51
|
Buono R, Longo VD. Starvation, Stress Resistance, and Cancer. Trends Endocrinol Metab 2018; 29:271-280. [PMID: 29463451 PMCID: PMC7477630 DOI: 10.1016/j.tem.2018.01.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Cancer cells are characterized by dysregulation in signal transduction and metabolic pathways leading to increased glucose uptake, altered mitochondrial function, and the evasion of antigrowth signals. Fasting and fasting-mimicking diets (FMDs) provide a particularly promising intervention to promote differential effects in normal and malignant cells. These effects are caused in part by the reduction in IGF-1, insulin, and glucose and the increase in IGFBP1 and ketone bodies, which generate conditions that force cancer cells to rely more on metabolites and factors that are limited in the blood, thus resulting in cell death. Here we discuss the cellular and animal experiments demonstrating the differential effects of fasting on normal and cancer cells and the mechanisms responsible for these effects.
Collapse
Affiliation(s)
- Roberta Buono
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Valter D Longo
- Longevity Institute, School of Gerontology, Department of Biological Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA; IFOM FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
52
|
Tang YC, Ho SC, Tan E, Ng AWT, McPherson JR, Goh GYL, Teh BT, Bard F, Rozen SG. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer. Breast Cancer Res 2018; 20:22. [PMID: 29566768 PMCID: PMC5863852 DOI: 10.1186/s13058-018-0949-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/02/2018] [Indexed: 12/29/2022] Open
Abstract
Background Phosphatase and tensin homolog (PTEN) is one of the most frequently inactivated tumor suppressors in breast cancer. While PTEN itself is not considered a druggable target, PTEN synthetic-sick or synthetic-lethal (PTEN-SSL) genes are potential drug targets in PTEN-deficient breast cancers. Therefore, with the aim of identifying potential targets for precision breast cancer therapy, we sought to discover PTEN-SSL genes present in a broad spectrum of breast cancers. Methods To discover broad-spectrum PTEN-SSL genes in breast cancer, we used a multi-step approach that started with (1) a genome-wide short interfering RNA (siRNA) screen of ~ 21,000 genes in a pair of isogenic human mammary epithelial cell lines, followed by (2) a short hairpin RNA (shRNA) screen of ~ 1200 genes focused on hits from the first screen in a panel of 11 breast cancer cell lines; we then determined reproducibility of hits by (3) identification of overlaps between our results and reanalyzed data from 3 independent gene-essentiality screens, and finally, for selected candidate PTEN-SSL genes we (4) confirmed PTEN-SSL activity using either drug sensitivity experiments in a panel of 19 cell lines or mutual exclusivity analysis of publicly available pan-cancer somatic mutation data. Results The screens (steps 1 and 2) and the reproducibility analysis (step 3) identified six candidate broad-spectrum PTEN-SSL genes (PIK3CB, ADAMTS20, AP1M2, HMMR, STK11, and NUAK1). PIK3CB was previously identified as PTEN-SSL, while the other five genes represent novel PTEN-SSL candidates. Confirmation studies (step 4) provided additional evidence that NUAK1 and STK11 have PTEN-SSL patterns of activity. Consistent with PTEN-SSL status, inhibition of the NUAK1 protein kinase by the small molecule drug HTH-01-015 selectively impaired viability in multiple PTEN-deficient breast cancer cell lines, while mutations affecting STK11 and PTEN were largely mutually exclusive across large pan-cancer data sets. Conclusions Six genes showed PTEN-SSL patterns of activity in a large proportion of PTEN-deficient breast cancer cell lines and are potential specific vulnerabilities in PTEN-deficient breast cancer. Furthermore, the NUAK1 PTEN-SSL vulnerability identified by RNA interference techniques can be recapitulated and exploited using the small molecule kinase inhibitor HTH-01-015. Thus, NUAK1 inhibition may be an effective strategy for precision treatment of PTEN-deficient breast tumors. Electronic supplementary material The online version of this article (10.1186/s13058-018-0949-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yew Chung Tang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Szu-Chi Ho
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Elisabeth Tan
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Alvin Wei Tian Ng
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - John R McPherson
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Germaine Yen Lin Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Bin Tean Teh
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.,National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Steven G Rozen
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore. .,Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
53
|
Li S, Shen Y, Wang M, Yang J, Lv M, Li P, Chen Z, Yang J. Loss of PTEN expression in breast cancer: association with clinicopathological characteristics and prognosis. Oncotarget 2018; 8:32043-32054. [PMID: 28410191 PMCID: PMC5458267 DOI: 10.18632/oncotarget.16761] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/22/2017] [Indexed: 01/11/2023] Open
Abstract
Various studies have evaluated the significance of PTEN (phosphatase and tensin homolog deleted from chromosome 10) expression in breast cancer, but their results remain controversial. We conducted a meta-analysis to evaluate the associations of PTEN expression with clinicopathological characteristics and prognosis in breast cancer. PubMed, Embase, Web of Science, and China National Knowledge Infrastructure were searched to identify relevant publications. The associations between PTEN expression and clinicopathological parameters, disease-free survival (DFS), and overall survival (OS) were then assessed via meta-analyses of odds ratio (ORs) and hazard ratio (HRs) with 95% confidence intervals (CIs). Based on 27 studies involving 10,231 patients, the pooled results revealed that PTEN loss was significantly more common in breast cancer than in normal tissues (OR = 12.15, 95% CI = 6.48–22.79, P < 0.00001) and that PTEN loss had clear associations with larger tumor size (> 2 cm, OR = 0.62, 95% CI = 0.48–0.82, P= 0.0006), lymph node metastasis(OR = 0.61, 95% CI = 0.45–0.82, P = 0.0001), later TNM stage(stage III–IV, OR = 0.55, 95% CI = 0.35–0.86, P= 0.009), poor differentiation(OR = 0.37, 95% CI = 0.24–0.59, P < 0.0001), and the highly aggressive triple-negative phenotype (OR = 1.62, 95% CI = 1.23–2.12, P = 0.0005). Moreover, patients with PTEN loss exhibited significantly worse DFS and OS(HR = 1.63, 95% CI = 1.04–2.22, P < 0.00001; HR = 1.41, 95% CI = 1.08–1.73, P < 0.0001; respectively). In conclusion, PTEN loss might predict more aggressive behavior and worse outcomes in patients with breast cancer.
Collapse
Affiliation(s)
- Shuting Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Yanwei Shen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Mengying Wang
- Institute of Endemic Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, P.R. China
| | - Jiao Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Meng Lv
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Pan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Zheling Chen
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Jin Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
54
|
Poklepovic A, Gordon S, Shafer DA, Roberts JD, Bose P, Geyer CE, McGuire WP, Tombes MB, Shrader E, Strickler K, Quigley M, Wan W, Kmieciak M, Massey HD, Booth L, Moran RG, Dent P. Phase I study of pemetrexed with sorafenib in advanced solid tumors. Oncotarget 2018; 7:42625-42638. [PMID: 27213589 PMCID: PMC5173162 DOI: 10.18632/oncotarget.9434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/16/2016] [Indexed: 01/16/2023] Open
Abstract
Purpose To determine if combination treatment with pemetrexed and sorafenib is safe and tolerable in patients with advanced solid tumors. Results Thirty-seven patients were enrolled and 36 patients were treated (24 in cohort A; 12 in cohort B). The cohort A dose schedule resulted in problematic cumulative toxicity, while the cohort B dose schedule was found to be more tolerable. The maximum tolerated dose (MTD) was pemetrexed 750 mg/m2 every 14 days with oral sorafenib 400 mg given twice daily on days 1–5. Because dosing delays and modifications were associated with the MTD, the recommended phase II dose was declared to be pemetrexed 500 mg/m2 every 14 days with oral sorafenib 400 mg given twice daily on days 1–5. Thirty-three patients were evaluated for antitumor activity. One complete response and 4 partial responses were observed (15% overall response rate). Stable disease was seen in 15 patients (45%). Four patients had a continued response at 6 months, including 2 of 5 patients with triple-negative breast cancer. Experimental Design A phase I trial employing a standard 3 + 3 design was conducted in patients with advanced solid tumors. Cohort A involved a novel dose escalation schema exploring doses of pemetrexed every 14 days with continuous sorafenib. Cohort B involved a modified schedule of sorafenib dosing on days 1–5 of each 14-day pemetrexed cycle. Radiographic assessments were conducted every 8 weeks. Conclusions Pemetrexed and intermittent sorafenib therapy is a safe and tolerable combination for patients, with promising activity seen in patients with breast cancer.
Collapse
Affiliation(s)
- Andrew Poklepovic
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Sarah Gordon
- Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Danielle A Shafer
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - John D Roberts
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,Current address: Department of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Prithviraj Bose
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,Current address: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Charles E Geyer
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - William P McGuire
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mary Beth Tombes
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ellen Shrader
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Katie Strickler
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maria Quigley
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Wen Wan
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Maciej Kmieciak
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - H Davis Massey
- Departments of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Laurence Booth
- Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Richard G Moran
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul Dent
- Departments of Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA.,Departments of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
55
|
Gong Y, Wang X, Shang X, Xiao SP, Li W, Shang Y, Dou F. Tetratricopeptide repeat domain 3 overexpression tends to form aggregates and inhibit ubiquitination and degradation of DNA polymerase γ. Oncotarget 2017; 8:106475-106485. [PMID: 29290964 PMCID: PMC5739749 DOI: 10.18632/oncotarget.22476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Tetratricopeptide repeat (TPR) domain 3 (TTC3) is a protein that contains canonical RING finger and TPR motifs. It is encoded by the TTC3 gene located in the Down syndrome critical region (DSCR). In this study, we used a yeast two-hybrid assay to identify several proteins that physically interact with TTC3, including heat shock proteins and DNA polymerase γ (POLG). When TTC3 was overexpressed in mammalian cells, the ubiquitination of POLG was inhibited and its degradation slowed. High TTC3 protein expression led to the development of intracellular TTC3 aggregates, which also contained POLG. Co-expression with Hsp70 or placing the TTC3 gene under control of an inducible promoter alleviated the aggregation and facilitated POLG degradation. As a result of POLG's effects on aging processes, we propose that a copy number variant of the TTC3 may contribute to Down syndrome pathogenesis.
