51
|
Pagliari S, Jelinek J, Grassi G, Forte G. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function. Front Physiol 2014; 5:219. [PMID: 25071583 PMCID: PMC4076671 DOI: 10.3389/fphys.2014.00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction-which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs-would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.
Collapse
Affiliation(s)
- Stefania Pagliari
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| | - Jakub Jelinek
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| | - Gabriele Grassi
- Department of Life Sciences, University of TriesteTrieste, Italy
| | - Giancarlo Forte
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| |
Collapse
|
52
|
Signaling specificity in the Akt pathway in biology and disease. Adv Biol Regul 2014; 55:28-38. [PMID: 24794538 DOI: 10.1016/j.jbior.2014.04.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/31/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
Abstract
Akt/PKB is a key master regulator of a wide range of physiological functions including metabolism, proliferation, survival, growth, angiogenesis and migration and invasion. The Akt protein kinase family comprises three highly related isoforms encoded by different genes. The initial observation that the Akt isoforms share upstream activators as well as several downstream effectors, together with the high sequence homology suggested that their functions were mostly redundant. By contrast, an increasing body of evidence has recently uncovered the concept of Akt isoform signaling specificity, supported by distinct phenotypes displayed by animal strains genetically modified for each of the three genes, as well as by the identification of isoform-specific substrates and association with discrete subcellular locations. Given that Akt is regarded as a promising therapeutic target in a number of pathologies, it is essential to dissect the relative contributions of each isoform, as well as the degree of compensation in pathophysiological function. Here we summarize our view of how Akt selectivity is achieved in the context of subcellular localization, isoform-specific substrate phosphorylation and context-dependent functions in normal and pathophysiological settings.
Collapse
|
53
|
Chapski DJ, Monte E, Vondriska TM. Positive feedback in cardioprotection: can more mechanism lead to translation? Circ Res 2014; 114:1225-7. [PMID: 24723653 DOI: 10.1161/circresaha.114.303785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Douglas J Chapski
- From the Departments of Anesthesiology, Medicine, and Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | | |
Collapse
|
54
|
Pillai VB, Sundaresan NR, Gupta MP. Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res 2014; 114:368-78. [PMID: 24436432 DOI: 10.1161/circresaha.113.300536] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac hypertrophy is a multifactorial disease characterized by multiple molecular alterations. One of these alterations is change in the activity of Akt, which plays a central role in regulating a variety of cellular processes ranging from cell survival to aging. Akt activation is mainly achieved by its binding to phosphatidylinositol (3,4,5)-triphosphate. This results in a conformational change that exposes the kinase domain of Akt for phosphorylation and activation by its upstream kinase, 3-phosphoinositide-dependent protein kinase 1, in the cell membrane. Recent studies have shown that sirtuin isoforms, silent information regulator (SIRT) 1, SIRT3, and SIRT6, play an essential role in the regulation of Akt activation. Although SIRT1 deacetylates Akt to promote phosphatidylinositol (3,4,5)-triphosphate binding and activation, SIRT3 controls reactive oxygen species-mediated Akt activation, and SIRT6 transcriptionally represses Akt at the level of chromatin. In the first part of this review, we discuss the mechanisms by which sirtuins regulate Akt activation and how they influence other post-translational modifications of Akt. In the latter part of the review, we summarize the implications of sirtuin-dependent regulation of Akt signaling in the control of major cellular processes such as cellular growth, angiogenesis, apoptosis, autophagy, and aging, which are involved in the initiation and progression of several diseases.
Collapse
Affiliation(s)
- Vinodkumar B Pillai
- From Center of Cardiac Cell Biology and Therapeutics, Committee on Molecular Medicine, University of Chicago, Chicago, IL
| | | | | |
Collapse
|
55
|
Huang HH, Shao ZH, Li CQ, Vanden Hoek TL, Li J. Baicalein Protects Cardiomyocytes Against Mitochondrial Oxidant Injury Associated with JNK Inhibition and Mitochondrial Akt Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:79-94. [DOI: 10.1142/s0192415x14500050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Baicalein, a flavonoid derived from Scutellaria baicalensis Georgi, possesses cardioprotection against oxidant injury by scavenging reactive oxygen species (ROS). Few studies investigate whether baicalein protection is mediated by attenuating mitochondrial ROS and modulating the prosurvival and proapoptotic signaling. Primary cultured chick cardiomyocytes were used to study the role of baicalein in mitochondrial superoxide [Formula: see text] generation and signaling of Akt and JNK. Cells were exposed to H 2 O 2 for 2 h and baicalein was given 2 h prior to and during 2 h of H 2 O 2 exposure. Cell viability was assessed by propidium iodide and DNA fragmentation. H 2 O 2 (500 μM) significantly induced 45.3 ± 6.2% of cell death compared to the control (p < 0.001) and resulted in DNA laddering. Baicalein (10, 25 or 50 μM) dose-dependently reduced the cell death to 38.7 ± 5.6% (p = 0.226); 31.2 ± 3.9% (p < 0.01); 30.3 ± 5.3% (p < 0.01), respectively. It also attenuated DNA laddering. Further, baicalein decreased intracellular ROS and mitochondrial [Formula: see text] generation that was confirmed by superoxide dismutase PEG-SOD and mitochondria electron transport chain complex III inhibitor stigmatellin. In addition, baicalein increased Akt phosphorylation and decreased JNK phosphorylation in H 2 O 2-exposed cells. Moreover, baicalein augmented mitochondrial phosphorylation of Akt Thr308 and GSK3β Ser9, and prevented mitochondrial cytochrome c release assessed by cellular fractionation. Our results suggest that baicalein cardioprotection may involve an attenuation of mitochondrial [Formula: see text] and an increase in mitochondrial phosphorylation of Akt and GSK3β while decreasing JNK activation.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
- Department of Emergency Medicine, Taipei Veterans General Hospital and Emergency Medicine, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Zuo-Hui Shao
- Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
| | - Chang-Qing Li
- Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
| | - Terry L. Vanden Hoek
- Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
| | - Jing Li
- Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA
| |
Collapse
|
56
|
Bukhari F, MacGillivray T, del Monte F, Hajjar RJ. Genetic maneuvers to ameliorate ventricular function in heart failure: therapeutic potential and future implications. Expert Rev Cardiovasc Ther 2014; 3:85-97. [PMID: 15723577 DOI: 10.1586/14779072.3.1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gene therapy to treat heart failure has evolved into a growing field of investigation yielding remarkable results in preclinical models. Whether these results will persist in clinical trials remains to be seen. However, researchers still face a number of obstacles that need to be overcome before this treatment can be employed effectively. Efforts are required to identify better vectors with minimal side effects and maximal efficiency and durability. There is also a need to develop less invasive and more effective techniques to deliver these vectors. This review will discuss different methods to achieve these goals, the various pathologic mechanisms that have been targeted so far and those with strong potential for use in the future.
Collapse
Affiliation(s)
- Fariya Bukhari
- University of Arizona, Department of Medicine, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
57
|
Abstract
Multiple studies have shown that the cytokine leukemia inhibitory factor (LIF) is protective of the myocardium in the acute stress of ischemia-reperfusion. All three major intracellular signaling pathways that are activated by LIF in cardiac myocytes have been linked to actions that protect against oxidative stress and cell death, either at the level of the mitochondrion or via nuclear transcription. In addition, LIF has been shown to contribute to post-myocardial infarction cardiac repair and regeneration, by stimulating the homing of bone marrow-derived cardiac progenitors to the injured myocardium, the differentiation of resident cardiac stem cells into endothelial cells, and neovascularization. Whether LIF offers protection to the heart under chronic stress such as hypertension-induced cardiac remodeling and heart failure is not known. However, mice with cardiac myocyte restricted knockout of STAT3, a principal transcription factor activated by LIF, develop heart failure with age, and cardiac STAT3 levels are reported to be decreased in heart failure patients. In addition, endogenously produced LIF has been implicated in the cholinergic transdiffrentiation that may serve to attenuate sympathetic overdrive in heart failure and in the peri-infarct region of the heart after myocardial infarction. Surprisingly, therapeutic strategies to exploit the beneficial actions of LIF on the injured myocardium have received scant attention. Nor is it established whether the purported so-called adverse effects of LIF observed in isolated cardiac myocytes have physiological relevance in vivo. Here we present an overview of the actions of LIF in the heart with the goal of stimulating further research into the translational potential of this pleiotropic cytokine.
