51
|
Bertrand-Thiebault C, Masson C, Siest G, Batt AM, Visvikis-Siest S. Effect of HMGCoA reductase inhibitors on cytochrome P450 expression in endothelial cell line. J Cardiovasc Pharmacol 2007; 49:306-15. [PMID: 17513950 DOI: 10.1097/fjc.0b013e31803e8756] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endothelial cells and smooth muscle cells are the major cells that constitute blood vessels, and endothelial cells line the lumen of blood vessels. These 2 types of cells also play an integral role in the regional specialization of vascular structure. On the basis of these observations, we designed our study to investigate the effect of various statins on CYP expression in endothelial cells. 3-hydroxymethyl coenzyme A reductase inhibitors play an important role in vascular function. The majority of the statins available on the market show extensive metabolism by cytochrome P450 (CYP) enzymes. Both cell types are involved in the bioconversion of arachidonic acid into vasoactive compounds. The aim of this study was to demonstrate the effect of statins on cytochrome P450 expression in endothelial cells. Our results show that endothelial cells expressed both CYPs involved in epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs) production and the nuclear receptor implicated in cytochrome P450 regulation. Treatment of endothelial cells with lovastatin increased CYP2C9 expression. After 96 hours of treatment, fluvastatin and lovastatin clearly increased CYP2C9 protein level. CAR but not PXR was expressed in endothelial cells, indicating that the upregulating effect of statins on CYP2C9 in endothelial cells could be mediated through CAR only due to the lack of expression of PXR in these cells.
Collapse
MESH Headings
- Analysis of Variance
- Aryl Hydrocarbon Hydroxylases/drug effects
- Aryl Hydrocarbon Hydroxylases/metabolism
- Atorvastatin
- Blotting, Western
- Cell Line
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Constitutive Androstane Receptor
- Cytochrome P-450 CYP2C9
- Cytochrome P-450 Enzyme System/biosynthesis
- Cytochrome P-450 Enzyme System/drug effects
- Endothelial Cells/drug effects
- Endothelial Cells/enzymology
- Endothelium, Vascular/cytology
- Fatty Acids, Monounsaturated/pharmacology
- Fluvastatin
- Gene Expression Regulation, Enzymologic/drug effects
- Heptanoic Acids/pharmacology
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Indoles/pharmacology
- Lovastatin/pharmacology
- Pravastatin/pharmacology
- Pregnane X Receptor
- Pyrroles/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/drug effects
- Receptors, Steroid/biosynthesis
- Receptors, Steroid/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- Saphenous Vein/cytology
- Transcription Factors/biosynthesis
- Transcription Factors/drug effects
- Up-Regulation/drug effects
Collapse
|
52
|
Hercule HC, Salanova B, Essin K, Honeck H, Falck JR, Sausbier M, Ruth P, Schunck WH, Luft FC, Gollasch M. The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents. Exp Physiol 2007; 92:1067-76. [PMID: 17675416 DOI: 10.1113/expphysiol.2007.038166] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
17,18-Epoxyeicosatetraenoic acid (17,18-EETeTr) stimulates vascular large-conductance K(+) (BK) channels. BK channels are composed of the pore-forming BK alpha and auxiliary BK beta1 subunits that confer an increased sensitivity for changes in membrane potential and calcium to BK channels. Ryanodine-sensitive calcium-release channels (RyR3) in the sarcoplasmic reticulum (SR) control the process. To elucidate the mechanism of BK channel activation, we performed whole-cell and perforated-patch clamp experiments in freshly isolated cerebral and mesenteric artery vascular smooth muscle cells (VSMC) from Sprague-Dawley rats, BK beta1 gene-deficient (-/-), BK alpha (-/-), RyR3 (-/-) and wild-type mice. The 17,18-EETeTr (100 nm) increased tetraethylammonium (1 mm)-sensitive outward K(+) currents in VSMC from wild-type rats and wild-type mice. The effects were not inhibited by the epoxyeicosatrienoic acid (EET) antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 mum). BK channel currents were increased 3.5-fold in VSMC from BK beta1 (-/-) mice, whereas a 2.9-fold stimulation was observed in VSMC from RyR3 (-/-) mice (at membrane voltage 60 mV). The effects were similar compared with those observed in cells from wild-type mice. The BK current increase was neither influenced by strong internal calcium buffering (Ca(2)(+), 100 nm), nor by external calcium influx. The 17,18-EETeTr did not induce outward currents in VSMC BK alpha (-/-) cells. We next tested the vasodilator effects of 17,18-EETeTr on isolated arteries of BK alpha-deficient mice. Vasodilatation was largely inhibited in cerebral and mesenteric arteries isolated from BK alpha (-/-) mice compared with that observed in wild-type and BK beta1 (-/-) arteries. We conclude that 17,18-EETeTr represents an endogenous BK channel agonist and vasodilator. Since 17,18-EETeTr is active in small arteries lacking BK beta1, the data further suggest that BK alpha represents the molecular target for the principal action of 17,18-EETeTr. Finally, the action of 17,18-EETeTr is not mediated by changes of the internal global calcium concentration or local SR calcium release events.
Collapse
Affiliation(s)
- Hantz C Hercule
- Nephrology/Hypertension Division, Franz Volhard Clinic, HELIOS Klinikum-Berlin, Campus Buch, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Fitzgerald SM, Kemp-Harper BK, Parkington HC, Head GA, Evans RG. Endothelial dysfunction and arterial pressure regulation during early diabetes in mice: roles for nitric oxide and endothelium-derived hyperpolarizing factor. Am J Physiol Regul Integr Comp Physiol 2007; 293:R707-13. [PMID: 17522117 DOI: 10.1152/ajpregu.00807.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined whether nitric oxide (NO) counters the development of hypertension at the onset of diabetes in mice, whether this is dependent on endothelial NO synthase (eNOS), and whether non-NO endothelium-dependent vasodilator mechanisms are altered in diabetes in mice. Male mice were instrumented for chronic measurement of mean arterial pressure (MAP). In wild-type mice, MAP was greater after 5 wk of N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 mg x kg(-1) x day(-1) in drinking water; 97 +/- 3 mmHg) than after vehicle treatment (88 +/- 3 mmHg). MAP was also elevated in eNOS null mice (113 +/- 4 mmHg). Seven days after streptozotocin treatment (200 mg/kg iv) MAP was further increased in L-NAME-treated mice (108 +/- 5 mmHg) but not in vehicle-treated mice (88 +/- 3 mmHg) nor eNOS null mice (104 +/- 3 mmHg). In wild-type mice, maximal vasorelaxation of mesenteric arteries to acetylcholine was not altered by chronic L-NAME or induction of diabetes but was reduced by 42 +/- 6% in L-NAME-treated diabetic mice. Furthermore, the relative roles of NO and endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced vasorelaxation were altered; the EDHF component was enhanced by L-NAME and blunted by diabetes. These data suggest that NO protects against the development of hypertension during early-stage diabetes in mice, even in the absence of eNOS. Furthermore, in mesenteric arteries, diabetes is associated with reduced EDHF function, with an apparent compensatory increase in NO function. Thus, prior inhibition of NOS results in endothelial dysfunction in early diabetes, since the diabetes-induced reduction in EDHF function cannot be compensated by increases in NO production.
Collapse
|
54
|
Abstract
Epoxyeicosatrienoic acids (EETs), which function primarily as autocrine and paracrine mediators in the cardiovascular and renal systems, are synthesized from arachidonic acid by cytochrome P-450 epoxygenases. They activate smooth muscle large-conductance Ca(2+)-activated K(+) channels, producing hyperpolarization and vasorelaxation. EETs also have anti-inflammatory effects in the vasculature and kidney, stimulate angiogenesis, and have mitogenic effects in the kidney. Many of the functional effects of EETs occur through activation of signal transduction pathways and modulation of gene expression, events probably initiated by binding to a putative cell surface EET receptor. However, EETs are rapidly taken up by cells and are incorporated into and released from phospholipids, suggesting that some functional effects may occur through a direct interaction between the EET and an intracellular effector system. In this regard, EETs and several of their metabolites activate peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARgamma, suggesting that some functional effects may result from PPAR activation. EETs are metabolized primarily by conversion to dihydroxyeicosatrienoic acids (DHETs), a reaction catalyzed by soluble epoxide hydrolase (sEH). Many potentially beneficial actions of EETs are attenuated upon conversion to DHETs, which do not appear to be essential under routine conditions. Therefore, sEH is considered a potential therapeutic target for enhancing the beneficial functions of EETs.
Collapse
Affiliation(s)
- Arthur A Spector
- Dept. of Biochemistry, University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
55
|
Delozier TC, Kissling GE, Coulter SJ, Dai D, Foley JF, Bradbury JA, Murphy E, Steenbergen C, Zeldin DC, Goldstein JA. Detection of human CYP2C8, CYP2C9, and CYP2J2 in cardiovascular tissues. Drug Metab Dispos 2007; 35:682-8. [PMID: 17220242 PMCID: PMC2747652 DOI: 10.1124/dmd.106.012823] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cytochrome P450 (P450) enzymes CYP2C8, CYP2C9, and CYP2J2 metabolize arachidonic acid to epoxyeicosatrienoic acids, which are known to be vital in regulation of vascular tone and cardiovascular homeostasis. Because there is limited information regarding the relative expression of these P450 enzymes in cardiovascular tissues, this study examined the expression of CYP2C8, CYP2C9, and CYP2J2 mRNA and protein in human heart, aorta, and coronary artery samples by real-time polymerase chain reaction, immunoblotting, and immunohistochemistry. CYP2J2 and CYP2C9 mRNA levels were highly variable in human hearts, whereas CYP2C8 mRNA was present in lower abundance. CYP2J2 mRNA was approximately 10(3) times higher than CYP2C9 or CYP2C8 in human heart. However, CYP2C9 mRNA was more abundant than CYP2J2 or CYP2C8 in one ischemic heart. In human aorta, mean CYP2C9 mRNA levels were approximately 50 times higher than that of CYP2J2 and 5-fold higher than that of CYP2C8. In human coronary artery, mean values for CYP2C9 mRNA were approximately 2-fold higher than that of CYP2J2 mRNA and 6-fold higher than that of CYP2C8 mRNA. Immunoblotting results show relatively high levels of CYP2J2 and CYP2C8 protein in human hearts, which was confirmed by immunohistochemistry. CYP2C9 protein was also detected at high levels in one ischemic heart by immunoblotting. CYP2C9 was present at higher levels than CYPJ2 in aorta and coronary artery, whereas CYP2C8 protein was below the limits of detection. The expression of CYP2J2 and CYP2C8 in human heart, and CYPC9 and CYP2J2 in aorta and coronary artery is consistent with a physiological role for these enzymes in these tissues.