Collapse
Affiliation(s)
- Yueqing Gong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Xiaolan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Xuan Shang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Sheng Ping Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Wanjie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Shang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG, McGovern Institute for Brain Research, College of Life Sciences, Beijing Normal University, Beijing, China.,Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
56
|
Wu W, Chen X, Yu S, Wang R, Zhao R, Du C. microRNA-222 promotes tumor growth and confers radioresistance in nasopharyngeal carcinoma by targeting PTEN. Mol Med Rep 2017; 17:1305-1310. [PMID: 29115464 DOI: 10.3892/mmr.2017.7931] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/10/2017] [Indexed: 11/05/2022] Open
Abstract
MicroRNA-222 (miR‑222) has been reported to be involved in the initiation, development and metastasis of tumors, as well as conferring resistance to chemotherapeutic drugs or radiotherapy in various types of cancer. However, the role and the underlying molecular mechanism of miR‑222 specifically in nasopharyngeal carcinoma (NPC) remains unclear. Thus, the biological function and underlying mechanism of in miR‑222 was investigated in NPC tissue specimens and cell lines. miR‑222 was upregulated in NPC tissues and malignant cell lines compared with adjacent normal samples and cell lines. miR‑222 upregulation significantly increased NPC cell proliferation, colony formation and cell apoptosis. Furthermore, miR‑222 upregulation conferred radioresistance. It was also confirmed that phosphatase and tensin homolog (PTEN) was a direct target for miR‑222 in NPC cells. Alteration of miR‑222 expression was demonstrated to regulate the phosphoinositide 3‑kinase/protein kinase B pathway in NPC cells. These results suggest that miR‑222 may act as an oncomir in NPC by targeting PTEN, and has potential as a therapeutic target in NPC.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiation Oncology, Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Xi Chen
- Department of Radiation Oncology, Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Shilong Yu
- Department of Intervention, Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Rui Wang
- Department of Radiation, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ruikun Zhao
- Department of Radiation Oncology, Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Chao Du
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
57
|
Xie H, Xie B, Liu C, Wang J, Xu Y. Association of PTEN expression with biochemical recurrence in prostate cancer: results based on previous reports. Onco Targets Ther 2017; 10:5089-5097. [PMID: 29123407 PMCID: PMC5661465 DOI: 10.2147/ott.s132653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Purpose Among men, prostate cancer (PCa) is one of the most commonly diagnosed cancers and the leading cause of cancer death worldwide. Phosphatase and tension homolog (PTEN) acts as a negative regulator of the phosphatidylinositol 3-kinase (PIK3)/Akt pathway and suppresses tumor progression. Meanwhile, PTEN is frequently deleted in PCa. Identifying the specific molecular markers of biochemical recurrence (BCR) in PCa patients is critical in clinical practice. Our systematic review summarizes the evidence about the PTEN expression and BCR rate in PCa patients. Methods To clarify the impact of PTEN expression on the PCa BCR rate, a systematic review and meta-analysis was performed by searching the PubMed, Embase, and Web of Science databases, to identify the relevant literature. The analysis of pooled data was performed with Stata 12. The combined odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were evaluated by the fixed-effects or random-effects models. The combined sensitivity and publication bias were also estimated. Results In total, nine articles containing ten independent cohort studies, including 2,154 cases with positive expression of PTEN and 1,006 PTEN deletion cases, were deemed eligible for the meta-analysis. Overall, the positive expression of PTEN was associated with a significantly lower BCR rate (OR =0.521, 95% CI: 0.431–0.630). Subgroup analysis stratified by race revealed that in multiple races (OR =0.215, 95% CI: 0.072–0.648) and Caucasian (OR =0.469, 95% CI: 0.373–0.591) races, positive expression of PTEN showed a significant association with lower BCR rate. Subgroup analysis also showed the significant result in different sample sizes. Conclusion PTEN deletion has a relationship with a higher BCR rate in PCa compared with positive expression of PTEN.
Collapse
Affiliation(s)
- Haijie Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Bin Xie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Chunyu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Jun Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yong Xu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
58
|
Liu J, Wang HL, Ma FM, Guo HP, Fang NN, Wang SS, Li XH. Systematic module approach identifies altered genes and pathways in four types of ovarian cancer. Mol Med Rep 2017; 16:7907-7914. [PMID: 28983627 PMCID: PMC5779873 DOI: 10.3892/mmr.2017.7649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/09/2017] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to identify altered genes and pathways associated with four histotypes of ovarian cancer, according to the systematic tracking of dysregulated modules of reweighted protein-protein interaction (PPI) networks. Firstly, the PPI network and gene expression data were initially integrated to infer and reweight normal ovarian and four types of ovarian cancer (endometrioid, serous, mucinous and clear cell carcinoma) PPI networks based on Spearman's correlation coefficient. Secondly, modules in the PPI network were mined using a clique-merging algorithm and the differential modules were identified through maximum weight bipartite matching. Finally, the gene compositions in the altered modules were analyzed, and pathway functional enrichment analyses for disrupted module genes were performed. In five conditional-specific networks, universal alterations in gene correlations were revealed, which leads to the differential correlation density among disrupted module pairs. The analyses revealed 28, 133, 139 and 33 altered modules in endometrioid, serous, mucinous and clear cell carcinoma, respectively. Gene composition analyses of the disrupted modules revealed five common genes (mitogen-activated protein kinase 1, phosphoinositide 3-kinase-encoding catalytic 110-KDα, AKT serine/threonine kinase 1, cyclin D1 and tumor protein P53) across the four subtypes of ovarian cancer. In addition, pathway enrichment analysis confirmed one common pathway (pathways in cancer), in the four histotypes. This systematic module approach successfully identified altered genes and pathways in the four types of ovarian cancer. The extensive differences of gene correlations result in dysfunctional modules, and the coordinated disruption of these modules contributes to the development and progression of ovarian cancer.
Collapse
Affiliation(s)
- Jing Liu
- Physical Examination Center, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Hui-Ling Wang
- Department of Gynecology, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Feng-Mei Ma
- Department of Infectious Disease, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Hong-Ping Guo
- Physical Examination Center, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Ning-Ning Fang
- Intensive Care Unit, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Shan-Shan Wang
- Department of Obstetrics, People's Hospital of Binzhou, Binzhou, Shandong 256610, P.R. China
| | - Xin-Hong Li
- Department of Internal Medicine, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
59
|
Oliva-González C, Uresti-Rivera EE, Galicia-Cruz OG, Jasso-Robles FI, Gandolfi AJ, Escudero-Lourdes C. The tumor suppressor phosphatase and tensin homolog protein (PTEN) is negatively regulated by NF-κb p50 homodimers and involves histone 3 methylation/deacetylation in UROtsa cells chronically exposed to monomethylarsonous acid. Toxicol Lett 2017; 280:92-98. [PMID: 28823542 DOI: 10.1016/j.toxlet.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 01/06/2023]
Abstract
UROtsa cells have been accepted as a model to study carcinogenicity mechanisms of arsenic-associated human bladder cancer. In vitro continuous exposure to monomethylarsonous acid (MMAIII), leads UROtsa cells to commit to malignant transformation. In this process, NF-κβ-associated inflammatory response seems to play an important role since this transcription factor activates some minutes after cells are exposed in vitro to MMAIII and keeps activated during the cellular malignant transformation. It is known that a slight decrease in the protein phosphatase and tensin homologue (PTEN) gene expression is enough for some cells to become malignantly transformed. Interestingly, this tumor suppressor has been proven to be negatively regulated by NF-κβ through binding to its gene promoter. Based on these observations we propose that NF-κβ may be involved in arsenic associated carcinogenesis through the negative regulation of PTEN gene expression. Changes in PTEN expression and the binding of p50 NF-κβ subunit to PTEN promoter were evaluated in UROtsa cells exposed for 4, 12, 20, or 24 wk to 50nM MMAIII. Results showed that MMAIII induced a significant decrease in PTEN expression around 20 wk exposure to MMAIII,which correlated with increased binding of p50 subunit to the PTEN promoter. Consistent with these results, ChIP assays also showed a significant decrease in H3 acetylation (H3ac) but an increase in the repression marks H3k9me3 and H327me3 in PTEN promoter when compared with not treated cells. These results suggest that the activation of NF-κβ by MMAIII may participate in UROtsa cells malignant transformation through the negative regulation of PTEN expression involving p50 homodimers-mediated chromatin remodeling around the PTEN promoter.
Collapse
Affiliation(s)
- C Oliva-González
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - E E Uresti-Rivera
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - O G Galicia-Cruz
- Laboratorio de Fisiología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | - F I Jasso-Robles
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico
| | - A J Gandolfi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson AZ, USA
| | - C Escudero-Lourdes
- Laboratorio de Inmunotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
60
|
Treatment with PTEN-Long protein inhibits hepatitis C virus replication. Virology 2017; 511:1-8. [PMID: 28783500 DOI: 10.1016/j.virol.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 01/15/2023]
Abstract
Hepatitis C virus (HCV) infection is a confirmed risk factor for hepatocellular carcinoma (HCC). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) possesses tumor suppression function that is frequently defective in HCC tumors. PTEN-Long, a translation isoform of PTEN, functions in a cell non-autonomous manner. In this study, we demonstrated that intracellular overexpression of PTEN-Long inhibits HCV replication. More importantly, we showed that treatment with extracellular PTEN-Long protein inhibits HCV replication in a dose-dependent manner. Furthermore, we showed that PTEN-Long interacts with HCV core protein and this interaction is required for HCV replication inhibition by PTEN-Long. In summary, we demonstrated, for the first time, that PTEN-Long protein, an isoform of the canonical PTEN and in the form of extracellular protein treatment, inhibits HCV replication. Our study offers an opportunity for developing additional anti-HCV agents.
Collapse
|
61
|
Shrestha P, Yun JH, Ko YJ, Yeon KJ, Kim D, Lee H, Jin DH, Nam KY, Yoo HD, Lee W. NMR uncovers direct interaction between human NEDD4-1 and p34 SEI-1. Biochem Biophys Res Commun 2017; 490:984-990. [PMID: 28666866 DOI: 10.1016/j.bbrc.2017.06.151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 11/30/2022]
Abstract
PTEN, an important tumor suppressor and a key regulator of the PI3K/AKT signaling pathway, is often deleted/mutated in different types of cancer. The E3 ubiquitin ligase NEDD4-1 catalyzes the polyubiquitination of PTEN, thereby acting as a negative regulator of PTEN. Stability of NEDD4-1, in turn, is tightly controlled by a 34 kDa oncoprotein, p34SEI-1 and it regulates PTEN degradation and activates PI3K/AKT pathway, resulting in cancer metastasis. p34SEI-1 affects not only the expression of NEDD4-1 during transcription and translation but also the subcellular localization of PTEN. This emphasizes the need to understand, at molecular level, the interaction between NEDD4-1 and p34SEI-1. A recent study showed that NEDD4-1 interacts with p34SEI-1 via its WWI domain. However, a detailed interaction for molecular level is yet unknown. We report that the WW1 domain of NEDD4-1 recognizes the SERTA domain containing the proline rich region (PRR motif) in p34SEI-1. TALOS analysis based on NMR data confirms three conserved β-sheets in NEDD4-1 WW1 and the central β-sheet of NEDD4-1 WW1 plays a role for protein stability by the backbone dynamics experiments. NMR titration data revealed the binding site for p34SEI-1 with NEDD4-1. Our data will provide insights into the molecular mechanism of NEDD4-1 and p34SEI-1 interaction, which will be directly used for drug design which inhibits the molecular interaction involved in different cancer signaling.