Collapse
|
58
|
Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H, Dostal DE, White MF, Baker KM, Guo S. Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance. Diabetes 2013; 62:3887-900. [PMID: 24159000 PMCID: PMC3806607 DOI: 10.2337/db13-0095] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac failure is a major cause of death in patients with type 2 diabetes, but the molecular mechanism that links diabetes to heart failure remains unclear. Insulin resistance is a hallmark of type 2 diabetes, and insulin receptor substrates 1 and 2 (IRS1 and IRS2) are the major insulin-signaling components regulating cellular metabolism and survival. To determine the role of IRS1 and IRS2 in the heart and examine whether hyperinsulinemia causes myocardial insulin resistance and cellular dysfunction via IRS1 and IRS2, we generated heart-specific IRS1 and IRS2 gene double-knockout (H-DKO) mice and liver-specific IRS1 and IRS2 double-knockout (L-DKO) mice. H-DKO mice had reduced ventricular mass; developed cardiac apoptosis, fibrosis, and failure; and showed diminished Akt→forkhead box class O-1 signaling that was accompanied by impaired cardiac metabolic gene expression and reduced ATP content. L-DKO mice had decreased cardiac IRS1 and IRS2 proteins and exhibited features of heart failure, with impaired cardiac energy metabolism gene expression and activation of p38α mitogen-activated protein kinase (p38). Using neonatal rat ventricular cardiomyocytes, we further found that chronic insulin exposure reduced IRS1 and IRS2 proteins and prevented insulin action through activation of p38, revealing a fundamental mechanism of cardiac dysfunction during insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Yajuan Qi
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
- Department of Pharmacology, Hebei United University, Tangshan, China
| | - Zihui Xu
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
- Division of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qinglei Zhu
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Candice Thomas
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Rajesh Kumar
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Hao Feng
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - David E. Dostal
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Morris F. White
- Howard Hughes Medical Institute, Division of Endocrinology, Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts
| | - Kenneth M. Baker
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
| | - Shaodong Guo
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A&M University Health Science Center, and Scott & White, Central Texas Veterans Health Care System, Temple, Texas
- Corresponding author: Shaodong Guo,
| |
Collapse
|
59
|
Neary CL, Pastorino JG. Akt inhibition promotes hexokinase 2 redistribution and glucose uptake in cancer cells. J Cell Physiol 2013; 228:1943-8. [PMID: 23629924 DOI: 10.1002/jcp.24361] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
Hexokinase II (HK2), the enzyme that catalyzes the first committed step of glycolysis, is overexpressed in many cancers, as is the central signaling kinase Akt. Akt activity promotes HK2 association with the mitochondria, as well as glucose uptake by cancer cells. In HeLa cervical cancer cells, Akt inhibitor IV (Ai4) increased nuclear HK2 localization, while in MDA-MB-231 breast cancer cells, Ai4 merely induced cytoplasmic redistribution without increased nuclear accumulation. Small interfering RNA (siRNA) directed against Akt confirmed the effect in HeLa cells. Next, we treated the cells with clotrimazole (CTZ), which detaches HK2 from the mitochondria, or leptomycin B (LMB), which promotes HK2 nuclear accumulation, and determined the effect on HK2 subcellular distribution. In both cell lines, CTZ detached HK2 from the mitochondria, without substantially increasing nuclear HK2, while LMB increased nuclear HK2, without redistributing cytoplasmic HK2. Contrary to expectations, Akt inhibition promoted glucose uptake in both cell lines, suggesting that Akt inhibition may increase glucose uptake by detaching HK2 from the mitochondria. In both cell lines, CTZ and LMB increased glucose uptake. However, the results in the HeLa cells showed greater effects: CTZ increased glucose uptake to a similar degree to Ai4, while LMB was far more effective than either. These data suggest that both detachment of HK2 from the mitochondria and increased nuclear HK2 are important for Ai4-induced increased glucose uptake.
Collapse
Affiliation(s)
- Catherine L Neary
- Department of Molecular Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA.
| | | |
Collapse
|
60
|
Moschella PC, McKillop J, Pleasant DL, Harston RK, Balasubramanian S, Kuppuswamy D. mTOR complex 2 mediates Akt phosphorylation that requires PKCε in adult cardiac muscle cells. Cell Signal 2013; 25:1904-12. [PMID: 23673367 PMCID: PMC3704180 DOI: 10.1016/j.cellsig.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/06/2013] [Indexed: 01/28/2023]
Abstract
Our earlier work showed that mammalian target of rapamycin (mTOR) is essential to the development of various hypertrophic responses, including cardiomyocyte survival. mTOR forms two independent complexes, mTORC1 and mTORC2, by associating with common and distinct cellular proteins. Both complexes are sensitive to a pharmacological inhibitor, torin1, although only mTORC1 is inhibited by rapamycin. Since mTORC2 is known to mediate the activation of a prosurvival kinase, Akt, we analyzed whether mTORC2 directly mediates Akt activation or whether it requires the participation of another prosurvival kinase, PKCε (epsilon isoform of protein kinase-C). Our studies reveal that treatment of adult feline cardiomyocytes in vitro with insulin results in Akt phosphorylation at S473 for its activation which could be augmented with rapamycin but blocked by torin1. Silencing the expression of Rictor (rapamycin-insensitive companion of mTOR), an mTORC2 component, with a sh-RNA in cardiomyocytes lowers both insulin-stimulated Akt and PKCε phosphorylation. Furthermore, phosphorylation of PKCε and Akt at the critical S729 and S473 sites respectively was blocked by torin1 or Rictor knockdown but not by rapamycin, indicating that the phosphorylation at these specific sites occurs downstream of mTORC2. Additionally, expression of DN-PKCε significantly lowered the insulin-stimulated Akt S473 phosphorylation, indicating an upstream role for PKCε in the Akt activation. Biochemical analyses also revealed that PKCε was part of Rictor but not Raptor (a binding partner and component of mTORC1). Together, these studies demonstrate that mTORC2 mediates prosurvival signaling in adult cardiomyocytes where PKCε functions downstream of mTORC2 leading to Akt activation.
Collapse
Affiliation(s)
- Phillip C. Moschella
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - John McKillop
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - Dorea L. Pleasant
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - Rebecca K. Harston
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - Sundaravadivel Balasubramanian
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| | - Dhandapani Kuppuswamy
- Cardiology Division of the Department of Medicine, Gazes Cardiac Research Institute, Medical University of South Carolina, Charleston, SC 29425-2221
| |
Collapse
|
61
|
Zhao TC, Du J, Zhuang S, Liu P, Zhang LX. HDAC inhibition elicits myocardial protective effect through modulation of MKK3/Akt-1. PLoS One 2013; 8:e65474. [PMID: 23762381 PMCID: PMC3677871 DOI: 10.1371/journal.pone.0065474] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/25/2013] [Indexed: 01/27/2023] Open
Abstract
We and others have demonstrated that HDAC inhibition protects the heart against myocardial injury. It is known that Akt-1 and MAP kinase play an essential role in modulation of myocardial protection and cardiac preconditioning. Our recent observations have shown that Akt-1 was activated in post-myocardial infarction following HDAC inhibition. However, it remains unknown whether MKK3 and Akt-1 are involved in HDAC inhibition-induced myocardial protection in acute myocardial ischemia and reperfusion injury. We sought to investigate whether the genetic disruption of Akt-1 and MKK3 eliminate cardioprotection elicited by HDAC inhibition and whether Akt-1 is associated with MKK3 to ultimately achieve protective effects. Adult wild type and MKK3−/−, Akt-1−/− mice received intraperitoneal injections of trichostatin A (0.1mg/kg), a potent inhibitor of HDACs. The hearts were subjected to 30 min myocardial ischemia/30 min reperfusion in the Langendorff perfused heart after twenty four hours to elicit pharmacologic preconditioning. Left ventricular function was measured, and infarct size was determined. Acetylation and phosphorylation of MKK3 were detected and disruption of Akt-1 abolished both acetylation and phosphorylation of MKK3. HDAC inhibition produces an improvement in left ventricular functional recovery, but these effects were abrogated by disruption of either Akt-1 or MKK3. Disruption of Akt-1 or MKK3 abolished the effects of HDAC inhibition-induced reduction of infarct size. Trichostatin A treatment resulted in an increase in MKK3 phosphorylation or acetylation in myocardium. Taken together, these results indicate that stimulation of the MKK3 and Akt-1 pathway is a novel approach to HDAC inhibition -induced cardioprotection.
Collapse
Affiliation(s)
- Ting C Zhao
- Cardiovascular Research laboratory, Department of Surgery, Roger Williams Medical Center, Boston University Medical School, Providence, Rhode Island, United States of America.
| | | | | | | | | |
Collapse
|
62
|
An T, Zhang Y, Huang Y, Zhang R, Yin S, Guo X, Wang Y, Zou C, Wei B, Lv R, Zhou Q, Zhang J. Neuregulin-1 protects against doxorubicin-induced apoptosis in cardiomyocytes through an Akt-dependent pathway. Physiol Res 2013; 62:379-85. [PMID: 23590603 DOI: 10.33549/physiolres.932516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In previous studies, it has been shown that recombinant human neuregulin-1(rhNRG-1) is capable of improving the survival rate in animal models of doxorubicin (DOX)-induced cardiomyopathy; however, the underlying mechanism of this phenomenon remains unknown. In this study, the role of rhNRG-1 in attenuating doxorubicin-induce apoptosis is confirmed. Neonatal rat ventricular myocytes (NRVMs) were subjected to various treatments, in order to both induce apoptosis and determine the effects of rhNRG-1 on the process. Activation of apoptosis was determined by observing increases in the protein levels of classic apoptosis markers (including cleaved caspase-3, cytochrome c, Bcl-2, BAX and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining). The activation of Akt was detected by means of western blot analysis. The study results showed that doxorubicin increased the number of TUNEL positive cells, as well as the protein levels of cleaved caspase-3 and cytochrome c, and reduced the ratio of Bcl-2/Bax. However, all of these effects were markedly antagonized by pretreament with rhNRG-1. It was then further demonstrated that the effects of rhNRG-1 could be blocked by the phosphoinositole-3-kinase inhibitor LY294002, indicating the involvement of the Akt process in mediating the process. RhNRG-1 is a potent inhibitor of doxorubicin-induced apoptosis, which acts through the PI3K-Akt pathway. RhNRG-1 is a novel therapeutic drug which may be effective in preventing further damage from occurring in DOX-induced damaged myocardium.