Collapse
Affiliation(s)
- Tracy C Delozier
- National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Domeier TL, Segal SS. Electromechanical and pharmacomechanical signalling pathways for conducted vasodilatation along endothelium of hamster feed arteries. J Physiol 2006; 579:175-86. [PMID: 17138602 PMCID: PMC2075370 DOI: 10.1113/jphysiol.2006.124529] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Conducted vasodilatation (CVD) reflects the initiation and rapid (>mm s(-1)) spread of hyperpolarization along the endothelium and into smooth muscle. The ion channels that initiate CVD remain unclear as do signalling pathways that may complement electromechanical relaxation. Using isolated pressurized (75 mmHg; 37 degrees C) feed arteries (n=63; diameter: rest: 53 +/- 2 microm, maximal: 98 +/- 2 microm) from hamster retractor skeletal muscle, we investigated the contribution of calcium-activated potassium channels (KCa) and endothelium-derived autacoids to CVD. Local delivery (1 microm micropipette tip; 500-2000 ms pulse) of acetylcholine (ACh) at the downstream end initiated a local increase in endothelial cell [Ca2+]i (Fura-PE3; Deltaratio 340/380 nm = 0.215 +/- 0.032) that preceded CVD along the entire vessel. During local perifusion with KCa antagonists, iberiotoxin (5 microm) had no effect, but charybdotoxin (CTX, 5 microm) + apamin (APA, 10 microm) abolished CVD reversibly. Remarkably, this local inhibition of KCa unmasked a 'slow-conducted vasodilatation' (SCVD) that spread >1200 microm at approximately 21 microm s(-1) (n=27). Recorded 500 microm upstream from the ACh stimulus, a rise in endothelial cell [Ca2+]i (Deltaratio 340/380 nm) = 0.146 +/- 0.017; P<0.05) preceded SCVD (Deltadiameter = 14 +/- 3 microm) by approximately 10 s. Before KCa inhibition, antagonism of nitric oxide synthase (Nomega-nitro-L-arginine, 250 microm; l-NNA) and cyclooxygenase (indomethacin, 5 microm; INDO) had no effect on the amplitude of CVD yet response duration decreased by one-third (P<0.05). During local CTX + APA perifusion, L-NNA + INDO abolished SCVD while conducted [Ca2+]i responses remained intact. Thus, ACh triggers electromechanical relaxation of smooth muscle cells along the vessel initiated by local KCa, and the ensuing 'wave' of Ca2+ along the endothelium releases autacoids to promote pharmacomechanical relaxation.
Collapse
|
57
|
Nakazawa T, Kaneko Y, Mori A, Saito M, Sakamoto K, Nakahara T, Ishii K. Attenuation of nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine in streptozotocin-treated rats. Vascul Pharmacol 2006; 46:153-9. [PMID: 17079193 DOI: 10.1016/j.vph.2006.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/21/2006] [Accepted: 09/14/2006] [Indexed: 01/30/2023]
Abstract
Diabetes alters retinal hemodynamics, but little is known about the impact of diabetes on the role of endothelium-derived hyperpolarizing factor (EDHF) in the regulation of retinal circulation. Therefore, we examined how diabetes affects the nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles induced by acetylcholine. Male Wistar rats were treated with streptozotocin (80 mg/kg, i.p.) and experiments were performed 6-8 weeks later. Under artificial ventilation, rats were treated with tetrodotoxin (100 microg/kg, i.v.) to eliminate any nerve activity and prevent movement of the eye. Methoxamine was used to maintain adequate systemic circulation. Fundus images were captured by a digital camera that was equipped with a special objective lens. The vasodilator responses of retinal arterioles were assessed by measuring changes in diameters of the vessels. In streptozotocin-induced diabetic rats and the age-matched controls, acetylcholine increased diameters of retinal arterioles in a dose-dependent manner. The vasodilator responses to acetylcholine in diabetic rats were smaller than those in control rats. The nitric oxide- and prostaglandin-independent vasodilation of retinal arterioles observed under treatment with combination of N(G)-nitro-l-arginine methyl ester (30 mg/kg, i.v.) and indomethacin (5 mg/kg, i.v.) were also attenuated by diabetes. Diabetes did not alter the dilator responses of retinal arterioles to sodium nitroprusside and forskolin. These results suggest that diabetes impairs EDHF-mediated vasodilation of retinal arterioles induced by acetylcholine. The impaired EDHF-mediated vasodilation may contribute to alteration of retinal hemodynamics in diabetes.
Collapse
Affiliation(s)
- Taisuke Nakazawa
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | | | | | | | | | | | | |
Collapse
|
58
|
Pannirselvam M, Ding H, Anderson TJ, Triggle CR. Pharmacological characteristics of endothelium-derived hyperpolarizing factor-mediated relaxation of small mesenteric arteries from db/db mice. Eur J Pharmacol 2006; 551:98-107. [PMID: 17027963 DOI: 10.1016/j.ejphar.2006.08.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Revised: 08/29/2006] [Accepted: 08/31/2006] [Indexed: 11/21/2022]
Abstract
Endothelial dysfunction is considered as a major risk factor of cardiovascular complications of type I and type II diabetes. Our previous studies have demonstrated that endothelial dysfunction in the small mesenteric arteries from 12-16 week old type II diabetic mice was associated with decreased bio-availability of nitric oxide whereas endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation was preserved. The objective of the present study was to characterize EDHF-mediated relaxations of small mesenteric arteries from db/db mice. A depolarizing concentration of KCl or tetraethylammonium (TEA, 10 mM) significantly inhibited the EDHF-mediated relaxation to acetylcholine and bradykinin in small mesenteric arteries from both db/+ and db/db mice. Charybdotoxin or iberiotoxin alone and a combination of ouabain and barium significantly reduced the maximal relaxation to acetylcholine in small mesenteric arteries from db/db mice and charybdotoxin or iberiotoxin either alone or in combination with apamin reduced the sensitivity to the EDHF-mediated component of the relaxation response to bradykinin. 17-octadecynoic acid, but not catalase, significantly reduced the sensitivity to EDHF-mediated responses to bradykinin in db/db mice; 17-octadecynoic acid had no effect on acetylcholine-mediated relaxations. No differences were, however, detected for mRNA expression levels of calcium-activated potassium channels or connexins 37, 40, 43 and 45. Collectively, these data suggest that bradykinin-induced, EDHF-dependent relaxation in small mesenteric arteries from db/db mice is mediated via cytochrome P450 product that activates the large conductance calcium-activated potassium (BK(Ca) or Slo) channel, whereas the acetylcholine-induced, EDHF-mediated relaxation involves neither cytochrome P450 product nor hydrogen peroxide.
Collapse
Affiliation(s)
- Malarvannan Pannirselvam
- The Heart and Stroke/Richard Lewar Center of Excellence in Cardiovascular Research, University of Toronto, Canada
| | | | | | | |
Collapse
|
59
|
Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. ACTA ACUST UNITED AC 2006; 52:201-43. [PMID: 16647138 DOI: 10.1016/j.brainresrev.2006.02.002] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/23/2006] [Accepted: 02/24/2006] [Indexed: 01/01/2023]
Abstract
Three enzyme systems, cyclooxygenases that generate prostaglandins, lipoxygenases that form hydroxy derivatives and leukotrienes, and epoxygenases that give rise to epoxyeicosatrienoic products, metabolize arachidonic acid after its release from neural membrane phospholipids by the action of phospholipase A(2). Lysophospholipids, the other products of phospholipase A(2) reactions, are either reacylated or metabolized to platelet-activating factor. Under normal conditions, these metabolites play important roles in synaptic function, cerebral blood flow regulation, apoptosis, angiogenesis, and gene expression. Increased activities of cyclooxygenases, lipoxygenases, and epoxygenases under pathological situations such as ischemia, epilepsy, Alzheimer's disease, Parkinson disease, amyotrophic lateral sclerosis, and Creutzfeldt-Jakob disease produce neuroinflammation involving vasodilation and vasoconstriction, platelet aggregation, leukocyte chemotaxis and release of cytokines, and oxidative stress. These are closely associated with the neural cell injury which occurs in these neurological conditions. The metabolic products of docosahexaenoic acid, through these enzymes, generate a new class of lipid mediators, namely docosatrienes and resolvins. These metabolites antagonize the effect of metabolites derived from arachidonic acid. Recent studies provide insight into how these arachidonic acid metabolites interact with each other and other bioactive mediators such as platelet-activating factor, endocannabinoids, and docosatrienes under normal and pathological conditions. Here, we review present knowledge of the functions of cyclooxygenases, lipoxygenases, and epoxygenases in brain and their association with neurodegenerative diseases.
Collapse
Affiliation(s)
- John W Phillis
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
60
|
Gil-Longo J, González-Vázquez C. Characterization of four different effects elicited by H2O2 in rat aorta. Vascul Pharmacol 2006; 43:128-38. [PMID: 15994130 DOI: 10.1016/j.vph.2005.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/01/2005] [Accepted: 06/02/2005] [Indexed: 11/19/2022]
Abstract
Four main vascular effects of hydrogen peroxide (H2O2) were studied in intact and rubbed aortic rings from WKY rats. In rings partially precontracted with phenylephrine: 1-30 microM H2O2 induced an increase of tone, 100 microM H2O2 produced a transient contraction followed by a fast-developing endothelium-independent relaxation, and 0.3 mM H2O2 induced a fast-developing relaxation followed by a slow-developing endothelium-independent relaxation. Superoxide dismutase (SOD) or dimethyl sulfoxide (DMSO)/manitol did not significantly modify the H2O2 effects, while catalase suppressed them. Indomethacin abolished the increase of tone elicited by H2O2 and revealed a small endothelium-dependent relaxation, which was suppressed by N(G)-nitro-L-arginine (L-NA), high K+ or tetraethylammonium (TEA). TEA strongly inhibited the fast-developing relaxation while indomethacin, glybenclamide, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), cafeic acid or eicosatriynoic acid (ETI) did not affect the relaxation. In rings precontracted with 70 mM KCl, 1-100 microM H2O2 induced a small increase of tone and 0.3 mM a slow-developing relaxation. Catalase or Fe2+-EDTA/vitamin C suppressed the slow-developing relaxation while deferoxamine did not modify it. In rings partially precontracted with arachidonic acid, 1-30 microM H2O2 induced higher contractile effects than in rings partially precontracted with phenylephrine. H2O2 at 0.3 mM for one hour induced a persistent impairment on the reactivity of the rings and the release of lactate dehydrogenase. In summary, H2O2 produces: (1) contractions mediated by direct activation of cyclooxygenase; 2) endothelium-dependent relaxations related to activation of endothelial K+ channels and NO synthesis; 3) reversible endothelium-independent relaxations mediated by activation of smooth muscle K+ channels; and 4) irreversible endothelium-independent relaxations related to cellular damage, caused by H2O2 but not by hydroxyl radicals.