Collapse
Affiliation(s)
- Pravesh Shrestha
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Hye Yun
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoon-Joo Ko
- Nuclear Magnetic Resonance Laboratory, National Center for Inter-University Research Facilities, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyu Jeong Yeon
- Chodang Pharmaceutical Research Institute, #75, Gongwon-ro, Guro-gu, Seoul, Republic of Korea
| | - Dooseop Kim
- Chodang Pharmaceutical Research Institute, #75, Gongwon-ro, Guro-gu, Seoul, Republic of Korea
| | - Heejong Lee
- Chodang Pharmaceutical Research Institute, #75, Gongwon-ro, Guro-gu, Seoul, Republic of Korea
| | - Dong-Hoon Jin
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-ro 43-gil, Songpa-gu, Seoul 138-736, Seoul, Republic of Korea
| | - Ki-Yup Nam
- PharosI&BT Co., 38, Heungan-daero 427-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Republic of Korea
| | - Hye Dong Yoo
- FUGENBiO Co., 6F, yongjin Bldg., 48, Yangjaecheon-ro 19-gil, Seocho-gu, Seoul, Republic of Korea
| | - Weontae Lee
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
62
|
Abstract
Hepatitis C virus (HCV) infection leads to severe liver diseases including hepatocellular carcinoma (HCC). Phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a tumour suppressor, is frequently mutated or deleted in HCC tumors. PTEN has previously been demonstrated to inhibit HCV secretion. In this study, we determined the effects of PTEN on the other steps in HCV life cycle, including entry, translation, and replication. We showed that PTEN inhibits HCV entry through its lipid phosphatase activity. PTEN has no effect on HCV RNA translation. PTEN decreases HCV replication and the protein phosphatase activity of PTEN is essential for this function. PTEN interacts with the HCV core protein and requires R50 in domain I of HCV core and PTEN residues 1–185 for this interaction. This interaction is required for PTEN-mediated inhibition of HCV replication. This gives rise to a reduction in PTEN levels and intracellular lipid abundance, which may in turn regulate HCV replication. HCV core domain I protein increases the lipid phosphatase activity of PTEN in an in vitro assay, suggesting that HCV infection can also regulate PTEN. Taken together, our results demonstrated an important regulatory role of PTEN in the HCV life cycle.
Collapse
|
63
|
Yeung Y, Lau DK, Chionh F, Tran H, Tse JWT, Weickhardt AJ, Nikfarjam M, Scott AM, Tebbutt NC, Mariadason JM. K-Ras mutation and amplification status is predictive of resistance and high basal pAKT is predictive of sensitivity to everolimus in biliary tract cancer cell lines. Mol Oncol 2017; 11:1130-1142. [PMID: 28544747 PMCID: PMC5579335 DOI: 10.1002/1878-0261.12078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/10/2017] [Accepted: 05/14/2017] [Indexed: 02/06/2023] Open
Abstract
Advanced biliary tract cancer (BTC) has a poor prognosis and limited treatment options. The PI3K/Akt/mTOR signalling pathway is hyperactivated in a subset of BTCs, and clinical activity of the mTOR inhibitor everolimus has been observed in some patients with BTC. The goal of this study was to identify biomarkers predictive of everolimus response. Twenty BTC cell lines were assessed for everolimus sensitivity with a spectrum of growth inhibitory responses observed. Molecular biomarkers of sensitivity and resistance were identified by interrogation of the activation status of the Ras/MAPK and PI3K/Akt/mTOR pathways. K-Ras mutations and/or amplifications were identified in 45% of cell lines and were associated with resistance to everolimus. Activating mutations in PIK3CA or loss of PTEN was not predictive of everolimus response; however, high basal levels of pAKT were associated with sensitivity, independent of Ras/MAPK pathway activation status. Notably, everolimus inhibited mTOR signalling to a similar extent in sensitive and resistant cell lines, suggesting that relative dependence on the mTOR pathway rather than the magnitude of pathway inhibition determines everolimus response. Consistent with the known limitations of rapalogs, everolimus induced feedback-mediated activation of AKT in BTC cell lines, which could be overcome by cotreatment with an AKT inhibitor or ATP-competitive mTORC1/mTORC2 inhibitors. However, both approaches failed to induce greater apoptosis compared to everolimus, and mTORC1/mTORC2 kinase inhibitors induced compensatory activation of pERK, identifying an inherent limitation of these agents in BTC cell lines. These findings suggest that future trials of everolimus in BTC would benefit from preselecting patients based on their K-Ras and PI3K/mTOR pathway activation status. The study also identifies strategies for enhancing inhibition of the PI3K/mTOR pathway in BTC cell lines.
Collapse
Affiliation(s)
- Yvonne Yeung
- Olivia Newton John Cancer Research Institute, Melbourne, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Australia
| | - David K Lau
- Olivia Newton John Cancer Research Institute, Melbourne, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Fiona Chionh
- Olivia Newton John Cancer Research Institute, Melbourne, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Australia
| | - Hoanh Tran
- Olivia Newton John Cancer Research Institute, Melbourne, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Australia
| | - Janson W T Tse
- Olivia Newton John Cancer Research Institute, Melbourne, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Australia
| | - Andrew J Weickhardt
- Olivia Newton John Cancer Research Institute, Melbourne, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Mehrdad Nikfarjam
- Department of Surgery, Austin Health, University of Melbourne, Australia
| | - Andrew M Scott
- Olivia Newton John Cancer Research Institute, Melbourne, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - Niall C Tebbutt
- Olivia Newton John Cancer Research Institute, Melbourne, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - John M Mariadason
- Olivia Newton John Cancer Research Institute, Melbourne, Australia.,Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Australia
| |
Collapse
|
64
|
Koncar RF, Feldman R, Bahassi EM, Hashemi Sadraei N. Comparative molecular profiling of HPV-induced squamous cell carcinomas. Cancer Med 2017; 6:1673-1685. [PMID: 28556593 PMCID: PMC5504316 DOI: 10.1002/cam4.1108] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/29/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022] Open
Abstract
Approximately 5% of all cancer incidences result from human papillomavirus (HPV) infection. HPV infection most commonly leads to cancers of the anogenital region or oropharynx. It is unknown whether different HPV-mediated cancers collectively share a molecular signature and it is important to determine if there are targetable alterations common to different types of HPV-positive tumors. We analyzed 743 p53 wild-type samples of anal, cervical, oropharyngeal, and vulvar squamous cell carcinomas which underwent multiplatform testing at a commercial molecular profiling service. Expression of 24 proteins was measured by immunohistochemistry (IHC), mutation of 48 genes was determined by next-generation and Sanger sequencing, and copy number alteration for six genes was determined by in situ hybridization. The four cohorts had remarkably similar molecular profiles. No gene had a statistically significant difference in mutation frequency or copy number change between the four different types of squamous cell carcinomas. The only significant differences between cohorts were frequency of ERCC1 and SPARC loss as determined by IHC. In all four cancer types, oncogene mutation and PD-L1 expression was relatively infrequent. The most commonly mutated gene was PIK3CA, with mutations most often affecting the helical domain of the protein and accompanied by concurrent lack of PTEN expression. Loss of MGMT and RRM1 was common among the four cohorts and may be predictive of response to cytotoxic therapies not currently being used to treat these cancer types. The similar molecular profiles of the four cohorts indicate that treatment strategies may be similarly efficacious across HPV-positive cancers.
Collapse
Affiliation(s)
- Robert F Koncar
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio
| | | | - El Mustapha Bahassi
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Nooshin Hashemi Sadraei
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
65
|
Hamann BL, Blind RD. Nuclear phosphoinositide regulation of chromatin. J Cell Physiol 2017; 233:107-123. [PMID: 28256711 DOI: 10.1002/jcp.25886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear-driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology.
Collapse
Affiliation(s)
- Bree L Hamann
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Raymond D Blind
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Medicine, Biochemistry and Pharmacology, Division of Diabetes Endocrinology and Metabolism, The Vanderbilt Diabetes Research and Training Center and the Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
66
|
Timmermans-Sprang EPM, Gracanin A, Mol JA. Molecular Signaling of Progesterone, Growth Hormone, Wnt, and HER in Mammary Glands of Dogs, Rodents, and Humans: New Treatment Target Identification. Front Vet Sci 2017; 4:53. [PMID: 28451590 PMCID: PMC5389977 DOI: 10.3389/fvets.2017.00053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/28/2017] [Indexed: 12/21/2022] Open
Abstract
Mammary tumors are the most common form of neoplasia in the bitch. Female dogs are protected when they are spayed before the first estrus cycle, but this effect readily disappears and is already absent when dogs are spayed after the second heat. As the ovaries are removed during spaying, ovarian steroids are assumed to play an essential role in tumor development. The sensitivity toward tumor development is already present during early life, which may be caused by early mutations in stem cells during the first estrus cycles. Later on in life, tumors arise that are mostly steroid-receptor positive, although a small subset of tumors overexpressing human epidermal growth factor 2 (HER2) and some lacking estrogen receptor, progesterone receptor (PR), and HER2 (triple negative) are present, as is the situation in humans. Progesterone (P4), acting through PR, is the major steroid involved in outgrowth of mammary tissue. PRs are expressed in two forms, the progesterone receptor A (PRA) and progesterone receptor B (PRB) isoforms derived from splice variants from a single gene. The dog and the whole family of canids have only a functional PRA isoform, whereas the PRB isoform, if expressed at all, is devoid of intrinsic biological activity. In human breast cancer, overexpression of the PRA isoform is related to more aggressive carcinomas making the dog a unique model to study PRA-related mammary cancer. Administration of P4 to adult dogs results in local mammary expression of growth hormone (GH) and wing less-type mouse mammary tumor virus integration site family 4 (Wnt4). Both proteins play a role in activation of mammary stem cells. In this review, we summarize what is known on P4, GH, and Wnt signaling in canine mammary cancer, how the family of HER receptors could interact with this signaling, and what this means for comparative and translational oncological aspects of human breast cancer development.
