51
|
Nessler I, Rubahamya B, Kopp A, Hofsess S, Cardillo TM, Sathyanarayan N, Donnell J, Govindan SV, Thurber GM. Improving Intracellular Delivery of an Antibody-Drug Conjugate Targeting Carcinoembryonic Antigen Increases Efficacy at Clinically Relevant Doses In Vivo. Mol Cancer Ther 2024; 23:343-353. [PMID: 37913500 PMCID: PMC10932886 DOI: 10.1158/1535-7163.mct-23-0437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Solid tumor antibody-drug conjugates (ADC) have experienced more clinical success in the last 5 years than the previous 18-year span since the first ADC approval in 2000. While recent advances in protein engineering, linker design, and payload variations have played a role in this success, high expression and readily internalized targets have also been crucial to solid tumor therapy. However, these factors are also paradoxically connected to poor tissue penetration and lower efficacy. Previous work shows that potent ADCs can benefit from slower internalization under subsaturating doses to improve tissue penetration and increase tumor response. In contrast, faster internalization is predicted to increase efficacy under higher, tumor saturating doses. In this work, the intracellular delivery of SN-38 conjugated to an anti-carcinoembryonic antigen (anti-CEA) antibody (Ab) is increased by coadministering a noncompeting (cross-linking) anti-CEA Ab to improve efficacy in a colorectal carcinoma animal model. The SN-38 payload enables broad tumor saturation with clinically-tolerable doses, and under these saturating conditions, using a second CEA receptor cross-linking Ab yields faster internalization, which increases tumor killing efficacy. Our spheroid results show indirect bystander killing can also occur, but the more efficient direct cell killing from targeted intracellular payload release drives a greater tumor response. These results provide a strategy to increase therapeutic effectiveness with improved intracellular delivery under tumor saturating doses with the potential to expand the ADC target repertoire.
Collapse
Affiliation(s)
- Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Baron Rubahamya
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | - Greg M. Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
52
|
Tsuchikama K, Anami Y, Ha SYY, Yamazaki CM. Exploring the next generation of antibody-drug conjugates. Nat Rev Clin Oncol 2024; 21:203-223. [PMID: 38191923 DOI: 10.1038/s41571-023-00850-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Antibody-drug conjugates (ADCs) are a promising cancer treatment modality that enables the selective delivery of highly cytotoxic payloads to tumours. However, realizing the full potential of this platform necessitates innovative molecular designs to tackle several clinical challenges such as drug resistance, tumour heterogeneity and treatment-related adverse effects. Several emerging ADC formats exist, including bispecific ADCs, conditionally active ADCs (also known as probody-drug conjugates), immune-stimulating ADCs, protein-degrader ADCs and dual-drug ADCs, and each offers unique capabilities for tackling these various challenges. For example, probody-drug conjugates can enhance tumour specificity, whereas bispecific ADCs and dual-drug ADCs can address resistance and heterogeneity with enhanced activity. The incorporation of immune-stimulating and protein-degrader ADCs, which have distinct mechanisms of action, into existing treatment strategies could enable multimodal cancer treatment. Despite the promising outlook, the importance of patient stratification and biomarker identification cannot be overstated for these emerging ADCs, as these factors are crucial to identify patients who are most likely to derive benefit. As we continue to deepen our understanding of tumour biology and refine ADC design, we will edge closer to developing truly effective and safe ADCs for patients with treatment-refractory cancers. In this Review, we highlight advances in each ADC component (the monoclonal antibody, payload, linker and conjugation chemistry) and provide more-detailed discussions on selected examples of emerging novel ADCs of each format, enabled by engineering of one or more of these components.
Collapse
Affiliation(s)
- Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Yasuaki Anami
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Summer Y Y Ha
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chisato M Yamazaki
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
53
|
Li M, Zhao X, Yu C, Wang L. Antibody-Drug Conjugate Overview: a State-of-the-art Manufacturing Process and Control Strategy. Pharm Res 2024; 41:419-440. [PMID: 38366236 DOI: 10.1007/s11095-023-03649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/16/2023] [Indexed: 02/18/2024]
Abstract
Antibody-drug conjugates (ADCs) comprise an antibody, linker, and drug, which direct their highly potent small molecule drugs to target tumor cells via specific binding between the antibody and surface antigens. The antibody, linker, and drug should be properly designed or selected to achieve the desired efficacy while minimizing off-target toxicity. With a unique and complex structure, there is inherent heterogeneity introduced by product-related variations and the manufacturing process. Here this review primarily covers recent key advances in ADC history, clinical development status, molecule design, manufacturing processes, and quality control. The manufacturing process, especially the conjugation process, should be carefully developed, characterized, validated, and controlled throughout its lifecycle. Quality control is another key element to ensure product quality and patient safety. A patient-centric strategy has been well recognized and adopted by the pharmaceutical industry for therapeutic proteins, and has been successfully implemented for ADCs as well, to ensure that ADC products maintain their quality until the end of their shelf life. Deep product understanding and process knowledge defines attribute testing strategies (ATS). Quality by design (QbD) is a powerful approach for process and product development, and for defining an overall control strategy. Finally, we summarize the current challenges on ADC development and provide some perspectives that may help to give related directions and trigger more cross-functional research to surmount those challenges.
Collapse
Affiliation(s)
- Meng Li
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xueyu Zhao
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Chuanfei Yu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lan Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People's Republic of China.
| |
Collapse
|
54
|
Wei Q, Yang T, Zhu J, Zhang Z, Yang L, Zhang Y, Hu C, Chen J, Wang J, Tian X, Shimura T, Fang J, Ying J, Fan M, Guo P, Cheng X. Spatiotemporal Quantification of HER2-targeting Antibody-Drug Conjugate Bystander Activity and Enhancement of Solid Tumor Penetration. Clin Cancer Res 2024; 30:984-997. [PMID: 38113039 DOI: 10.1158/1078-0432.ccr-23-1725] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/03/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE Antibody-drug conjugate (ADC) has had a transformative effect on the treatment of many solid tumors, yet it remains unclear how ADCs exert bystander activity in the tumor microenvironment. EXPERIMENTAL DESIGN Here, we directly visualized and spatiotemporally quantified the intratumor biodistribution and pharmacokinetics of different ADC components by developing dual-labeled fluorescent probes. RESULTS Mechanistically, we found that tumor penetration of ADCs is distinctly affected by their ability to breach the binding site barrier (BSB) in perivascular regions of tumor vasculature, and bystander activity of ADC can only partially breach BSB. Furthermore, bystander activity of ADCs can work in synergy with coadministration of their parental antibodies, leading to fully bypassing BSBs and enhancing tumor penetration via a two-step process. CONCLUSIONS These promising preclinical data allowed us to initiate a phase I/II clinical study of coadministration of RC48 and trastuzumab in patients with malignant stomach cancer to further evaluate this treatment strategy in humans.
Collapse
Affiliation(s)
- Qing Wei
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, P.R. China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, P.R. China
| | - Teng Yang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Jiayu Zhu
- Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Ziwen Zhang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, P.R. China
| | - Le Yang
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Yuchao Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Can Hu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, P.R. China
| | - Jiahui Chen
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, P.R. China
| | - Jinchao Wang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Xuefei Tian
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, P.R. China
- College of Molecular Medicine, Hangzhou Institute for Advanced Study (HIAS), University of Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai, P.R. China
| | - Jieer Ying
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, P.R. China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, P.R. China
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Peng Guo
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, P.R. China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
55
|
Zhou L, Lu Y, Liu W, Wang S, Wang L, Zheng P, Zi G, Liu H, Liu W, Wei S. Drug conjugates for the treatment of lung cancer: from drug discovery to clinical practice. Exp Hematol Oncol 2024; 13:26. [PMID: 38429828 PMCID: PMC10908151 DOI: 10.1186/s40164-024-00493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Liu
- Department of Geriatrics, Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanglong Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guisha Zi
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
56
|
Douez E, Allard-Vannier E, Amar IAM, Jolivet L, Boursin F, Maisonial-Besset A, Witkowski T, Chezal JM, Colas C, Letast S, Auvert E, Denevault-Sabourin C, Aubrey N, Joubert N. Branched pegylated linker-auristatin to control hydrophobicity for the production of homogeneous minibody-drug conjugate against HER2-positive breast cancer. J Control Release 2024; 366:567-584. [PMID: 38215985 DOI: 10.1016/j.jconrel.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Trastuzumab emtansine (Kadcyla®) was the first antibody-drug conjugate (ADC) approved by the Food and Drug Administration in 2013 against a solid tumor, and the first ADC to treat human epidermal growth factor receptor 2 positive (HER2+) breast cancer. However, this second generation ADC is burden by several limitations included heterogeneity, limited activity against heterogeneous tumor (regarding antigen expression) and suboptimal tumor penetration. To address this, different development strategies are oriented towards homogeneous conjugation, new drugs, optimized linkers and/or smaller antibody formats. To reach better developed next generation ADCs, a key parameter to consider is the management of the hydrophobicity associated with the linker-drug, increasing with and limiting the drug-to-antibody ratio (DAR) of the ADC. Here, an innovative branched pegylated linker was developed, to control the hydrophobicity of the monomethyl auristatin E (MMAE) and its cathepsin B-sensitive trigger. This branched pegylated linker-MMAE was then used for the efficient generation of internalizing homogeneous ADC of DAR 8 and minibody-drug conjugate of DAR 4, targeting HER2. Both immunoconjugates were then evaluated in vitro and in vivo on breast cancer models. Interestingly, this study highlighted that the minibody-MMAE conjugate of DAR 4 was the best immunoconjugate regarding in vitro cellular internalization and cytotoxicity, gamma imaging, ex vivo biodistribution profile in mice and efficient reduction of tumor size in vivo. These results are very promising and encourage us to explore further fragment-drug conjugate development.
Collapse
Affiliation(s)
- Emmanuel Douez
- UPR 4301 CBM, CNRS, University of Tours, University of Orléans, F-45071 Orléans, France; Pharmacy Department, Tours University Hospital, F-37200 Tours, France
| | - Emilie Allard-Vannier
- UPR 4301 CBM, CNRS, University of Tours, University of Orléans, F-45071 Orléans, France.
| | | | - Louis Jolivet
- UMR 1282 ISP, INRAE, University of Tours, Team BioMAP, F-37200 Tours, France
| | - Fanny Boursin
- UMR 1282 ISP, INRAE, University of Tours, Team BioMAP, F-37200 Tours, France
| | - Aurélie Maisonial-Besset
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Tiffany Witkowski
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Cyril Colas
- UPR 4301 CBM, CNRS, University of Tours, University of Orléans, F-45071 Orléans, France; UMR 7311 ICOA, CNRS, University of Orléans, F-45067 Orléans, France
| | - Stéphanie Letast
- UMR 1100 CEPR, INSERM, University of Tours, F-37200 Tours, France
| | - Etienne Auvert
- UMR 1100 CEPR, INSERM, University of Tours, F-37200 Tours, France
| | | | - Nicolas Aubrey
- UMR 1282 ISP, INRAE, University of Tours, Team BioMAP, F-37200 Tours, France
| | - Nicolas Joubert
- UMR 1100 CEPR, INSERM, University of Tours, F-37200 Tours, France.
| |
Collapse
|
57
|
Lewis GD, Li G, Guo J, Yu SF, Fields CT, Lee G, Zhang D, Dragovich PS, Pillow T, Wei B, Sadowsky J, Leipold D, Wilson T, Kamath A, Mamounas M, Lee MV, Saad O, Choeurng V, Ungewickell A, Monemi S, Crocker L, Kalinsky K, Modi S, Jung KH, Hamilton E, LoRusso P, Krop I, Schutten MM, Commerford R, Sliwkowski MX, Cho E. The HER2-directed antibody-drug conjugate DHES0815A in advanced and/or metastatic breast cancer: preclinical characterization and phase 1 trial results. Nat Commun 2024; 15:466. [PMID: 38212321 PMCID: PMC10784567 DOI: 10.1038/s41467-023-44533-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
Approved antibody-drug conjugates (ADCs) for HER2-positive breast cancer include trastuzumab emtansine and trastuzumab deruxtecan. To develop a differentiated HER2 ADC, we chose an antibody that does not compete with trastuzumab or pertuzumab for binding, conjugated to a reduced potency PBD (pyrrolobenzodiazepine) dimer payload. PBDs are potent cytotoxic agents that alkylate and cross-link DNA. In our study, the PBD dimer is modified to alkylate, but not cross-link DNA. This HER2 ADC, DHES0815A, demonstrates in vivo efficacy in models of HER2-positive and HER2-low cancers and is well-tolerated in cynomolgus monkey safety studies. Mechanisms of action include induction of DNA damage and apoptosis, activity in non-dividing cells, and bystander activity. A dose-escalation study (ClinicalTrials.gov: NCT03451162) in patients with HER2-positive metastatic breast cancer, with the primary objective of evaluating the safety and tolerability of DHES0815A and secondary objectives of characterizing the pharmacokinetics, objective response rate, duration of response, and formation of anti-DHES0815A antibodies, is reported herein. Despite early signs of anti-tumor activity, patients at higher doses develop persistent, non-resolvable dermal, ocular, and pulmonary toxicities, which led to early termination of the phase 1 trial.