Collapse
Affiliation(s)
- José Gil-Longo
- Department of Pharmacology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | | |
Collapse
|
61
|
McSherry IN, Sandow SL, Campbell WB, Falck JR, Hill MA, Dora KA. A role for heterocellular coupling and EETs in dilation of rat cremaster arteries. Microcirculation 2006; 13:119-30. [PMID: 16459325 DOI: 10.1080/10739680500466400] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The authors probed endothelium-dependent dilation and endothelial cell Ca2+ handling in myogenically active resistance arteries. METHODS First-order arteries were removed from rat cremaster muscles, cannulated, and pressurized (75 mmHg). Vessel diameter and endothelial cell Ca2+ were monitored using confocal microscopy, and arterial ultrastructure was determined using electron microscopy. RESULTS Acetylcholine (ACh) stimulated elevations and oscillations in endothelial cell Ca2+, and concentration-dependently dilated arteries with myogenic tone. NO-independent dilation was blocked by 35 mM K+. Combined IK(Ca) (1 microM TRAM-34) and SK(Ca) (100 nM apamin) blockade partially inhibited NO-independent relaxations, with residual relaxations sensitive to BK(Ca) or cytochrome P-450 inhibition (100 nM iberiotoxin, and 20 microM 17-ODYA or 10 microM MS-PPOH). 11,12-EET stimulated iberiotoxin-sensitive dilation, but did not affect endothelial cell Ca2+. 15 mM K+ evoked dilation sensitive to inhibition of K(IR) (30 microM Ba2+) and Na+/K+-ATPase (10 microM ouabain), whereas these blockers did not affect ACh-mediated dilations. Homo- and heterocellular gap junctions were identified in radial sections through arteries. CONCLUSION These data suggest that rises in endothelial cell Ca2+ stimulate SK(Ca) and IK(Ca) channels, leading to hyperpolarization and dilation, likely due to electrical coupling. In addition, a component was unmasked following SK(Ca) and IK(Ca) blockade, attributable to activation of BK(Ca) channels by cytochrome P-450 metabolites.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Arteries/physiology
- Arteries/ultrastructure
- Calcium/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/physiology
- Endothelium, Vascular/ultrastructure
- Enzyme Inhibitors/pharmacology
- Gap Junctions/metabolism
- Gap Junctions/ultrastructure
- Male
- Muscle, Smooth, Vascular/physiology
- Muscle, Smooth, Vascular/ultrastructure
- Potassium Channels, Calcium-Activated/antagonists & inhibitors
- Potassium Channels, Calcium-Activated/metabolism
- Rats
- Rats, Wistar
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Sodium-Potassium-Exchanging ATPase/metabolism
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
|
62
|
Seubert JM, Zeldin DC, Nithipatikom K, Gross GJ. Role of epoxyeicosatrienoic acids in protecting the myocardium following ischemia/reperfusion injury. Prostaglandins Other Lipid Mediat 2006; 82:50-9. [PMID: 17164132 PMCID: PMC2077836 DOI: 10.1016/j.prostaglandins.2006.05.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Cardiomyocyte injury following ischemia-reperfusion can lead to cell death and result in cardiac dysfunction. A wide range of cardioprotective factors have been studied to date, but only recently has the cardioprotective role of fatty acids, specifically arachidonic acid (AA), been investigated. This fatty acid can be found in the membranes of cells in an inactive state and can be released by phospholipases in response to several stimuli, such as ischemia. The metabolism of AA involves the cycloxygenase (COX) and lipoxygenase (LOX) pathways, as well as the less well characterized cytochrome P450 (CYP) monooxygenase pathway. Current research suggests important differences with respect to the cardiovascular actions of specific CYP mediated arachidonic acid metabolites. For example, CYP mediated hydroxylation of AA produces 20-hydroxyeicosatetraenoic acid (20-HETE) which has detrimental effects in the heart during ischemia, pro-inflammatory effects during reperfusion and potent vasoconstrictor effects in the coronary circulation. Conversely, epoxidation of AA by CYP enzymes generates 5,6-, 8,9-, 11,12- and 14,15-epoxyeicosatrienoic acids (EETs) that have been shown to reduce ischemia-reperfusion injury, have potent anti-inflammatory effects within the vasculature, and are potent vasodilators in the coronary circulation. This review aims to provide an overview of current data on the role of these CYP pathways in the heart with an emphasis on their involvement as mediators of ischemia-reperfusion injury. A better understanding of these relationships will facilitate identification of novel targets for the prevention and/or treatment of ischemic heart disease, a major worldwide public health problem.
Collapse
Affiliation(s)
- John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, 3126 Dentistry/Pharmacy Centre, University of Alberta, Edmonton, AB, Canada T6G 2N8.
| | | | | | | |
Collapse
|
63
|
Ye D, Zhou W, Lu T, Jagadeesh SG, Falck JR, Lee HC. Mechanism of rat mesenteric arterial KATP channel activation by 14,15-epoxyeicosatrienoic acid. Am J Physiol Heart Circ Physiol 2006; 290:H1326-36. [PMID: 16537788 DOI: 10.1152/ajpheart.00318.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, we reported that 11,12-epoxyeicosatrienoic acid (11,12-EET) potently activates rat mesenteric arterial ATP-sensitive K+ (KATP) channels and produces significant vasodilation through protein kinase A-dependent mechanisms. In this study, we tried to further delineate the signaling steps involved in the activation of vascular KATP channels by EETs. Whole cell patch-clamp recordings [0.1 mM ATP in the pipette, holding potential (HP) = 0 mV and testing potential (TP) = −100 mV] in freshly isolated rat mesenteric smooth muscle cells showed small glibenclamide-sensitive KATP currents (19.0 ± 7.9 pA, n = 5) that increased 6.9-fold on exposure to 5 μM 14,15-EET (132.0 ± 29.0 pA, n = 7, P < 0.05 vs. control). With 1 mM ATP in the pipette solution, KATP currents (HP = 0 mV and TP = −100 mV) were increased 3.5-fold on exposure to 1 μM 14,15-EET (57.5 ± 14.3 pA, n = 9, P < 0.05 vs. baseline). In the presence of 100 nM iberiotoxin, 1 μM 14,15-EET hyperpolarized the membrane potential from −20.5 ± 0.9 mV at baseline to −27.1 ± 3.0 mV ( n = 6 for both, P < 0.05 vs. baseline), and the EET effects were significantly reversed by 10 μM glibenclamide (−21.8 ± 1.4 mV, n = 6, P < 0.05 vs. EET). Incubation with 5 μM 14,15-epoxyeicosa-5( Z)-enoic acid (14,15-EEZE), a 14,15-EET antagonist, abolished the 14,15-EET effects (31.0 ± 11.8 pA, n = 5, P < 0.05 vs. 14,15-EET, P = not significant vs. control). The 14,15-EET effects were inhibited by inclusion of anti-Gsα antibody (1:500 dilution) but not by control IgG in the pipette solution. The effects of 14,15-EET were mimicked by cholera toxin (100 ng/ml), an exogenous ADP-ribosyltransferase. Treatment with the ADP-ribosyltransferase inhibitors 3-aminobenzamide (1 mM) or m-iodobenzylguanidine (100 μM) abrogated the effects of 14,15-EET on KATP currents. These results were corroborated by vasodilation studies. 14,15-EET dose-dependently dilated isolated small mesenteric arteries, and this was significantly attenuated by treatment with 14,15-EEZE or 3-aminobenzamide. These results suggest that 14,15-EET activates vascular KATP channels through ADP-ribosylation of Gsα.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Cells, Cultured
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Male
- Mesenteric Arteries/cytology
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Potassium Channels/drug effects
- Potassium Channels/metabolism
- Rats
- Rats, Sprague-Dawley
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Dan Ye
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
64
|
Biyashev D, Tan F, Chen Z, Zhang K, Deddish PA, Erdös EG, Hecquet C. Kallikrein activates bradykinin B2 receptors in absence of kininogen. Am J Physiol Heart Circ Physiol 2005; 290:H1244-50. [PMID: 16272198 PMCID: PMC1656728 DOI: 10.1152/ajpheart.00934.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Kallikreins cleave plasma kininogens to release the bioactive peptides bradykinin (BK) or kallidin (Lys-BK). These peptides then activate widely disseminated B2 receptors with consequences that may be either noxious or beneficial. We used cultured cells to show that kallikrein can bypass kinin release to activate BK B2 receptors directly. To exclude intermediate kinin release or kininogen uptake from the cultured medium, we cultured and maintained cells in medium entirely free of animal proteins. We compared the responses of stably transfected Chinese hamster ovary (CHO) cells that express human B2 receptors (CHO B2) and cells that coexpress angiotensin I-converting enzyme (ACE) as well (CHO AB). We found that BK (1 nM or more) and tissue kallikrein (1-10 nM) both significantly increased release of arachidonic acid beyond unstimulated baseline level. An enzyme-linked immunoassay for kinin established that kallikrein did not release a kinin from CHO cells. We confirmed the absence of kininogen mRNA with RT-PCR to rule out kininogen synthesis by CHO cells. We next tested an ACE inhibitor for enhanced BK receptor activation in the absence of kinin release and synthesized an ACE-resistant BK analog as a control for these experiments. Enalaprilat (1 microM) potentiated kallikrein (100 nM) in CHO AB cells but was ineffective in CHO B2 cells that do not bear ACE. We concluded that kallikrein activated B2 receptors without releasing a kinin. Furthermore, inhibition of ACE enhanced the receptor activation by kallikrein, an action that may contribute to the manifold therapeutic effects of ACE inhibitors.
Collapse
Affiliation(s)
| | - Fulong Tan
- Departments of Pharmacology and
- Anesthesiology, College of Medicine, University of Illinois at Chicago
| | | | | | | | - Ervin G. Erdös
- Departments of Pharmacology and
- Anesthesiology, College of Medicine, University of Illinois at Chicago
- Correspondence to: Ervin G. Erdös, MD, Professor, Department of Pharmacology (MC 868), 835 S. Wolcott Rm. E403, Chicago, IL 60612, USA, 312-996-9146, 312-996-1648 (fax),
| | | |
Collapse
|
65
|
Marden N, Murray M. Characterization of a c-Jun-responsive module in the 5'-flank of the human CYP2J2 gene that regulates transactivation. Biochem J 2005; 391:631-40. [PMID: 16008525 PMCID: PMC1276964 DOI: 10.1042/bj20050798] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 06/29/2005] [Accepted: 07/12/2005] [Indexed: 11/17/2022]
Abstract
The human cytochrome P450 2J2 (CYP2J2) generates cytoprotective epoxyeicosatrienoic acids from arachidonic acid. Expression of CYP2J2 is decreased in hypoxia, and the resultant decrease in CYP2J2-derived epoxyeicosanoids may contribute to the pathogenesis of cardiac ischaemia. Recent studies have indicated that AP-1 (activator protein-1) regulates CYP2J2 expression in normoxia and hypoxia. Down-regulation of CYP2J2 in hypoxic HepG2 cells was closely associated with the up-regulation of c-fos and transient transfection analysis demonstrated that c-Fos abolishes the activation of CYP2J2 by the AP-1 protein c-Jun. Deletion of the region between nt -122 and -50 upstream of the start codon in CYP2J2 prevented c-Jun transactivation. In this study we demonstrate that the sequence at -105/-95 is a major regulatory element that binds c-Jun and has a prominent role in CYP2J2 gene transactivation. Mutagenesis of both the -105/-95 region and the previously identified element at -56/-63 was required for complete loss of transactivation by c-Jun; separate mutagenesis of the -105/-95 element or, to a lesser extent, the -56/-63 element resulted in a partial loss of gene activation. In contrast to the behaviour of the -56/-63 element, c-Jun homodimers and c-Fos/c-Jun heterodimers bound to the -105/-95 element. These findings demonstrate that the c-Jun-responsive module between -122 and -50 in the CYP2J2 proximal promoter contains an atypical AP-1 element at -105/-95 that has a major role in c-Jun transactivation and acts in conjunction with the -56/-63 element to regulate expression.
Collapse
Affiliation(s)
- Nicole Y. Marden
- *Department of Physiology and Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
- †Pharmacogenomics and Drug Development, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Murray
- †Pharmacogenomics and Drug Development, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
66
|
Long DA, Newaz MA, Prabhakar SS, Price KL, Truong LD, Feng L, Mu W, Oyekan AO, Johnson RJ. Loss of nitric oxide and endothelial-derived hyperpolarizing factor-mediated responses in aging. Kidney Int 2005; 68:2154-63. [PMID: 16221214 DOI: 10.1111/j.1523-1755.2005.00671.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Aging has considerable structural and functional effects on the vascular system of the kidney. One such effect is an alteration in vascular tone which potentially will initiate renal damage. Vascular tone is determined by the balance between vasoconstrictors and vasodilators. Therefore, we hypothesized that aging attenuates vasodilatory responses in the kidney. These changes may be mediated by a loss of nitric oxide and endothelial-derived hyperpolarizing factor (EDHF). METHODS The systemic and renal responses of nitric oxide and EDHF were investigated in aging (18 months old) and young (3 months old) Sprague-Dawley rats. RESULTS We demonstrated a general loss of vasodilatory responses in the aging kidney. In addition, nitric oxide levels were reduced in the serum and kidney cortex of aging versus young animals, although this was not accompanied with a loss of endothelial nitric oxide synthase (eNOS) protein in the kidney cortex. Aging animals also exhibited a loss in EDHF-mediated vasodilation following stimulation with either acetylcholine or bradykinin in the isolated perfused kidney. CONCLUSION These findings indicate that not only a defect in the nitric oxide pathway, but also a loss of EDHF-mediated responses may be responsible for impaired vasodilation in the aging kidney. This may result in enhanced vasoconstrictive responses in aging which potentially will cause renal damage and ultimately a loss in glomerular filtration rate (GFR).