Collapse
Affiliation(s)
| | - Ana Gracanin
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| | - Jan A Mol
- Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
67
|
Gates KC, Goetzmann LN, Cantlon JD, Jeckel KM, Anthony RV. Effect of proline rich 15-deficiency on trophoblast viability and survival. PLoS One 2017; 12:e0174976. [PMID: 28380025 PMCID: PMC5381842 DOI: 10.1371/journal.pone.0174976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/17/2017] [Indexed: 01/11/2023] Open
Abstract
Deviations from the normal program of gene expression during early pregnancy can lead to early embryonic loss as well as dysfunctional placentation, which can cause significant morbidity and mortality. Proline rich 15 (PRR15) is a low molecular weight nuclear protein expressed by the trophoblast during early gestation. Lentivirus-mediated knockdown of PRR15 mRNA in ovine trophectoderm led to demise of the embryo by gestational day 15, providing compelling evidence that PRR15 expression is critical during this precarious window of development. Our objective was to determine the effect of PRR15 knockdown on trophoblast gene expression, proliferation, and survival. The first-trimester human trophoblast cell line, ACH-3P, was infected with control lentivirus or a lentivirus expressing a short hairpin (sh)RNA to target PRR15 mRNA for degradation, resulting in a 68% reduction in PRR15 mRNA. Microarray analysis of these cell lines revealed differential expression of genes related to cancer, focal adhesion, and p53 signaling. These changes included significant up-regulation of GDF15, a cytokine increased in pregnancies with preeclampsia. Viability and proliferation decreased in PRR15-deficient cells, which was consistent with down-regulation of cell cycle-related genes CCND1 and CDK6 and an up-regulation of CCNG2 and CDKN1A in the PRR15-deficient cells. TNFSF10, a tumor necrosis factor superfamily member known to induce apoptosis increased significantly in the PRR15-deficient cells. Migration through a basement membrane matrix decreased and an increased population of apoptotic cells was present when treated with shRNA to target PRR15. These results suggest that PRR15 enhances trophoblast viability and survival during early implantation and placentation.
Collapse
Affiliation(s)
- Katherine C. Gates
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Lindsey N. Goetzmann
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeremy D. Cantlon
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Kimberly M. Jeckel
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Russell V. Anthony
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
68
|
Zayed RA, Eltaweel MA, Botros SKA, Zaki MA. MN1 and PTEN gene expression in acute myeloid leukemia. Cancer Biomark 2017; 18:177-182. [PMID: 27983532 DOI: 10.3233/cbm-160235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Multiple genetic alterations with prognostic significance have been discovered in acute myeloid leukemia (AML). We studied the expression level of two genes, Meningioma1 (MN1) and Phosphatase and Tensin homolog (PTEN) to determine their expression in AML patients and their role as prognostic markers. METHODS The study included 50 cytogenetic normal de novo AML cases and 10 controls, Their level was detected by Real time Reverse Transcription-Polymerase Chain Reaction. RESULT Relative mRNA expression of MN1 was significantly higher (p value < 0.001) and PTEN expression was significantly lower (p value = 0.002). No correlation was found between neither MN1 nor PTEN mRNA expression and overall survival (p value = 0.212 and 0.310) respectively. CONCLUSION Although our study suggests a role for MN1 gene and PTEN genes in AML, we could not recommend their use as routine diagnostic and prognostic markers for AML in Egyptian population.
Collapse
Affiliation(s)
- Rania A Zayed
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Maha A Eltaweel
- Clinical and Chemical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| | - Shahira K A Botros
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Mohamed A Zaki
- Clinical and Chemical Pathology Department, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
69
|
Cen G, Zhang K, Cao J, Qiu Z. Downregulation of the N-myc downstream regulated gene 1 is related to enhanced proliferation, invasion and migration of pancreatic cancer. Oncol Rep 2017; 37:1189-1195. [PMID: 28075464 DOI: 10.3892/or.2017.5355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/27/2016] [Indexed: 11/06/2022] Open
Abstract
The N-myc downstream regulated gene 1 (NDRG1) is differently expressed in human malignancies according to the tumor type. We investigated the expression of NDRG1 in pancreatic cancer tissues and cell lines as well as how it affects tumor growth, invasion and migration in pancreatic cancer cells. Experimental groups included NDRG1 overexpression and knockdown pancreatic cancer cell lines. Lentivirus-based empty vector transfected cells (NC group) were considered control groups. Proliferation, invasion and migration related proteins such as STAT3, MMPs, PTEN, PI3K/AKT were assessed by CCK-8, Transwell assay and western blotting. Efficient NDRG1 overexpression results in reduced cell proliferation, invasion and migration. Inversely, downregulation of NDRG1 promoted proliferation, invasion and migration. We also found NDRG1 could deactivate p-STAT3, PI3K, p-AKT, MMP2, MMP9 and activate PTEN. NDRG1 is a potential anti-oncogene. Its upregulation significantly decreases pancreatic cancer tumorigenesis, likely by inhibiting STAT3 and the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Gang Cen
- Department of General Surgery, Shanghai General Hospital of Nanjing Medical University, 100 Haining Road, Shanghai 200080, P.R. China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital of Nanjing Medical University, 100 Haining Road, Shanghai 200080, P.R. China
| | - Jun Cao
- Department of General Surgery, Shanghai General Hospital of Nanjing Medical University, 100 Haining Road, Shanghai 200080, P.R. China
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital of Nanjing Medical University, 100 Haining Road, Shanghai 200080, P.R. China
| |
Collapse
|
70
|
Targeting PI3K/AKT/mTOR Pathway. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
71
|
Abstract
Sigma1 (also known as sigma-1 receptor, Sig1R, σ1 receptor) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein. The majority of publications on the subject have focused on the neuropharmacology of Sigma1. However, a number of publications have also suggested a role for Sigma1 in cancer. Although there is currently no clinically used anti-cancer drug that targets Sigma1, a growing body of evidence supports the potential of Sigma1 ligands as therapeutic agents to treat cancer. In preclinical models, compounds with affinity for Sigma1 have been reported to inhibit cancer cell proliferation and survival, cell adhesion and migration, tumor growth, to alleviate cancer-associated pain, and to have immunomodulatory properties. This review will highlight that although the literature supports a role for Sigma1 in cancer, several fundamental questions regarding drug mechanism of action and the physiological relevance of aberrant SIGMAR1 transcript and Sigma1 protein expression in certain cancers remain unanswered or only partially answered. However, emerging lines of evidence suggest that Sigma1 is a component of the cancer cell support machinery, that it facilitates protein interaction networks, that it allosterically modulates the activity of its associated proteins, and that Sigma1 is a selectively multifunctional drug target.
Collapse
Affiliation(s)
- Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, USA.
| | - Christina M Maher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
72
|
Velmurugan BK, Yang HH, Sung PJ, Weng CF. Excavatolide B inhibits nonsmall cell lung cancer proliferation by altering peroxisome proliferator activated receptor gamma expression and PTEN/AKT/NF-Kβ expression. ENVIRONMENTAL TOXICOLOGY 2017; 32:290-301. [PMID: 26790859 DOI: 10.1002/tox.22235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/27/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
Marine organisms are proven to be rich source of secondary metabolites that can be used to treat various diseases. Excavatolide B (Exc.B), the most abundant metabolite was found in the marine coral Briareum excavatum exhibits cytotoxic effects against lung cancer cell. Treatment of the A549 cells with Exc.B significantly reduced its cell viability and induced cell cycle arrest at subG1 phase in a dose- and time-dependent manner, respectively. Apoptosis induction by Exc.B was further confirmed by decreased pro-caspase 3 expressions and increased proteolytic cleavage of poly (ADP-ribose) polymerase (PARP) expression. Furthermore, Exc.B increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) and also decreased the antioxidant enzymes such as, Catalase, GPx, SOD, GST, and GSH. The proteomic analysis data revealed that total thirty six proteins were altered by Exc.B. STRING database showed that most of the altered proteins have no interaction between each other. Based on these data, KSR1, RuVBL2, PPAR-γ, and Tenascin X proteins were chosen to validate the 2DE data by Western blotting. Additional experiments demonstrated that Exc.B induced PTEN expression and inhibited pAKT and NF-kB expression. These results provide a novel insight into mechanisms underlying the inhibition of A549 cells growth by excavatolide B. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 290-301, 2017.
Collapse
Affiliation(s)
- Bharath Kumar Velmurugan
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
| | - Hsueh-Hui Yang
- Department of Research, Buddhist Tzu Chi General Hospital, General Education Center, Tzu Chi College of Technology, Hualien, Taiwan
| | - Ping-Jyun Sung
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, 944, Taiwan
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien, 974, Taiwan
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung, Taiwan
| |
Collapse
|
73
|
Abstract
The phosphatase and tensin homolog gene PTEN is one of the most frequently mutated tumor suppressor genes in human cancer. Loss of PTEN function occurs in a variety of human cancers via its mutation, deletion, transcriptional silencing, or protein instability. PTEN deficiency in cancer has been associated with advanced disease, chemotherapy resistance, and poor survival. Impaired PTEN function, which antagonizes phosphoinositide 3-kinase (PI3K) signaling, causes the accumulation of phosphatidylinositol (3,4,5)-triphosphate and thereby the suppression of downstream components of the PI3K pathway, including the protein kinase B and mammalian target of rapamycin kinases. In addition to having lipid phosphorylation activity, PTEN has critical roles in the regulation of genomic instability, DNA repair, stem cell self-renewal, cellular senescence, and cell migration. Although PTEN deficiency in solid tumors has been studied extensively, rare studies have investigated PTEN alteration in lymphoid malignancies. However, genomic or epigenomic aberrations of PTEN and dysregulated signaling are likely critical in lymphoma pathogenesis and progression. This review provides updated summary on the role of PTEN deficiency in human cancers, specifically in lymphoid malignancies; the molecular mechanisms of PTEN regulation; and the distinct functions of nuclear PTEN. Therapeutic strategies for rescuing PTEN deficiency in human cancers are proposed.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA.,The University of Texas Graduate School of Biomedical Science, Houston, TX 77230, USA
| |
Collapse
|
74
|
Wilczynski M, Danielska J, Dzieniecka M, Szymanska B, Wojciechowski M, Malinowski A. Prognostic and Clinical Significance of miRNA-205 in Endometrioid Endometrial Cancer. PLoS One 2016; 11:e0164687. [PMID: 27737015 PMCID: PMC5063284 DOI: 10.1371/journal.pone.0164687] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023] Open
Abstract
Endometrial cancer is one of the most common malignancies of the reproductive female tract, with endometrioid endometrial cancer being the most frequent type. Despite the relatively favourable prognosis in cases of endometrial cancer, there is a necessity to evaluate clinical and prognostic utility of new molecular markers. MiRNAs are small, non-coding RNA molecules that take part in RNA silencing and post-transcriptional regulation of gene expression. Altered expression of miRNAs may be associated with cancer initiation, progression and metastatic capabilities. MiRNA-205 seems to be one of the key regulators of gene expression in endometrial cancer. In this study, we investigated clinical and prognostic role of miRNA-205 in endometrioid endometrial cancer. After total RNA extraction from 100 archival formalin-fixed paraffin-embedded tissues, real-time quantitative RT-PCR was used to define miRNA-205 expression levels. The aim of the study was to evaluate miRNA-205 expression levels in regard to patients' clinical and histopathological features, such as: survival rate, recurrence rate, staging, myometrial invasion, grading and lymph nodes involvement. Higher levels of miRNA-205 expression were observed in tumours with less than half of myometrial invasion and non-advanced cancers. Kaplan-Maier analysis revealed that higher levels of miRNA-205 were associated with better overall survival (p = 0,034). These results indicate potential clinical utility of miRNA-205 as a prognostic marker.