Collapse
Affiliation(s)
- Gail D Lewis
- Discovery Oncology, Genentech, South San Francisco, CA, USA.
| | - Guangmin Li
- Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Jun Guo
- Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Shang-Fan Yu
- Translational Oncology, Genentech, South San Francisco, CA, USA
| | | | - Genee Lee
- Translational Oncology, Genentech, South San Francisco, CA, USA
| | | | | | - Thomas Pillow
- Discovery Chemistry, Genentech, South San Francisco, CA, USA
| | - BinQing Wei
- Computational Chemistry, Genentech, South San Francisco, CA, USA
| | - Jack Sadowsky
- Protein Chemistry, Genentech, South San Francisco, CA, USA
- Carmot Therapeutics, Berkeley, CA, USA
| | - Douglas Leipold
- Preclinical and Translational Pharmacokinetics, Genentech, South San Francisco, CA, USA
| | - Tim Wilson
- Oncology Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Amrita Kamath
- Preclinical and Translational Pharmacokinetics, Genentech, South San Francisco, CA, USA
| | - Michael Mamounas
- Project Team Leadership, Oncology, Genentech, South San Francisco, CA, USA
| | - M Violet Lee
- Bioanalytical Sciences, Genentech, South San Francisco, CA, USA
| | - Ola Saad
- Bioanalytical Sciences, Genentech, South San Francisco, CA, USA
| | | | | | - Sharareh Monemi
- Early Clinical Development, Oncology, Genentech, South San Francisco, CA, USA
| | - Lisa Crocker
- Translational Oncology, Genentech, South San Francisco, CA, USA
| | - Kevin Kalinsky
- Winship Cancer Institute at Emory University, Atlanta, GA, USA
| | - Shanu Modi
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyung Hae Jung
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Erika Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | | | - Ian Krop
- Yale Cancer Center, Yale University, New Haven, CT, USA
| | - Melissa M Schutten
- Safety Assessment Pathology, Genentech, South San Francisco, CA, USA
- SeaGen, South San Francisco, CA, USA
| | - Renee Commerford
- Early Clinical Development, Oncology, Genentech, South San Francisco, CA, USA
- Gilead Sciences, Foster City, CA, USA
| | | | - Eunpi Cho
- Early Clinical Development, Oncology, Genentech, South San Francisco, CA, USA
| |
Collapse
|
58
|
Park SY, Yang J, Yang H, Cho I, Kim JY, Bae H. Therapeutic Effects of Aβ-Specific Regulatory T Cells in Alzheimer's Disease: A Study in 5xFAD Mice. Int J Mol Sci 2024; 25:783. [PMID: 38255856 PMCID: PMC10815725 DOI: 10.3390/ijms25020783] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The aging global population is placing an increasing burden on healthcare systems, and the social impact of Alzheimer's disease (AD) is on the rise. However, the availability of safe and effective treatments for AD remains limited. Adoptive Treg therapy has been explored for treating neurodegenerative diseases, including AD. To facilitate the clinical application of Treg therapy, we developed a Treg preparation protocol and highlighted the therapeutic effects of Tregs in 5xFAD mice. CD4+CD25+ Tregs, isolated after Aβ stimulation and expanded using a G-rex plate with a gas-permeable membrane, were adoptively transferred into 5xFAD mice. Behavioral analysis was conducted using Y-maze and passive avoidance tests. Additionally, we measured levels of Aβ, phosphorylated tau (pTAU), and nitric oxide synthase 2 (NOS2) in the hippocampus. Real-time RT-PCR was employed to assess the mRNA levels of pro- and anti-inflammatory markers. Our findings indicate that Aβ-specific Tregs not only improved cognitive function but also reduced Aβ and pTAU accumulation in the hippocampus of 5xFAD mice. They also inhibited microglial neuroinflammation. These effects were observed at doses as low as 1.5 × 103 cells/head. Collectively, our results demonstrate that Aβ-specific Tregs can mitigate AD pathology in 5xFAD mice.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-Y.P.); (H.Y.)
| | - Juwon Yang
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.Y.); (I.C.)
| | - Hyejin Yang
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-Y.P.); (H.Y.)
| | - Inhee Cho
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.Y.); (I.C.)
| | - Jae Yoon Kim
- Institute of Life Science & Biotechnology, VT Bio. Co., Ltd., 16 Samseong-ro 76-gil, Gangnam-gu, Seoul 06185, Republic of Korea;
| | - Hyunsu Bae
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-Y.P.); (H.Y.)
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (J.Y.); (I.C.)
| |
Collapse
|
59
|
Chu X, Shin S, Baek DS, Zhang L, Conard A, Shi M, Kim YJ, Adams C, Hines M, Liu X, Chen C, Sun Z, Jelev DV, Mellors JW, Dimitrov DS, Li W. Discovery of a novel highly specific, fully human PSCA antibody and its application as an antibody-drug conjugate in prostate cancer. MAbs 2024; 16:2387240. [PMID: 39113562 PMCID: PMC11312989 DOI: 10.1080/19420862.2024.2387240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/11/2024] Open
Abstract
Prostate stem cell antigen (PSCA) is expressed in all stages of prostate cancer, including in advanced androgen-independent tumors and bone metastasis. PSCA may associate with prostate carcinogenesis and lineage plasticity in prostate cancer. PSCA is also a promising theranostic marker for a variety of other solid tumors, including pancreatic adenocarcinoma and renal cell carcinoma. Here, we identified a novel fully human PSCA antibody using phage display methodology. The structure-based affinity maturation yielded a high-affinity binder, F12, which is highly specific and does not bind to 6,000 human membrane proteins based on a membrane proteome array assay. F12 targets PSCA amino acids 63-69 as tested by the peptide scanning microarray, and it cross-reacts with the murine PSCA. IgG1 F12 efficiently internalizes into PSCA-expressing tumor cells. The antimitotic reagent monomethyl auristatin E (MMAE)-conjugated IgG1 F12 (ADC, F12-MMAE) exhibits dose-dependent efficacy and specificity in a human prostate cancer PC-3-PSCA xenograft NSG mouse model. This is a first reported ADC based on a fully human PSCA antibody and MMAE that is characterized in a xenograft murine model, which warrants further optimizations and investigations in additional preclinical tumor models, including prostate and other solid tumors.
Collapse
Affiliation(s)
- Xiaojie Chu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Seungmin Shin
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | - Liyong Zhang
- Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Megan Shi
- Computational and System Biology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | | | | | - Maggie Hines
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Xianglei Liu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | - Dontcho V. Jelev
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - John W. Mellors
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- GLPG, Pittsburgh, PA, USA
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- GLPG, Pittsburgh, PA, USA
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| |
Collapse
|
60
|
Domb C, Garcia JA, Barata PC, Mendiratta P, Rao S, Brown JR. Systematic review of recent advancements in antibody-drug and bicycle toxin conjugates for the treatment of urothelial cancer. Ther Adv Urol 2024; 16:17562872241249073. [PMID: 38779496 PMCID: PMC11110528 DOI: 10.1177/17562872241249073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
Antibody-drug conjugates and bicycle toxin conjugates represent a tremendous advance in drug delivery technology and have shown great promise in the treatment of urothelial cancer. Previously approved systemic therapies, including chemotherapy and immunotherapy, are often impractical due to comorbidities, and outcomes for patients with advanced disease remain poor, even when receiving systemic therapy. In this setting, antibody-drug and bicycle toxin conjugates have emerged as novel treatments, dramatically altering the therapeutic landscape. These drugs harness unique designs consisting of antibody or bicycle peptide, linker, and cytotoxic payload with more targeted delivery than conventional chemotherapy, thus eliminating malignant cells while reducing systemic toxicities. Potential targets investigated in urothelial cancer include Nectin-4, TROP2, HER2, and EphA2. Initial clinical trials demonstrated efficacy in treatment of refractory advanced urothelial cancer, as well as improvement in quality of life. These initial studies led to FDA approval of two antibody-drug conjugates, enfortumab vedotin and sacituzumab govitecan. Moreover, antibody-drug and bicycle toxin conjugates are being studied in ongoing clinical trials in frontline treatment of advanced disease as well as for localized cancer. These studies highlight the potential for additional future therapies with novel targets, novel antibodies, cytotoxic and immunomodulatory payloads, and unique structural designs enhancing efficacy and safety. There is increasing evidence that combinations with other cancer therapies, especially immunotherapy, improve treatment outcomes. The combination of enfortumab vedotin and pembrolizumab was recently approved for first-line treatment of advanced urothelial carcinoma. Despite the great promise of these novel drugs, robust predictive biomarkers are needed to determine the patients who would maximally benefit. This review surveys the rationale and current state of the evidence for these new drugs and describes future directions actively being explored.
Collapse
Affiliation(s)
- Chaim Domb
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Jorge A. Garcia
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Pedro C. Barata
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Prateek Mendiratta
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Santosh Rao
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Jason R. Brown
- University Hospitals Seidman Cancer Center, 11100 Euclid Ave., Lakeside 1200, Mailstop LKS 5079, Cleveland, OH 44106, USA
- Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
61
|
Xi J, Liu K, Peng Z, Dai X, Wang Y, Cai C, Yang D, Yan C, Li X. Toxic warhead-armed antibody for targeted treatment of glioblastoma. Crit Rev Oncol Hematol 2024; 193:104205. [PMID: 38036153 DOI: 10.1016/j.critrevonc.2023.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Glioblastoma is a fatal intracranial tumor with a poor prognosis, exhibiting uninterrupted malignant progression, widespread invasion throughout the brain leading to the destruction of normal brain tissue and inevitable death. Monoclonal antibodies alone or conjugated with cytotoxic payloads to treat patients with different solid tumors showed effective. This treatment strategy is being explored for patients with glioblastoma (GBM) to obtain meaningful clinical responses and offer new drug options for the treatment of this devastating disease. In this review, we summarize clinical data (from pubmed.gov database and clinicaltrial.gov database) on the efficacy and toxicity of naked antibodies and antibody-drug conjugates (ADCs) against multiple targets on GBM, elucidate the mechanisms that ADCs act at the site of GBM lesions. Finally, we discuss the potential strategies for ADC therapies currently used to treat GBM patients.
