for collagen deposition, it is critical to determine how the concerted actions of IL-10 and HA drive their function to potentially control fibrogenesis. Beyond their independent actions, an auto-regulatory IL-10/HA axis may exist to modulate the magnitude of CD4+ effector T lymphocyte activation and enhance T regulatory cell function in order to reduce scarring. This review underscores the pathophysiological impact of the IL-10/HA axis as a multifaceted molecular mechanism to direct primary cell responders and regulators toward either regenerative dermal tissue repair or scarring.
Collapse
Affiliation(s)
- Kavya L Singampalli
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States.,Department of Bioengineering, Rice University, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Umang M Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Jamie Gilley
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States.,Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | | | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
97
|
Zhong Y, Tang R, Lu Y, Wang W, Xiao C, Meng T, Ao X, Li X, Peng L, Kwadwo Nuro-Gyina P, Zhou Q. Irbesartan may relieve renal injury by suppressing Th22 cells chemotaxis and infiltration in Ang II-induced hypertension. Int Immunopharmacol 2020; 87:106789. [PMID: 32683300 DOI: 10.1016/j.intimp.2020.106789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Abstract
Angiotensin II (Ang II) as an important pathogenic factor, has been implicated in the pathogenesis of hypertension and associated renal injury, and inhibition of Ang II can reduce renal inflammation and exert renal protective effects. In the present study, we determine the infiltration of Th22 cells in kidney and serum IL-22 level in hypertensive renal injury, and explore the effects and mechanisms of a widely used angiotensin II type 1 receptor blocker irbesartan on Th22 cells infiltration and related renal injury. Hypertension was induced by administering 1.5 mg/kg Ang II subcutaneously daily in C57BL/6 mice for 28 days. The mice were additionally treated by irbesartan or amlodipine. Renal Th22 lymphocytes frequency was evaluated through flow cytometry, serum IL-22 was detected by ELISA, and renal histopathological changes were also detected. The levels of renal chemokines (CCL20, CCL22, CCL27) and serum proinflammatory factors (IL-1β, IL-6, TNF-α) were measured by ELISA. Renal expression of alpha-smooth muscle actin (α-SMA), Fibronectin (FN) and collagen I (Col I) were evaluated by western blot. Chemotaxis assay and co-culture assay were conducted to clarify the effect of irbesartan on Th22 cells chemotaxis and differentiation in vitro. Our results showed in Ang II-infused hypertension mice, irbesartan suppressed renal Th22 cells accumulation as well as CCL20, CCL22, CCL27 expression. Serum IL-22, IL-1β, IL-6 and TNF-α concentrations wasere also reduced, in addition to inhibited renal expression of α-SMA, FN and Col I. Irbesartan treatment lowered blood pressure, urinary protein and renal pathological damage. In vitro, irbesartan could abrogate the Th22 cells chemotaxis and differentiation, compared to control and amlodipine groups. Our study reveals a new pharmacological mechanism that irbesartan ameliorates inflammation and fibrosis in hypertensive renal injury induced by Ang II, maybe through inhibiting Th22 cells chemotaxis and infiltration, which provides a new theoretical basis and therapeutic target for hypertensive renal injury.
Collapse
Affiliation(s)
- Yong Zhong
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yang Lu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenggen Xiao
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Meng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Ao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | - Qiaoling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
98
|
Burke SD, Zsengellér ZK, Karumanchi SA, Shainker SA. A mouse model of placenta accreta spectrum. Placenta 2020; 99:8-15. [PMID: 32716845 DOI: 10.1016/j.placenta.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Placenta Accreta Spectrum (PAS) disorder is one of the leading causes of maternal morbidity and mortality due to uncontrollable hemorrhage. The greatest risk factor for development of PAS is prior uterine surgery, frequently cesarean delivery. Despite considerable clinical knowledge, animal models of PAS are lacking. To address this, we used two surgical approaches to create uterine scarring in peripartum and non-pregnant CD-1 mice. Il10-/- mice, with a pro-inflammatory phenotype were also studied. METHODS In peripartum mice, a hysterotomy was performed to simulate a cesarean section. The second approach utilized endometrial curettage in non-pregnant mice. Sham-operated mice served as control. Following recovery, females were mated. On gestation day 16, pregnant females were euthanized, and the uterus was excised. Tissue was fixed, sectioned, and stained with H&E or cytokeratin immunohistochemistry. The cytokeratin-positive area extending beyond the trophoblast giant cells was measured by quantitative image analysis. Disruption of the circular (inner myometrium) smooth muscle was scored semi-quantitatively. RESULTS In surgically scarred mice, trophoblast invasion was deeper relative to control mice, regardless of surgical method. The myometrium in experimental mice showed significant disruption compared to sham controls. Results from CD-1 and Il10-/- mice were similar, with the latter showing more severe pathology. DISCUSSION While further refinement of surgical method is required, our data indicate that surgical uterine scarring in mice represents a promising model of PAS.