Collapse
Affiliation(s)
- Milosz Wilczynski
- Department of Operative Gynecology, Endoscopy and Gynecologic Oncology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | | | - Monika Dzieniecka
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Bozena Szymanska
- The Central Laboratory of Medical University in Lodz, Lodz, Poland
| | - Michal Wojciechowski
- Department of Operative Gynecology, Endoscopy and Gynecologic Oncology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Andrzej Malinowski
- Department of Surgical and Endoscopic Gynecology, Medical University in Lodz, Lodz, Poland
| |
Collapse
|
75
|
Calhoun BC, Portier B, Wang Z, Minca EC, Budd GT, Lanigan C, Tubbs RR, Morrison LE. MET and PTEN gene copy numbers and Ki-67 protein expression associate with pathologic complete response in ERBB2-positive breast carcinoma patients treated with neoadjuvant trastuzumab-based therapy. BMC Cancer 2016; 16:695. [PMID: 27576528 PMCID: PMC5006506 DOI: 10.1186/s12885-016-2743-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/22/2016] [Indexed: 01/04/2023] Open
Abstract
Background Pathologic complete response (pCR) after neoadjuvant chemotherapy for breast cancer is associated with improved prognosis in aggressive tumor subtypes, including ERBB2- positive tumors. Recent adoption of pCR as a surrogate endpoint for clinical trials in early stage breast cancer in the neoadjuvant setting highlights the need for biomarkers that, alone or in combination, help predict the likelihood of response to treatment. Methods Biopsy specimens from 29 patients with invasive ductal carcinoma treated with trastuzumab-based therapy prior to definitive resection and pathologic staging were evaluated by dual color bright field in situ hybridization (dual ISH) using probes for MET, TOP2A, PTEN, and PIK3CA genes, each paired with centromeric probes to their respective chromosomes (chromosomes 7, 17, 10, and 3). Ki-67 expression was assessed by immunohistochemistry (IHC). Various parameters describing copy number alterations were evaluated for each gene and centromere probe to identify the optimal parameters for clinical relevance. Combinations of ISH parameters and IHC expression for Ki-67 were also evaluated. Results Of the four genes and their respective chromosomes evaluated by ISH, two gene copy number parameters provided statistically significant associations with pCR: MET gain or loss relative to chromosome 7 (AUC = 0.791, sensitivity = 92 % and specificity = 67 % at optimal cutoff, p = 0.0032) and gain of PTEN (AUC = 0.674, sensitivity = 38 % and specificity = 100 % at optimal cutoff, p = 0.039). Ki-67 expression was also found to associate significantly with pCR (AUC = 0.726, sensitivity = 100 % and specificity = 42 % at optimal cutoff, p = 0.0098). Combining gain or loss of MET relative to chromosome 7 with Ki-67 expression further improved the association with pCR (AUC = 0.847, sensitivity = 92 % and specificity = 83 % at optimal cutoffs, p = 0.0006). Conclusions An immunogenotypic signature of low complexity comprising MET relative copy number and Ki-67 expression generated by dual ISH and IHC may help predict pCR in ERBB2-positive breast cancer treated with neoadjuvant chemotherapy and trastuzumab. These findings require validation in additional patient cohorts. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2743-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin C Calhoun
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Bryce Portier
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.,Present Address: Ventana Medical Systems, Inc, 1910 E. Innovation Park Dr, Tucson, AZ, 85755, USA
| | - Zhen Wang
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Eugen C Minca
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - G Thomas Budd
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher Lanigan
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Raymond R Tubbs
- Department of Pathology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Larry E Morrison
- Present Address: Ventana Medical Systems, Inc, 1910 E. Innovation Park Dr, Tucson, AZ, 85755, USA.
| |
Collapse
|
76
|
Hoeflich KP, Guan J, Edgar KA, O'Brien C, Savage H, Wilson TR, Neve RM, Friedman LS, Wallin JJ. The PI3K inhibitor taselisib overcomes letrozole resistance in a breast cancer model expressing aromatase. Genes Cancer 2016; 7:73-85. [PMID: 27382432 PMCID: PMC4918946 DOI: 10.18632/genesandcancer.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Letrozole is a commonly used treatment option for metastatic hormone receptor-positive (HR+) breast cancer, but many patients ultimately relapse. Due to the importance of phosphoinositide-3 kinase (PI3K) in breast cancer, PI3K inhibitors such as taselisib are attractive for combination with endocrine therapies such as letrozole. Taselisib was evaluated as a single agent and in combination with letrozole in a breast cancer cell line engineered to express aromatase. The combination of taselisib and letrozole decreased cellular viability and increased apoptosis relative to either single agent. Signaling cross-talk between the PI3K and ER pathways was associated with efficacy for the combination. In a secreted factor screen, multiple soluble factors, including members of the epidermal and fibroblast growth factor families, rendered breast cancer cells non-responsive to letrozole. It was discovered that many of these factors signal through the PI3K pathway and cells remained sensitive to taselisib in the presence of the soluble factors. We also found that letrozole resistant lines have elevated PI3K pathway signaling due to an increased level of p110α, but are still sensitive to taselisib. These data provide rationale for clinical evaluation of PI3K inhibitors to overcome resistance to endocrine therapies in ER+ breast cancer.
Collapse
Affiliation(s)
- Klaus P Hoeflich
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Jane Guan
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Kyle A Edgar
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Carol O'Brien
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Heidi Savage
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Timothy R Wilson
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | - Richard M Neve
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA, USA
| | - Lori S Friedman
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| | - Jeffrey J Wallin
- Department of Translational Oncology, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
77
|
Roa I, Garcia H, Game A, de Toro G, de Aretxabala X, Javle M. Somatic Mutations of PI3K in Early and Advanced Gallbladder Cancer. J Mol Diagn 2016; 18:388-394. [DOI: 10.1016/j.jmoldx.2015.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/02/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
|
78
|
Prognostic value of ERG, PTEN, CRISP3 and SPINK1 in predicting biochemical recurrence in prostate cancer. Oncol Lett 2016; 11:3621-3630. [PMID: 27284364 PMCID: PMC4887942 DOI: 10.3892/ol.2016.4459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/15/2016] [Indexed: 11/18/2022] Open
Abstract
The established prognostic factors associated with prostatic adenocarcinoma are the Gleason score, pathological T staging and serum prostatic-specific antigen (PSA) level. However, these prognostic factors alone are not sufficient for predicting prognostic characteristics, including early stage or advanced prostate cancer, presence of metastasis or disease-related mortality. The purpose of the present study was to simultaneously evaluate the prognostic value and associations of four biomarkers, namely, transcriptional regulator ERG (ERG), phosphatase and tensin homolog (PTEN), cysteine-rich secretory protein 3 (CRISP3) and serine protease inhibitor Kazal type I (SPINK1), and to conduct risk stratification of prostate cancer for use in patient management. A total of 68 formalin-fixed, paraffin-embedded, prostate cancer samples from radical prostatectomies were obtained in the Kyung Hee University Hospital (Seoul, Korea) and were studied immunohistochemically for ERG, PTEN, CRISP3 and SPINK1 to determine the proportion and intensity of staining. SPINK1 expression was mutually exclusive of ERG expression (P=0.001). The loss of PTEN and high CRISP3 expression are unfavorable indicators for prostate cancer, as PTEN loss was associated with shorter biochemical recurrence (BCR) (P=0.039), and high CRISP3 expression was associated with increased BCR (P<0.001) and cancer-related mortalities (P=0.011). Using the combination of low PTEN and high CRISP3 expression enables attention to be focused on patients who exhibit a poor prognosis. Subgrouping of patients, into high-risk and low-risk categories, was correlated with BCR-free survival in prostate cancer upon multivariate analysis (P=0.030). Overall, low PTEN and high CRISP3 expression significantly characterize the subgroups of prostate cancer that have a poor prognosis for BCR.
Collapse
|
79
|
Berardi R, Morgese F, Torniai M, Savini A, Partelli S, Rinaldi S, Caramanti M, Ferrini C, Falconi M, Cascinu S. Medical treatment for gastro-entero-pancreatic neuroendocrine tumours. World J Gastrointest Oncol 2016; 8:389-401. [PMID: 27096034 PMCID: PMC4824717 DOI: 10.4251/wjgo.v8.i4.389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 02/16/2016] [Indexed: 02/05/2023] Open
Abstract
Gastro-entero-pancreatic neuroendocrine neoplasms (GEP-NENs) represents a various family of rare tumours. Surgery is the first choice in GEP-NENs patients with localized disease whilst in the metastatic setting many other treatment options are available. Somatostatin analogues are indicated for symptoms control in functioning tumours. Furthermore they may be effective to inhibit tumour progression. GEP-NENs pathogenesis has been extensively studied in the last years therefore several driver mutations pathway genes have been identified as crucial factors in their tumourigenesis. GEP-NENs can over-express vascular endothelial growth factor (VEGF), basic-fibroblastic growth factor, transforming growth factor (TGF-α and -β), platelet derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1) and their receptors PDGF receptor, IGF-1 receptor, epidermal growth factor receptor, VEGF receptor, and c-kit (stem cell factor receptor) that can be considered as potential targets. The availability of new targeted agents, such as everolimus and sunitinib that are effective in advanced and metastatic pancreatic neuroendocrine tumours, has provided new treatment opportunities. Many trials combing new drugs are ongoing.