Collapse
Affiliation(s)
- Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
62
|
Feng Y, Lee J, Yang L, Hilton MB, Morris K, Seaman S, Edupuganti VVSR, Hsu KS, Dower C, Yu G, So D, Bajgain P, Zhu Z, Dimitrov DS, Patel NL, Robinson CM, Difilippantonio S, Dyba M, Corbel A, Basuli F, Swenson RE, Kalen JD, Suthe SR, Hussain M, Italia JS, Souders CA, Gao L, Schnermann MJ, St Croix B. Engineering CD276/B7-H3-targeted antibody-drug conjugates with enhanced cancer-eradicating capability. Cell Rep 2023; 42:113503. [PMID: 38019654 PMCID: PMC10872261 DOI: 10.1016/j.celrep.2023.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
CD276/B7-H3 represents a promising target for cancer therapy based on widespread overexpression in both cancer cells and tumor-associated stroma. In previous preclinical studies, CD276 antibody-drug conjugates (ADCs) exploiting a talirine-type pyrrolobenzodiazepine (PBD) payload showed potent activity against various solid tumors but with a narrow therapeutic index and dosing regimen higher than that tolerated in clinical trials using other antibody-talirine conjugates. Here, we describe the development of a modified talirine PBD-based fully human CD276 ADC, called m276-SL-PBD, that is cross-species (human/mouse) reactive and can eradicate large 500-1,000-mm3 triple-negative breast cancer xenografts at doses 10- to 40-fold lower than the maximum tolerated dose. By combining CD276 targeting with judicious genetic and chemical ADC engineering, improved ADC purification, and payload sensitivity screening, these studies demonstrate that the therapeutic index of ADCs can be substantially increased, providing an advanced ADC development platform for potent and selective targeting of multiple solid tumor types.
Collapse
Affiliation(s)
- Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Jaewon Lee
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Mary Beth Hilton
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Karen Morris
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | | | - Kuo-Sheng Hsu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Christopher Dower
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Guojun Yu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Daeho So
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Nimit L Patel
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Christina M Robinson
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Marzena Dyba
- Biophysics Resource in the Center for Structural Biology, NCI, NIH, Frederick, MD, USA
| | - Amanda Corbel
- Invention Development Program, Technology Transfer Center, NCI, Frederick, MD 21701, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Joseph D Kalen
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | | | | | | | | | - Ling Gao
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Martin J Schnermann
- Organic Synthesis Section, Chemical Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| |
Collapse
|
63
|
Wang H, Sun D, Chen J, Li H, Chen L. Nectin-4 has emerged as a compelling target for breast cancer. Eur J Pharmacol 2023; 960:176129. [PMID: 38059449 DOI: 10.1016/j.ejphar.2023.176129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The incidence of breast cancer in women has increased year by year, becoming one of the most common malignant tumors in females worldwide. Most patients can be treated with surgery and endocrine drugs, but there are still some patients who lack effective treatment, such as triple-negative breast cancer (TNBC). Nectin-4, a protein encoded by poliovirus receptor-associated protein 4, is a Ca2+-independent immunoglobulin-like protein. It is mainly involved in the adhesion between cells. In recent years, studies have found that Nectin-4 is overexpressed in breast cancer and several other malignancies. Otherwise, several monoclonal antibodies and inhibitors targeting Nectin-4 have shown prosperous outcomes, so Nectin-4 has great potential to be a therapeutic target for breast cancer. The present review systematically describes the significance of Nectin-4 in each aspect of breast cancer, as well as the molecular mechanisms of these aspects mediated by Nectin-4. We further highlight ongoing or proposed therapeutic strategies for breast cancer specific to Nectin-4.
Collapse
Affiliation(s)
- Hui Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinxia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
64
|
Zhang X, Qiao H, Chai X, Gao X, Ma R, Li Y, Zhu Z, Zhang M. Brentuximab vedotin in treating Chinese patients with lymphoma: A multicenter, real-world study. Cancer Med 2023; 12:21725-21734. [PMID: 37975251 PMCID: PMC10757088 DOI: 10.1002/cam4.6733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Brentuximab vedotin (BV) was approved as a therapy for patients with CD30-positive lymphoma in China in 2020 based on the results of multiple clinical trails. Few Chinese real-world data of its use are yet available. Herein, we present the application situation of BV in patients with lymphoma among different hospitals in Henan province in China under real-world conditions. METHODS This was a multicenter and retrospective study in 104 patients with lymphoma who received BV for the first time between August 2020 and September 2022 across eight centers in Henan province. Data on the clinical use, effectiveness and adverse events (AEs) of BV were extracted from patient medical records. Short-term effectiveness was assessed based on objective response rate (ORR), complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD). Progression-free survival (PFS) and overall survival (OS) were calculated using Kaplan-Meier method. Safety was also evaluated in our study. RESULTS 104 lymphoma patients were enrolled in our study, who had completed a median of two cycles (range,1-8) of BV-based treatment. A total of 72.1% of patients were relapsed/refractory (R/R) lymphoma, and only 27.9% were previously untreated lymphoma who received BV in frontline treatment settings. Among them who received effectiveness evaluation, the ORR achieved 64.5% (CR 25.8%, PR 38.7%). After a median follow-up of 11 months, the 6-month PFS rate and OS rate achieved 77.2% and 90.1% respectively, and the 12-month PFS rate and OS rate achieved 77.2% and 79.9% respectively. In general, BV-based treatment was well-tolerated, with 38.5% incidence of grade ≥3 AEs. The most commonly reported AEs were hematologic disorders, especially neutropenia, with the incidence reaching 50.0%. CONCLUSIONS BV-based regimens could be a promising therapeutic option with remarkable effectiveness and moderate toxicity in treating Chinese lymphoma patients with CD30 expression.
Collapse
Affiliation(s)
- Xudong Zhang
- The First Affiliated Hospital of Zhengzhou UniversityZhengZhouChina
| | - Honghan Qiao
- The First Affiliated Hospital of Zhengzhou UniversityZhengZhouChina
| | - Xiaofei Chai
- The First Affiliated Hospital of Zhengzhou UniversityZhengZhouChina
| | - Xue Gao
- Henan Cancer HospitalZhengZhouChina
| | - Rongjun Ma
- Henan Provincial People's HospitalZhengZhouChina
| | - Yufu Li
- Henan Cancer HospitalZhengZhouChina
| | - Zunmin Zhu
- Henan Provincial People's HospitalZhengZhouChina
| | - Mingzhi Zhang
- The First Affiliated Hospital of Zhengzhou UniversityZhengZhouChina
| |
Collapse
|
65
|
Filis P, Zerdes I, Soumala T, Matikas A, Foukakis T. The ever-expanding landscape of antibody-drug conjugates (ADCs) in solid tumors: A systematic review. Crit Rev Oncol Hematol 2023; 192:104189. [PMID: 37866413 DOI: 10.1016/j.critrevonc.2023.104189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The advent of targeted therapies signaled novel avenues for more optimal oncological outcomes. Antibody-drug conjugates (ADCs) have risen as a cornerstone of the ever-expanding targeted therapy era. The purpose of this systematic review is to delineate the rapidly evolving clinical landscape of ADCs for solid tumors. METHODS A literature search was performed in Medline, Embase and Cochrane databases for phase II and III clinical trials. Outcomes of interest were the objective response rate, overall survival, progression-free survival and adverse events. RESULTS A total of 92 clinical trials (76 phase II and 16 phase III) evaluated the efficacy and safety of ADCs for a plethora of solid tumors. Out of the 30 investigated ADCs, 8 have received approval by regulatory organizations for solid tumors. Currently, 52 phase III clinical trials for ADCs are ongoing. CONCLUSION ADCs have shown promising results for several solid tumors and various cancer settings.
Collapse
Affiliation(s)
- Panagiotis Filis
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece.
| | - Ioannis Zerdes
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, Stockholm, Sweden
| | - Theodora Soumala
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology/Pathology, Karolinska Institutet, Stockholm, Sweden; Breast Center, Karolinska Comprehensive Cancer Center and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
66
|
Abstract
For many years, antibody drug conjugates (ADC) have teased with the promise of targeted payload delivery to diseased cells, embracing the targeting of the antibody to which a cytotoxic payload is conjugated. During the past decade this promise has started to be realised with the approval of more than a dozen ADCs for the treatment of various cancers. Of these ADCs, brentuximab vedotin really laid the foundations of a template for a successful ADC with lysosomal payload release from a cleavable dipeptide linker, measured DAR by conjugation to the Cys-Cys interchain bonds of the antibody and a cytotoxic payload. Using this ADC design model oncology has now expanded their repertoire of payloads to include non-cytotoxic compounds. These new payload classes have their origins in prior medicinal chemistry programmes aiming to design selective oral small molecule drugs. While this may not have been achieved, the resulting compounds provide excellent starting points for ADC programmes with some compounds amenable to immediate linker attachment while for others extensive SAR and structural information offer invaluable design insights. Many of these new oncology payload classes are of interest to other therapeutic areas facilitating rapid access to drug-linkers for exploration as non-oncology ADCs. Other therapeutic areas have also pursued unique payload classes with glucocorticoid receptor modulators (GRM) being the most clinically advanced in immunology. Here, ADC payloads come full circle, as oncology is now investigating GRM payloads for the treatment of cancer. This chapter aims to cover all these new ADC approaches while describing the medicinal chemistry origins of the new non-cytotoxic payloads.
Collapse
Affiliation(s)
- Adrian D Hobson
- Small Molecule Therapeutics & Platform Technologies, AbbVie Bioresearch Center, Worcester, MA, United States.
| |
Collapse
|
67
|
Sun LP, Bai WQ, Zhou DD, Wu XF, Zhang LW, Cui AL, Xie ZH, Gao RJ, Zhen YS, Li ZR, Miao QF. hIMB1636-MMAE, a Novel TROP2-Targeting Antibody-Drug Conjugate Exerting Potent Antitumor Efficacy in Pancreatic Cancer. J Med Chem 2023; 66:14700-14715. [PMID: 37883180 DOI: 10.1021/acs.jmedchem.3c01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Herein, we first prepared a novel anti-TROP2 antibody-drug conjugate (ADC) hIMB1636-MMAE using hIMB1636 antibody chemically coupled to monomethyl auristatin E (MMAE) via a Valine-Citrulline linker and then reported its characteristics and antitumor activity. With a DAR of 3.92, it binds specifically to both recombinant antigen (KD ∼ 0.687 nM) and cancer cells and could be internalized by target cells and selectively kill them with IC50 values at nanomolar/subnanomolar levels by inducing apoptosis and G2/M phase arrest. hIMB1636-MMAE also inhibited cell migration, induced ADCC effects, and had bystander effects. It displayed significant tumor-targeting ability and excellent tumor-suppressive effects in vivo, resulting in 5/8 tumor elimination at 12 mg/kg in the T3M4 xenograft model or complete tumor disappearance at 10 mg/kg in BxPc-3 xenografts in nude mice. Its half-life in mice was about 87 h. These data suggested that hIMB1636-MMAE was a promising candidate for the treatment of pancreatic cancer with TROP2 overexpression.
Collapse
Affiliation(s)
- Li-Ping Sun
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Wei-Qi Bai
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Dan-Dan Zhou
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Xiao-Fan Wu
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Lan-Wen Zhang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - A-Long Cui
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Zi-Hui Xie
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Rui-Juan Gao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Yong-Su Zhen
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Zhuo-Rong Li
- Department of Organic Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| | - Qing-Fang Miao
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
68
|
Püsküllüoğlu M, Rudzińska A, Pacholczak-Madej R. Antibody-drug conjugates in HER-2 negative breast cancers with poor prognosis. Biochim Biophys Acta Rev Cancer 2023; 1878:188991. [PMID: 37758021 DOI: 10.1016/j.bbcan.2023.188991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/17/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Antibody drug conjugates (ADCs) comprise a rapidly growing class of targeted drugs that selectively deliver a cytotoxic agent to cancer cells, reducing the side effects associated with conventional chemotherapy. Breast cancer (BC) is a heterogeneous entity. The need for effective therapies for HER-2 negative BCs with poor prognosis, such as triple-negative or endocrine-resistant BC, remains unmet due to the lack of potential targets for treatments. These BC subtypes are not candidates for hormonal or anti-HER-2 agents. However, ongoing clinical trials exploring the use of ADCs with a wide range of targets have shown potential for this treatment modality. In this review, we present the current state of knowledge regarding the role of ADC and speculate on novel approaches including ADC combination therapies, new molecular targets, and the role of other subclasses of ADCs (bicycle drug conjugates, bispecific ADCs, immune modulating ADCs) in this clinical scenario.