Collapse
Affiliation(s)
- Suzanne D Burke
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Zsuzsanna K Zsengellér
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - S Ananth Karumanchi
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Departments of Obstetrics, Gynecology, and Reproductive Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Scott A Shainker
- Departments of Obstetrics, Gynecology, and Reproductive Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
99
|
Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med 2020; 217:jem.20190418. [PMID: 31611251 PMCID: PMC7037253 DOI: 10.1084/jem.20190418] [Citation(s) in RCA: 471] [Impact Index Per Article: 117.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
The authors review the molecular mechanisms regulating IL-10 production and response and describe classic and novel functions of IL-10 in immune and non-immune cells. They further discuss the therapeutic potential of IL-10 in different diseases and the outstanding questions underlying an effective application of IL-10 in clinical settings. The cytokine IL-10 is a key anti-inflammatory mediator ensuring protection of a host from over-exuberant responses to pathogens and microbiota, while playing important roles in other settings as sterile wound healing, autoimmunity, cancer, and homeostasis. Here we discuss our current understanding of the regulation of IL-10 production and of the molecular pathways associated with IL-10 responses. In addition to IL-10’s classic inhibitory effects on myeloid cells, we also describe the nonclassic roles attributed to this pleiotropic cytokine, including how IL-10 regulates basic processes of neural and adipose cells and how it promotes CD8 T cell activation, as well as epithelial repair. We further discuss its therapeutic potential in the context of different diseases and the outstanding questions that may help develop an effective application of IL-10 in diverse clinical settings.
Collapse
Affiliation(s)
- Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulo Vieira
- Department of Immunology, Unité Lymphopoièse, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK.,National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
100
|
Finato AC, Almeida DF, Dos Santos AR, Nascimento DC, Cavalcante RS, Mendes RP, Soares CT, Paniago AMM, Venturini J. Evaluation of antifibrotic and antifungal combined therapies in experimental pulmonary paracoccidioidomycosis. Med Mycol 2020; 58:667-678. [PMID: 31578565 DOI: 10.1093/mmy/myz100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023] Open
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by the Paracoccidioides genus. Most of the patients with chronic form present sequelae, like pulmonary fibrosis, with no effective treatment, leading to impaired lung functions. In the present study, we aimed to investigate the antifibrotic activity of three compounds: pentoxifylline (PTX), azithromycin (AZT), and thalidomide (Thal) in a murine model of pulmonary PCM treated with itraconazole (ITC) or cotrimoxazole (CMX). BALB/c mice were inoculated with P. brasiliensis (Pb) by the intratracheal route and after 8 weeks, they were submitted to one of the following six treatments: PTX/ITC, PTX/CMX, AZT/ITC, AZT/CMX, Thal/ITC, and Thal/CMX. After 8 weeks of treatment, the lungs were collected for determination of fungal burden, production of OH-proline, deposition of reticulin fibers, and pulmonary concentrations of cytokines and growth factors. Pb-infected mice treated with PTX/ITC presented a reduction in the pulmonary concentrations of OH-proline, associated with lower concentrations of interleukin (IL)-6, IL-17, and transforming growth factor (TGF)-β1 and higher concentrations of IL-10 compared to the controls. The Pb-infected mice treated with AZT/CMX exhibited decreased pulmonary concentrations of OH-proline associated with lower levels of TGF-β1, and higher levels of IL-10 compared controls. The mice treated with ITC/Thal and CMX/Thal showed intense weight loss, increased deposition of reticulin fibers, high pulmonary concentrations of CCL3, IFN-γ and VEGF, and decreased concentrations of IL-6, IL-1β, IL-17, and TGF-β1. In conclusion, our findings reinforce the antifibrotic role of PTX only when associated with ITC, and AZT only when associated with CMX, but Thal did not show any action upon addition.
Collapse
Affiliation(s)
- Angela C Finato
- Faculdade de Ciências. Universidade Estadual Paulista (UNESP), 17033-360 Bauru, SP, Brazil
| | - Débora F Almeida
- Faculdade de Ciências. Universidade Estadual Paulista (UNESP), 17033-360 Bauru, SP, Brazil.,Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil
| | - Amanda R Dos Santos
- Faculdade de Ciências. Universidade Estadual Paulista (UNESP), 17033-360 Bauru, SP, Brazil.,Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil
| | | | - Ricardo S Cavalcante
- Faculdade de Medicina de Botucatu. Universidade Estadual Paulista (UNESP), 18618-687 Botucatu, SP, Brazil
| | - Rinaldo P Mendes
- Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil.,Faculdade de Medicina de Botucatu. Universidade Estadual Paulista (UNESP), 18618-687 Botucatu, SP, Brazil
| | | | - Anamaria M M Paniago
- Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil
| | - James Venturini
- Faculdade de Medicina (FAMED). Universidade Federal do Mato Grosso do Sul (UFMS). 79070-900 Campo Grande, MS, Brazil
| |
Collapse
|