Collapse
Affiliation(s)
- T An
- Heart Failure Center, Cardiovascular Institute and Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Park HS, Seong KM, Kim JY, Kim CS, Yang KH, Jin YW, Nam SY. Chronic low-dose radiation inhibits the cells death by cytotoxic high-dose radiation increasing the level of AKT and acinus proteins via NF-κB activation. Int J Radiat Biol 2013. [DOI: 10.3109/09553002.2013.754560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
64
|
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2013; 14:38-48. [PMID: 23258295 PMCID: PMC4416212 DOI: 10.1038/nrm3495] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The heart hypertrophies in response to developmental signals as well as increased workload. Although adult-onset hypertrophy can ultimately lead to disease, cardiac hypertrophy is not necessarily maladaptive and can even be beneficial. Progress has been made in our understanding of the structural and molecular characteristics of physiological cardiac hypertrophy, as well as of the endocrine effectors and associated signalling pathways that regulate it. Physiological hypertrophy is initiated by finite signals, which include growth hormones (such as thyroid hormone, insulin, insulin-like growth factor 1 and vascular endothelial growth factor) and mechanical forces that converge on a limited number of intracellular signalling pathways (such as PI3K, AKT, AMP-activated protein kinase and mTOR) to affect gene transcription, protein translation and metabolism. Harnessing adaptive signalling mediators to reinvigorate the diseased heart could have important medical ramifications.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
65
|
Singh M, Martinez AR, Govindaraju S, Lee BS. HuR inhibits apoptosis by amplifying Akt signaling through a positive feedback loop. J Cell Physiol 2012; 228:182-9. [PMID: 22674407 DOI: 10.1002/jcp.24120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human antigen R (HuR) is a post-transcriptional regulator of gene expression that plays a key role in stabilizing mRNAs during cellular stress, leading to enhanced survival. HuR expression is tightly regulated through multiple transcription and post-transcriptional controls. Although HuR is known to stabilize a subset of mRNAs involved in cell survival, its role in the survival pathway of PI3-kinase/Akt signaling is unclear. Here, we show that in renal proximal tubule cells, HuR performs a central role in cell survival by amplifying Akt signaling in a positive feedback loop. Key to this feedback loop is HuR-mediated stabilization of mRNA encoding Grb10, an adaptor protein whose expression is critical for Akt activation. Stimulation of Akt by interaction with Grb10 then activates NF-κB, which further enhances HuR mRNA and protein expression. This feedback loop is active in unstressed cells, but its effects are increased during stress. Therefore, this study demonstrates a central role for HuR in Akt signaling and reveals a mechanism by which modest changes in HuR levels below or above normal may be amplified, potentially resulting in cell death or cellular transformation.
Collapse
Affiliation(s)
- Mamata Singh
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
66
|
Martelli AM, Tabellini G, Bressanin D, Ognibene A, Goto K, Cocco L, Evangelisti C. The emerging multiple roles of nuclear Akt. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2168-78. [PMID: 22960641 DOI: 10.1016/j.bbamcr.2012.08.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/26/2022]
|
67
|
Affiliation(s)
- Nina Mann
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
- Harvard/MIT Health Sciences and Technology Program, Boston, MA
| | - Anthony Rosenzweig
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
68
|
Klement GL, Goukassian D, Hlatky L, Carrozza J, Morgan JP, Yan X. Cancer Therapy Targeting the HER2-PI3K Pathway: Potential Impact on the Heart. Front Pharmacol 2012; 3:113. [PMID: 22754526 PMCID: PMC3384262 DOI: 10.3389/fphar.2012.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/24/2012] [Indexed: 01/22/2023] Open
Abstract
The HER2-PI3K pathway is the one of the most mutated pathways in cancer. Several drugs targeting the major kinases of this pathway have been approved by the Food and Drug Administration and many are being tested in clinical trials for the treatment of various cancers. However, the HER2-PI3K pathway is also pivotal for maintaining the physiological function of the heart, especially in the presence of cardiac stress. Clinical studies have shown that in patients treated with doxorubicin concurrently with Trastuzumab, a monoclonal antibody that blocks the HER2 receptor, the New York Heart Association class III/IV heart failure was significantly increased compared to those who were treated with doxorubicin alone (16 vs. 3%). Studies in transgenic mice have also shown that other key kinases of this pathway, such as PI3Kα, PDK1, Akt, and mTOR, are important for protecting the heart from ischemia-reperfusion and aortic stenosis induced cardiac dysfunction. Studies, however, have also shown that inhibition of PI3Kγ improve cardiac function of a failing heart. In addition, results from transgenic mouse models are not always consistent with the outcome of the pharmacological inhibition of this pathway. Here, we will review these findings and discuss how we can address the cardiac side-effects caused by inhibition of this important pathway in both cancer and cardiac biology.
Collapse
Affiliation(s)
- Giannoula L Klement
- Center of Cancer Systems Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
69
|
Hong HJ, Liu JC, Chen PY, Chen JJ, Chan P, Cheng TH. Tanshinone IIA prevents doxorubicin-induced cardiomyocyte apoptosis through Akt-dependent pathway. Int J Cardiol 2012; 157:174-179. [PMID: 21190747 DOI: 10.1016/j.ijcard.2010.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/10/2010] [Accepted: 12/04/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Doxorubicin, one of the original anthracyclines, remains among the most effective anticancer drugs ever developed. Clinical use of doxorubicin is, however, greatly limited by its serious adverse cardiac effects that may ultimately lead to cardiomyopathy and heart failure. Tanshinone IIA is the main effective component of Salvia miltiorrhiza known as 'Danshen' in traditional Chinese medicine for treating cardiovascular disorders. The objective of this study was set to evaluate the protective effect of tanshinone IIA on doxorubicin-induced cardiomyocyte apoptosis, and to explore its intracellular mechanism(s). METHODS Primary cultured neonatal rat cardiomyocytes were treated with the vehicle, doxorubicin (1 μM), tanshinone IIA (0.1, 0.3, 1 and 3 μM), or tanshinone IIA plus doxorubicin. RESULTS We found that tanshinone IIA (1 and 3 μM) inhibited doxorubicin-induced reactive oxygen species generation, reduced the quantity of cleaved caspase-3 and cytosol cytochrome c, and increased BcL-x(L) expression, resulting in protecting cardiomyocytes from doxorubicin-induced apoptosis. In addition, Akt phosphorylation was enhanced by tanshinone IIA treatment in cardiomyocytes. The wortmannin (100 nM), LY294002 (10 nM), and siRNA transfection for Akt significantly reduced tanshinone IIA-induced protective effect. CONCLUSIONS These findings suggest that tanshinone IIA protects cardiomyocytes from doxorubicin-induced apoptosis in part through Akt-signaling pathways, which may potentially protect the heart from the severe toxicity of doxorubicin.
Collapse
Affiliation(s)
- Hong-Jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
70
|
Sun D, Huang J, Zhang Z, Gao H, Li J, Shen M, Cao F, Wang H. Luteolin limits infarct size and improves cardiac function after myocardium ischemia/reperfusion injury in diabetic rats. PLoS One 2012; 7:e33491. [PMID: 22432030 PMCID: PMC3303839 DOI: 10.1371/journal.pone.0033491] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/15/2012] [Indexed: 01/06/2023] Open
Abstract
Background The present study was to investigate the effects and mechanism of Luteolin on myocardial infarct size, cardiac function and cardiomyocyte apoptosis in diabetic rats with myocardial ischemia/reperfusion (I/R) injury. Methodology/Principal Findings Diabetic rats underwent 30 minutes of ischemia followed by 3 h of reperfusion. Animals were pretreated with or without Luteolin before coronary artery ligation. The severity of myocardial I/R induced LDH release, arrhythmia, infarct size, cardiac function impairment, cardiomyocyte apoptosis were compared. Western blot analysis was performed to elucidate the target proteins of Luteolin. The inflammatory cytokine production were also examined in ischemic myocardium underwent I/R injury. Our results revealed that Luteolin administration significantly reduced LDH release, decreased the incidence of arrhythmia, attenuated myocardial infarct size, enhanced left ventricular ejection fraction and decreased myocardial apoptotic death compared with I/R group. Western blot analysis showed that Luteolin treatment up-regulated anti-apoptotic proteins FGFR2 and LIF expression, increased BAD phosphorylation while decreased the ratio of Bax to Bcl-2. Luteolin treatment also inhibited MPO expression and inflammatory cytokine production including IL-6, IL-1a and TNF-a. Moreover, co-administration of wortmannin and Luteolin abolished the beneficial effects of Luteolin. Conclusions/Significance This study indicates that Luteolin preserves cardiac function, reduces infarct size and cardiomyocyte apoptotic rate after I/R injury in diabetic rats. Luteolin exerts its action by up-regulating of anti-apoptotic proteins FGFR2 and LIF expression, activating PI3K/Akt pathway while increasing BAD phosphorylation and decreasing ratio of Bax to Bcl-2.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Arrhythmias, Cardiac/complications
- Arrhythmias, Cardiac/pathology
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Cell Movement/drug effects
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/diagnostic imaging
- Diabetes Mellitus, Experimental/physiopathology
- Heart Function Tests/drug effects
- L-Lactate Dehydrogenase/metabolism
- Leukocytes/drug effects
- Leukocytes/pathology
- Luteolin/pharmacology
- Luteolin/therapeutic use
- Male
- Myocardial Infarction/diagnostic imaging
- Myocardial Infarction/drug therapy
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Reperfusion Injury/complications
- Myocardial Reperfusion Injury/diagnostic imaging
- Myocardial Reperfusion Injury/drug therapy
- Myocardial Reperfusion Injury/physiopathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Rats
- Rats, Sprague-Dawley
- Ultrasonography
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (DS); (HW)
| | | | | | | | | | | | | | - Haichang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (DS); (HW)
| |
Collapse
|
71
|