Collapse
Affiliation(s)
- Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Garncarska Street 11, 31-115 Krakow, Poland.
| | - Agnieszka Rudzińska
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Krakow Branch, Garncarska Street 11, 31-115 Krakow, Poland
| | - Renata Pacholczak-Madej
- Department of Anatomy, Jagiellonian University, Medical College, Kopernika Street 12, 31-034 Krakow, Poland; Department of Chemotherapy, The District Hospital, 22 Szpitalna Street, 34-200 Sucha Beskidzka, Poland
| |
Collapse
|
69
|
Nguyen TD, Bordeau BM, Balthasar JP. Use of Payload Binding Selectivity Enhancers to Improve Therapeutic Index of Maytansinoid-Antibody-Drug Conjugates. Mol Cancer Ther 2023; 22:1332-1342. [PMID: 37493255 PMCID: PMC10811745 DOI: 10.1158/1535-7163.mct-22-0804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Systemic exposure to released cytotoxic payload contributes to the dose-limiting off-target toxicities of anticancer antibody-drug conjugates (ADC). In this work, we present an "inverse targeting" strategy to optimize the therapeutic selectivity of maytansinoid-conjugated ADCs. Several anti-maytansinoid sdAbs were generated via phage-display technology with binding IC50 values between 10 and 60 nmol/L. Co-incubation of DM4 with the anti-maytansinoid sdAbs shifted the IC50 value of DM4 up to 250-fold. Tolerability and efficacy of 7E7-DM4 ADC, an anti-CD123 DM4-conjugated ADC, were assessed in healthy and in tumor-bearing mice, with and without co-administration of an anti-DM4 sdAb. Co-administration with anti-DM4 sdAb reduced 7E7-DM4-induced weight loss, where the mean values of percentage weight loss at nadir for mice receiving ADC+saline and ADC+sdAb were 7.9% ± 3% and 3.8% ± 1.3% (P < 0.05). In tumor-bearing mice, co-administration of the anti-maytansinoid sdAb did not negatively affect the efficacy of 7E7-DM4 on tumor growth or survival following dosing of the ADC at 1 mg/kg (P = 0.49) or at 10 mg/kg (P = 0.9). Administration of 7E7-DM4 at 100 mg/kg led to dramatic weight loss, with 80% of treated mice succumbing to toxicity before the appearance of mortality relating to tumor growth in control mice. However, all mice receiving co-dosing of 100 mg/kg 7E7-DM4 with anti-DM4 sdAb were able to tolerate the treatment, which enabled reduction in tumor volume to undetectable levels and to dramatic improvements in survival. In summary, we have demonstrated the utility and feasibility of the application of anti-payload antibody fragments for inverse targeting to improve the selectivity and efficacy of anticancer ADC therapy.
Collapse
Affiliation(s)
- Toan D. Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Brandon M. Bordeau
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| |
Collapse
|
70
|
Babbar R, Vanya, Bassi A, Arora R, Aggarwal A, Wal P, Dwivedi SK, Alolayan S, Gulati M, Vargas-De-La-Cruz C, Behl T, Ojha S. Understanding the promising role of antibody drug conjugates in breast and ovarian cancer. Heliyon 2023; 9:e21425. [PMID: 38027672 PMCID: PMC10660083 DOI: 10.1016/j.heliyon.2023.e21425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
A nascent category of anticancer therapeutic drugs called antibody-drug conjugates (ADCs) relate selectivity of aimed therapy using chemotherapeutic medicines with high cytotoxic power. Progressive linker technology led to the advancement of more efficacious and safer treatments. It offers neoteric as well as encouraging therapeutic strategies for treating cancer. ADCs selectively administer a medication by targeting antigens which are abundantly articulated on the membrane surface of tumor cells. Tumor-specific antigens are differently expressed in breast and ovarian cancers and can be utilized to direct ADCs. Compared to conventional chemotherapeutic drugs, this approach enables optimal tumor targeting while minimizing systemic damage. A cleavable linker improves the ADCs because it allows the toxic payload to be distributed to nearby cells that do not express the target protein, operating on assorted tumors with dissimilar cell aggregation. Presently fifteen ADCs are being studied in breast and ovarian carcinoma preclinically, and assortment of few have already undergone promising early-phase clinical trial testing. Furthermore, Phase I and II studies are investigating a wide variety of ADCs, and preliminary findings are encouraging. An expanding sum of ADCs will probably become feasible therapeutic choices as solo agents or in conjunction with chemotherapeutic agents. This review accentuates the most recent preclinical findings, pharmacodynamics, and upcoming applications of ADCs in breast and ovarian carcinoma.
Collapse
Affiliation(s)
- Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Vanya
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Aarti Bassi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ankur Aggarwal
- Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19 Bhauti, Kanpur, Uttar Pradesh, India
| | | | - Salma Alolayan
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
- ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 20227, Australia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, Bromatology and Toxicology, Universidad Nacional Mayor de San Marcos, Lima, 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, 15001, Peru
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, 140306, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
71
|
Kannampuzha S, Murali R, Gopalakrishnan AV, Mukherjee AG, Wanjari UR, Namachivayam A, George A, Dey A, Vellingiri B. Novel biomolecules in targeted cancer therapy: a new approach towards precision medicine. Med Oncol 2023; 40:323. [PMID: 37804361 DOI: 10.1007/s12032-023-02168-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 10/09/2023]
Abstract
Cancer is a major threat to human life around the globe, and the discovery of novel biomolecules continue to be an urgent therapeutic need that is still unmet. Precision medicine relies on targeted therapeutic strategies. Researchers are better equipped to develop therapies that target proteins as they understand more about the genetic alterations and molecules that cause progression of cancer. There has been a recent diversification of the sorts of targets exploited in treatment. Therapeutic antibody and biotechnology advancements enabled curative treatments to reach previously inaccessible sites. New treatment strategies have been initiated for several undruggable targets. The application of tailored therapy has been proven to have efficient results in controlling cancer progression. Novel biomolecules like SMDCs, ADCs, mABs, and PROTACS has gained vast attention in the recent years. Several studies have shown that using these novel technology helps in reducing the drug dosage as well as to overcome drug resistance in different cancer types. Therefore, it is crucial to fully untangle the mechanism and collect evidence to understand the significance of these novel drug targets and strategies. This review article will be discussing the importance and role of these novel biomolecules in targeted cancer therapies.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India
| | - Abhijit Dey
- Department of Medical Services, MGM Cancer Institute, Chennai, Tamil Nadu, 600029, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
72
|
Mungra N, Biteghe FAN, Malindi Z, Huysamen AM, Karaan M, Hardcastle NS, Bunjun R, Chetty S, Naran K, Lang D, Richter W, Hunter R, Barth S. CSPG4 as a target for the specific killing of triple-negative breast cancer cells by a recombinant SNAP-tag-based antibody-auristatin F drug conjugate. J Cancer Res Clin Oncol 2023; 149:12203-12225. [PMID: 37432459 PMCID: PMC10465649 DOI: 10.1007/s00432-023-05031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is phenotypic of breast tumors lacking expression of the estrogen receptor (ER), the progesterone receptor (PgR), and the human epidermal growth factor receptor 2 (HER2). The paucity of well-defined molecular targets in TNBC, coupled with the increasing burden of breast cancer-related mortality, emphasizes the need to develop targeted diagnostics and therapeutics. While antibody-drug conjugates (ADCs) have emerged as revolutionary tools in the selective delivery of drugs to malignant cells, their widespread clinical use has been hampered by traditional strategies which often give rise to heterogeneous mixtures of ADC products. METHODS Utilizing SNAP-tag technology as a cutting-edge site-specific conjugation method, a chondroitin sulfate proteoglycan 4 (CSPG4)-targeting ADC was engineered, encompassing a single-chain antibody fragment (scFv) conjugated to auristatin F (AURIF) via a click chemistry strategy. RESULTS After showcasing the self-labeling potential of the SNAP-tag component, surface binding and internalization of the fluorescently labeled product were demonstrated on CSPG4-positive TNBC cell lines through confocal microscopy and flow cytometry. The cell-killing ability of the novel AURIF-based recombinant ADC was illustrated by the induction of a 50% reduction in cell viability at nanomolar to micromolar concentrations on target cell lines. CONCLUSION This research underscores the applicability of SNAP-tag in the unambiguous generation of homogeneous and pharmaceutically relevant immunoconjugates that could potentially be instrumental in the management of a daunting disease like TNBC.