Collapse
|
80
|
An J, Zheng L, Xie S, Yin F, Huo X, Guo J, Zhang X. Regulatory Effects and Mechanism of Adenovirus-Mediated PTEN Gene on Hepatic Stellate Cells. Dig Dis Sci 2016; 61:1107-20. [PMID: 26660904 DOI: 10.1007/s10620-015-3976-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/23/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Tension homology deleted on chromosome ten (PTEN) is important in liver fibrosis. AIMS The purpose of this study was to evaluate the PTEN gene effects and mechanism of action on hepatic stellate cells (HSCs). METHODS The rat primary HSCs and human LX-2 cells were transfected by an adenovirus containing cDNA constructs encoding the wild-type PTEN (Ad-PTEN), the PTEN mutant G129E gene (Ad-G129E) and RNA interference targeting the PTEN sequence PTEN short hairpin RNA (PTEN shRNA), to up-regulate and down-regulate PTEN expression, respectively. The HSCs were assayed with a fluorescent microscope, real time PCR, Western blot, MTT, flow cytometry and Terminal-deoxynucleoitidyl transferase mediated nick end labeling. In addition, the CCl4 induced rat hepatic fibrosis model was also established to check the in vivo effects of the recombinant adenovirus with various levels of PTEN expression. RESULTS The data have shown that the over-expressed PTEN gene led to reduced HSCs activation and viability, caspase-3 activity and cell cycle arrest in the G0/G1 and G2/M phases, as well as negative regulation of the PI3K/Akt and FAK/ERK signaling pathways in vitro. The over-expressed PTEN gene improved liver function, inhibited proliferation and promoted apoptosis of HSCs both in vitro and in vivo. CONCLUSIONS These data have shown that gene therapy using the recombinant adenovirus encoding wild-type PTEN inhibits proliferation and induces apoptosis of HSCs, which is a potential treatment option for hepatic fibrosis.
Collapse
Affiliation(s)
- Junyan An
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Libo Zheng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Shurui Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Fengrong Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaoxia Huo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Jian Guo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, 215 West Heping Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
81
|
Antsiferova YS, Sotnikova NY. Apoptosis and endometrial receptivity: Relationship with in vitro fertilization treatment outcome. World J Obstet Gynecol 2016; 5:87-96. [DOI: 10.5317/wjog.v5.i1.87] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/28/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023] Open
Abstract
Apoptosis is an important process in the reconstruction of endometrium within the menstrual cycle. The balance between cell proliferation and apoptosis regulates the periodic repair and shedding of endometrial cells and leads to the menstruation or prepare the mucosal layer of endometrium for the implantation of the embryo. Many factors with pro- and antiapoptotic action, such as B cell lymphoma/leukemia-2 and inhibitors apoptosis proteins families, caspases, tumor necrosis factor receptors, phosphatase and tensin homolog, proliferator-activated receptor gamma, microRNAs and others are differently expressed in the endometrial tissue at phases of menstrual cycle. Receptivity of the endometrium at the period of “window of implantation” is associated with the significant increase of apoptosis in endometrium to allow the embryo to be successfully implanted. The impairment of apoptosis regulation in the endometrium at this period often is observed in infertile women with endometriosis, tubal factor, polycystic ovary syndrome, etc.. In many cases the impairment of apoptosis regulation in the endometrium is the main cause of in vitro fertilization (IVF) treatment failure in these patients. As of today, the exact mechanisms and factors mediating the apoptotic process in normal endometrium and in infertile women are not fully understood. Herein, the literature data concerning the endometrial apoptosis regulation in general, and in light of the influence of apoptosis upon IVF treatment outcome are reviewed. The possibility to use some parameters of endometrial apoptosis for prediction of the successful pregnancy achievement in women participating in IVF protocols also is discussed.
Collapse
|
82
|
Achmad H, Singgih MF, Hendrastuti H. Akt Signal Transduction Pathways and Nuclear Factor-kappa B (NF-κB) Transcription as a Molecular Target of Oral Tongue Squamous Cell Carcinoma (SP-C1) Using Papua's Anthill Plant ( Myrmecodia pendans ). Pak J Biol Sci 2016; 19:323-330. [PMID: 29023018 DOI: 10.3923/pjbs.2016.323.330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Squamous cell carcinoma is a malignant tumor derived from epithelial tissue with cell structure group, capable to infiltrate through the bloodstream and lymphatic tissue, spreading throughout the body. This study aim to complete theoretical foundation of flavonoid compound from anthill plant (Myrmecodia pendans) which contribute in growing cell line oral tongue squamous cell carcinoma through proliferation inhibition, inhibition mechanism transduction Akt signal and NF-κB in tongue cancer cell Supri's-clone (SP-C1). Application benefit to explore potential fractionation anthill plant use herbal ingredients for chemo protective therapy. MATERIALS AND METHODS This whole study conducted with experiment laboratorium method utilized tongue cancer human cell SP-C1. This study consist 2 steps, first to determinate, extraction and fractionation anthill plant and carry out tonicity test to get flavonoid fraction from anthill plant which has anticancer potential against tongue cancer cell SP-C1. The second stage held with invasion inhibition test, proliferation and inhibition test against protein Akt expression and NF-κB in tongue cancer cell SP-C1. The barriers to proliferation through the test of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, barriers to invasion through Boyden chamber assay and the membrane polycarbonate, ELISA analysis and Western blotting analysis on the obstacle Akt signal transduction pathways and transcription factor of nuclear factor-kappa B (NF-κB). Data analysis conducted with 2 way ANOVA followed with LSD post hoc test with significance is set on 95%. Pearson correlation conduct to find strong relationship intervariable. RESULTS This study showed that the average cell growth inhibition SP-C1 based on the time and concentration using the MTT [3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The resistance of cancer cell in vitro SP-C1. On ELISA testing and Western blotting analysis, inhibiton of protein expression of Akt signal transduction and transcription factor of nuclear factor-kappa B (NF-κB) showed increased protein expression was significantly obstacles and prove that the ethyl acetate fraction flavonoid inhibits translocation and activation of transcription pathway NF-κB and growth factors that induces the phosphorylation of Akt signal transduction pathway. CONCLUSION Ethyl acetate fraction flavonoid anthill has antitumor activity in multiple molecular targets transduction pathway including Akt and nuclear factor-kappa B (NF-κB) squamous cell carcinoma of the tongue.
Collapse
Affiliation(s)
- Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Marhamah F Singgih
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - H Hendrastuti
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia
| |
Collapse
|
83
|
den Hertog J. Tumor Suppressors in Zebrafish: From TP53 to PTEN and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:87-101. [PMID: 27165350 DOI: 10.1007/978-3-319-30654-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Zebrafish are increasingly being used to study cancer. Almost all tumor types have been found in zebrafish. However, tumor incidence is relatively low and tumors develop late in life. Functional inactivation of tumor suppressors is a crucial step in cancer progression and more and more tumor suppressor genes are being studied in zebrafish. Most often tumor suppressors have been inactivated by reverse genetics approaches using targeted disruption. However, some tumor suppressor mutants were identified by forward genetic screens for mutants with a particular phenotype. Some of the latter genes had not been recognized as tumor suppressors yet. Similarly, a screen for genes that suppress tumor formation in zebrafish in vivo led to the identification of a novel tumor suppressor gene. In this review, I will provide an overview of what the zebrafish has taught us about tumor suppressors.
Collapse
Affiliation(s)
- Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands. .,Institute of Biology, Leiden University, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
84
|
Aurora-A promotes chemoresistance in hepatocelluar carcinoma by targeting NF-kappaB/microRNA-21/PTEN signaling pathway. Oncotarget 2015; 5:12916-35. [PMID: 25428915 PMCID: PMC4350360 DOI: 10.18632/oncotarget.2682] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/04/2014] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is highly resistant to chemotherapy. Previously, we have shown that Aurora-A mRNA is upregulated in HCC cells or tissues and silencing of Aurora-A using small interfering RNA (siRNA) decreases growth and enhances apoptosis in HCC cells. However, the clinical significance of Aurora-A protein expression in HCC and association between Aurora-A expression and HCC chemoresistance is unclear. Here, we showed that Aurora-A protein is upregulated in HCC tissues and significantly correlated with recurrence-free and overall survival of patients and multivariate analysis indicated that immunostaining of Aurora-A will be an independent prognostic factor for patients. Silencing of Aurora-A significantly increased the chemosensitivity of HCC cells both in vitro and in vivo, while overexpression of Aurora-A induced the opposite effects. Furthermore, overexpression of Aurora-A reduces chemotherapy-induced apoptosis by promoting microRNA-21 expression, which negatively regulates PTEN and then inhibits caspase-3-mediated apoptosis induction. Mechanically, we demonstrated that Aurora-A promotes expression of nuclear Ikappaβ-alpha (Iκβα) protein and enhances NF-kappa B (NF-κB) activity, thus promotes the transcription of miR-21. This study first reported the involvement of Aurora-A/NF-κB/miR-21/PTEN/Akt signaling axis in chemoresistance of HCC cells, suggesting that targeting this signaling pathway would be helpful as a therapeutic strategy for the reversal of chemoresistance in HCC.
Collapse
|
85
|
Intact PTEN Expression by Immunohistochemistry is Associated With Decreased Survival in Advanced Stage Ovarian/Primary Peritoneal High-grade Serous Carcinoma. Int J Gynecol Pathol 2015; 34:497-506. [DOI: 10.1097/pgp.0000000000000205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
86
|
Yang HP, Meeker A, Guido R, Gunter MJ, Huang GS, Luhn P, d'Ambrosio L, Wentzensen N, Sherman ME. PTEN expression in benign human endometrial tissue and cancer in relation to endometrial cancer risk factors. Cancer Causes Control 2015; 26:1729-36. [PMID: 26376893 DOI: 10.1007/s10552-015-0666-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Clonal loss of PTEN expression occurs frequently in endometrial carcinoma and endometrial hyperplasia. Limited data from immunohistochemical studies suggest that PTEN-null appearing endometrial glands are detectable in women without pathologic abnormalities, but the relationship of PTEN expression to endometrial cancer risk factors has not been extensively explored. We evaluated relationships between endometrial cancer risk factors and loss of PTEN expression in a set of benign endometrial samples prospectively collected from women undergoing hysterectomy and in endometrial cancer tissues from a population-based case-control study. METHODS We used a validated PTEN immunohistochemical assay to assess expression in epidemiological studies designed to assess benign endometrium [Benign Reproductive Tissue Evaluation Study (n = 73); Einstein Endometrium Study (n = 19)], and endometrial cancer [Polish Endometrial Cancer Study (n = 148)] tissues. Associations between endometrial cancer risk factors (collected via study-specific risk factor questionnaires) and PTEN expression in endometrial tissues were determined using Fisher's exact tests. RESULTS PTEN loss was detected in 19% of benign endometrial tissues versus 55% in endometrial cancers. NSAID use was statistically significantly associated with PTEN loss in the benign endometrium (p = 0.02). CONCLUSION Our data demonstrate that PTEN loss is detectable in endometrial tissues that are benign and malignant, with substantially more frequent loss in endometrial cancer compared with benign endometrium. However, alterations in expression were unrelated to most risk factors in this analysis, except for the association with NSAID use, which may represent a chance finding or reverse causality among patients with endometriosis who may have PTEN pathway abnormalities in eutopic endometrium. Further evaluation of factors associated with PTEN loss and long-term follow-up of women with PTEN-null endometrial glands may be useful in understanding early events in endometrial carcinogenesis.