Chopra I, Li HF, Wang H, Webster KA. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia 2012; 55:783-94. [PMID: 22207502 PMCID: PMC4648248 DOI: 10.1007/s00125-011-2407-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 11/10/2011] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Muscle may experience hypoglycaemia during ischaemia or insulin infusion. During severe hypoglycaemia energy production is blocked, and an increase of AMP:ATP activates the energy sensor and putative insulin-sensitiser AMP-activated protein kinase (AMPK). AMPK promotes energy conservation and survival by shutting down anabolism and activating catabolic pathways. We investigated the molecular mechanism of a unique glucose stress defence pathway involving AMPK-dependent, insulin-independent activation of the insulin signalling pathway. METHODS Cardiac or skeletal myocytes were subjected to glucose and insulin-free incubation for increasing intervals up to 20 h. AMPK, and components of the insulin signalling pathway and their targets were quantified by western blot using phosphor-specific antibodies. Phosphomimetics were used to determine the function of IRS-1 Ser789 phosphorylation and in vitro [³²P]ATP kinase assays were used to measure the phosphorylation of the purified insulin receptor by AMPK. RESULTS Glucose deprivation increased Akt-Thr308 and Akt-Ser473 phosphorylation by almost tenfold. Phosphorylation of glycogen synthase kinase 3 beta increased in parallel, but phosphorylation of ribosomal 70S subunit-S6 protein kinase and mammalian target of rapamycin decreased. AMPK inhibitors blocked and aminoimidazole carboxamide ribonucleotide (AICAR) mimicked the effects of glucose starvation. Glucose deprivation increased the phosphorylation of IRS-1 on serine-789, but phosphomimetics revealed that this conferred negative regulation. Glucose deprivation enhanced tyrosine phosphorylation of IRS-1 and the insulin receptor, effects that were blocked by AMPK inhibition and mimicked by AICAR. In vitro kinase assays using purified proteins confirmed that the insulin receptor is a direct target of AMPK. CONCLUSIONS/INTERPRETATION AMPK phosphorylates and activates the insulin receptor, providing a direct link between AMPK and the insulin signalling pathway; this pathway promotes energy conservation and survival of muscle exposed to severe glucose deprivation.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/antagonists & inhibitors
- AMP-Activated Protein Kinases/metabolism
- Animals
- Animals, Newborn
- Cells, Cultured
- Hep G2 Cells
- Humans
- Hypoglycemia/metabolism
- Hypoglycemic Agents/pharmacology
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Ligands
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Mutant Proteins/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational/drug effects
- Rats
- Receptor, Insulin/isolation & purification
- Receptor, Insulin/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- I. Chopra
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, RMSB 6038, Miami, FL 33136, USA
| | - H. F. Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, RMSB 6038, Miami, FL 33136, USA
| | - H. Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, RMSB 6038, Miami, FL 33136, USA
| | - K. A. Webster
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, RMSB 6038, Miami, FL 33136, USA
| |
Collapse
|
72
|
Buss SJ, Riffel JH, Malekar P, Hagenmueller M, Asel C, Zhang M, Weiss C, Katus HA, Hardt SE. Chronic Akt blockade aggravates pathological hypertrophy and inhibits physiological hypertrophy. Am J Physiol Heart Circ Physiol 2011; 302:H420-30. [PMID: 22058151 DOI: 10.1152/ajpheart.00211.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The attenuation of adverse myocardial remodeling and pathological left ventricular (LV) hypertrophy is one of the hallmarks for improving the prognosis after myocardial infarction (MI). The protein kinase Akt plays a central role in regulating cardiac hypertrophy, but the in vivo effects of chronic pharmacological inhibition of Akt are unknown. We investigated the effect of chronic Akt blockade with deguelin on the development of pathological [MI and aortic banding (AB)] and physiological (controlled treadmill running) hypertrophy. Primary cardiomyocyte cultures were incubated with 10 μmol deguelin for 48 h, and Wistar rats were treated orally with deguelin (4.0 mg·kg(-1)·day(-1)) for 4 wk starting 1 day after the induction of MI or AB. Exercise-trained animals received deguelin for 4 wk during the training period. In vitro, we observed reduced phosphorylation of Akt and glycogen synthase kinase (GSK)-3β after an incubation with deguelin, whereas MAPK signaling was not significantly affected. In vivo, treatment with deguelin led to attenuated phosphorylation of Akt and GSK-3β 4 wk after MI. These animals showed significantly increased heart weights and impaired LV function with increased end-diastolic diameters (12.0 ± 0.3 vs. 11.1 ± 0.3 mm, P < 0.05), end-diastolic volumes (439 ± 8 vs. 388 ± 18 μl, P < 0.05), and cardiomyocyte sizes (+20%, P < 0.05) compared with MI animals receiving vehicle treatment. Furthermore, activation of Ca(2+)/calmodulin-dependent kinase II in deguelin-treated MI animals was increased compared with the vehicle-treated group. Four wk after AB, we observed an augmentation of pathological hypertrophy in the deguelin-treated group with a significant increase in heart weights and cardiomyocyte sizes (>20%, P < 0.05). In contrast, the development of physiological hypertrophy was inhibited by deguelin treatment in exercise-trained animals. In conclusion, chronic Akt blockade with deguelin aggravates adverse myocardial remodeling and antagonizes physiological hypertrophy.
Collapse
Affiliation(s)
- Sebastian J Buss
- Department of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
IKKβ regulates essential functions of the vascular endothelium through kinase-dependent and -independent pathways. Nat Commun 2011; 2:318. [PMID: 21587235 PMCID: PMC3113230 DOI: 10.1038/ncomms1317] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/18/2011] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelium provides a selective barrier between the blood and tissues, participates in wound healing and angiogenesis, and regulates tissue recruitment of inflammatory cells. Nuclear factor (NF)-κB transcription factors are pivotal regulators of survival and inflammation, and have been suggested as potential therapeutic targets in cancer and inflammatory diseases. Here we show that mice lacking IKKβ, the primary kinase mediating NF-κB activation, are smaller than littermates and born at less than the expected Mendelian frequency in association with hypotrophic and hypovascular placentae. IKKβ-deleted endothelium manifests increased vascular permeability and reduced migration. Surprisingly, we find that these defects result from loss of kinase-independent effects of IKKβ on activation of the serine-threonine kinase, Akt. Together, these data demonstrate essential roles for IKKβ in regulating endothelial permeability and migration, as well as an unanticipated connection between IKKβ and Akt signalling. IKK kinases activate nuclear factor-κB, and the activated form of this transcription factor is found in endothelial cells in diseased tissue. In this study, mice lacking IKKβ in the endothelium are generated, and it is shown that defects in endothelial cell function are both IKK kinase activity dependent and independent.
Collapse
|
74
|
Singh KK, Shukla PC, Quan A, Lovren F, Pan Y, Wolfstadt JI, Gupta M, Al-Omran M, Leong-Poi H, Teoh H, Verma S. Herceptin, a recombinant humanized anti-ERBB2 monoclonal antibody, induces cardiomyocyte death. Biochem Biophys Res Commun 2011; 411:421-6. [PMID: 21749857 DOI: 10.1016/j.bbrc.2011.06.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 06/25/2011] [Indexed: 12/11/2022]
Abstract
P53 protein levels are elevated by trastuzumab and the biologically similar rat ERBB2/HER2/NEU antibody; and that this coincides with enhanced apoptosis, increased cleaved caspase-3 levels and diminished cardiac function. We also demonstrate that MDM2 may be a regulatory target of anti-ERBB2 thereby implicating the MDM2/p53 axis as a potential molecular component for the undesirable cardiac outcomes noted with trastuzumab. Finally, we show that these MDM2/p53-mediated events are independent of both the ERK1/2 and Akt systems. In conclusion, our findings suggest that the adverse cardiac events observed with trastuzumab may stem from its negative regulation of MDM2 events which impairs p53 degradation resultantly promoting apoptosis leading to cardiac dysfunction. These observations may have important therapeutic implications since they suggest that anticancer agents that inhibit MDM2 and its downstream actions may curb tumor progression at the expense of increasing cardiac stress.
Collapse
Affiliation(s)
- Krishna K Singh
- Division of Cardiac Surgery, The Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Fischer KM, Din S, Gude N, Konstandin MH, Wu W, Quijada P, Sussman MA. Cardiac progenitor cell commitment is inhibited by nuclear Akt expression. Circ Res 2011; 108:960-70. [PMID: 21350213 PMCID: PMC3082319 DOI: 10.1161/circresaha.110.237156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/15/2011] [Indexed: 11/16/2022]
Abstract
RATIONALE Stem cell therapies to regenerate damaged cardiac tissue represent a novel approach to treat heart disease. However, the majority of adoptively transferred stem cells delivered to damaged myocardium do not survive long enough to impart protective benefits, resulting in modest functional improvements. Strategies to improve survival and proliferation of stem cells show promise for significantly enhancing cardiac function and regeneration. OBJECTIVE To determine whether injected cardiac progenitor cells (CPCs) genetically modified to overexpress nuclear Akt (CPCeA) increase structural and functional benefits to infarcted myocardium relative to control CPCs. METHODS AND RESULTS CPCeA exhibit significantly increased proliferation and secretion of paracrine factors compared with CPCs. However, CPCeA exhibit impaired capacity for lineage commitment in vitro. Infarcted hearts receiving intramyocardial injection of CPCeA have increased recruitment of endogenous c-kit cells compared with CPCs, but neither population provides long-term functional and structural improvements compared with saline-injected controls. Pharmacological inhibition of Akt alleviated blockade of lineage commitment in CPCeA. CONCLUSIONS Although overexpression of nuclear Akt promotes rapid proliferation and secretion of protective paracrine factors, the inability of CPCeA to undergo lineage commitment hinders their capacity to provide functional or structural benefits to infarcted hearts. Despite enhanced recruitment of endogenous CPCs, lack of functional improvement in CPCeA-treated hearts demonstrates CPC lineage commitment is essential to the regenerative response. Effective stem cell therapies must promote cellular survival and proliferation without inhibiting lineage commitment. Because CPCeA exhibit remarkable proliferative potential, an inducible system mediating nuclear Akt expression could be useful to augment cell therapy approaches.