Collapse
Affiliation(s)
- Neelakshi Mungra
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Centre for Immunity and Immunotherapies, Seattle Children’s Research Institute, Washington, 98101 USA
| | - Fleury A. N. Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, USA
| | - Zaria Malindi
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Faculty of Health Sciences, Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| | - Allan M. Huysamen
- Department of Chemistry, PD Hahn Building, University of Cape Town, Cape Town, 7700 South Africa
| | - Maryam Karaan
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Natasha S. Hardcastle
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7700 South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7700 South Africa
| | - Shivan Chetty
- Faculty of Health Sciences, School of Clinical Medicine, University of Witwatersrand, Braamfontein, Johannesburg, 2000 South Africa
| | - Krupa Naran
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Dirk Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, 7700 South Africa
| | | | - Roger Hunter
- Department of Chemistry, PD Hahn Building, University of Cape Town, Cape Town, 7700 South Africa
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Faculty of Health Sciences, Department of Integrative Biomedical Sciences, South African Research Chair in Cancer Biotechnology, University of Cape Town, Cape Town, 7700 South Africa
| |
Collapse
|
73
|
Wang Z, Li H, Gou L, Li W, Wang Y. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B 2023; 13:4025-4059. [PMID: 37799390 PMCID: PMC10547921 DOI: 10.1016/j.apsb.2023.06.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody‒drug conjugates (ADCs), which combine the advantages of monoclonal antibodies with precise targeting and payloads with efficient killing, show great clinical therapeutic value. The ADCs' payloads play a key role in determining the efficacy of ADC drugs and thus have attracted great attention in the field. An ideal ADC payload should possess sufficient toxicity, low immunogenicity, high stability, and modifiable functional groups. Common ADC payloads include tubulin inhibitors and DNA damaging agents, with tubulin inhibitors accounting for more than half of the ADC drugs in clinical development. However, due to clinical limitations of traditional ADC payloads, such as inadequate efficacy and the development of acquired drug resistance, novel highly efficient payloads with diverse targets and reduced side effects are being developed. This perspective summarizes the recent research advances of traditional and novel ADC payloads with main focuses on the structure-activity relationship studies, co-crystal structures, and designing strategies, and further discusses the future research directions of ADC payloads. This review also aims to provide valuable references and future directions for the development of novel ADC payloads that will have high efficacy, low toxicity, adequate stability, and abilities to overcome drug resistance.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lantu Gou
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
74
|
Gray E, Ulrich M, Epp A, Younan P, Sahetya D, Hensley K, Allred S, Huang LY, Hahn J, Gahnberg K, Treuting PM, Trueblood ES, Gosink JJ, Thurman R, Wo S, Spahr K, Haass EJ, Snead K, Miller D, Padilla M, Smith AJ, Frantz C, Schrum JP, Nazarenko N, Gardai SJ. SGN-B7H4V, an investigational vedotin ADC directed to the immune checkpoint ligand B7-H4, shows promising activity in preclinical models. J Immunother Cancer 2023; 11:e007572. [PMID: 37793853 PMCID: PMC10551938 DOI: 10.1136/jitc-2023-007572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND SGN-B7H4V is a novel investigational vedotin antibody-drug conjugate (ADC) comprising a B7-H4-directed human monoclonal antibody conjugated to the cytotoxic payload monomethyl auristatin E (MMAE) via a protease-cleavable maleimidocaproyl valine citrulline (mc-vc) linker. This vedotin linker-payload system has been clinically validated in multiple Food and Drug Administration approved agents including brentuximab vedotin, enfortumab vedotin, and tisotumab vedotin. B7-H4 is an immune checkpoint ligand with elevated expression on a variety of solid tumors, including breast, ovarian, and endometrial tumors, and limited normal tissue expression. SGN-B7H4V is designed to induce direct cytotoxicity against target cells by binding to B7-H4 on the surface of target cells and releasing the cytotoxic payload MMAE upon internalization of the B7-H4/ADC complex. METHODS B7-H4 expression was characterized by immunohistochemistry across multiple solid tumor types. The ability of SGN-B7H4V to kill B7-H4-expressing tumor cells in vitro and in vivo in a variety of xenograft tumor models was also evaluated. Finally, the antitumor activity of SGN-B7H4V as monotherapy and in combination with an anti-programmed cell death-1 (PD-1) agent was evaluated using an immunocompetent murine B7-H4-expressing Renca tumor model. RESULTS Immunohistochemistry confirmed B7-H4 expression across multiple solid tumors, with the highest prevalence in breast, endometrial, and ovarian tumors. In vitro, SGN-B7H4V killed B7-H4-expressing tumor cells by MMAE-mediated direct cytotoxicity and antibody-mediated effector functions including antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. In vivo, SGN-B7H4V demonstrated strong antitumor activity in multiple xenograft models of breast and ovarian cancer, including xenograft tumors with heterogeneous B7-H4 expression, consistent with the ability of vedotin ADCs to elicit a bystander effect. In an immunocompetent murine B7-H4-expressing tumor model, SGN-B7H4V drove robust antitumor activity as a monotherapy that was enhanced when combined with an anti-PD-1 agent. CONCLUSION The immune checkpoint ligand B7-H4 is a promising molecular target expressed by multiple solid tumors. SGN-B7H4V demonstrates robust antitumor activity in preclinical models through multiple potential mechanisms. Altogether, these preclinical data support the evaluation of SGN-B7H4V as a monotherapy in the ongoing phase 1 study of SGN-B7H4V in advanced solid tumors (NCT05194072) and potential future clinical combinations with immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Serena Wo
- Seagen Inc, Bothell, Washington, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Hu H, Ng TS, Kang M, Scott E, Li R, Quintana JM, Matvey D, Vantaku VR, Weissleder R, Parangi S, Miller MA. Thyroid Cancers Exhibit Oncogene-Enhanced Macropinocytosis that Is Restrained by IGF1R and Promote Albumin-Drug Conjugate Response. Clin Cancer Res 2023; 29:3457-3470. [PMID: 37289199 PMCID: PMC10527034 DOI: 10.1158/1078-0432.ccr-22-2976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/22/2022] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE Oncogene-driven macropinocytosis fuels nutrient scavenging in some cancer types, yet whether this occurs in thyroid cancers with prominent MAPK-ERK and PI3K pathway mutations remains unclear. We hypothesized that understanding links between thyroid cancer signaling and macropinocytosis might uncover new therapeutic strategies. EXPERIMENTAL DESIGN Macropinocytosis was assessed across cells derived from papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), non-malignant follicular thyroid, and aggressive anaplastic thyroid cancer (ATC), by imaging fluorescent dextran and serum albumin. The impacts of ectopic BRAFV600E and mutant RAS, genetic PTEN silencing, and inhibitors targeting RET, BRAF, and MEK kinases were quantified. BrafV600E p53-/- ATC tumors in immunocompetent mice were used to measure efficacy of an albumin-drug conjugate comprising microtubule-destabilizing monomethyl auristatin E (MMAE) linked to serum albumin via a cathepsin-cleavable peptide (Alb-vc-MMAE). RESULTS FTC and ATC cells showed greater macropinocytosis than non-malignant and PTC cells. ATC tumors accumulated albumin at 8.8% injected dose per gram tissue. Alb-vc-MMAE, but not MMAE alone, reduced tumor size by >90% (P < 0.01). ATC macropinocytosis depended on MAPK/ERK activity and nutrient signaling, and increased by up to 230% with metformin, phenformin, or inhibition of IGF1Ri in monoculture but not in vivo. Macrophages also accumulated albumin and express the cognate IGF1R ligand, IGF1, which reduced ATC responsiveness to IGF1Ri. CONCLUSIONS These findings identify regulated oncogene-driven macropinocytosis in thyroid cancers and demonstrate the potential of designing albumin-bound drugs to efficiently treat them.
Collapse
Affiliation(s)
- Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
- Department of General Surgery, Xiangya Hospital, Central South University, China
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States
| | - Mikyung Kang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States
| | - Ella Scott
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States
| | - Jeremy M. Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States
| | - Dylan Matvey
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Venkata R. Vantaku
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States
- Department of Systems Biology, Harvard Medical School, United States
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States
| |
Collapse
|
76
|
Alameddine R, Mallea P, Shahab F, Zakharia Y. Antibody Drug Conjugates in Bladder Cancer: Current Milestones and Future Perspectives. Curr Treat Options Oncol 2023; 24:1167-1182. [PMID: 37403009 DOI: 10.1007/s11864-023-01114-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
OPINION STATEMENT Over the last several years, the treatment landscape of urothelial carcinoma has witnessed an unprecedented expansion of therapeutic options including checkpoint inhibitors, tyrosine kinase inhibitors, and antibody drug conjugates (ADC). Early trial data has shown that ADCs are safer and potentially effective treatment options in advanced bladder cancer as well as in the early disease. In particular, enfortumab-vedotin (EV) has shown promising results with a recent cohort of a clinical trial demonstrating that EV is effective as neoadjuvant monotherapy as well as in combination with pembrolizumab in metastatic setting. Similar promising results have been shown by other classes of ADC in other trials including sacituzumab-govitecan (SG) and oportuzumab monatox (OM). ADCs are likely to become a mainstay treatment option in the urothelial carcinoma playbook as either a monotherapy or combination therapy. The cost of the drug presents a real challenge, but further trial data may justify the use of the drug as mainstay treatment.
Collapse
Affiliation(s)
- Raafat Alameddine
- Division of Hematology Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Patrick Mallea
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Farhan Shahab
- Department of Emergency Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Yousef Zakharia
- Division of Hematology Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
77
|
Kondrashov A, Sapkota S, Sharma A, Riano I, Kurzrock R, Adashek JJ. Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload. Pharmaceutics 2023; 15:2160. [PMID: 37631374 PMCID: PMC10459723 DOI: 10.3390/pharmaceutics15082160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are at the forefront of the drug development revolution occurring in oncology. Formed from three main components-an antibody, a linker molecule, and a cytotoxic agent ("payload"), ADCs have the unique ability to deliver cytotoxic agents to cells expressing a specific antigen, a great leap forward from traditional chemotherapeutic approaches that cause widespread effects without specificity. A variety of payloads can be used, including most frequently microtubular inhibitors (auristatins and maytansinoids), as well as topoisomerase inhibitors and alkylating agents. Finally, linkers play a critical role in the ADCs' effect, as cleavable moieties that serve as linkers impact site-specific activation as well as bystander killing effects, an upshot that is especially important in solid tumors that often express a variety of antigens. While ADCs were initially used in hematologic malignancies, their utility has been demonstrated in multiple solid tumor malignancies, including breast, gastrointestinal, lung, cervical, ovarian, and urothelial cancers. Currently, six ADCs are FDA-approved for the treatment of solid tumors: ado-trastuzumab emtansine and trastuzumab deruxtecan, both anti-HER2; enfortumab-vedotin, targeting nectin-4; sacituzuzmab govitecan, targeting Trop2; tisotumab vedotin, targeting tissue factor; and mirvetuximab soravtansine, targeting folate receptor-alpha. Although they demonstrate utility and tolerable safety profiles, ADCs may become ineffective as tumor cells undergo evolution to avoid expressing the specific antigen being targeted. Furthermore, the current cost of ADCs can be limiting their reach. Here, we review the structure and functions of ADCs, as well as ongoing clinical investigations into novel ADCs and their potential as treatments of solid malignancies.
Collapse
Affiliation(s)
- Aleksei Kondrashov
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD 21229, USA; (A.K.); (S.S.)
| | - Surendra Sapkota
- Department of Internal Medicine, Saint Agnes Hospital, Baltimore, MD 21229, USA; (A.K.); (S.S.)
| | - Aditya Sharma
- Department of Internal Medicine, Dartmouth Health, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (A.S.); (I.R.)
| | - Ivy Riano
- Department of Internal Medicine, Dartmouth Health, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; (A.S.); (I.R.)
- Division of Hematology and Oncology, Dartmouth Cancer Center, Lebanon, NH 03755, USA
| | - Razelle Kurzrock
- WIN Consortium, 94550 Paris, France;
- MCW Cancer Center, Milwaukee, WI 53226, USA
- Division of Oncology and Hematology, University of Nebraska, Omaha, NE 68198, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Jacob J. Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| |
Collapse
|
78
|
Zambra M, Ranđelović I, Talarico F, Borbély A, Svajda L, Tóvári J, Mező G, Bodero L, Colombo S, Arrigoni F, Fasola E, Gazzola S, Piarulli U. Optimizing the enzymatic release of MMAE from isoDGR-based small molecule drug conjugate by incorporation of a GPLG-PABC enzymatically cleavable linker. Front Pharmacol 2023; 14:1215694. [PMID: 37492088 PMCID: PMC10363981 DOI: 10.3389/fphar.2023.1215694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) and Small Molecule-Drug Conjugates (SMDCs) represent successful examples of targeted drug-delivery technologies for overcoming unwanted side effects of conventional chemotherapy in cancer treatment. In both strategies, a cytotoxic payload is connected to the tumor homing moiety through a linker that releases the drug inside or in proximity of the tumor cell, and that represents a key component for the final therapeutic effect of the conjugate. Here, we show that the replacement of the Val-Ala-p-aminobenzyloxycarbamate linker with the Gly-Pro-Leu-Gly-p-aminobenzyloxycarbamate (GPLG-PABC) sequence as enzymatically cleavable linker in the SMDC bearing the cyclo[DKP-isoDGR] αVβ3 integrin ligand as tumor homing moiety and the monomethyl auristatin E (MMAE) as cytotoxic payload led to a 4-fold more potent anti-tumoral effect of the final conjugate on different cancer cell lines. In addition, the synthesized conjugate resulted to be significantly more potent than the free MMAE when tested following the "kiss-and-run" protocol, and the relative potency were clearly consistent with the expression of the αVβ3 integrin receptor in the considered cancer cell lines. In vitro enzymatic cleavage tests showed that the GPLG-PABC linker is cleaved by lysosomal enzymes, and that the released drug is observable already after 15 min of incubation. Although additional data are needed to fully characterize the releasing capacity of GPLG-PABC linker, our findings are of therapeutic significance since we are introducing an alternative to other well-established enzymatically sensitive peptide sequences that might be used in the future for generating more efficient and less toxic drug delivery systems.