Collapse
Affiliation(s)
- David A Long
- Section of Nephrology, Hypertension and Transplantation, University of Florida, Gainesville, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Fitzgerald SM, Kemp-Harper BK, Tare M, Parkington HC. ROLE OF ENDOTHELIUM-DERIVED HYPERPOLARIZING FACTOR IN ENDOTHELIAL DYSFUNCTION DURING DIABETES. Clin Exp Pharmacol Physiol 2005; 32:482-7. [PMID: 15854163 DOI: 10.1111/j.1440-1681.2005.04216.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Under normal conditions, the endothelium plays a major role in the maintenance of vasodilatory tone via the production of endothelium-derived vasodilator agents, such as prostacyclin, nitric oxide and endothelium-derived hyperpolarizing factor (EDHF). Inhibition of endothelium-dependent relaxation features prominently in a range of cardiovascular diseases, including hypertension, coronary artery disease and diabetes. 2. Endothelium-derived hyperpolarizing factor is a prominent vasodilator, particularly in smaller arteries and arterioles. There is now emerging evidence to suggest that EDHF may play a role in the endothelial dysfunction in diabetes. 3. Since the first description of endothelium-dependent hyperpolarization some 20 years ago, it has emerged that EDHF is heterogeneous in nature, consisting of diffusible factors and contact-mediated mechanisms. The specific identity of EDHF in any particular vascular bed may influence the impact of diabetes on vascular function. 4. There is accumulating evidence in diabetic rat models and humans showing impaired EDHF activity in small resistance vessels. In contrast, studies in mice suggest that EDHF activity is actually enhanced under diabetic conditions. 5. It is clear that alterations in EDHF activity may have an important contribution in diabetes, more specifically in contributing to microvascular complications observed under diabetic conditions.
Collapse
Affiliation(s)
- Sharyn M Fitzgerald
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
68
|
Griffith TM. Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol 2005; 141:881-903. [PMID: 15028638 PMCID: PMC1574270 DOI: 10.1038/sj.bjp.0705698] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An endothelium-derived hyperpolarizing factor (EDHF) that is distinct from nitric oxide (NO) and prostanoids has been widely hypothesized to hyperpolarize and relax vascular smooth muscle following stimulation of the endothelium by agonists. Candidates as diverse as K(+) ions, eicosanoids, hydrogen peroxide and C-type natriuretic peptide have been implicated as the putative mediator, but none has emerged as a 'universal EDHF'. An alternative explanation for the EDHF phenomenon is that direct intercellular communication via gap junctions allows passive spread of agonist-induced endothelial hyperpolarization through the vessel wall. In some arteries, eicosanoids and K(+) ions may themselves initiate a conducted endothelial hyperpolarization, thus suggesting that electrotonic signalling may represent a general mechanism through which the endothelium participates in the regulation of vascular tone.
Collapse
Affiliation(s)
- Tudor M Griffith
- Department of Diagnostic Radiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN.
| |
Collapse
|
69
|
Mackerle J. Finite element modelling and simulations in cardiovascular mechanics and cardiology: A bibliography 1993–2004. Comput Methods Biomech Biomed Engin 2005; 8:59-81. [PMID: 16154871 DOI: 10.1080/10255840500141486] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The paper gives a bibliographical review of the finite element modelling and simulations in cardiovascular mechanics and cardiology from the theoretical as well as practical points of views. The bibliography lists references to papers, conference proceedings and theses/dissertations that were published between 1993 and 2004. At the end of this paper, more than 890 references are given dealing with subjects as: Cardiovascular soft tissue modelling; material properties; mechanisms of cardiovascular components; blood flow; artificial components; cardiac diseases examination; surgery; and other topics.
Collapse
Affiliation(s)
- Jaroslav Mackerle
- Department of Mechanical Engineering, Linköping Institute of Technology, Sweden.
| |
Collapse
|
70
|
Coleman HA, Tare M, Parkington HC. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease. Clin Exp Pharmacol Physiol 2005; 31:641-9. [PMID: 15479173 DOI: 10.1111/j.1440-1681.2004.04053.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The elusive nature of endothelium-derived hyperpolarizing factor (EDHF) has hampered detailed study of the ionic mechanisms that underlie the EDHF hyperpolarization and relaxation. Most studies have relied on a pharmacological approach in which interpretations of results can be confounded by limited specificity of action of the drugs used. Nevertheless, small-, intermediate- and large-conductance Ca2+-activated K+ channels (SKCa, IKCa and BKCa, respectively) have been implicated, with inward rectifier K+ channels (KIR) and Na+/K+-ATPase also suggested by some studies. 2. Endothelium-dependent membrane currents recorded using single-electrode voltage-clamp from electrically short lengths of arterioles in which the smooth muscle and endothelial cells remained in their normal functional relationship have provided useful insights into the mechanisms mediating EDHF. Charybdotoxin (ChTx) or apamin reduced, whereas apamin plus ChTx abolished, the EDHF current. The ChTx- and apamin-sensitive currents both reversed near the expected K+ equilibrium potential, were weakly outwardly rectifying and displayed little, if any, time- or voltage-dependent gating, thus having the biophysical and pharmacological characteristics of IKCa and SKCa channels, respectively. 3. The IKCa and SKCa channels occur in abundance in endothelial cells and their activation results in EDHF-like hyperpolarization of these cells. There is little evidence for a significant number of these channels in healthy, contractile vascular smooth muscle cells. 4. In a number of blood vessels in which EDHF occurs, the endothelial and smooth muscle cells are coupled electrically via myoendothelial gap junctions. In contrast, in the adult rat femoral artery, in which the smooth muscle and endothelial layers are not coupled electrically, EDHF does not occur, even though acetylcholine evokes hyperpolarization in the endothelial cells. 5. In vivo studies indicate that EDHF contributes little to basal conductance of the vasculature, but it contributes appreciably to evoked increases in conductance. 6. Endothelium-derived hyperpolarizing factor responses are diminished in some diseases, including hypertension, pre-eclampsia and some models of diabetes. 7. The most economical explanation for EDHF in vitro and in vivo in small vessels is that it arises from the activation of IKCa and SKCa channels in endothelial cells. The resulting endothelial hyperpolarization spreads via myoendothelial gap junctions to result in the EDHF-attributed hyperpolarization and relaxation of the smooth muscle.
Collapse
Affiliation(s)
- Harold A Coleman
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
71
|
Zhao X, Dey A, Romanko OP, Stepp DW, Wang MH, Zhou Y, Jin L, Pollock JS, Webb RC, Imig JD. Decreased epoxygenase and increased epoxide hydrolase expression in the mesenteric artery of obese Zucker rats. Am J Physiol Regul Integr Comp Physiol 2005; 288:R188-96. [PMID: 15345471 DOI: 10.1152/ajpregu.00018.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies suggest that epoxyeicosatrienoic acids (EETs) are vasodilators of the mesenteric artery; however, the production and regulation of EETs in the mesenteric artery remain unclear. The present study was designed 1) to determine which epoxygenase isoform may contribute to formation of EETs in mesenteric arteries and 2) to determine the regulation of mesenteric artery cytochrome P-450 (CYP) enzymes in obese Zucker rats. Microvessels were incubated with arachidonic acid, and CYP enzyme activity was determined. Mesenteric arteries demonstrate detectable epoxygenase and hydroxylase activities. Next, protein and mRNA expressions were determined in microvessels. Although renal microvessels express CYP2C23 mRNA and protein, mesenteric arteries lacked CYP2C23 expression. CYP2C11 and CYP2J mRNA and protein were expressed in mesenteric arteries and renal microvessels. In addition, mesenteric artery protein expression was evaluated in lean and obese Zucker rats. Compared with lean Zucker rats, mesenteric arterial CYP2C11 and CYP2J proteins were decreased by 38 and 43%, respectively, in obese Zucker rats. In contrast, soluble epoxide hydrolase mRNA and protein expressions were significantly increased in obese Zucker rat mesenteric arteries. In addition, nitric oxide-independent dilation evoked by acetylcholine was significantly attenuated in mesenteric arteries of obese Zucker rats. These data suggest that the main epoxygenase isoforms expressed in mesenteric arteries are different from those expressed in renal microvessels and that decreased epoxygenases and increased soluble epoxide hydrolase are associated with impaired mesenteric artery dilator function in obese Zucker rats.
Collapse
Affiliation(s)
- Xueying Zhao
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912-2500, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ye D, Zhou W, Lee HC. Activation of rat mesenteric arterial KATP channels by 11,12-epoxyeicosatrienoic acid. Am J Physiol Heart Circ Physiol 2004; 288:H358-64. [PMID: 15331373 DOI: 10.1152/ajpheart.00423.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs), the cytochrome P-450 epoxygenase metabolites of arachidonic acid, are candidates of endothelium-derived hyperpolarizing factors. We have previously reported that EETs are potent activators of cardiac ATP-sensitive K(+) (K(ATP)) channels, but their effects on the vascular K(ATP) channels are unknown. With the use of whole cell patch-clamp techniques with 0.1 mM ATP in the pipette and holding at -60 mV, freshly isolated smooth muscle cells from rat mesenteric arteries had small glibenclamide-sensitive currents at baseline (13.1 +/- 3.9 pA, n = 5) that showed a 7.2-fold activation by 10 microM pinacidil (94.1 +/- 21.9 pA, n = 7, P < 0.05). 11,12-EET dose dependently activated the K(ATP) current with an apparent EC(50) of 87 nM. Activation of the K(ATP) channels by 500 nM 11,12-EET was inhibited by inclusion of the PKA inhibitor peptide (5 microM) but not by the inclusion of the PKC inhibitor peptide (100 microM) in the pipette solution. These results were corroborated by vasoreactivity studies. 11,12-EET produced dose-dependent vasorelaxation in isolated small mesenteric arteries, and this effect was reduced by 50% with glibenclamide (1 microM) preincubation. The 11,12-EET effects on vasorelaxation were also significantly attenuated by preincubation with cell-permeant PKA inhibitor myristoylated PKI(14-22), and, in the presence of PKA inhibitor, glibenclamide had no additional effects. These results suggest that 11,12-EET is a potent activator of the vascular K(ATP) channels, and its effects are dependent on PKA activities.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Adenosine Triphosphate/physiology
- Animals
- Cyclic AMP-Dependent Protein Kinases/physiology
- In Vitro Techniques
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Potassium Channels/drug effects
- Potassium Channels/physiology
- Rats
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Dan Ye
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
73
|
Ohta T, Hasebe N, Tsuji S, Izawa K, Jin YT, Kido S, Natori S, Sato M, Kikuchi K. Unequal effects of renin-angiotensin system inhibitors in acute cardiac dysfunction induced by isoproterenol. Am J Physiol Heart Circ Physiol 2004; 287:H2914-21. [PMID: 15297251 DOI: 10.1152/ajpheart.00221.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several clinical trials have demonstrated that angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II type 1 receptor blocker (ARB) are equally effective in the treatment of chronic heart failure. However, this has not been confirmed for acute cardiac dysfunction. We examined whether ACEI or ARB prevents isoproterenol-induced acute left ventricular (LV) dysfunction in dogs. LV dysfunction induced by a large dose of isoproterenol (1 microg.kg(-1).min(-1), 3-h infusion) was compared in dogs treated with ACEI (temocaprilat) or ARB (olmesartan). Atrial pacing induced a constant heart rate and use of adjustable aortic banding provided a nearly constant afterload. LV systolic function (LV dP/dt, fractional shortening, and ejection fraction) and diastolic function (tau and LV end-diastolic pressure) were significantly deteriorated after isoproterenol infusion. The LV dysfunction was almost totally prevented by ARB but was only partially prevented by ACEI. The partial effect of ACEI was complemented by cotreatment with HOE-140, a bradykinin B2 receptor antagonist. At baseline, the response to low doses of isoproterenol was significantly attenuated by ACEI but not by ARB, and the ACEI-induced attenuation was totally abolished by cotreatment with HOE-140. The response to isoproterenol was significantly attenuated after 3 h of excess isoproterenol loading, and it was almost completely preserved by ARB but not by ACEI. In conclusion, acute LV dysfunction and beta-adrenergic desensitization induced by excess isoproterenol administration were almost totally prevented by ARB but only partially prevented by ACEI. These differences were attributable at least in part to bradykinin pathways activated by ACEI administration in acute LV dysfunction.