Collapse
|
77
|
Affiliation(s)
- Izhak Kehat
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | - Jeffery D. Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children’s Hospital, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
- Howard Hughes Medical Institute, Medical Center, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| |
Collapse
|
78
|
Hong HJ, Liu JC, Cheng TH, Chan P. Tanshinone IIA attenuates angiotensin II-induced apoptosis via Akt pathway in neonatal rat cardiomyocytes. Acta Pharmacol Sin 2010; 31:1569-1575. [PMID: 21102479 PMCID: PMC4002950 DOI: 10.1038/aps.2010.176] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/12/2010] [Indexed: 01/27/2023]
Abstract
AIM to examine the effects of tanshinone IIA, the main effective component of Salvia miltiorrhiza (known as 'Danshen' in traditional Chinese medicine) on angiotensin II (Ang II)-mediated cardiomyocyte apoptosis. METHODS rat neonatal cardiomyocytes were primarily cultured with Ang II or Ang II plus tanshinone IIA. Myocyte apoptosis was evaluated by caspase-3 activity and DNA strand break level with TdT-mediated dUTP nick-end labeling (TUNEL) staining. Western blot analysis was employed to determine the related protein expression and flow cytometry assay was used to determine the TUNEL positive cells and the intracellular reactive oxygen species (ROS) production. SiRNA targeted to Akt was used. RESULTS ang II (0.1 micromol/L) remarkably increased caspase-3 activity, TUNEL positive cells, and cleaved caspase-3 and cytochrome c expression, but reduced Bcl-X(L) expression. These effects were effectively antagonized by pretreatment with tanshione IIA (1-3 micromol/L). Tanshinone IIA had no effect on basal ROS level, while attenuated the ROS production by Ang II. Interestingly, tanshione IIA significantly increased the phosphorylated Akt level, which was countered by the PI3K antagonist wortmannin or LY294002. Knockdown of Akt with Akt siRNA significantly reduced Akt protein levels and tanshinone IIA protective effect. CONCLUSION tanshinone IIA prevents Ang II-induced apoptosis, thereby suggesting that tanshinone IIA may be used for the prevention of the cardiac remodeling process.
Collapse
Affiliation(s)
- Hong-jye Hong
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | - Ju-chi Liu
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan, China
| | - Tzu-hurng Cheng
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan, China
| | - Paul Chan
- Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan, China
| |
Collapse
|
79
|
Kim JH, Kim WS, Yun Y, Park C. Epstein-Barr virus latent membrane protein 1 increases chemo-resistance of cancer cells via cytoplasmic sequestration of Pim-1. Cell Signal 2010; 22:1858-63. [PMID: 20670681 DOI: 10.1016/j.cellsig.2010.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/01/2010] [Accepted: 07/19/2010] [Indexed: 11/17/2022]
Abstract
Improved treatment of EBV positive lymphoma depends on the identification of molecular mechanism underlying chemo-resistance. LMP1 is an essential transmembrane protein for EBV-induced immortalization of hematopoietic cells. Herein, we show that an oncogenic Pim-1 is translocated to the cytoplasm by LMP1. Three lines of evidence indicate that cytoplasmic sequestration of Pim-1 may be required for LMP1-induced cancer cell survival. First, Pim-1 enhanced the survival of LMP1-overexpressing cells treated with doxorubicin. Second, nuclear export of Pim-1 was sufficient to increase the survival. Third, knockdown of Pim-1 effectively suppressed LMP-1-induced survival of cancer cells. Collectively, these data suggest that Pim-1 is a downstream target of LMP1, and that it contributes to the chemo-resistance of cancer cells.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
80
|
Altered expression of the natriuretic peptide system in genetically modified heme oxygenase-1 mice treated with high dietary salt. Mol Cell Biochem 2010; 346:57-67. [PMID: 20872048 DOI: 10.1007/s11010-010-0591-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 09/08/2010] [Indexed: 12/17/2022]
Abstract
Heme oxygenase-1 (HO-1) has been well established as a cytoprotective molecule, and has been shown to exert cardioprotective effects in both hypertension and cardiac hypertrophy. However, the precise mechanism of the cardioprotective effect of HO-1 has yet to be fully elucidated. With the natriuretic peptide system (NPS) as a key player in cardiovascular homeostasis and tissue dynamics, we sought to examine the effect of high dietary salt treatment in genetic models of HO-1 expression, and assessed the expression of the NPS in the left ventricle (LV), to determine if the effects of altered HO-1 expression may be due to modified levels of the NPS. Age-matched 12-week old male HO-1 knockout (HO-1(-/-)) and HO-1 cardiomyocyte-specific transgenic overexpressing (HO-1(Tg)) mice were treated with either normal salt (NS; 0.8%) or high salt (HS; 8.0%) chow for 5 weeks. LV mRNA expression was determined using quantitative real-time PCR. ANP peptide level was measured in the LV and plasma using radioimmunoassay, and LV cyclic 3'-5' guanosine monophosphate level was measured using an enzyme immunoassay kit. HO-1(-/-) fed HS diet had significantly higher left ventricle-to-body weight ratio (LV/BW) compared to HO-1(+/+) mice fed NS diet. HO-1(-/-) mice had significantly reduced expression of the NPS compared to controls, and these mice did not exhibit a salt-induced increase in ANP expression. HS treatment had no noticeable effect on LV/BW in HO-1(Tg) mice compared to controls. HO-1(Tg) mice had significantly higher ANP and BNP expression compared to controls. There were no differences in LV cGMP levels among all genotypes and dietary treatments. HO-1 ablation resulted in significantly lower mRNA expression of the NPS, whereas HO-1 overexpression resulted in higher mRNA expression of the NPS. Both were substantiated by peptide levels as measured by RIA. These data indicate that the detrimental effect of reduced HO-1 expression and the cardioprotective effect of increased HO-1 expression may be due, in part, to altered expression of the NPS.
Collapse
|
81
|
Semple D, Smith K, Bhandari S, Seymour AML. Uremic cardiomyopathy and insulin resistance: a critical role for akt? J Am Soc Nephrol 2010; 22:207-15. [PMID: 20634295 DOI: 10.1681/asn.2009090900] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Uremic cardiomyopathy is a classic complication of chronic renal failure whose cause is unclear and treatment remains disappointing. Insulin resistance is an independent predictor of cardiovascular mortality in chronic renal failure. Underlying insulin resistance are defects in insulin signaling through the protein kinase, Akt. Akt acts as a nodal point in the control of both the metabolic and pleiotropic effects of insulin. Imbalance among these effects leads to cardiac hypertrophy, fibrosis, and apoptosis; less angiogenesis; metabolic remodeling; and altered calcium cycling, all key features of uremic cardiomyopathy. Here we consider the role of Akt in the development of uremic cardiomyopathy, drawing parallels from models of hypertrophic cardiac disease.
Collapse
Affiliation(s)
- David Semple
- Department of Biological Sciences, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | | | | | | |
Collapse
|
82
|
Ek-Ramos MJ, Avila J, Cheng C, Martin GB, Devarenne TP. The T-loop extension of the tomato protein kinase AvrPto-dependent Pto-interacting protein 3 (Adi3) directs nuclear localization for suppression of plant cell death. J Biol Chem 2010; 285:17584-94. [PMID: 20371603 PMCID: PMC2878523 DOI: 10.1074/jbc.m110.117416] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/05/2010] [Indexed: 02/02/2023] Open
Abstract
In tomato (Solanum lycopersicum), resistance to Pseudomonas syringae pv. tomato is elicited by the interaction of the host Pto kinase with the pathogen effector protein AvrPto, which leads to various immune responses including localized cell death termed the hypersensitive response. The AGC kinase Adi3 functions to suppress host cell death and interacts with Pto only in the presence of AvrPto. The cell death suppression (CDS) activity of Adi3 requires phosphorylation by 3-phosphoinositide-dependent protein kinase 1 (Pdk1) and loss of Adi3 function is associated with the hypersensitive response cell death initiated by the Pto/AvrPto interaction. Here we studied the relationship between Adi3 cellular localization and its CDS activity. Adi3 is a nuclear-localized protein, and this localization is dictated by a nuclear localization signal found in the Adi3 T-loop extension, an approximately 80 amino acid insertion into the T-loop, or activation loop, which is phosphorylated for kinase activation. Nuclear localization of Adi3 is required for its CDS activity and loss of nuclear localization causes elimination of Adi3 CDS activity and induction of cell death. This nuclear localization of Adi3 is dependent on Ser-539 phosphorylation by Pdk1 and non-nuclear Adi3 is found in punctate structures throughout the cell. Our data support a model in which Pdk1 phosphorylation of Adi3 directs nuclear localization for CDS and that disruption of Adi3 nuclear localization may be a mechanism for induction of cell death such as that during the Pto/AvrPto interaction.