Collapse
Affiliation(s)
- Hannah P Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Room #7E238, Bethesda, MD, 20892-9774, USA.
| | - Alan Meeker
- Johns Hopkins University, Baltimore, MD, USA
| | - Richard Guido
- Magee Women's Hospital of the UPMC System, Pittsburgh, PA, USA
| | | | - Gloria S Huang
- Obstetrics and Gynecology and Women's Health; and Molecular Pharmacology, Albert Einstein Cancer Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Patricia Luhn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Room #7E238, Bethesda, MD, 20892-9774, USA
| | - Lori d'Ambrosio
- Magee Women's Hospital of the UPMC System, Pittsburgh, PA, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Room #7E238, Bethesda, MD, 20892-9774, USA
| | - Mark E Sherman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Room #7E238, Bethesda, MD, 20892-9774, USA.,Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
87
|
Forcello N, Saraiya N. Idelalisib: The First-in-Class Phosphatidylinositol 3-Kinase Inhibitor for Relapsed CLL, SLL, and Indolent NHL. J Adv Pract Oncol 2015; 5:455-9. [PMID: 26328219 PMCID: PMC4530116 DOI: 10.6004/jadpro.2014.5.6.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
88
|
Calegari-Silva TC, Vivarini ÁC, Miqueline M, Dos Santos GRRM, Teixeira KL, Saliba AM, Nunes de Carvalho S, de Carvalho L, Lopes UG. The human parasite Leishmania amazonensis downregulates iNOS expression via NF-κB p50/p50 homodimer: role of the PI3K/Akt pathway. Open Biol 2015; 5:150118. [PMID: 26400473 PMCID: PMC4593669 DOI: 10.1098/rsob.150118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Leishmania amazonensis activates the NF-κB transcriptional repressor homodimer (p50/p50) and promotes nitric oxide synthase (iNOS) downregulation. We investigated the role of PI3K/Akt in p50/p50 NF-κB activation and the effect on iNOS expression in L. amazonensis infection. The increased occupancy of p50/p50 on the iNOS promoter of infected macrophages was observed and we demonstrated that both p50/p50 NF-κB induction and iNOS downregulation in infected macrophages depended on PI3K/Akt activation. Importantly, the intracellular growth of the parasite was also impaired during PI3K/Akt signalling inhibition and in macrophages knocked-down for Akt 1 expression. It was also observed that the increased nuclear levels of p50/p50 in L. amazonensis-infected macrophages were associated with reduced phosphorylation of 907 Ser p105, the precursor of p50. Corroborating these data, we demonstrated the increased levels of phospho-9 Ser GSK3β in infected macrophages, which is associated with GSK3β inhibition and, consequently, its inability to phosphorylate p105. Remarkably, we found that the levels of pPTEN 370 Ser, a negative regulator of PI3K, increased due to L. amazonensis infection. Our data support the notion that PI3K/Akt activity is sustained during the parasite infection, leading to NF-κB 105 phosphorylation and further processing to originate p50/p50 homodimers and the consequent downregulation of iNOS expression.
Collapse
Affiliation(s)
- Teresa C Calegari-Silva
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Áislan C Vivarini
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Marina Miqueline
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Guilherme R R M Dos Santos
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Karina Luiza Teixeira
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- Departamento de Microbiologia e Parasitologia, Da Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Simone Nunes de Carvalho
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laís de Carvalho
- Laboratório Cultura de Células, Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses G Lopes
- Laboratório de Parasitologia Molecular, Instituto de Biofísica Carlos Chagas Filho, CCS, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
89
|
Hou MM, Liu X, Wheler J, Naing A, Hong D, Coleman RL, Tsimberidou A, Janku F, Zinner R, Lu K, Kurzrock R, Fu S. Targeted PI3K/AKT/mTOR therapy for metastatic carcinomas of the cervix: A phase I clinical experience. Oncotarget 2015; 5:11168-79. [PMID: 25426553 PMCID: PMC4294378 DOI: 10.18632/oncotarget.2584] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/09/2014] [Indexed: 11/25/2022] Open
Abstract
Background Activated PI3K/AKT/mTOR pathway frequently occurs in metastatic or recurrent cervical carcinomas. However, the clinical benefits of matched therapy, a therapeutic approach targeting a specific mutational abnormality, have not yet been established. Methods We analyzed the outcomes of patients with metastatic or recurrent cervical carcinomas who had a test for PIK3CA mutation and/or PTEN loss/mutation, and received ≥1 phase I therapeutic regimen between January 2006 and June 2013. Results Patients with adenocarcinoma had fewer PIK3CA mutations (14%), and survived longer (median, 14.2 months) than those with squamous cell carcinoma (48% and 7.2 months; p = 0.016, and 0.001, respectively). Matched therapy targeting the activated PI3K/AKT/mTOR pathway led to a favorable rate of SD ≥ 6 months/CR/PR (53%) and significantly longer progression-free survival (median, 6.0 months) than non-matched therapy (11% and 1.5 months; p = 0.08 and 0.026; respectively). In patients with squamous cell carcinoma of the cervix, the presence of PIK3CA mutations was associated with a significantly longer overall survival (median, 9.4 months) than the absence of PIK3CA mutations (median, 4.2 months; p = 0.019). Conclusions Matched therapy targeting the activated PI3K/AKT/mTOR pathway provided meaningful clinical benefits. Thus, further evaluation of PI3K/AKT/mTOR pathway targeted therapy is warranted, especially in metastatic or recurrent squamous cell carcinoma.
Collapse
Affiliation(s)
- Ming-Mo Hou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Division of Hematology-Oncology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Xiaochun Liu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer Wheler
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Hong
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Apostolia Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Filip Janku
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ralph Zinner
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Lu
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
90
|
The virus-induced protein APOBEC3G inhibits anoikis by activation of Akt kinase in pancreatic cancer cells. Sci Rep 2015; 5:12230. [PMID: 26178819 PMCID: PMC4503957 DOI: 10.1038/srep12230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 06/22/2015] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer is one of the more common cancers with a poor prognosis. Some varieties of cancer are related to virus infection. As a virus-induced protein, APOBEC3G (A3G) presents extensive anti-virus ability, but the role of A3G in pancreatic cancer was previously unknown. The expression of A3G in pancreatic cancer was examined using TaqMan real-time qPCR, immunohistochemical and immunofluorescent staining. Subsequently, the role of A3G in pancreatic cancer was evaluated in vivo using the tumor xenograft model. Anoikis was detected by colony formation assay and flow cytometry in vitro. The Akt kinase activity and target protein PTEN were examined by co-immunoprecipitation and immunoblot. The virus-induced protein A3G was significantly up-regulated in pancreatic cancer, and the up-regulation of A3G promoted xenograft tumor formation. A3G inactivated PTEN by binding to the C2 tensin-type and PDZ domains, thereby inducing anoikis resistance through Akt activation. Our results demonstrate that the up-regulation of A3G in pancreatic cancer cells induces anoikis resistance, and they provide novel insight into the mechanism by which A3G affects the malignant behavior of pancreatic cancer cells.
Collapse
|
91
|
Evodiamine inhibits the proliferation of human osteosarcoma cells by blocking PI3K/Akt signaling. Oncol Rep 2015; 34:1388-96. [DOI: 10.3892/or.2015.4084] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/04/2015] [Indexed: 11/05/2022] Open
|
92
|
Tan W, Gu Z, Shen B, Jiang J, Meng Y, Da Z, Liu H, Tao T, Cheng C. PTEN/Akt-p27kip1Signaling Promote the BM-MSCs Senescence and Apoptosis in SLE Patients. J Cell Biochem 2015; 116:1583-94. [PMID: 25649549 DOI: 10.1002/jcb.25112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 01/23/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Wei Tan
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
- Department of Emergency; The Yangzhou First People's Hospital; Yangzhou 225001 China
| | - Zhifeng Gu
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Biyu Shen
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Jinxia Jiang
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Yan Meng
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Zhanyun Da
- Department of Rheumatology; Affiliated Hospital of Nantong University; Nantong 226001 China
| | - Hong Liu
- Department of Immunology; Medical College; Nantong University; Nantong 226001 China
| | - Tao Tao
- Department of Immunology; Medical College; Nantong University; Nantong 226001 China
| | - Chun Cheng
- Department of Immunology; Medical College; Nantong University; Nantong 226001 China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target; Medical College; Nantong University; Nantong 226001 China
| |
Collapse
|
93
|
Nieuwenhuis MH, Kets CM, Murphy-Ryan M, Yntema HG, Evans DG, Colas C, Møller P, Hes FJ, Hodgson SV, Olderode-Berends MJW, Aretz S, Heinimann K, Gómez García EB, Douglas F, Spigelman A, Timshel S, Lindor NM, Vasen HFA. Cancer risk and genotype-phenotype correlations in PTEN hamartoma tumor syndrome. Fam Cancer 2015; 13:57-63. [PMID: 23934601 DOI: 10.1007/s10689-013-9674-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Patients with germline PTEN mutations are at high risk of developing benign and malignant tumours. We aimed to evaluate the cumulative risk of several types of cancer and of dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease, LDD). In addition, genotype-phenotype correlations in PTEN hamartoma tumour syndrome (PHTS) were assessed. Data on patients with PTEN mutations were collected from clinical genetic centres in Western Europe, Australia, and the USA. The cumulative risk of developing cancers of the breast, thyroid, endometrium, skin, kidneys, colorectum, and lungs, and also LDD was calculated by Kaplan-Meier methods. Associations between mutations and cancer were assessed by Chi square means. A total of 180 germline PTEN mutation carriers, 81 males (45%), from nine countries were included. The cumulative risk of developing any cancer and/or LDD at age 60 was 56% for males and 87% for females (p = 0.001). Females had significant higher risks of developing breast cancer, thyroid cancer, and LDD than males. The only genotype-phenotype correlation identified was a lower frequency of thyroid cancer in patients with missense mutations (p = 0.014). In conclusion, PHTS patients, particularly females, have a substantial risk of developing one or more tumours from a broad tumour spectrum. Major genotype-phenotype associations could not be identified.