Collapse
Affiliation(s)
- Takafumi Ohta
- First Dept. of Internal Medicine, Asahikawa Medical College, 2-1-1 Midorigaoka higashi, Asahikawa, Hokkaido 078-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Wang JS, Zhang F, Jiang M, Wang MH, Zand BA, Abraham NG, Nasjletti A, Laniado-Schwartzman M. Transfection and Functional Expression of CYP4A1 and CYP4A2 Using Bicistronic Vectors in Vascular Cells and Tissues. J Pharmacol Exp Ther 2004; 311:913-20. [PMID: 15269250 DOI: 10.1124/jpet.104.070979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-hydroxyeicosatetraenoic acid (20-HETE), a CYP4A-derived arachidonic acid metabolite, is a potent vasoconstrictor and a modulator of vascular reactivity. We have shown that CYP4A1 and CYP4A2 are the major CYP4A isoforms expressed in the rat renal microcirculation. In the present study, we constructed two bicistronic vectors, pIRES2-EGFP-4A1 and pIRES2-EGFP-4A2, and examined their functional efficacy in COS-1 and vascular smooth muscle (A7r5) cells and in microdissected rat interlobar arteries. Immunocytochemistry coupled with fluorescence microscopy of pIRES2-EGFP-4A1- or pIRES2-EGFP-4A2-transfected COS-1 and A7r5 cells indicated that both enhanced green fluorescence protein (EGFP) and CYP4A1/4A2 were expressed in 80 to 90% of the cells. Western blot analysis showed a 3- to 5-fold increase of CYP4A1 and CYP4A2 proteins in pIRES2-EGFP-4A1- and pIRES2-EGFP-4A2-transfected cells as compared with control pIRES2-transfected cells. Cells transfected with pIRES2-EGFP-4A1 and pIRES2-EGFP-4A2 catalyzed arachidonic acid omega-hydroxylation to 20-HETE at rates of 0.85 +/- 0.29 and 0.27 +/- 0.04 nmol/10(7) cells/h, respectively. Transfection of interlobar arteries with either plasmid yielded EGFP immunofluorescence that was localized to the intima, media, and adventitia. Arteries transfected with pIRES2-EGFP-4A1 and pIRES2-EGFP-4A2 showed increased vasoreactivity displaying EC50 to phenylephrine of 0.24 +/- 0.07 and 0.11 +/- 0.03 microM, respectively, as compared with arteries transfected with pIRES2-EGFP (1.11 +/- 0.21 microM; n=6, p <0.05). The increased vasoreactivity to phenylephrine was inhibited by N-methylsulfonyl-12,12-dibromododec-11-enamide, an inhibitor of CYP4A-catalyzed reactions, suggesting that a product of CYP4A1 and CYP4A2 catalytic activity contributed to the increased constrictor responsiveness. Removal of the endothelium did not prevent the sensitization to phenylephrine in vessels transfected with the plasmid containing the CYP4A1 cDNA, suggesting that the CYP4A product responsible for the sensitizing effect, presumably 20-HETE, is not of endothelial cell origin.
Collapse
Affiliation(s)
- Ji-Shi Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Skeletal muscle blood flow is closely coupled to metabolic demand, and its regulation is believed to be mainly the result of the interplay of neural vasoconstrictor activity and locally derived vasoactive substances. Muscle blood flow is increased within the first second after a single contraction and stabilizes within ∼30 s during dynamic exercise under normal conditions. Vasodilator substances may be released from contracting skeletal muscle, vascular endothelium, or red blood cells. The importance of specific vasodilators is likely to vary over the time course of flow, from the initial rapid rise to the sustained elevation during steady-state exercise. Exercise hyperemia is therefore thought to be the result of an integrated response of more than one vasodilator mechanism. To date, the identity of vasoactive substances involved in the regulation of exercise hyperemia remains uncertain. Numerous vasodilators such as adenosine, ATP, potassium, hypoxia, hydrogen ion, nitric oxide, prostanoids, and endothelium-derived hyperpolarizing factor have been proposed to be of importance; however, there is little support for any single vasodilator being essential for exercise hyperemia. Because elevated blood flow cannot be explained by the failure of any single vasodilator, a consensus is beginning to emerge for redundancy among vasodilators, where one vasoactive compound may take over when the formation of another is compromised. Conducted vasodilation or flow-mediated vasodilation may explain dilation in vessels (i.e., feed arteries) not directly exposed to vasodilator substances in the interstitium. Future investigations should focus on identifying novel vasodilators and the interaction between vasodilators by simultaneous inhibition of multiple vasodilator pathways.
Collapse
Affiliation(s)
- Philip S Clifford
- Department of Anesthesiology and Physiology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, WI 53295, USA.
| | | |
Collapse
|
76
|
Kansui Y, Fujii K, Nakamura K, Goto K, Oniki H, Abe I, Shibata Y, Iida M. Angiotensin II receptor blockade corrects altered expression of gap junctions in vascular endothelial cells from hypertensive rats. Am J Physiol Heart Circ Physiol 2004; 287:H216-24. [PMID: 15016632 DOI: 10.1152/ajpheart.00915.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blockade of the renin-angiotensin system improves the impaired endothelium-dependent relaxations associated with hypertension and aging, partly through amelioration of endothelium-derived hyperpolarizing factor (EDHF)-mediated responses. Although the nature of EDHF is still controversial, recent studies have suggested the involvement of gap junctions in EDHF-mediated responses. Gap junctions consist of connexins (Cx), and we therefore tested whether the expression of Cx in vascular endothelial cells would be altered by hypertension and antihypertensive treatment. Spontaneously hypertensive rats (SHR) were treated with either the angiotensin II type 1 receptor antagonist candesartan or the combination of hydralazine and hydrochlorothiazide for 3 mo from 5 to 8 mo of age. Confocal laser scanning microscopy after immunofluorescent labeling with antibodies against Cx37, Cx40, and Cx43 revealed that the expression of Cx37 and Cx40 in endothelial cells of the mesenteric artery was significantly lower in SHR than in WKY. Treatment with candesartan, but not the combination of hydralazine and hydrochlorothiazide, significantly increased the expression of Cx37 and Cx40, although blood pressure decreased similarly. On the other hand, the expression of Cx43, though scarce and heterogeneous, was increased in SHR compared with WKY, and candesartan treatment lowered the expression of Cx43. These findings suggest that renin-angiotensin system blockade corrects the decreased expression of Cx37 and Cx40 in arterial endothelial cells of hypertensive rats, partly independently of blood pressure, whereas the expression of Cx43 changed in the opposite direction. It remains to be clarified whether these changes in Cx37 and Cx40 are related to endothelial function, particularly that attributable to EDHF.
Collapse
Affiliation(s)
- Yasuo Kansui
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Cui X, Wu R, Zhou M, Simms HH, Wang P. Differential expression of cytochrome P450 isoforms in the lungs of septic animals. Crit Care Med 2004; 32:1186-91. [PMID: 15190971 DOI: 10.1097/01.ccm.0000124877.86743.37] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Sepsis is characterized by an early, hyperdynamic phase and a late, hypodynamic phase. Although studies have shown that cytochrome P450 (CYP) plays an important role in the regulation of vascular reactivity, alterations of vascular CYP isoforms in sepsis remain unknown. Since CYP2C11 and CYP2J4 convert arachidonic acid to vasodilative epoxyeicosatrienoic acids, and CYP4A3 metabolizes arachidonic acid to both epoxyeicosatrienoic acids and vasoconstrictive 19,20-hydroxyeicosatetraenoic acid, the aim of this study was to examine the expression of these isoforms in sepsis and their association with hemodynamic changes. DESIGN Prospective, controlled, and randomized animal study. SETTING An institute research laboratory. SUBJECTS Male adult Sprague-Dawley rats were subjected either to polymicrobial sepsis by cecal ligation and puncture or to sham operation followed by the administration of normal saline solution (i.e., fluid resuscitation). INTERVENTIONS At 5 hrs (early sepsis) or 20 hrs (late sepsis) after cecal ligation and puncture, blood vessel-rich tissues (i.e., lungs) were harvested. The expression of CYP isoforms at both messenger RNA and protein levels was determined by reverse transcription polymerase chain reaction and Western blot analysis (CYP2C11), respectively. Hemodynamic variables were measured by radioactive microspheres. MAIN RESULTS The results indicate that the gene expression of CYP2C11 and CYP2J4 was significantly down-regulated at 20 hrs after cecal ligation and puncture, whereas the expression of CYP4A3 was markedly up-regulated at 5 hrs. The protein concentrations of CYP2C11 also decreased significantly at 20 hrs after cecal ligation and puncture. Although total peripheral resistance markedly increased, mean arterial pressure did not change significantly at 20 hrs after the onset of sepsis. In contrast, cardiac output and pulmonary perfusion markedly decreased in late sepsis. CONCLUSIONS Since the up-regulated CYP4A3 is associated with the early, hyperdynamic phase of sepsis and the down-regulated CYP2C11 and CYP2J4 are associated with the late, hypodynamic phase, vascular CYP isoforms that metabolize arachidonic acid may be involved in regulating the cardiovascular response during the progression of sepsis.