Collapse
Affiliation(s)
- María J. Ek-Ramos
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Julian Avila
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Cheng Cheng
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Gregory B. Martin
- the Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, and
- the Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853
| | - Timothy P. Devarenne
- From the Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
83
|
Cao CM, Zhang Y, Weisleder N, Ferrante C, Wang X, Lv F, Zhang Y, Song R, Hwang M, Jin L, Guo J, Peng W, Li G, Nishi M, Takeshima H, Ma J, Xiao RP. MG53 constitutes a primary determinant of cardiac ischemic preconditioning. Circulation 2010; 121:2565-74. [PMID: 20516375 DOI: 10.1161/circulationaha.110.954628] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ischemic heart disease is the greatest cause of death in Western countries. The deleterious effects of cardiac ischemia are ameliorated by ischemic preconditioning (IPC), in which transient ischemia protects against subsequent severe ischemia/reperfusion injury. IPC activates multiple signaling pathways, including the reperfusion injury salvage kinase pathway (mainly PI3K-Akt-glycogen synthase kinase-3beta [GSK3beta] and ERK1/2) and the survivor activating factor enhancement pathway involving activation of the JAK-STAT3 axis. Nevertheless, the fundamental mechanism underlying IPC is poorly understood. METHODS AND RESULTS In the present study, we define MG53, a muscle-specific TRIM-family protein, as a crucial component of cardiac IPC machinery. Ischemia/reperfusion or hypoxia/oxidative stress applied to perfused mouse hearts or neonatal rat cardiomyocytes, respectively, causes downregulation of MG53, and IPC can prevent ischemia/reperfusion-induced decrease in MG53 expression. MG53 deficiency increases myocardial vulnerability to ischemia/reperfusion injury and abolishes IPC protection. Overexpression of MG53 attenuates whereas knockdown of MG53 enhances hypoxia- and H(2)O(2)-induced cardiomyocyte death. The cardiac protective effects of MG53 are attributable to MG53-dependent interaction of caveolin-3 with phosphatidylinositol 3 kinase and subsequent activation of the reperfusion injury salvage kinase pathway without altering the survivor activating factor enhancement pathway. CONCLUSIONS These results establish MG53 as a primary component of the cardiac IPC response, thus identifying a potentially important novel therapeutic target for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Chun-Mei Cao
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 642] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
85
|
Badve S, Collins NR, Bhat-Nakshatri P, Turbin D, Leung S, Thorat M, Dunn SE, Geistlinger TR, Carroll JS, Brown M, Bose S, Teitell MA, Nakshatri H. Subcellular localization of activated AKT in estrogen receptor- and progesterone receptor-expressing breast cancers: potential clinical implications. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2139-49. [PMID: 20228224 PMCID: PMC2861080 DOI: 10.2353/ajpath.2010.090477] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 01/21/2010] [Indexed: 12/21/2022]
Abstract
Activated v-AKT murine thymoma viral oncogene homolog 1 (AKT)/protein kinase B (PKB) kinase (pAKT) is localized to the plasma membrane, cytoplasm, and/or nucleus in 50% of cancers. The clinical importance of pAKT localization and the mechanism(s) controlling this compartmentalization are unknown. In this study, we examined nuclear and cytoplasmic phospho-AKT (pAKT) expression by immunohistochemistry in a breast cancer tissue microarray (n = 377) with approximately 15 years follow-up and integrated these data with the expression of estrogen receptor (ER)alpha, progesterone receptor (PR), and FOXA1. Nuclear localization of pAKT (nuclear-pAKT) was associated with long-term survival (P = 0.004). Within the ERalpha+/PR+ subgroup, patients with nuclear-pAKT positivity had better survival than nuclear-pAKT-negative patients (P < or = 0.05). The association of nuclear-pAKT with the ERalpha+/PR+ subgroup was validated in an independent cohort (n = 145). TCL1 family proteins regulate nuclear transport and/or activation of AKT. TCL1B is overexpressed in ERalpha-positive compared with ERalpha-negative breast cancers and in lung metastasis-free breast cancers. Therefore, we examined the possible control of TCL1 family member(s) expression by the estrogen:ERalpha pathway. Estradiol increased TCL1B expression and increased nuclear-pAKT levels in breast cancer cells; short- interfering RNA against TCL1B reduced nuclear-pAKT. Overexpression of nuclear-targeted AKT1 in MCF-7 cells increased cell proliferation without compromising sensitivity to the anti-estrogen, tamoxifen. These results suggest that subcellular localization of activated AKT plays a significant role in determining its function in breast cancer, which in part is dependent on TCL1B expression.
Collapse
Affiliation(s)
- Sunil Badve
- Department of Pathology and Internal Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Pepe M, Mamdani M, Zentilin L, Csiszar A, Qanud K, Zacchigna S, Ungvari Z, Puligadda U, Moimas S, Xu X, Edwards JG, Hintze TH, Giacca M, Recchia FA. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 2010; 106:1893-903. [PMID: 20431055 DOI: 10.1161/circresaha.110.220855] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RATIONALE Vascular endothelial growth factor (VEGF)-B selectively binds VEGF receptor (VEGFR)-1, a receptor that does not mediate angiogenesis, and is emerging as a major cytoprotective factor. OBJECTIVE To test the hypothesis that VEGF-B exerts non-angiogenesis-related cardioprotective effects in nonischemic dilated cardiomyopathy. METHODS AND RESULTS AAV-9-carried VEGF-B(167) cDNA (10(12) genome copies) was injected into the myocardium of chronically instrumented dogs developing tachypacing-induced dilated cardiomyopathy. After 4 weeks of pacing, green fluorescent protein-transduced dogs (AAV-control, n=8) were in overt congestive heart failure, whereas the VEGF-B-transduced (AAV-VEGF-B, n=8) were still in a well-compensated state, with physiological arterial Po(2). Left ventricular (LV) end-diastolic pressure in AAV-VEGF-B and AAV-control was, respectively, 15.0+/-1.5 versus 26.7+/-1.8 mm Hg and LV regional fractional shortening was 9.4+/-1.6% versus 3.0+/-0.6% (all P<0.05). VEGF-B prevented LV wall thinning but did not induce cardiac hypertrophy and did not affect the density of alpha-smooth muscle actin-positive microvessels, whereas it normalized TUNEL-positive cardiomyocytes and caspase-9 and -3 activation. Consistently, activated Akt, a major negative regulator of apoptosis, was superphysiological in AAV-VEGF-B, whereas the proapoptotic intracellular mediators glycogen synthase kinase (GSK)-3beta and FoxO3a (Akt targets) were activated in AAV-control, but not in AAV-VEGF-B. Cardiac VEGFR-1 expression was reduced 4-fold in all paced dogs, suggesting that exogenous VEGF-B(167) exerted a compensatory receptor stimulation. The cytoprotective effects of VEGF-B(167) were further elucidated in cultured rat neonatal cardiomyocytes exposed to 10(-8) mol/L angiotensin II: VEGF-B(167) prevented oxidative stress, loss of mitochondrial membrane potential, and, consequently, apoptosis. CONCLUSIONS We determined a novel, angiogenesis-unrelated cardioprotective effect of VEGF-B(167) in nonischemic dilated cardiomyopathy, which limits apoptotic cell loss and delays the progression toward failure.
Collapse
Affiliation(s)
- Martino Pepe
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Tseng A, Stabila J, McGonnigal B, Yano N, Yang MJ, Tseng YT, Davol PA, Lum LG, Padbury JF, Zhao TC. Effect of disruption of Akt-1 of lin(-)c-kit(+) stem cells on myocardial performance in infarcted heart. Cardiovasc Res 2010; 87:704-12. [PMID: 20410290 DOI: 10.1093/cvr/cvq110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIMS We have demonstrated an important role of bone marrow-derived stem cells in preservation of myocardial function. We investigated whether Akt-1 of lin(-)c-kit(+) stem cells preserves ventricular function following myocardial infarction (MI). METHODS AND RESULTS Isolated lin(-)c-kit(+) cells were conjugated with anti-c-kit heteroconjugated to anti-vascular cell adhesion molecule to facilitate the attachment of stem cells into damaged tissues. Female severe combined immunodeficient mice were used as recipients. MI was created by ligation of the left descending artery. After 48 h, animals were divided into four groups: (i) sham (n = 5): animals underwent thoracotomy without MI; (ii) MI (n = 5): animals underwent MI and received medium; (iii) MI + wild-type (Wt) stem cells (n = 6): MI animals received 5 x 10(5) Wt lin(-)c-kit(+) stem cells; (iv) MI + Akt-1(-/-) stem cells (n = 6): MI animals received 5 x 10(5) Akt-1(-/-) lin(-)c-kit(+) stem cells. Two weeks later, left ventricular function was measured in the Langendorff mode. The peripheral administration of Wt armed stem cells into MI animals restored ventricular function, which was absent in animals receiving Akt-1(-/-) cells. Real-time PCR indicates a decrease in SRY3, a Y chromosome marker in hearts receiving Akt-1(-/-) cells. An increase in angiogenic response was demonstrated in hearts receiving Wt stem cells but not Akt-1(-/-) stem cells. CONCLUSION Our results demonstrate that the peripheral administration of Wt lin(-)c-kit(+) stem cells restores ventricular function and promotes angiogenic response following MI. These benefits were abrogated in MI mice receiving Akt-1(-/-) stem cells, suggesting the pivotal role of Akt-1 in mediating stem cells to protect MI hearts.