Collapse
Affiliation(s)
- Marry H Nieuwenhuis
- The Netherlands Foundation for the Detection of Hereditary Tumors, Rijnsburgerweg 10, Poortgebouw Zuid, 2333 AA, Leiden, The Netherlands,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Zhang LL, Mu GG, Ding QS, Li YX, Shi YB, Dai JF, Yu HG. Phosphatase and Tensin Homolog (PTEN) Represses Colon Cancer Progression through Inhibiting Paxillin Transcription via PI3K/AKT/NF-κB Pathway. J Biol Chem 2015; 290:15018-29. [PMID: 25873394 DOI: 10.1074/jbc.m115.641407] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 01/02/2023] Open
Abstract
The tumor suppressor gene phosphatase and tensin homolog (PTEN) is frequently mutated in colon cancer. However, the potential contribution of loss of PTEN to colon cancer progression remains unclear. In this study, we demonstrated that PTEN overexpression or knockdown in Lovo colon cancer cells decreased or increased paxillin expression, respectively. Moreover, paxillin reversed PTEN-mediated inhibition of Lovo cell invasion and migration. Overexpression of PTEN in an orthotropic colon cancer nude mice model inhibited tumor formation and progression. In addition, PTEN protein level was negatively correlated with that of paxillin in human colon cancer tissues. Mechanistically, we identified three NF-κB binding sites on paxillin promoter and confirmed that paxillin was a direct transcriptional target of NF-κB. Our findings reveal a novel mechanism by which PTEN inhibits the progression of colon cancer by inhibiting paxillin expression downstream of PI3K/AKT/NF-κB pathway. Thereby, PTEN/PI3K/AKT/NF-κB/paxillin signaling cascade is an attractive therapeutic target for colon cancer progression.
Collapse
Affiliation(s)
- Ling-Li Zhang
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and the Departments of Gastroenterology and
| | - Gang-Gang Mu
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| | - Qian-Shan Ding
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| | - Yan-Xia Li
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| | - Yun-bo Shi
- Neurology, the First Affiliated Hospital of Zhengzhou University, 450000 Henan province, China
| | - Jin-Fen Dai
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| | - Hong-Gang Yu
- From the Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan and
| |
Collapse
|
95
|
Fang XY, Song R, Chen W, Yang YY, Gu YH, Shu YQ, Wu XD, Wu XF, Sun Y, Shen Y, Xu Q. PRL-3 Promotes the Malignant Progression of Melanoma via Triggering Dephosphorylation and Cytoplasmic Localization of NHERF1. J Invest Dermatol 2015; 135:2273-2282. [PMID: 25897829 DOI: 10.1038/jid.2015.154] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/06/2023]
Abstract
Phosphatase of regenerating liver-3 (PRL-3) has been reported to have a critical role in metastatic progression of cancers. Here, we investigate how PRL-3 increases the malignant degree of melanoma cells. The expression of PRL-3 increased gradually during the malignant progression of melanoma. The phosphorylation of Akt was elevated in highly malignant melanoma cells, which was accompanied by a decrease in nuclear phosphatase and tensin homolog (PTEN). The phosphorylation of NHERF1 in the serine site was regulated by PRL-3 and showed cytoplasmic translocation upon dephosphorylation, which resulted in a decrease in nuclear PTEN. The co-translocation of NHERF1 and PTEN from the nucleus to the cytoplasm was observed during the malignant progression of melanoma cells. Tumor growth was inhibited significantly, and the survival was prolonged upon knockdown of cytoplasmic NHERF1 in B16BL6 cells prior to the inoculation into mice. Taken together, to our knowledge previously unreported, we have identified NHERF1 as a potential substrate of PRL-3. Its phosphorylation status as well as its change in cellular localization and association with PTEN correlated with the malignant progression of melanoma. Our data provide an explanation for how PRL-3 promotes the malignant progression of melanoma, as well as a diagnostic marker or therapeutic target for malignant melanoma.
Collapse
Affiliation(s)
- Xian-Ying Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Ran Song
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuan-Yuan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan-Hong Gu
- Department of Clinical Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yong-Qian Shu
- Department of Clinical Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xu-Dong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xue-Feng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
96
|
Yang YK, Xi WY, Xi RX, Li JY, Li Q, Gao YE. MicroRNA-494 promotes cervical cancer proliferation through the regulation of PTEN. Oncol Rep 2015; 33:2393-401. [PMID: 25738254 DOI: 10.3892/or.2015.3821] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/02/2015] [Indexed: 01/11/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway appears to be a key regulator in cervical carcinogenesis. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is principally involved in the homeostatic maintenance of PI3K/Akt signaling and PTEN has been identified to play an important role in the occurrence and development of cervical cancer. MicroRNA (miRNA)-494 has been proven to be involved in the carcinogenesis and development of various types of cancer by directly targeting PTEN. However the role, mechanism and clinical significance of miR-494 in cervical cancer have not been further reported. In the present study, we analyzed the expression of miR-494 in -with PTEN expression and clinicopathological data of cervical cancer patients. The results showed that miR-494 expression was significantly upregulated in human cervical cancer cell lines and tissues. miR-494 upregulation was significantly associated with PTEN downregulation, adverse clinicopathological characteristics, poor overall and progression-free survival and poor prognosis. In vitro experiments showed that inhibition of miR-494 suppressed cell proliferation and growth by directly targeting the 3'-untranslated region (3'-UTR) of PTEN mRNA. These findings identified a novel molecular mechanism involved in the regulation of PTEN expression and cervical cancer progression. Results of the present study indicated that miR-494 may have an essential role in the carcinogenesis and progression of cervical cancer and targeting miR-494 may be a promising therapeutic strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yong-Kang Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wen-Yan Xi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ru-Xing Xi
- Department of Radiotherapy, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing-Yuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qin Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Yan-E Gao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
97
|
Hobiger K, Friedrich T. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Front Pharmacol 2015; 6:20. [PMID: 25713537 PMCID: PMC4322731 DOI: 10.3389/fphar.2015.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/21/2015] [Indexed: 02/03/2023] Open
Abstract
The transmembrane protein Ci-VSP from the ascidian Ciona intestinalis was described as first member of a fascinating family of enzymes, the voltage sensitive phosphatases (VSPs). Ci-VSP and its voltage-activated homologs from other species are stimulated by positive membrane potentials and dephosphorylate the head groups of negatively charged phosphoinositide phosphates (PIPs). In doing so, VSPs act as control centers at the cytosolic membrane surface, because they intervene in signaling cascades that are mediated by PIP lipids. The characteristic motif CX5RT/S in the active site classifies VSPs as members of the huge family of cysteine-based protein tyrosine phosphatases (PTPs). Although PTPs have already been well-characterized regarding both, structure and function, their relationship to VSPs has drawn only limited attention so far. Therefore, the intention of this review is to give a short overview about the extensive knowledge about PTPs in relation to the facts known about VSPs. Here, we concentrate on the structural features of the catalytic domain which are similar between both classes of phosphatases and their consequences for the enzymatic function. By discussing results obtained from crystal structures, molecular dynamics simulations, and mutagenesis studies, a possible mechanism for the catalytic cycle of VSPs is presented based on that one proposed for PTPs. In this way, we want to link the knowledge about the catalytic activity of VSPs and PTPs.
Collapse
Affiliation(s)
- Kirstin Hobiger
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps-Universität Marburg Marburg, Germany
| | - Thomas Friedrich
- Max-Volmer-Laboratory of Biophysical Chemistry, Institute of Chemistry, Technische Universität Berlin Berlin, Germany
| |
Collapse
|
98
|
Zhang J, Ning X, Cui W, Bi M, Zhang D, Zhang J. Transforming growth factor (TGF)-β-induced microRNA-216a promotes acute pancreatitis via Akt and TGF-β pathway in mice. Dig Dis Sci 2015; 60:127-35. [PMID: 25501921 DOI: 10.1007/s10620-014-3261-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/18/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Both transforming growth factor β (TGF-β) and MicroRNA-216a (miR-216a) were reported to be upregulated during acute pancreatitis (AP). Moreover, miR-216a can be induced by TGF-β. AIM This study aimed to investigate how TGF-β and miR-216a involved in the pathogenesis of AP both in a mouse model and in rat pancreatic acinar AR42J cells. METHODS Cerulein-induced AP mouse model was established and pretreated with a TGF-β inhibitor, SB431542. Serum amylase, lipase, tumor necrosis factor (TNF)-α, interleukin 6 (IL-6), TGF-β and histopathological changes of pancreas were determined. Expression of miR-216a was detected by quantitative real-time RT-PCR. Bioinformatics was utilized to predict the targets of miR-216a. Expression levels of phosphatase and tensin homolog (PTEN), mothers against decapentaplegic homolog 7 (Smad7), TGF-β receptor I, total Akt and pAkt were detected by Western blot. RESULTS SB431542 significantly decreased serum amylase, lipase, TNF-α, IL-6, TGF-β, histopathological changes of pancreas and expression of miR-216a in cerulein-induced mouse (P < 0.05). TGF-β induced miR-216a in AR42J cells. PTEN and Smad7 were identified to be the possible targets of miR-216a. Transfection of miR-216a mimics (or inhibitors) in AR42J cells downregulated (or upregulated) the expression of PTEN and Smad7, thus affected the expression of downstream pAkt and TGF-β receptor I. The expression changes of these protein caused by miR-216a can be regulated by SB431542 both in mouse model and AR42J cells. CONCLUSIONS TGF-β promotes AP by inducing miR-216a targeting PTEN and Smad7, thus through PI3K/Akt and TGF-β feedback pathway.
Collapse
Affiliation(s)
- Jian Zhang
- Department of General Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
99
|
Zaitsu Y, Oki E, Ando K, Ida S, Kimura Y, Saeki H, Morita M, Hirahashi M, Oda Y, Maehara Y. Loss of heterozygosity of PTEN (encoding phosphate and tensin homolog) associated with elevated HER2 expression is an adverse prognostic indicator in gastric cancer. Oncology 2014; 88:189-94. [PMID: 25472613 DOI: 10.1159/000368984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/08/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE PTEN (the encoding phosphate and tensin homolog) is a well-known cancer suppressor gene and its mutation and loss of heterozygosity (LOH) occurs in various types of carcinomas. This study aimed to examine the association between LOH of PTEN and prognosis in HER2-expressing and nonexpressing gastric cancer patients. METHODS Fresh-frozen tumor samples of 221 gastric cancer patients with a primary diagnosis of gastric carcinoma were examined for LOH of PTEN. The results were compared with pathological parameters and the HER2 status. To elucidate the role of LOH of PTEN, the activation of the PI3K/AKT pathway was examined immunohistochemically using a phosphorylation-specific antibody. RESULTS LOH of PTEN was observed in 20% of the patients (39 of 195 cases). LOH of PTEN was associated with vascular involvement (25 of 39 cases; p = 0.0083), equivocal to positive staining for HER2 (p = 0.0080), and phospho-Akt expression (p = 0.0067). Patients with HER2-expressing gastric cancer with LOH of PTEN had a significantly worse prognosis (p = 0.0050). CONCLUSIONS Although HER2 expression itself was not a prognostic factor, the combination of HER2 expression and LOH of PTEN exacerbates the malignant potential of gastric cancer through its proliferative function.
Collapse
Affiliation(s)
- Yoko Zaitsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|