Collapse
Affiliation(s)
- Xiaoxuan Cui
- Division of Surgical Research, Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
78
|
Wang H, Zhao Y, Bradbury JA, Graves JP, Foley J, Blaisdell JA, Goldstein JA, Zeldin DC. Cloning, Expression, and Characterization of Three New Mouse Cytochrome P450 Enzymes and Partial Characterization of Their Fatty Acid Oxidation Activities. Mol Pharmacol 2004; 65:1148-58. [PMID: 15102943 DOI: 10.1124/mol.65.5.1148] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian CYP2C subfamily is one of the largest and most complicated in the cytochrome P450 superfamily. In this report, we describe the organization of the mouse Cyp2c locus, which contains 15 genes and four pseudogenes, all of which are located in a 5.5-megabase region on chromosome 19. We cloned three novel mouse CYP2C cDNAs (designated CYP2C50, CYP2C54, and CYP2C55) from mouse heart, liver, and colon, respectively. All three cDNAs contain open reading frames that encode 490 amino acid polypeptides that are 57 to 95% identical to other CYP2Cs. The recombinant CYP2C proteins were expressed in Escherichia coli after N-terminal modification, partially purified, and shown to be active in the metabolism of both arachidonic acid (AA) and linoleic acid, albeit with different catalytic efficiencies and profiles. CYP2C50 and CYP2C54 metabolize AA to epoxyeicosatrienoic acids (EETs) primarily, and linoleic acid to epoxyoctadecenoic acids (EOAs) primarily, whereas CYP2C55 metabolizes AA to EETs and hydroxyeicosatetraenoic acids and linoleic acid to EOAs and hydroxyoctadecadienoic acids. Northern blotting and reverse transcription-polymerase chain reaction analysis reveal that CYP2C50 transcripts are abundant in liver and heart; CYP2C54 transcripts are present in liver, kidney, and stomach; and CYP2C55 transcripts are abundant in liver, colon, and kidney. Immunoblotting studies demonstrate that CYP2C50 protein is expressed in liver and heart, CYP2C54 protein is detected primarily in liver, and CYP2C55 protein is present primarily in colon. Immunohistochemistry reveals that CYP2C55 is most abundant in surface columnar epithelium in the cecum. We conclude that these new CYP2C enzymes are probably involved in AA and linoleic acid metabolism in mouse hepatic and extrahepatic tissues.
Collapse
Affiliation(s)
- Hong Wang
- Laboratories of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Sarkis A, Lopez B, Roman RJ. Role of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in hypertension. Curr Opin Nephrol Hypertens 2004; 13:205-14. [PMID: 15202615 DOI: 10.1097/00041552-200403000-00009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cytochrome P-450 metabolites of arachidonic acid have been reported to play an important role in the control of renal function and vascular tone, and in the long-term control of arterial pressure. In this regard, 20-hydroxyeicosatetraenoic acid is a potent vasoconstrictor that inhibits sodium reabsorption in the kidney. Epoxyeicosatrienoic acids are endothelium-derived relaxing factors that hyperpolarize vascular smooth muscle cells and also promote sodium excretion in the kidney. RECENT FINDINGS Studies have demonstrated that the expression of cytochrome P-450 enzymes and the synthesis of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in the kidney and peripheral vasculature are altered in many genetic and experimental models of hypertension. The production of these compounds is altered following exposure to high-salt or high-fat diets, in hepatorenal syndrome, in diabetes and in patients with toxemia of pregnancy. However, the functional significance of changes in the formation of 20-hydroxyeicosatetraenoic acid and epoxyeicosatrienoic acids in the pathogenesis of hypertension are just being uncovered. SUMMARY This review summarizes recent findings that address the issue of whether cytochrome P-450 metabolites of arachidonic acid play an important role in the regulation of renal tubular and peripheral vascular function and contribute to the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Albert Sarkis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
80
|
Tanaka M, Kanatsuka H, Ong BH, Tanikawa T, Uruno A, Komaru T, Koshida R, Shirato K. Cytochrome P-450 metabolites but not NO, PGI2, and H2O2 contribute to ACh-induced hyperpolarization of pressurized canine coronary microvessels. Am J Physiol Heart Circ Physiol 2003; 285:H1939-48. [PMID: 12881219 DOI: 10.1152/ajpheart.00190.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endothelium-dependent hyperpolarization of cells has a crucial role in regulating vascular tone, especially in microvessels. Nitric oxide (NO) and prostacyclin (PGI2), in addition to endothelium-derived hyperpolarizing factor (EDHF), have been reported to hyperpolarize vascular smooth muscle in several organs. Studies have reported the hyperpolarizing effects of these factors are increased by a stretch in large coronary arteries. EDHF has not yet been identified and cytochrome P-450 metabolites and H2O2 are candidates for EDHF. With the use of the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylbarbituric acid)trimethione oxonol [DiBAC4(3)], we examined whether NO, PGI2, cytochrome P-450 metabolites, and H2O2 contribute to ACh-induced hyperpolarization in pressurized coronary microvessels. Canine coronary arterial microvessels (60-356 mum internal diameter) were cannulated and pressurized at 60 cmH2O in a vessel chamber perfused with physiological salt solution containing DiBAC4(3). Fluorescence intensity and diameter were measured on a computer. There was a linear correlation between changes in the fluorescence intensity and membrane potential. ACh significantly decreased the fluorescence intensity (hyperpolarization) of the microvessels without any inhibitors. Endothelial damage caused by air perfusion abolished the ACh-induced decrease in fluorescence intensity. The inhibitors of NO synthase and cyclooxygenase did not affect the ACh-induced decreases in the fluorescence intensity. The addition of 17-octadecynoic acid, a cytochrome P-450 monooxygenase inhibitor, to those inhibitors significantly attenuated the ACh-induced decreases in fluorescence intensity, whereas catalase, an enzyme that dismutates H2O2 to form water and oxygen, did not. Furthermore, catalase did not affect the vasodilation produced by ACh. These results indicate that NO and PGI2 do not contribute to the ACh-induced hyperpolarization and that the cytochrome P-450 metabolites but not H2O2 are involved in EDHF-mediated hyperpolarization in canine coronary arterial microvessels.
Collapse
Affiliation(s)
- Mitsuaki Tanaka
- Department of Comprehensive Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Matz RL, Andriantsitohaina R. Age-related endothelial dysfunction : potential implications for pharmacotherapy. Drugs Aging 2003; 20:527-50. [PMID: 12749750 DOI: 10.2165/00002512-200320070-00005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging per se is associated with abnormalities of the vascular wall linked to both structural and functional changes that can take place at the level of the extracellular matrix, the vascular smooth muscle and the endothelium of blood vessels. Endothelial dysfunction is generally defined as a decrease in the capacity of the endothelium to dilate blood vessels in response to physical and chemical stimuli. It is one of the characteristic changes that occur with age, independently of other known cardiovascular risk factors. This may account in part for the increased incidence of cardiovascular events in elderly people that can be reversed by restoring endothelial function. A better understanding of the mechanisms involved and the aetiopathogenesis of this process will help in the search for new therapeutic agents.Age-dependent alteration of endothelium-dependent relaxation seems to be a widespread phenomenon both in conductance and resistance arteries from several species. In the course of aging, there is an alteration in the equilibrium between relaxing and contracting factors released by the endothelium. Hence, there is a progressive reduction in the participation of nitric oxide and endothelium-derived hyperpolarising factor associated with increased participation of oxygen-derived free radicals and cyclo-oxygenase-derived prostanoids. Also, the endothelin-1 and angiotensin II pathways may play a role in age-related endothelial dysfunction. The use of drugs acting at different levels of these signalling cascades, including antioxidant therapy, lipid-lowering drugs and estrogens, seems to be promising.
Collapse
Affiliation(s)
- Rachel L Matz
- Biochemisches Institut, Fachbereich Humanmedizin, Justus Liebig Universität, Giessen, Germany
| | | |
Collapse
|
82
|
Abstract
The endothelium is more than just a passive vessel lining. New advances have revealed and expanded the multifactorial role of the endothelium in the homeostatic regulation of the microvasculature, including control of primary hemostasis, blood coagulation and fibrinolysis, platelet and leukocyte interactions with the vessel wall, lipoprotein metabolism, presentation of histocompatibility antigens, regulation of vascular tone and growth, and regulation of blood pressure. It possesses numerous receptors and releases compounds that affect the regulation of vascular tone and contribute to vascular permeability. Many crucial vasoactive endogenous compounds are formed in the endothelial cells to control the functions of vascular smooth muscle cells and circulating blood cells. Gap junctions facilitate the exchange of metabolites, ions, and other messenger molecules among endothelial cells and smooth muscle cells, and regulate cell growth. Among the numerous regulatory systems affecting microvascular function are the cholinergic and adrenergic (α1, α2, and β) systems. Flow-metabolism coupling is affected by a variety of signaling systems, including adenosine, oxygen, carbon dioxide, lactate, nitric oxide, and others. Agents such as the angiotensin system and endothelin, as well as others, play a role in autoregulation (maintenance of constant flow in the face of changing pressure). All of these are discussed in detail.
Collapse
Affiliation(s)
- Danja Striimper
- University of Münster, University Hospital Maastrich, The Netherlands
| | - Marcel Durieux
- University of Münster; Department of Anesthesiology, University Hospital Maastrich, The Netherlands
| | - Paul Roekaerts
- Department of Anesthesiology, University Hospital Maastrich, The Netherlands
| |
Collapse
|
83
|
Capdevila JH, Nakagawa K, Holla V. The CYP P450 arachidonate monooxygenases: enzymatic relays for the control of kidney function and blood pressure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 525:39-46. [PMID: 12751734 DOI: 10.1007/978-1-4419-9194-2_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA
| | | | | |
Collapse
|
84
|
Potente M, Fisslthaler B, Busse R, Fleming I. 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. J Biol Chem 2003; 278:29619-25. [PMID: 12773534 DOI: 10.1074/jbc.m305385200] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450-derived epoxyeicosatrienoic acids (EETs) stimulate endothelial cell proliferation and angiogenesis. In this study, we investigated the involvement of the forkhead box, class O (FOXO) family of transcription factors and their downstream target p27Kip1 in EET-induced endothelial cell proliferation. Incubation of human umbilical vein endothelial cells with 11,12-EET induced a time- and dose-dependent decrease in p27Kip1 protein expression, whereas p21Cip1 was not significantly affected. This effect on p27Kip1 protein was associated with decreased mRNA levels as well as p27Kip1 promoter activity. 11,12-EET also stimulated the time-dependent phosphorylation of Akt and of the forkhead factors FOXO1 and FOXO3a, effects prevented by the phosphatidylinositol 3-kinase inhibitor LY 294002. Transfection of endothelial cells with either a dominant-negative or an "Akt-resistant"/constitutively active FOXO3a mutant reversed the 11,12-EET-induced down-regulation of p27Kip1, whereas transfection of a constitutive active Akt decreased p27Kip1 expression independently of the presence or absence of 11,12-EET. To determine whether these effects are involved in EET-induced proliferation, endothelial cells were transfected with the 11,12-EET-generating epoxygenase CYP2C9. Transfection of CYP2C9 elicited endothelial cell proliferation and this effect was inhibited in cells co-transfected with CYP2C9 and either a dominant-negative Akt or constitutively active FOXO3a. Reducing FOXO expression using RNA interference, on the other hand, attenuated p27Kip1 expression and stimulated endothelial cell proliferation. These results indicate that EET-induced endothelial cell proliferation is associated with the phosphatidylinositol 3-kinase/Akt-dependent phosphorylation and inactivation of FOXO factors and the subsequent decrease in expression of the cyclin-dependent kinase inhibitor p27Kip1.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Aryl Hydrocarbon Hydroxylases/metabolism
- Aryl Hydrocarbon Hydroxylases/physiology
- Blotting, Northern
- Blotting, Western
- Cell Cycle Proteins/metabolism
- Cell Division
- Cells, Cultured
- Cyclin-Dependent Kinase Inhibitor p27
- Cytochrome P-450 CYP2C9
- DNA-Binding Proteins/antagonists & inhibitors
- Dose-Response Relationship, Drug
- Down-Regulation
- Endothelium, Vascular/cytology
- Enzyme Inhibitors/pharmacology
- Forkhead Box Protein O1
- Forkhead Transcription Factors
- Genes, Dominant
- Humans
- Immunoblotting
- Luciferases/metabolism
- Neovascularization, Physiologic
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Time Factors
- Transcription Factors/antagonists & inhibitors
- Transfection
- Tumor Suppressor Proteins/metabolism
- Umbilical Veins/cytology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Michael Potente
- Institut für Kardiovaskuläre Physiologie, Klinikum der J. W. G.-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
85
|
Marden NY, Fiala-Beer E, Xiang SH, Murray M. Role of activator protein-1 in the down-regulation of the human CYP2J2 gene in hypoxia. Biochem J 2003; 373:669-80. [PMID: 12737630 PMCID: PMC1223548 DOI: 10.1042/bj20021903] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 04/24/2003] [Accepted: 05/09/2003] [Indexed: 01/21/2023]
Abstract
The cytochrome P450 (CYP) 2J2 arachidonic acid epoxygenase gene was down-regulated at a pre-translational level in human hepatoma-derived HepG2 cells incubated in a hypoxic environment; under these conditions, the expression of c-Jun and c-Fos mRNA and protein was increased. The 5'-upstream region of the CYP2J2 gene was isolated by amplification of a 2341 bp fragment and putative regulatory elements that resembled activator protein-1 (AP-1)-like sequences were identified. From transient transfection analysis, c-Jun was found to strongly activate a CYP2J2 -luciferase reporter construct, but co-transfection with plasmids encoding c-Fos or c-Fos-related antigens, Fra-1 and -2, abrogated reporter activity. Using a series of deletion-reporter constructs, a c-Jun-responsive module was identified between bp -152 and -50 in CYP2J2 : this region contained an AP-1-like element between bp -56 and -63. The capacity of this element to interact directly with c-Jun, but not c-Fos, was confirmed by electromobility-shift assay analysis. Mutagenesis of the -56/-63 element abolished most, but not all, of the activation of CYP2J2 by c-Jun, thus implicating an additional site within the c-Jun-responsive region. The present results establish an important role for c-Jun in the control of CYP2J2 expression in liver cells. Activation of c-Fos expression by hypoxia promotes the formation of c-Jun/c-Fos heterodimers, which decrease the binding of c-Jun to the CYP2J2 upstream region, leading to gene down-regulation.