Collapse
Affiliation(s)
- Andy Tseng
- Department of Pediatrics, Women and Infants Hospital, The Warren Alpert Medical School at Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Borillo GA, Mason M, Quijada P, Völkers M, Cottage C, McGregor M, Din S, Fischer K, Gude N, Avitable D, Barlow S, Gustafsson AB, Glembotski C, Gottlieb RA, Brown JH, Sussman MA. Pim-1 kinase protects mitochondrial integrity in cardiomyocytes. Circ Res 2010; 106:1265-74. [PMID: 20203306 PMCID: PMC2864233 DOI: 10.1161/circresaha.109.212035] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
RATIONALE Cardioprotective signaling mediates antiapoptotic actions through multiple mechanisms including maintenance of mitochondrial integrity. Pim-1 kinase is an essential downstream effector of AKT-mediated cardioprotection but the mechanistic basis for maintenance of mitochondrial integrity by Pim-1 remains unexplored. This study details antiapoptotic actions responsible for enhanced cell survival in cardiomyocytes with elevated Pim-1 activity. OBJECTIVE The purpose of this study is to demonstrate that the cardioprotective kinase Pim-1 acts to inhibit cell death by preserving mitochondrial integrity in cardiomyocytes. METHODS AND RESULTS A combination of biochemical, molecular, and microscopic analyses demonstrate beneficial effects of Pim-1 on mitochondrial integrity. Pim-1 protein level increases in the mitochondrial fraction with a corresponding decrease in the cytosolic fraction of myocardial lysates from hearts subjected to 30 minutes of ischemia followed by 30 minutes of reperfusion. Cardiac-specific overexpression of Pim-1 results in higher levels of antiapoptotic Bcl-X(L) and Bcl-2 compared to samples from normal hearts. In response to oxidative stress challenge, Pim-1 preserves the inner mitochondrial membrane potential. Ultrastructure of the mitochondria is maintained by Pim-1 activity, which prevents swelling induced by calcium overload. Finally, mitochondria isolated from hearts created with cardiac-specific overexpression of Pim-1 show inhibition of cytochrome c release triggered by a truncated form of proapoptotic Bid. CONCLUSION Cardioprotective action of Pim-1 kinase includes preservation of mitochondrial integrity during cardiomyopathic challenge conditions, thereby raising the potential for Pim-1 kinase activation as a therapeutic interventional approach to inhibit cell death by antagonizing proapoptotic Bcl-2 family members that regulate the intrinsic apoptotic pathway.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis
- BH3 Interacting Domain Death Agonist Protein/metabolism
- Cell Survival
- Cells, Cultured
- Cytochromes c/metabolism
- Disease Models, Animal
- Humans
- Membrane Potential, Mitochondrial
- Mice
- Mice, Transgenic
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/ultrastructure
- Mitochondrial Swelling
- Myocardial Reperfusion Injury/enzymology
- Myocardial Reperfusion Injury/genetics
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/ultrastructure
- Oxidative Stress
- Protein Transport
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-pim-1/genetics
- Proto-Oncogene Proteins c-pim-1/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/metabolism
- Time Factors
- Transfection
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Gwynngelle A. Borillo
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Matt Mason
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Pearl Quijada
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Mirko Völkers
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Christopher Cottage
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Michael McGregor
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Shabana Din
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Kimberlee Fischer
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Natalie Gude
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Daniele Avitable
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Steven Barlow
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Asa B. Gustafsson
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | | | - Roberta A. Gottlieb
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, CA 92093-0636, USA
| | - Mark A. Sussman
- San Diego State Heart Institute, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
89
|
Zhang Y, Wei L, Sun D, Cao F, Gao H, Zhao L, Du J, Li Y, Wang H. Tanshinone IIA pretreatment protects myocardium against ischaemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway in diabetic rats. Diabetes Obes Metab 2010; 12:316-22. [PMID: 20380652 DOI: 10.1111/j.1463-1326.2009.01166.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Diabetes Mellitus (DM) is widely acknowledged to increase the risk of cardiovascular death, which warrants the use of aggressive primary prevention strategies. The aim of the present study was to investigate the pretreatment effects of tanshinone IIA (TSN), a traditional Chinese medicine, on myocardial infarct size, apoptosis, inflammation and cardiac functional recovery in diabetic rats subjected to myocardial ischaemia/reperfusion (I/R). METHODS Streptozocin (STZ) induced diabetic rats (n = 80) were randomized to receive TSN, TSN plus wortmannin [a phosphatidylinositol 3-kinase (PI3K) inhibitor] or saline. They were exposed to a 30-min ischaemia by ligation of the left coronary artery except for the sham group. Haemodynamics, infarct size and myocardial apoptosis were examined 3 h after reperfusion. The effects of TSN on Akt and NF-kappaB phosphorylation and the expression of tumour necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in cardiac tissues were examined. RESULTS Our results revealed that TSN administration significantly reduced myocardial infarct size (0.252 +/- 0.038 vs. 0.327 +/- 0.027, p < 0.05), improved left ventricular ejection fraction (LVEF) (0.774 +/- 0.058 vs. 0.716 +/- 0.054, p < 0.05), decreased myocardial apoptotic death (0.114 +/- 0.026 vs. 0.191 +/- 0.023, p < 0.05) compared with I/R group. Western blot analysis showed that TSN treatment enhanced Akt phosphorylation and inhibited NF-kappaB phosphorylation in cardiac tissues. Moreover, pretreatment with wortmannin abolished the beneficial effects of TSN: a reduction of infarct size, a decrease in LVEF, inhibition of myocardial apoptosis and Akt phosphorylation, enhancement of NF-kappaB phosphorylation and an increase of cytokine production including TNF-alpha and IL-6 after I/R injury in diabetic rats. CONCLUSIONS This study indicates that TSN pretreatment reduces infarct size and improves cardiac dysfunction after I/R injury in diabetic rats. This was accompanied with decreased cardiac apoptosis and inflammation. The possible mechanism responsible for the effects of TSN is associated with the PI3K/Akt-dependent pathway.
Collapse
Affiliation(s)
- Y Zhang
- Department of Cardiovascular Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032., China
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Sauvé M, Ban K, Momen MA, Zhou YQ, Henkelman RM, Husain M, Drucker DJ. Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes 2010; 59:1063-73. [PMID: 20097729 PMCID: PMC2844815 DOI: 10.2337/db09-0955] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 (7-36)amide (GLP-1) is cleaved by dipeptidyl peptidase-4 (DPP-4) to GLP-1 (9-36)amide. We examined whether chemical inhibition or genetic elimination of DPP-4 activity affects cardiovascular function in normoglycemic and diabetic mice after experimental myocardial infarction. RESEARCH DESIGN AND METHODS Cardiac structure and function was assessed by hemodynamic monitoring and echocardiography in DPP-4 knockout (Dpp4(-/-)) mice versus wild-type (Dpp4(+/+)) littermate controls and after left anterior descending (LAD) coronary artery ligation-induced myocardial infarction (MI). Effects of sustained DPP-4 inhibition with sitagliptin versus treatment with metformin were ascertained after experimental MI in a high-fat diet-streptozotocin model of murine diabetes. Functional recovery from ischemia-reperfusion (I/R) injury was measured in isolated hearts from Dpp4(-/-) versus Dpp4(+/+) littermates and from normoglycemic wild-type (WT) mice treated with sitagliptin or metformin. Cardioprotective signaling in the murine heart was examined by RT-PCR and Western blot analyses. RESULTS Dpp4(-/-) mice exhibited normal indexes of cardiac structure and function. Survival post-MI was modestly improved in normoglycemic Dpp4(-/-) mice. Increased cardiac expression of phosphorylated AKT (pAKT), pGSK3beta, and atrial natriuretic peptide (ANP) was detected in the nonischemic Dpp4(-/-) heart, and HO-1, ANP, and pGSK3beta proteins were induced in nonischemic hearts from diabetic mice treated with sitagliptin or metformin. Sitagliptin and metformin treatment of wild-type diabetic mice reduced mortality after myocardial infarction. Sitagliptin improved functional recovery after I/R injury ex vivo in WT mice with similar protection from I/R injury also manifest in hearts from Dpp4(-/-) versus Dpp4(+/+) mice. CONCLUSIONS Genetic disruption or chemical inhibition of DPP-4 does not impair cardiovascular function in the normoglycemic or diabetic mouse heart.
Collapse
Affiliation(s)
- Meghan Sauvé
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kiwon Ban
- Toronto General Hospital, the Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - M. Abdul Momen
- Toronto General Hospital, the Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- Mouse Imaging Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mansoor Husain
- Toronto General Hospital, the Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and the Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J. Drucker
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Daniel J. Drucker,
| |
Collapse
|
91
|
Lukosz M, Jakob S, Büchner N, Zschauer TC, Altschmied J, Haendeler J. Nuclear redox signaling. Antioxid Redox Signal 2010; 12:713-42. [PMID: 19737086 DOI: 10.1089/ars.2009.2609] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species have been described to modulate proteins within the cell, a process called redox regulation. However, the importance of compartment-specific redox regulation has been neglected for a long time. In the early 1980s and 1990s, many in vitro studies introduced the possibility that nuclear redox signaling exists. However, the functional relevance for that has been greatly disregarded. Recently, it has become evident that nuclear redox signaling is indeed one important signaling mechanism regulating a variety of cellular functions. Transcription factors, and even kinases and phosphatases, have been described to be redox regulated in the nucleus. This review describes several of these proteins in closer detail and explains their functions resulting from nuclear localization and redox regulation. Moreover, the redox state of the nucleus and several important nuclear redox regulators [Thioredoxin-1 (Trx-1), Glutaredoxins (Grxs), Peroxiredoxins (Prxs), and APEX nuclease (multifunctional DNA-repair enzyme) 1 (APEX1)] are introduced more precisely, and their necessity for regulation of transcription factors is emphasized.
Collapse
Affiliation(s)
- Margarete Lukosz
- Molecular Cell & Aging Research, IUF (Institute for Molecular Preventive Medicine), At the University of Duesseldorf gGmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
92
|
Bailey B, Izarra A, Alvarez R, Fischer KM, Cottage CT, Quijada P, Díez-Juan A, Sussman MA. Cardiac stem cell genetic engineering using the alphaMHC promoter. Regen Med 2010; 4:823-33. [PMID: 19903002 DOI: 10.2217/rme.09.51] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Cardiac stem cells (CSCs) show potential as a cellular therapeutic approach to blunt tissue damage and facilitate reparative and regenerative processes after myocardial infarction. Despite multiple published reports of improvement, functional benefits remain modest using normal stem cells delivered by adoptive transfer into damaged myocardium. The goal of this study is to enhance survival and proliferation of CSCs that have undergone lineage commitment in early phases as evidenced by expression of proteins driven by the alpha-myosin heavy chain (alphaMHC) promoter. The early increased expression of survival kinases augments expansion of the cardiogenic CSC pool and subsequent daughter progeny. MATERIALS & METHODS Normal CSCs engineered with fluorescent reporter protein constructs under control of the alphaMHC promoter show transgene protein expression, confirming activity of the promoter in CSCs. Cultured CSCs from both nontransgenic and cardiac-specific transgenic mice expressing survival kinases driven by the alphaMHC promoter were analyzed to characterize transgene expression following treatments to promote differentiation in culture. RESULTS & CONCLUSION Therapeutic genes controlled by the alphaMHC promoter can be engineered into and expressed in CSCs and cardiomyocyte progeny with the goal of improving the efficacy of cardiac stem cell therapy.