Collapse
Affiliation(s)
- Marco Zambra
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Ivan Ranđelović
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Francesco Talarico
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Adina Borbély
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group and Faculty of Science, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Laura Svajda
- KINETO Lab Ltd., Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, Budapest, Hungary
| | - József Tóvári
- The National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Gábor Mező
- ELKH-ELTE Research Group of Peptide Chemistry, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
- Faculty of Science, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Lizeth Bodero
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Sveva Colombo
- Science and High Technology Department, University of Insubria, Como, Italy
- Department of Chemistry Organic and Bioorganic Chemistry, Bielefeld University, Bielefeld, Germany
| | - Federico Arrigoni
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Elettra Fasola
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Silvia Gazzola
- Science and High Technology Department, University of Insubria, Como, Italy
| | - Umberto Piarulli
- Science and High Technology Department, University of Insubria, Como, Italy
| |
Collapse
|
79
|
Khoury R, Saleh K, Khalife N, Saleh M, Chahine C, Ibrahim R, Lecesne A. Mechanisms of Resistance to Antibody-Drug Conjugates. Int J Mol Sci 2023; 24:ijms24119674. [PMID: 37298631 DOI: 10.3390/ijms24119674] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The treatment of cancer patients has dramatically changed over the past decades with the advent of monoclonal antibodies, immune-checkpoint inhibitors, bispecific antibodies, and innovative T-cell therapy. Antibody-drug conjugates (ADCs) have also revolutionized the treatment of cancer. Several ADCs have already been approved in hematology and clinical oncology, such as trastuzumab emtansine (T-DM1), trastuzumab deruxtecan (T-DXd), and sacituzumab govitecan (SG) for the treatment of metastatic breast cancer, and enfortumab vedotin (EV) for the treatment of urothelial carcinoma. The efficacy of ADCs is limited by the emergence of resistance due to different mechanisms, such as antigen-related resistance, failure of internalization, impaired lysosomal function, and other mechanisms. In this review, we summarize the clinical data that contributed to the approval of T-DM1, T-DXd, SG, and EV. We also discuss the different mechanisms of resistance to ADCs, as well as the ways to overcome this resistance, such as bispecific ADCs and the combination of ADCs with immune-checkpoint inhibitors or tyrosine-kinase inhibitors.
Collapse
Affiliation(s)
- Rita Khoury
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Nadine Khalife
- Department of Head and Neck Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Mohamad Saleh
- Department of Hematology and Oncology, Lebanese American University Medical Center-Rizk Hopsital, Beirut 1100, Lebanon
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Axel Lecesne
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| |
Collapse
|
80
|
Passaro A, Jänne PA, Peters S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J Clin Oncol 2023:JCO2300013. [PMID: 37224424 DOI: 10.1200/jco.23.00013] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 05/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest-growing oncology therapeutics, merging the cytotoxic effect of conjugated payload with the high specific ability and selectivity of monoclonal antibody targeted on a specific cancer cell membrane antigen. The main targets for ADC development are antigens commonly expressed by lung cancer cells, but not in normal tissues. They include human epidermal growth factor receptor 2, human epidermal growth factor receptor 3, trophoblast cell surface antigen 2, c-MET, carcinoembryonic antigen-related cell adhesion molecule 5, and B7-H3, each with one or more specific ADCs that showed encouraging results in the lung cancer field, more in non-small-cell lung cancer than in small-cell lung cancer histology. To date, multiple ADCs are under evaluation, alone or in combination with different molecules (eg, chemotherapy agents or immune checkpoint inhibitors), and the optimal strategy for selecting patients who may benefit from the treatment is evolving, including an improvement of biomarker understanding, involving markers of resistance or response to the payload, besides the antibody target. In this review, we discuss the available evidence and future perspectives on ADCs for lung cancer treatment, including a comprehensive discussion on structure-based drug design, mechanism of action, and resistance concepts. Data were summarized by specific target antigen, biology, efficacy, and safety, differing among ADCs according to the ADC payload and their pharmacokinetics and pharmacodynamics properties.
Collapse
Affiliation(s)
- Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| |
Collapse
|
81
|
Rosner S, Valdivia A, Hoe HJ, Murray JC, Levy B, Felip E, Solomon BJ. Antibody-Drug Conjugates for Lung Cancer: Payloads and Progress. Am Soc Clin Oncol Educ Book 2023; 43:e389968. [PMID: 37163707 DOI: 10.1200/edbk_389968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Antibody Drug Conjugates (ADCs) are a novel class of therapeutic that structurally comprise an antibody directed at a tumor epitope connected via a linker to a cytotoxic payload that have shown significant antitumor activity across a range of malignancies including lung cancer. In this article we review the pharmacology of ADCs, describe results of trials with ADCs directed at targets in lung cancer including Trophoblast cell-surface antigen 2(TROP2), HER3, MET, Carcinoembryonic antigen-related cell adhesion molecular 5(CECAM-5) and HER2. Trastuzumab Deruxtecan (also known as DS-8201a or T-DXd) an ADC directed at HER2 recently became the first ADC to receive FDA approval in lung cancer, on the basis of its activity in tumors with HER2 mutations, demonstrated in the Destiny-Lung01 and Lung02 trials.
Collapse
Affiliation(s)
- Samuel Rosner
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Augusto Valdivia
- Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Hui Jing Hoe
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Benjamin Levy
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
| | - Enriqueta Felip
- Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Benjamin J Solomon
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
82
|
Mair MJ, Bartsch R, Le Rhun E, Berghoff AS, Brastianos PK, Cortes J, Gan HK, Lin NU, Lassman AB, Wen PY, Weller M, van den Bent M, Preusser M. Understanding the activity of antibody-drug conjugates in primary and secondary brain tumours. Nat Rev Clin Oncol 2023; 20:372-389. [PMID: 37085569 DOI: 10.1038/s41571-023-00756-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/23/2023]
Abstract
Antibody-drug conjugates (ADCs), a class of targeted cancer therapeutics combining monoclonal antibodies with a cytotoxic payload via a chemical linker, have already been approved for the treatment of several cancer types, with extensive clinical development of novel constructs ongoing. Primary and secondary brain tumours are associated with high mortality and morbidity, necessitating novel treatment approaches. Pharmacotherapy of brain tumours can be limited by restricted drug delivery across the blood-brain or blood-tumour barrier, although data from phase II studies of the HER2-targeted ADC trastuzumab deruxtecan indicate clinically relevant intracranial activity in patients with brain metastases from HER2+ breast cancer. However, depatuxizumab mafodotin, an ADC targeting wild-type EGFR and EGFR variant III, did not provide a definitive overall survival benefit in patients with newly diagnosed or recurrent EGFR-amplified glioblastoma in phase II and III trials, despite objective radiological responses in some patients. In this Review, we summarize the available data on the central nervous system activity of ADCs from trials involving patients with primary and secondary brain tumours and discuss their clinical implications. Furthermore, we explore pharmacological determinants of intracranial activity and discuss the optimal design of clinical trials to facilitate development of ADCs for the treatment of gliomas and brain metastases.
Collapse
Affiliation(s)
- Maximilian J Mair
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Bartsch
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Emilie Le Rhun
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria
| | - Priscilla K Brastianos
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Javier Cortes
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quirónsalud Group, Madrid and Barcelona, Spain
- Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain
- Medical Scientia Innovation Research (MEDSIR), Barcelona, Spain
| | - Hui K Gan
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Heidelberg, VIC, Australia
- La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology, Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY, USA
| | - Patrick Y Wen
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Martin van den Bent
- The Brain Tumour Center, Erasmus Medical Center Cancer Institute, Rotterdam, Netherlands
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Personalized Immunotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
83
|
Esapa B, Jiang J, Cheung A, Chenoweth A, Thurston DE, Karagiannis SN. Target Antigen Attributes and Their Contributions to Clinically Approved Antibody-Drug Conjugates (ADCs) in Haematopoietic and Solid Cancers. Cancers (Basel) 2023; 15:1845. [PMID: 36980732 PMCID: PMC10046624 DOI: 10.3390/cancers15061845] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Antibody drug conjugates (ADCs) are powerful anti-cancer therapies comprising an antibody joined to a cytotoxic payload through a chemical linker. ADCs exploit the specificity of antibodies for their target antigens, combined with the potency of cytotoxic drugs, to selectively kill target antigen-expressing tumour cells. The recent rapid advancement of the ADC field has so far yielded twelve and eight ADCs approved by the US and EU regulatory bodies, respectively. These serve as effective targeted treatments for several haematological and solid tumour types. In the development of an ADC, the judicious choice of an antibody target antigen with high expression on malignant cells but restricted expression on normal tissues and immune cells is considered crucial to achieve selectivity and potency while minimising on-target off-tumour toxicities. Aside from this paradigm, the selection of an antigen for an ADC requires consideration of several factors relating to the expression pattern and biological features of the target antigen. In this review, we discuss the attributes of antigens selected as targets for antibodies used in clinically approved ADCs for the treatment of haematological and solid malignancies. We discuss target expression, functions, and cellular kinetics, and we consider how these factors might contribute to ADC efficacy.
Collapse
Affiliation(s)
- Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Jiexuan Jiang
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Anthony Cheung
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - David E. Thurston
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NH, UK
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| |
Collapse
|
84
|
Mjaess G, Aoun F, Rassy E, Diamand R, Albisinni S, Roumeguère T. Antibody-Drug Conjugates in Prostate Cancer: Where Are we? Clin Genitourin Cancer 2023; 21:171-174. [PMID: 35999150 DOI: 10.1016/j.clgc.2022.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
Antibody-drug conjugates (ADCs) reflect a new promising approach in prostate cancer, even more so after the practice-changing results in other malignancies, either hematologic or solid. ADCs consist of monoclonal antibodies (mAb) targeted at specific antigens overly expressed on cancer cells compared to normal cells. A cytotoxic payload is attached to the mAb using a stable linker. In prostate cancer, PSMA, STEAP1, TROP2, CD46 and B7-H3 are antigens currently being studied as targets for ADCs. In this paper, we discuss the composition of ADCs and focus on their application and challenges as treatment options in prostate cancer.
Collapse
Affiliation(s)
- Georges Mjaess
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium.
| | - Fouad Aoun
- Department of Urology, Hotel-Dieu de France, Beirut, Lebanon
| | - Elie Rassy
- Department of Oncology, Gustave Roussy Institute, Paris, France
| | - Romain Diamand
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Simone Albisinni
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Thierry Roumeguère
- Department of Urology, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| |
Collapse
|
85
|
Li X, Zhou S, Abrahams CL, Krimm S, Smith J, Bajjuri K, Stephenson HT, Henningsen R, Hanson J, Heibeck TH, Calarese D, Tran C, Yin G, Stafford RL, Yam AY, Kline T, De Almeida VI, Sato AK, Lupher M, Bedard K, Hallam TJ. Discovery of STRO-002, a Novel Homogeneous ADC Targeting Folate Receptor Alpha, for the Treatment of Ovarian and Endometrial Cancers. Mol Cancer Ther 2023; 22:155-167. [PMID: 36459691 PMCID: PMC9890132 DOI: 10.1158/1535-7163.mct-22-0322] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
STRO-002 is a novel homogeneous folate receptor alpha (FolRα) targeting antibody-drug conjugate (ADC) currently being investigated in the clinic as a treatment for ovarian and endometrial cancers. Here, we describe the discovery, optimization, and antitumor properties of STRO-002. STRO-002 was generated by conjugation of a novel cleavable 3-aminophenyl hemiasterlin linker-warhead (SC239) to the nonnatural amino acid para-azidomethyl-L-phenylalanine incorporated at specific positions within a high affinity anti-FolRα antibody using Sutro's XpressCF+, which resulted in a homogeneous ADC with a drug-antibody ratio (DAR) of 4. STRO-002 binds to FolRα with high affinity, internalizes rapidly into target positive cells, and releases the tubulin-targeting cytotoxin 3-aminophenyl hemiasterlin (SC209). SC209 has reduced potential for drug efflux via P-glycoprotein 1 drug pump compared with other tubulin-targeting payloads. While STRO-002 lacks nonspecific cytotoxicity toward FolRα-negative cell lines, bystander killing of target negative cells was observed when cocultured with target positive cells. STRO-002 is stable in circulation with no change in DAR for up to 21 days and has a half-life of 6.4 days in mice. A single dose of STRO-002 induced significant tumor growth inhibition in FolRα-expressing xenograft models and patient-derived xenograft models. In addition, combination treatment with carboplatin or Avastin further increased STRO-002 efficacy in xenograft models. The potent and specific preclinical efficacy of STRO-002 supports clinical development of STRO-002 for treating patients with FolRα-expressing cancers, including ovarian, endometrial, and non-small cell lung cancer. Phase I dose escalation for STRO-002 is in progress in ovarian cancer and endometrial cancer patients (NCT03748186 and NCT05200364).