Collapse
Affiliation(s)
- Nicole Y Marden
- Department of Physiology and Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
86
|
Nakagawa K, Marji JS, Schwartzman ML, Waterman MR, Capdevila JH. Androgen-mediated induction of the kidney arachidonate hydroxylases is associated with the development of hypertension. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1055-62. [PMID: 12531784 DOI: 10.1152/ajpregu.00459.2002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertension is a leading cause of cardiovascular, cerebral, and renal disease morbidity and mortality, and epidemiological evidence suggests a role for sex-dependent mechanisms in the pathophysiology of hypertension. We show here that treatment of rats with 5alpha-dihydrotestosterone increases the activity of the kidney arachidonate omega/omega-1 hydroxylase and the biosynthesis of 20-HETE (165 and 177% of control untreated male and female rats, respectively) and raises the systolic blood pressures of male and females rats by 46 and 57 mmHg, respectively. These androgen effects are associated with an upregulation in the kidney levels of CYP 4A8 mRNA and a decrease in CYP 4A1 transcripts. Dissected renal microvessels, the target tissue for most of the prohypertensive actions of 20-HETE, show an androgen-dependent upregulation of vascular CYP 4A8 mRNA and a fourfold increase in 20-HETE synthase activity. We propose that androgens regulate renal function and systemic blood pressure through a combination of transcriptional and hemodynamic mechanisms that are ultimately responsible for the regulation of renovascular tone and function.
Collapse
Affiliation(s)
- Kiyoshi Nakagawa
- Departments of Medicine and Biochemistry, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
87
|
Hattori T, Kajikuri J, Katsuya H, Itoh T. Effects of H2O2 on membrane potential of smooth muscle cells in rabbit mesenteric resistance artery. Eur J Pharmacol 2003; 464:101-9. [PMID: 12620501 DOI: 10.1016/s0014-2999(03)01427-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of H(2)O(2) on the membrane potential of smooth muscle cells of rabbit mesenteric resistance arteries were investigated. H(2)O(2) (3-30 microM) concentration-dependently hyperpolarized the membrane; this was inhibited by catalase but not by superoxide dismutase or the hydroxyl-radical scavenger dimethylthiourea. The cyclooxygenase inhibitor diclofenac partly inhibited the responses; the subsequent addition of the 5-lipoxygenase inhibitor 2-(12-hydroxydodeca-5,10-diynyl)-3,5,6-trimethyl-p-benzoquinone (AA-861) (but not the cytochrome P(450) inhibitor 17-octadecynoic acid) further attenuated H(2)O(2)-induced hyperpolarizations. The sarcolemmal ATP-sensitive K(+) (K(ATP)) channel inhibitor 1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenylsulfonyl]-3-methylthiourea, sodium salt (HMR-1098), blocked the H(2)O(2)-induced hyperpolarization in the absence and presence of diclofenac. H(2)O(2) increased the production of prostaglandin E(2) and prostacyclin (estimated from its stable metabolite 6-keto-prostaglandin F(1alpha)), both of which produce a HMR-1098-sensitive hyperpolarization in the smooth muscle cells. It is concluded that, in smooth muscle cells of rabbit mesenteric artery, H(2)O(2) increases the synthesis of vasodilator prostaglandins and possibly 5-lipoxygenase products, which produce a hyperpolarization by activating sarcolemmal K(ATP) channels.
Collapse
Affiliation(s)
- Tomonori Hattori
- Department of Cellular and Molecular Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Japan.
| | | | | | | |
Collapse
|
88
|
Ayajiki K, Fujioka H, Toda N, Okada S, Minamiyama Y, Imaoka S, Funae Y, Watanabe S, Nakamura A, Okamura T. Mediation of arachidonic acid metabolite(s) produced by endothelial cytochrome P-450 3A4 in monkey arterial relaxation. Hypertens Res 2003; 26:237-43. [PMID: 12675279 DOI: 10.1291/hypres.26.237] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We investigated mechanisms of endothelium-dependent relaxation by acetylcholine resistant to indomethacin and N(G)-nitro-L-arginine and sensitive to cytochrome P-450 (CYP) inhibitors or charybdotoxin + apamin in the monkey lingual artery. Treatment with quinacrine, an inhibitor of phospholipase A2, abolished the relaxation by acetylcholine. However, treatment with alpha-glycyrrhetinic acid, an inhibitor of gap junctions, or catalase, an enzyme which dismutates hydrogen peroxide to form water and oxygen, did not affect the relaxation by acetylcholine. Immunohistochemistry demonstrated the presence of CYP3A4 in endothelial cells of the artery. Anti-CYP3A4 antibody inhibited relaxations by products of arachidonic acid incubated with human liver microsomes rich in CYPs in the endothelium-denuded artery. Purified CYP3A4 produced epoxyeicosatrienoic acids (EETs) from arachidonic acid, and the production was abolished by a selective CYP3A inhibitor, ketoconazole. It may be concluded that endothelium-derived relaxing substance(s) other than nitric oxide and prostanoids in the monkey lingual artery opens charybdotoxin + apamin-sensitive K+ channels in smooth muscle cells, and arachidonic acid metabolite(s) produced by endothelial CYP3A4 is likely to be the major substance.
Collapse
Affiliation(s)
- Kazuhide Ayajiki
- Department of Pharmacology, Shiga University of Medical Science, Seta, Ohtsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Savage D, Perkins J, Hong Lim C, Bund SJ. Functional evidence that K+ is the non-nitric oxide, non-prostanoid endothelium-derived relaxing factor in rat femoral arteries. Vascul Pharmacol 2003; 40:23-8. [PMID: 12646406 DOI: 10.1016/s1537-1891(02)00317-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms of K(+)-induced relaxation and of acetylcholine (ACh)-stimulated, endothelium-dependent relaxation were assessed in rat femoral arteries mounted in a myograph. ACh-stimulated (1 nM-1 microM) relaxation of arteries precontracted with 1 microM noradrenaline was mostly resistant to the combination of indomethacin (INDO; 10 microM) and N(omega)-nitro-L-arginine (L-NNA, 100 microM). The remaining relaxation was abolished by 30 mM K(+) or ouabain (1 mM) and significantly reduced by 30 microM Ba(2+) or charybdotoxin (ChTx; 100 nM) plus apamin (100 nM). K(+)-induced relaxation effected by raising [K(+)](o) by 0.5-4 mM was endothelium-independent and inhibited by ouabain and Ba(2+). These results indicate that ACh-stimulated relaxations are effected mainly by a non-prostanoid, non-nitric oxide mechanism, presumably an endothelium-derived hyperpolarising factor (EDHF). Relaxations stimulated by EDHF and K(+) are both mediated by Na(+)-K(+) ATPase and inward rectifier potassium channels (K(IR)). This study provides further functional evidence that EDHF is K(+) derived from endothelial cells that relaxes arterial smooth muscle subsequent to activation of Na(+)-K(+) ATPase and K(IR).
Collapse
Affiliation(s)
- Declan Savage
- Department of Human Anatomy and Physiology, University College Dublin, Ireland
| | | | | | | |
Collapse
|
90
|
Kompanowska-Jezierska E, Walkowska A, Sadowski J. Role of prostaglandin cyclooxygenase and cytochrome P450 pathways in the mechanism of natriuresis which follows hypertonic saline infusion in the rat. ACTA PHYSIOLOGICA SCANDINAVICA 2003; 177:93-9. [PMID: 12492783 DOI: 10.1046/j.1365-201x.2003.01052.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The prostaglandin cyclooxygenase (COX) and P450 cytochrome (CYP450) pathways of arachidonic acid metabolism are functionally interrelated and both engaged in control of sodium excretion; the study focused on their contribution to the natriuresis which follows hypertonic saline infusion in the rat. METHODS In anaesthetized rats, clearance studies were conducted, supplemented with laser-Doppler measurements of the cortical and medullary blood flow (CBF, MBF), and measurement of medullary tissue admittance (Y), an index of interstitial ion concentration. RESULTS Indomethacin (Indo), 5 mg kg(-1) i.v. paradoxically enhanced the natriuresis secondary to intra-aortic suprarenal 5% saline load, further increasing sodium excretion by 385 +/- 73% (P < 0.01). After acute clotrimazole, 10 mg kg(-1) i.v. an inhibitor of CYP450 epoxygenase, the increase in natriuresis was smaller and did not differ from that observed after the drug's ethanol solvent. In rats pre-treated with clotrimazole for 3 days, hypertonic saline loading increased sodium excretion (U(Na)V) to 0.94 +/- 0.22 micromol min(-1) , compared with a significantly greater (P < 0.05) increase to 2.76 +/- 0.48 micromol min(-1) measured in untreated controls. Indo increased U(Na)V twofold, similarly in the clotrimazole and in the control group; in the absence or presence of clotrimazole treatment, COX blockade significantly decreased MBF and increased Y. CONCLUSION The data indicate that blockade of the CYP450 epoxygenase significantly impairs excretion of sodium in rats acutely loaded with hypertonic NaCl solution. The paradoxical post-Indo natriuresis is preserved in clotrimazole treated rats, which speaks against the role of CYP450 pathway in the response.