Collapse
Affiliation(s)
- Brandi Bailey
- San Diego State University, SDSU Heart Institute, Department of Biology, San Diego, CA 92182, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Cottage CT, Bailey B, Fischer KM, Avitabile D, Avitable D, Collins B, Tuck S, Quijada P, Gude N, Alvarez R, Muraski J, Sussman MA. Cardiac progenitor cell cycling stimulated by pim-1 kinase. Circ Res 2010; 106:891-901. [PMID: 20075333 DOI: 10.1161/circresaha.109.208629] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Cardioprotective effects of Pim-1 kinase have been previously reported but the underlying mechanistic basis may involve a combination of cellular and molecular mechanisms that remain unresolved. The elucidation of the mechanistic basis for Pim-1 mediated cardioprotection provides important insights for designing therapeutic interventional strategies to treat heart disease. OBJECTIVE Effects of cardiac-specific Pim-1 kinase expression on the cardiac progenitor cell (CPC) population were examined to determine whether Pim-1 mediates beneficial effects through augmenting CPC activity. METHODS AND RESULTS Transgenic mice created with cardiac-specific Pim-1 overexpression (Pim-wt) exhibit enhanced Pim-1 expression in both cardiomyocytes and CPCs, both of which show increased proliferative activity assessed using 5-bromodeoxyuridine (BrdU), Ki-67, and c-Myc relative to nontransgenic controls. However, the total number of CPCs was not increased in the Pim-wt hearts during normal postnatal growth or after infarction challenge. These results suggest that Pim-1 overexpression leads to asymmetric division resulting in maintenance of the CPC population. Localization and quantitation of cell fate determinants Numb and alpha-adaptin by confocal microscopy were used to assess frequency of asymmetric division in the CPC population. Polarization of Numb in mitotic phospho-histone positive cells demonstrates asymmetric division in 65% of the CPC population in hearts of Pim-wt mice versus 26% in nontransgenic hearts after infarction challenge. Similarly, Pim-wt hearts had fewer cells with uniform alpha-adaptin staining indicative of symmetrically dividing CPCs, with 36% of the CPCs versus 73% in nontransgenic sections. CONCLUSIONS These findings define a mechanistic basis for enhanced myocardial regeneration in transgenic mice overexpressing Pim-1 kinase.
Collapse
Affiliation(s)
- Christopher T Cottage
- San Diego State Heart Institute, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Heineke J, Wollert KC, Osinska H, Sargent MA, York AJ, Robbins J, Molkentin JD. Calcineurin protects the heart in a murine model of dilated cardiomyopathy. J Mol Cell Cardiol 2009; 48:1080-7. [PMID: 19854199 PMCID: PMC2891089 DOI: 10.1016/j.yjmcc.2009.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/12/2009] [Accepted: 10/14/2009] [Indexed: 02/01/2023]
Abstract
Dilated cardiomyopathy (DCM) is a relatively common disease with a poor prognosis. Given that the only meaningful treatment for DCM is cardiac transplantation, investigators have explored the underlying molecular mechanisms of this disease in the hopes of identifying novel therapeutic targets. One such target is the serine-threonine phosphatase calcineurin, a Ca2+-activated signaling factor that is known to regulate the cardiac hypertrophic program, although its role in DCM is currently unknown. In order to address this issue, we crossed muscle lim protein (MLP) knock-out mice-a murine model of DCM-with calcineurin A beta ko mice, which lack the stress responsive isoform of calcineurin that critically regulates the cardiac hypertrophic response. Interestingly, the majority (73%) of the MLP/calcineurin A beta double knock-out mice died within 20 days of birth with signs of cardiomyopathy. Ultrastructural examination revealed enhanced cardiomyocyte apoptosis and necrosis in the postnatal myocardium of these mice. The MLP/calcineurin A beta double knock-out mice that survived until adulthood showed reduced left ventricular function, enhanced apoptotic and necrotic cardiomyocyte death and augmented myocardial fibrosis compared to various control groups. Antithetically, mild overexpression of activated calcineurin in the mouse heart improved function and adverse remodeling in MLP knock-out mice. Collectively, these results reveal an important and previously unrecognized protective function of endogenous myocardial calcineurin in a mouse model of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Joerg Heineke
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, 240 Albert Sabin Way, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | |
Collapse
|
95
|
Park HS, Yun Y, Kim CS, Yang KH, Jeong M, Ahn SK, Jin YW, Nam SY. A critical role for AKT activation in protecting cells from ionizing radiation-induced apoptosis and the regulation of acinus gene expression. Eur J Cell Biol 2009; 88:563-75. [DOI: 10.1016/j.ejcb.2009.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 05/11/2009] [Accepted: 05/11/2009] [Indexed: 01/01/2023] Open
|
96
|
Abstract
Biological sex plays an important role in normal cardiac physiology as well as in the heart's response to cardiac disease. Women generally have better cardiac function and survival than do men in the face of cardiac disease; however, this sex difference is lost when comparing postmenopausal women with age-matched men. Animal models of cardiac disease mirror what is seen in humans. Sex steroid hormones contribute significantly to sex-based differences in cardiac disease outcomes. Estrogen is generally considered to be cardioprotective, whereas testosterone is thought to be detrimental to heart function. Environmental estrogen-like molecules, such as phytoestrogens, can also affect cardiac physiology in both a positive and a negative manner.
Collapse
Affiliation(s)
- Elizabeth D Luczak
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
97
|
Abstract
The central role of mitochondria as mediators of cell survival is indisputable and gathering increasing attention as a focal point for interventional strategies to mitigate apoptotic cell death in the wake of cardiomyopathic injury. A legacy of signal transduction studies has proven that mitochondrial integrity can be enhanced by kinases involved in cell survival. Among the many survival signaling cascades under investigation, the wide-ranging impact of Akt upon mitochondrial biology is well known. However, despite years of investigation, emerging research continues to reveal new mechanisms governing the protective effects of Akt signaling in the context of cardiomyocyte mitochondria. This review focuses on two emerging pathways that mediate preservation of mitochondrial function downstream of Akt: hexokinase and Pim-1 kinase.
Collapse
Affiliation(s)
- Mark A Sussman
- San Diego State University, SDSU Heart Institute, Department of Biology, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
98
|
Rubio M, Avitabile D, Fischer K, Emmanuel G, Gude N, Miyamoto S, Mishra S, Schaefer EM, Brown JH, Sussman MA. Cardioprotective stimuli mediate phosphoinositide 3-kinase and phosphoinositide dependent kinase 1 nuclear accumulation in cardiomyocytes. J Mol Cell Cardiol 2009; 47:96-103. [PMID: 19269295 PMCID: PMC2692628 DOI: 10.1016/j.yjmcc.2009.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/04/2009] [Accepted: 02/20/2009] [Indexed: 12/20/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/phosphoinositide dependent kinase 1 (PDK1) signaling pathway exerts cardioprotective effects in the myocardium through activation of key proteins including Akt. Activated Akt accumulates in nuclei of cardiomyocytes suggesting that biologically relevant targets are located in that subcellular compartment. Nuclear Akt activity could be potentiated in both intensity and duration by the presence of a nuclear-associated PI3K/PDK1 signaling cascade as has been described in other non-myocyte cell types. PI3K/PDK1 distribution was determined in vitro and in vivo by immunostaining and nuclear extraction of cultured rat neonatal cardiomyocytes or transgenic mouse hearts. Results show that PI3K and PDK1 are present at a basal level in cardiomyocytes nuclei and that cardioprotective stimulation with atrial natriuretic peptide (ANP) increases their nuclear localization. In comparison, overexpression of nuclear-targeted Akt does not mediate increased translocation of either PI3K or PDK1 indicating that accumulation of Akt does not drive PI3K or PDK1 into the nuclear compartment. Furthermore, PI3K and phospho-Akt(473) show parallel temporal accumulation in the nucleus following (MI) infarction challenge. These findings demonstrate the presence of a dynamically regulated nuclear-associated signaling cascade involving PI3K and PDK that presumably influences nuclear Akt activation.
Collapse
Affiliation(s)
- Marta Rubio
- SDSU Heart Institute, Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Miyamoto S, Rubio M, Sussman MA. Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovasc Res 2009; 82:272-85. [PMID: 19279164 PMCID: PMC2675933 DOI: 10.1093/cvr/cvp087] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 03/02/2009] [Accepted: 03/08/2009] [Indexed: 01/01/2023] Open
Abstract
Biological actions resulting from phosphoinositide synthesis trigger multiple downstream signalling cascades by recruiting proteins with pleckstrin homology domains, including phosphoinositide-dependent kinase-1 and protein kinase B (also known as Akt). Retrospectively, more attention has been focused on the plasma membrane-associated interactions of these molecules and resulting cytoplasmic target activation. The complex biological activities exerted by Akt activation suggest, however, that more subtle and complex subcellular control mechanisms are involved. This review examines the regulation of Akt activity from the perspective of subcellular compartmentalization and focuses specifically upon the actions of Akt activation downstream from phosphoinositide synthesis that influence cell biology by altering nuclear signalling leading to Pim-1 kinase induction as well as hexokinase phosphorylation that, together with Akt, serves to preserve mitochondrial integrity.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, La Jolla, San Diego, CA 92093-0636, USA
| | - Marta Rubio
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A. Sussman
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
100
|
Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, Baggio LL, Henkelman RM, Husain M, Drucker DJ. GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 2009; 58:975-83. [PMID: 19151200 PMCID: PMC2661586 DOI: 10.2337/db08-1193] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 01/09/2009] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. RESEARCH DESIGN AND METHODS We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. RESULTS Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P = 0.0001) and infarct size (21 +/- 2% versus 29 +/- 3%, P = 0.02) and improved cardiac output (12.4 +/- 0.6 versus 9.7 +/- 0.6 ml/min; P = 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3beta, PPARbeta-delta, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R-dependent manner in vitro. CONCLUSIONS These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.
Collapse
Affiliation(s)
| | | | - Kiwon Ban
- Toronto General Hospital, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Yu-Qing Zhou
- Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ali M. Riazi
- Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Laurie L. Baggio
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre, Department of Medical Biophysics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mansoor Husain
- Toronto General Hospital, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J. Drucker
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|