Collapse
Affiliation(s)
- Xiaofan Li
- Sutro Biopharma, South San Francisco, California
- Corresponding Author: Xiaofan Li, Sutro Biopharma, 111 Oyster Point Blvd, South San Francisco, CA 94080. Phone: 650-801-6434; E-mail:
| | - Sihong Zhou
- Sutro Biopharma, South San Francisco, California
| | | | | | | | | | | | | | | | | | | | - Cuong Tran
- Sutro Biopharma, South San Francisco, California
| | - Gang Yin
- Sutro Biopharma, South San Francisco, California
| | | | - Alice Y. Yam
- Sutro Biopharma, South San Francisco, California
| | - Toni Kline
- Engine Biosciences, San Carlos, California
| | | | | | | | | | | |
Collapse
|
86
|
Huysamen A, Fadeyi OE, Mayuni G, Dogbey DM, Mungra N, Biteghe FAN, Hardcastle N, Ramamurthy D, Akinrinmade OA, Naran K, Cooper S, Lang D, Richter W, Hunter R, Barth S. Click Chemistry-Generated Auristatin F-Linker-Benzylguanine for a SNAP-Tag-Based Recombinant Antibody-Drug Conjugate Demonstrating Selective Cytotoxicity toward EGFR-Overexpressing Tumor Cells. ACS OMEGA 2023; 8:4026-4037. [PMID: 36743041 PMCID: PMC9893251 DOI: 10.1021/acsomega.2c06844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Antibody-drug conjugates (ADCs) are bifunctional molecules combining the targeting potential of monoclonal antibodies with the cancer-killing ability of cytotoxic drugs. This simple yet intelligently designed system directly addresses the lack of specificity encountered with conventional anti-cancer treatment regimes. However, despite their initial success, the generation of clinically sustainable and effective ADCs has been plagued by poor tumor penetration, undefined chemical linkages, unpredictable pharmacokinetic profiles, and heterogeneous mixtures of products. To this end, we generated a SNAP-tag-based fusion protein targeting the epidermal growth factor receptor (EGFR)-a biomarker of aggressive and drug-resistant cancers. Here, we demonstrate the use of a novel click coupling strategy to engineer a benzylguanine (BG)-linker-auristatin F (AuriF) piece that can be covalently tethered to the EGFR-targeting SNAP-tag-based fusion protein in an irreversible 1:1 stoichiometric reaction to form a homogeneous product. Furthermore, using these recombinant ADCs to target EGFR-overexpressing tumor cells, we provide a proof-of-principle for generating biologically active antimitotic therapeutic proteins capable of inducing cell death in a dose-dependent manner, thus alleviating some of the challenges of early ADC development.
Collapse
Affiliation(s)
- Allan
M. Huysamen
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Olaolu E. Fadeyi
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Grace Mayuni
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Dennis M. Dogbey
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Neelakshi Mungra
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
- Centre
for Immunity and Immunotherapies, Seattle
Children’s Research Institute, Seattle, Washington 98101, United States
| | - Fleury A. N. Biteghe
- Department
of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, California 90048, United States
| | - Natasha Hardcastle
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Dharanidharan Ramamurthy
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Olusiji A. Akinrinmade
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
- Department
of Molecular Pharmacology, Albert Einstein
College of Medicine, Bronx, New York 10461, United States
| | - Krupa Naran
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Susan Cooper
- Division
of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | - Dirk Lang
- Division
of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | | | - Roger Hunter
- Department
of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Stefan Barth
- Medical
Biotechnology and Immunotherapy Research Unit, Institute of Infectious
Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
- South
African Research Chair in Cancer Biotechnology, Department of Integrative
Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape
Town 7700, South Africa
| |
Collapse
|
87
|
Nicolaides NC, Kline JB, Grasso L. NAV-001, a high-efficacy antibody-drug conjugate targeting mesothelin with improved delivery of a potent payload by counteracting MUC16/CA125 inhibitory effects. PLoS One 2023; 18:e0285161. [PMID: 37195923 DOI: 10.1371/journal.pone.0285161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Subsets of tumor-produced cell surface and secreted proteins can bind to IgG1 type antibodies and suppress their immune-effector activities. As they affect antibody and complement-mediated immunity, we call these proteins humoral immuno-oncology (HIO) factors. Antibody-drug conjugates (ADCs) use antibody targeting to bind cell surface antigens, internalize into the cell, then kill target cells upon liberation of the cytotoxic payload. Binding of the ADC antibody component by a HIO factor may potentially hamper ADC efficacy due to reduced internalization. To determine the potential effects of HIO factor ADC suppression, we evaluated the efficacy of a HIO-refractory, mesothelin-directed ADC (NAV-001) and a HIO-bound, mesothelin-directed ADC (SS1). The HIO factor MUC16/CA125 binding to SS1 ADC was shown to have a negative effect on internalization and tumor cell killing. The MUC16/CA125 refractory NAV-001 ADC was shown to have robust killing of MUC16/CA125 expressing and non-expressing tumor cells in vitro and in vivo at single, sub-mg/kg dosing. Moreover, NAV-001-PNU, which contains the PNU-159682 topoisomerase II inhibitor, demonstrated good stability in vitro and in vivo as well as robust bystander activity of resident cells while maintaining a tolerable safety profile in vivo. Single-dose NAV-001-PNU demonstrated robust tumor regression of a number of patient-derived xenografts from different tumor types regardless of MUC16/CA125 expression. These findings suggest that identification of HIO-refractory antibodies to be used in ADC format may improve therapeutic efficacy as observed by NAV-001 and warrants NAV-001-PNU's advancement to human clinical trials as a monotherapy to treat mesothelin-positive cancers.
Collapse
Affiliation(s)
| | | | - Luigi Grasso
- Navrogen Inc., Cheyney, PA, United States of America
| |
Collapse
|
88
|
Lin B, Ziebro J, Smithberger E, Skinner KR, Zhao E, Cloughesy TF, Binder ZA, O’Rourke DM, Nathanson DA, Furnari FB, Miller CR. EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro Oncol 2022; 24:2035-2062. [PMID: 36125064 PMCID: PMC9713527 DOI: 10.1093/neuonc/noac204] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Lazarus effect is a rare condition that happens when someone seemingly dead shows signs of life. The epidermal growth factor receptor (EGFR) represents a target in the fatal neoplasm glioblastoma (GBM) that through a series of negative clinical trials has prompted a vocal subset of the neuro-oncology community to declare this target dead. However, an argument can be made that the core tenets of precision oncology were overlooked in the initial clinical enthusiasm over EGFR as a therapeutic target in GBM. Namely, the wrong drugs were tested on the wrong patients at the wrong time. Furthermore, new insights into the biology of EGFR in GBM vis-à-vis other EGFR-driven neoplasms, such as non-small cell lung cancer, and development of novel GBM-specific EGFR therapeutics resurrects this target for future studies. Here, we will examine the distinct EGFR biology in GBM, how it exacerbates the challenge of treating a CNS neoplasm, how these unique challenges have influenced past and present EGFR-targeted therapeutic design and clinical trials, and what adjustments are needed to therapeutically exploit EGFR in this devastating disease.
Collapse
Affiliation(s)
- Benjamin Lin
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Julia Ziebro
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Erin Smithberger
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Pathobiology and Translational Sciences Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kasey R Skinner
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Neurosciences Curriculum, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Zhao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Zev A Binder
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald M O’Rourke
- Department of Neurosurgery and Glioblastoma Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Frank B Furnari
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, San Diego, California, USA
- Ludwig Cancer Research, San Diego, California, USA
| | - C Ryan Miller
- Department of Pathology, Division of Neuropathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
89
|
Antibody Drug Conjugates in Lung Cancer. Cancer J 2022; 28:429-435. [DOI: 10.1097/ppo.0000000000000630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
90
|
Dias e Silva D, Andriatte GM, Pestana RC. Antibody-Drug Conjugates and Tissue-Agnostic Drug Development. Cancer J 2022; 28:462-468. [DOI: 10.1097/ppo.0000000000000633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
91
|
Evolving Landscape of Antibody Drug Conjugates in Lymphoma. Cancer J 2022; 28:479-487. [DOI: 10.1097/ppo.0000000000000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Menezes B, Khera E, Calopiz M, Smith MD, Ganno ML, Cilliers C, Abu-Yousif AO, Linderman JJ, Thurber GM. Pharmacokinetics and Pharmacodynamics of TAK-164 Antibody Drug Conjugate Coadministered with Unconjugated Antibody. AAPS J 2022; 24:107. [PMID: 36207468 PMCID: PMC10754641 DOI: 10.1208/s12248-022-00756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
The development of new antibody-drug conjugates (ADCs) has led to the approval of 7 ADCs by the FDA in 4 years. Given the impact of intratumoral distribution on efficacy of these therapeutics, coadministration of unconjugated antibody with ADC has been shown to improve distribution and efficacy of several ADCs in high and moderately expressed tumor target systems by increasing tissue penetration. However, the benefit of coadministration in low expression systems is less clear. TAK-164, an ADC composed of an anti-GCC antibody (5F9) conjugated to a DGN549 payload, has demonstrated heterogeneous distribution and bystander killing. Here, we evaluated the impact of 5F9 coadministration on distribution and efficacy of TAK-164 in a primary human tumor xenograft mouse model. Coadministration was found to improve the distribution of TAK-164 within the tumor, but it had no significant impact (increase or decrease) on efficacy. Experimental and computational evidence indicates that this was not a result of tumor saturation, increased binding to perivascular cells, or compensatory bystander effects. Rather, the cellular potency of DGN549 was matched with the single-cell uptake of TAK-164 making its IC50 close to its equilibrium binding affinity (KD), and as such, coadministration dilutes total DGN549 in cells below the maximum cytotoxic concentration, thereby offsetting an increased number of targeted cells with decreased ability to kill each cell. These results provide new insights on matching payload potency to ADC delivery to help identify when increasing tumor penetration is beneficial for improving ADC efficacy and demonstrate how mechanistic simulations can be leveraged to design clinically effective ADCs.
Collapse
Affiliation(s)
- Bruna Menezes
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Eshita Khera
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Melissa Calopiz
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Michael D Smith
- Takeda Development Center Americas-Inc. TDCA, Oncology, Lexington, Massachussetts, USA
| | - Michelle L Ganno
- Takeda Development Center Americas-Inc. TDCA, Oncology, Lexington, Massachussetts, USA
| | - Cornelius Cilliers
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Adnan O Abu-Yousif
- Takeda Development Center Americas-Inc. TDCA, Oncology, Lexington, Massachussetts, USA
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
93
|
Furlanetto J, Marmé F, Loibl S. Sacituzumab govitecan: past, present and future of a new antibody-drug conjugate and future horizon. Future Oncol 2022; 18:3199-3215. [PMID: 36069628 DOI: 10.2217/fon-2022-0407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sacituzumab govitecan (SG) is a new antibody-drug conjugate directed against the cell-surface antigen Trop-2. Characteristics of the linker connecting the payload SN-38 to the antibody allows SG to kill tumor cells expressing Trop-2 and also the adjacent tumor cells (bystander effect). SG showed efficacy and safety in several epithelial tumors. The phase III ASCENT trial led to the approval of SG (10 mg/kg, d1,8 q3w) in patients with advanced or metastatic triple-negative breast cancer (TNBC) who have received ≥2 prior systemic therapies, including ≥1 for metastatic disease. The phase III TROPiCS-02 trial in heavily pretreated advanced hormone receptor (HR)-positive breast cancer has recently shown an improvement in progression-free survival for patients treated with SG compared to single-agent chemotherapy. The phase III post-neoadjuvant SASCIA study in early high-risk TNBC and HR-positive breast cancer is currently recruiting patients.
Collapse
Affiliation(s)
| | - Frederik Marmé
- Medical Faculty Mannheim, Heidelberg University, Universitätsfrauenklinik, Mannheim, 68167, Germany
| | - Sibylle Loibl
- German Breast Group, Neu-Isenburg, 63263, Germany.,Centre for Haematology & Oncology, Bethanien, Frankfurt/M, 60389, Germany
| |
Collapse
|
94
|
Fang S, Brems BM, Olawode EO, Miller JT, Brooks TA, Tumey LN. Design and Characterization of Immune-Stimulating Imidazo[4,5-c]quinoline Antibody-Drug Conjugates. Mol Pharm 2022; 19:3228-3241. [PMID: 35904247 PMCID: PMC10166635 DOI: 10.1021/acs.molpharmaceut.2c00392] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Traditional antibody-drug conjugate (ADC) technology has employed tumor-targeting antibodies to selectively deliver ultrapotent cytotoxins to tumor tissue. While this technology has been highly successful, resulting in the FDA approval of over 10 ADCs, the field continues to struggle with modest efficacy and significant off-target toxicity. Concurrent with the struggles of the ADC field, a new generation of immune-activating therapeutics has arisen, most clearly exemplified by the PD-1/PD-L1 inhibitors that are now part of standard-of-care treatment regimens for a variety of cancers. The success of these immuno-oncology therapeutic agents has prompted the investigation of a variety of new immuno-stimulant approaches, including toll-like receptor (TLR) activators. Herein, we describe the optimization of ADC technology for the selective delivery of a potent series of TLR7 agonists. A series of imidazole[4,5-c]quinoline agonists (as exemplified by compound 1) were shown to selectively agonize the human and mouse TLR7 receptor at low nanomolar concentrations, resulting in the release of IFNα from human peripheral blood mononuclear cells (hPBMCs) and the upregulation of CD86 on antigen-presenting cells. Compound 1 was attached to a deglycosylated (Fc-γ null) HER2-targeting antibody via a cleavable linker, resulting in an ADC (anti-HER2_vc-1) that potently and selectively activated the TLR7 pathway in tumor-associated macrophages via a "bystander" mechanism. We demonstrated that this ADC rapidly released the TLR7 agonist into the media when incubated with HER2+ cells. This release was not observed upon incubation with an isotype control ADC and furthermore was suppressed by co-administration of the naked antibody. In co-culture experiments with HER2+ HCC1954 cells, this ADC induced the activation of the NFκB pathway in mouse macrophages and the release of IFNα from hPBMCs, while a corresponding isotype control ADC did not. Finally, we demonstrated that IP administration of anti-HER2_vc-1 induced complete tumor regression in an HCC1954 xenograft study in SCID beige mice. Unlike related ADC technology that has been reported recently, our technology relies on the passive diffusion of the TLR7 agonist into tumor-associated macrophages rather than Fc-γ-mediated uptake. Based on these observations, we believe that this ADC technology holds significant potential for both oncology and infectious disease applications.
Collapse
Affiliation(s)
- Siteng Fang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Brittany M Brems
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Emmanuel O Olawode
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Jared T Miller
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - Tracy A Brooks
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| | - L Nathan Tumey
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, New York 13902, United States
| |
Collapse
|
95
|
Marei HE, Cenciarelli C, Hasan A. Potential of antibody-drug conjugates (ADCs) for cancer therapy. Cancer Cell Int 2022; 22:255. [PMID: 35964048 PMCID: PMC9375290 DOI: 10.1186/s12935-022-02679-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
The primary purpose of ADCs is to increase the efficacy of anticancer medications by minimizing systemic drug distribution and targeting specific cells. Antibody conjugates (ADCs) have changed the way cancer is treated. However, because only a tiny fraction of patients experienced long-term advantages, current cancer preclinical and clinical research has been focused on combination trials. The complex interaction of ADCs with the tumor and its microenvironment appear to be reliant on the efficacy of a certain ADC, all of which have significant therapeutic consequences. Several clinical trials in various tumor types are now underway to examine the potential ADC therapy, based on encouraging preclinical results. This review tackles the potential use of ADCs in cancer therapy, emphasizing the essential processes underlying their positive therapeutic impacts on solid and hematological malignancies. Additionally, opportunities are explored to understand the mechanisms of ADCs action, the mechanism of resistance against ADCs, and how to overcome potential resistance following ADCs administration. Recent clinical findings have aroused interest, leading to a large increase in the number of ADCs in clinical trials. The rationale behind ADCs, as well as their primary features and recent research breakthroughs, will be discussed. We then offer an approach for maximizing the potential value that ADCs can bring to cancer patients by highlighting key ideas and distinct strategies.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
96
|
Jagadeesh D, Horwitz S, Bartlett NL, Kim Y, Jacobsen E, Duvic M, Little M, Trepicchio W, Fenton K, Onsum M, Lisano J, Advani R. Response to Brentuximab Vedotin by CD30 Expression in Non-Hodgkin Lymphoma. Oncologist 2022; 27:864-873. [PMID: 35948003 PMCID: PMC9526494 DOI: 10.1093/oncolo/oyac137] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background The safety and efficacy of brentuximab vedotin (BV), an antibody-drug conjugate directed to the CD30 antigen, has been assessed in several trials in patients with peripheral T-cell lymphoma (PTCL), cutaneous T-cell lymphoma (CTCL), or B-cell non-Hodgkin lymphoma (NHL). The objective of this research was to examine the relationship between CD30 expression level and clinical response to BV. Patients and Methods We analyzed response in patients treated with BV monotherapy in 5 prospective clinical studies in relapsed or refractory PTCL, CTCL, or B-cell NHL. CD30 expression was assessed by immunohistochemistry (IHC) using the Ber H2 antibody for 275 patients. Results Across all 5 studies, 140 (50.9%) patients had tumors with CD30 expression <10%, including 60 (21.8%) with undetectable CD30 by IHC. No significant differences were observed for any study in overall response rates between patients with CD30 expression ≥10% or <10%. Median duration of response was also similar in the CD30 ≥10% and <10% groups for all studies. Conclusions In this analysis of studies across a range of CD30-expressing lymphomas, CD30 expression alone, as measured by standard IHC, does not predict clinical benefit from BV, making the determination of a threshold level of expression uncertain.
Collapse
Affiliation(s)
| | - Steve Horwitz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy L Bartlett
- Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO, USA
| | - Youn Kim
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | | | - Madeleine Duvic
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meredith Little
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA (a wholly owned subsidiary of Takeda Pharmaceuticals Limited)
| | - William Trepicchio
- Millennium Pharmaceuticals, Inc., Cambridge, MA, USA (a wholly owned subsidiary of Takeda Pharmaceuticals Limited)
| | | | | | | | | |
Collapse
|
97
|
Matikonda SS, McLaughlin R, Shrestha P, Lipshultz C, Schnermann MJ. Structure-Activity Relationships of Antibody-Drug Conjugates: A Systematic Review of Chemistry on the Trastuzumab Scaffold. Bioconjug Chem 2022; 33:1241-1253. [PMID: 35801843 DOI: 10.1021/acs.bioconjchem.2c00177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) are a rapidly growing class of cancer therapeutics that seek to overcome the low therapeutic index of conventional cytotoxic agents. However, realizing this goal has been a significant challenge. ADCs comprise several independently modifiable components, including the antibody, payload, linker, and bioconjugation method. Many approaches have been developed to improve the physical properties, potency, and selectivity of ADCs. The anti-HER-2 antibody trastuzumab, first approved in 1998, has emerged as an exceptional targeting agent for ADCs, as well as a broadly used platform for testing new technologies. The extensive work in this area enables the comparison of various linker strategies, payloads, drug-to-antibody ratios (DAR), and mode of attachment. In this review, these conjugates, ranging from the first clinically approved trastuzumab ADC, ado-trastuzumab emtansine (Kadcyla), to the latest variants are described with the goal of providing a broad overview, as well as enabling the comparison of existing and emerging conjugate technologies.
Collapse
Affiliation(s)
- Siddharth S Matikonda
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Ryan McLaughlin
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Pradeep Shrestha
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Carol Lipshultz
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
98
|
Tsang KY, Fantini M, Mavroukakis SA, Zaki A, Annunziata CM, Arlen PM. Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas. Cancers (Basel) 2022; 14:cancers14133037. [PMID: 35804808 PMCID: PMC9264992 DOI: 10.3390/cancers14133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
NEO-201 is an IgG1 humanized monoclonal antibody (mAb) that binds to tumor-associated variants of carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-5 and CEACAM-6. NEO-201 reacts to colon, ovarian, pancreatic, non-small cell lung, head and neck, cervical, uterine and breast cancers, but is not reactive against most normal tissues. NEO-201 can kill tumor cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC) to directly kill tumor cells expressing its target. We explored indirect mechanisms of its action that may enhance immune tumor killing. NEO-201 can block the interaction between CEACAM-5 expressed on tumor cells and CEACAM-1 expressed on natural killer (NK) cells to reverse CEACAM-1-dependent inhibition of NK cytotoxicity. Previous studies have demonstrated safety/tolerability in non-human primates, and in a first in human phase 1 clinical trial at the National Cancer Institute (NCI). In addition, preclinical studies have demonstrated that NEO-201 can bind to human regulatory T (Treg) cells. The specificity of NEO-201 in recognizing suppressive Treg cells provides the basis for combination cancer immunotherapy with checkpoint inhibitors targeting the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Kwong yok Tsang
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
- Correspondence: ; Tel.: +1-301-500-8646
| | - Massimo Fantini
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Sharon A. Mavroukakis
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Anjum Zaki
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Christina M. Annunziata
- Women’s Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Philip M. Arlen
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| |
Collapse
|
99
|
Böhnke N, Berger M, Griebenow N, Rottmann A, Erkelenz M, Hammer S, Berndt S, Günther J, Wengner AM, Stelte-Ludwig B, Mahlert C, Greven S, Dietz L, Jörißen H, Barak N, Bömer U, Hillig RC, Eberspaecher U, Weiske J, Giese A, Mumberg D, Nising CF, Weinmann H, Sommer A. A Novel NAMPT Inhibitor-Based Antibody-Drug Conjugate Payload Class for Cancer Therapy. Bioconjug Chem 2022; 33:1210-1221. [PMID: 35658441 PMCID: PMC9204702 DOI: 10.1021/acs.bioconjchem.2c00178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody. Optimization of scaffolds and linker structures led to highly potent effector chemistries which were conjugated to antibodies targeting C4.4a (LYPD3), HER2 (c-erbB2), or B7H3 (CD276) and tested on antigen-positive and -negative cancer cell lines. Pharmacokinetic studies, including metabolite profiling, were performed to optimize the stability and selectivity of the ADCs and to evaluate potential bystander effects. Optimized NAMPTi-ADCs demonstrated potent in vivo antitumor efficacy in target antigen-expressing xenograft mouse models. This led to the development of highly potent NAMPT inhibitor ADCs with a very good selectivity profile compared with the corresponding isotype control ADCs. Moreover, we demonstrate─to our knowledge for the first time─the generation of NAMPTi payload metabolites from the NAMPTi-ADCs in vitro and in vivo. In conclusion, NAMPTi-ADCs represent an attractive new payload class designed for use in ADCs for the treatment of solid and hematological cancers.
Collapse
Affiliation(s)
- Niels Böhnke
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | | | | | | | | | | | | | | | | | | | | | | | - Lisa Dietz
- Bayer AG, Pharmaceuticals, Wuppertal 42113, Germany
| | | | - Naomi Barak
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | - Ulf Bömer
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | | | | | - Jörg Weiske
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | - Anja Giese
- Bayer AG, Pharmaceuticals, Berlin 13353, Germany
| | | | | | | | | |
Collapse
|
100
|
Debnath U, Verma S, Patra J, Mandal SK. A review on recent synthetic routes and computational approaches for antibody drug conjugation developments used in anti-cancer therapy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|