Collapse
Affiliation(s)
- E Kompanowska-Jezierska
- Laboratory of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawiñskiego 5, 02-106 Warsaw, Poland
| | | | | |
Collapse
|
91
|
Lu T, VanRollins M, Lee HC. Stereospecific activation of cardiac ATP-sensitive K(+) channels by epoxyeicosatrienoic acids: a structural determinant study. Mol Pharmacol 2002; 62:1076-83. [PMID: 12391270 DOI: 10.1124/mol.62.5.1076] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heart is richly endowed with K(ATP) channels, which function as biological sensors, regulating membrane potentials and electrical excitability in response to metabolic alterations. We recently reported that the cytochrome P450 metabolites of arachidonic acid, epoxyeicosatrienoic acids (EETs), potently activate cardiac K(ATP) channels by reducing channel sensitivity to ATP. In the present study, we further demonstrate that 11(S),12(R)-EET activated the cardiac K(ATP) channels with an EC(50) of 39.5 nM, whereas 11(R),12(S)-EET was totally inactive. In addition, 11(S),12(R)-EET but not 11(R),12(S)-EET hyperpolarized the resting membrane potentials and shortened the duration of cardiomyocyte action potentials. By studying homologs and analogs of 11,12-EET, we also found that all four EET regioisomers are equipotent activators of the K(ATP) channels, reducing the ATP sensitivity by more than 10-fold; however, neither altered chain length, double bond number, epoxide position, nor methylation of the carboxyl group affected channel inhibitions by ATP. All the fatty epoxides studied are potent K(ATP) channel activators, but the omega-3 homolog was particularly potent, reducing ATP sensitivity 27-fold. Together, the results indicate that the presence of an epoxide group in a particular three-dimensional configuration is a critical determinant for K(ATP) channel activation, and its effect is augmented by a double bond at omega-3 position. The results also suggest that fatty epoxides are important modulators of cardiac electrical excitability.
Collapse
Affiliation(s)
- Tong Lu
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
92
|
Cowart LA, Wei S, Hsu MH, Johnson EF, Krishna MU, Falck JR, Capdevila JH. The CYP4A isoforms hydroxylate epoxyeicosatrienoic acids to form high affinity peroxisome proliferator-activated receptor ligands. J Biol Chem 2002; 277:35105-12. [PMID: 12124379 DOI: 10.1074/jbc.m201575200] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytochromes P450 of the CYP2C and CYP4A gene subfamilies metabolize arachidonic acid to 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) and to 19- and 20-hydroxyeicosatetraenoic acids (HETEs), respectively. Abundant functional studies indicate that EETs and HETEs display powerful and often opposing biological activities as mediators of ion channel activity and regulators of vascular tone and systemic blood pressures. Incubation of 8,9-, 11,12-, and 14,15-EETs with microsomal and purified forms of rat CYP4A isoforms led to rapid NADPH-dependent metabolism to the corresponding 19- and 20-hydroxylated EETs. Comparisons of reaction rates and catalytic efficiency with those of arachidonic and lauric acids showed that EETs are one of the best endogenous substrates so far described for rat CYP4A isoforms. CYP4A1 exhibited a preference for 8,9-EET, whereas CYP4A2, CYP4A3, and CYP4A8 preferred 11,12-EET. In general, the closer the oxido ring is to the carboxylic acid functionality, the higher the rate of EET metabolism and the lower the regiospecificity for the EET omega-carbon. Analysis of cis-parinaric acid displacement from the ligand-binding domain of the human peroxisome proliferator-activated receptor-alpha showed that omega-hydroxylated 14,15-EET bound to this receptor with high affinity (K(i) = 3 +/- 1 nm). Moreover, at 1 microm, the omega-alcohol of 14,15-EET or a 1:4 mixture of the omega-alcohols of 8,9- and 11,12-EETs activated human and mouse peroxisome proliferator-activated receptor-alpha in transient transfection assays, suggesting a role for them as endogenous ligands for these orphan nuclear receptors.
Collapse
Affiliation(s)
- L Ashley Cowart
- Department of Biochemistry, Vanderbilt University Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Xu F, Straub WO, Pak W, Su P, Maier KG, Yu M, Roman RJ, Ortiz De Montellano PR, Kroetz DL. Antihypertensive effect of mechanism-based inhibition of renal arachidonic acid omega-hydroxylase activity. Am J Physiol Regul Integr Comp Physiol 2002; 283:R710-20. [PMID: 12185006 DOI: 10.1152/ajpregu.00522.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytochrome P-450 eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE) is a potent vasoconstrictor that is implicated in the regulation of blood pressure. The identification of selective inhibitors of renal 20-HETE formation for use in vivo would facilitate studies to determine the systemic effects of this eicosanoid. We characterized the acetylenic fatty acid sodium 10-undecynyl sulfate (10-SUYS) as a potent and selective mechanism-based inhibitor of renal 20-HETE formation. A single dose of 10-SUYS caused an acute reduction in mean arterial blood pressure in 8-wk-old spontaneously hypertensive rats. The decrease in mean arterial pressure was maximal 6 h after 10-SUYS treatment (17.9 +/- 3.2 mmHg; P < 0.05), and blood pressure returned to baseline levels within 24 h after treatment. Treatment with 10-SUYS was associated with a decrease in urinary 20-HETE formation in vivo and attenuation of the vasoconstrictor response of renal interlobar arteries to ANG II in vitro. These results provide further evidence that 20-HETE plays an important role in the regulation of blood pressure in the spontaneously hypertensive rat.
Collapse
Affiliation(s)
- Fengyun Xu
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Seegers HC, Gross RW, Boyle WA. Calcium-independent phospholipase A(2)-derived arachidonic acid is essential for endothelium-dependent relaxation by acetylcholine. J Pharmacol Exp Ther 2002; 302:918-23. [PMID: 12183647 DOI: 10.1124/jpet.302.3.918] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of calcium-independent phospholipase A(2) (iPLA(2))-produced arachidonic acid (AA) in acetylcholine (ACh)-mediated, endothelium-dependent vascular relaxation was investigated. ACh-induced relaxation of phenylephrine-constricted isolated rat mesenteric resistance arteries was attenuated following pretreatment with (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one (BEL; 1 microM; p < 0.01), a highly selective suicide substrate inhibitor of iPLA(2). Following BEL, the ACh relaxation could be completely restored following pretreatment with picomolar quantities of the cell-permeant methyl ester analog of AA (arachidonic acid methyl ester, AA-Me). Higher amounts of AA-Me (1 microM) had a direct endothelium-dependent relaxing action, which was inhibited by the nitric-oxide synthase inhibitor (N(omega)-nitro-L-arginine; 100 microM), independent of ACh, and unaffected by BEL. Neither the ACh relaxation restoring action nor the direct relaxing action of AA-Me was affected by preincubation with inhibitors of the lipoxygenase (esculetin, 10 microM) or cytochrome P450 monooxygenase (17-octadecynoic acid; 10 microM) pathways; and both actions of AA-Me were enhanced following preincubation with the cyclooxygenase inhibitor indomethacin (10 microM; p < 0.05). The results of the present study indicate that iPLA(2)-produced AA plays an essential role in ACh-mediated endothelium-dependent relaxation in rat mesenteric resistance arteries.
Collapse
Affiliation(s)
- Hélène C Seegers
- Department of Anesthesiology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
95
|
Capdevila JH, Falck JR. Biochemical and molecular properties of the cytochrome P450 arachidonic acid monooxygenases. Prostaglandins Other Lipid Mediat 2002; 68-69:325-44. [PMID: 12432927 DOI: 10.1016/s0090-6980(02)00038-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytochrome P450 (P450) arachidonic acid (AA) monooxygenase metabolizes the fatty acid to a series of epoxy- and hydroxy-acid derivatives. Catalytic turnover requires NADPH, and requires the redox-coupled activation and cleavage of diatomic oxygen, and the delivery of an active form of atomic oxygen to ground state carbon atoms. Past and present advances in P450 biochemistry and molecular biology are beginning to provide a description of the P450 isoform specificity of AA bioactivation, and the mechanisms of action and physiological relevance of the P450 metabolites. The demonstration of the endogenous biosynthesis of many of these metabolites has established the P450 pathway as an important route for AA bioactivation, and has begun to uncovered new and important functional roles for this enzyme system in cell and organ physiology.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | | |
Collapse
|
96
|
Emerson GG, Neild TO, Segal SS. Conduction of hyperpolarization along hamster feed arteries: augmentation by acetylcholine. Am J Physiol Heart Circ Physiol 2002; 283:H102-9. [PMID: 12063280 DOI: 10.1152/ajpheart.00038.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conduction of vasodilation along resistance vessels has been presumed to reflect the electrotonic spread of hyperpolarization from cell to cell along the vessel wall through gap junction channels. However, the vasomotor response to acetylcholine (ACh) encompasses greater distances than can be explained by passive decay. To investigate the underlying mechanism for this behavior, we tested the hypothesis that ACh augments the conduction of hyperpolarization. Feed arteries (n = 23; diameter, 58 +/- 4 microm; segment length, 2-8 mm) were isolated from the hamster retractor muscle, cannulated at each end, and pressurized to 75 mmHg (at 37 degrees C). Vessels were impaled with one or two dye-containing microelectrodes simultaneously (separation distance, 50 microm to 3.5 mm). Membrane potential (E(m)) (rest, approximately -30 mV) and electrical responses were similar between endothelium and smooth muscle, as predicted for robust myoendothelial coupling. Current injection (-0.8 nA, 1.5 s) evoked hyperpolarization (-10 +/- 1 mV; membrane time constant, 240 ms) that conducted along the vessel with a length constant (lambda) = 1.2 +/- 0.1 mm; spontaneous E(m) oscillations (approximately 1 Hz) decayed with lambda = 1.2 + 0.1 mm. In contrast, ACh microiontophoresis (500 nA, 500 ms, 1 microm tip) evoked hyperpolarization (-14 +/- 2 mV) that conducted with lambda = 1.9 +/- 0.1 mm, 60% further (P < 0.05) than responses evoked by purely electrical stimuli. These findings indicate that ACh augments the conduction of hyperpolarization along the vessel wall.
Collapse
Affiliation(s)
- Geoffrey G Emerson
- The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | | | | |
Collapse
|
97
|
Hester RL, Hammer LW. Venular-arteriolar communication in the regulation of blood flow. Am J Physiol Regul Integr Comp Physiol 2002; 282:R1280-5. [PMID: 11959667 DOI: 10.1152/ajpregu.00744.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle blood flow is regulated to meet the metabolic needs of the tissue. With the vasculature arranged as a successive branching of arterioles and the larger, >50 microm, arterioles providing the major site of resistance, an increasing metabolic demand requires the vasodilation of the small arterioles first then the vasodilation of the more proximal, larger arterioles. The mechanism(s) for the coordination of this ascending vasodilation are not clear and may involve a conducted vasodilation and/or a flow-dependent response. The close arteriolar-venular pairing provides an additional mechanism by which the arteriolar diameter can be increased due to the diffusion of vasoactive substances from the venous blood. Evidence is presented that the venular endothelium releases a relaxing factor, a metabolite of arachidonic acid, that will vasodilate the adjacent arteriole. The stimulus for this release is not known, but it is hypothesized that hypoxia-induced ATP release from red blood cells may be responsible for the stimulation of arachidonic release from the venular endothelial cells. Thus the venous circulation is in an optimal position to monitor the overall metabolic state of the tissue and thus provide a feedback regulation of arteriolar diameter.
Collapse
Affiliation(s)
- Robert L Hester
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA.
| | | |
Collapse
|
98
|
Griffith TM, Chaytor AT, Taylor HJ, Giddings BD, Edwards DH. cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions. Proc Natl Acad Sci U S A 2002; 99:6392-7. [PMID: 11972050 PMCID: PMC122959 DOI: 10.1073/pnas.092089799] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the role of cAMP in NO- and prostanoid-independent relaxations that are widely attributed to an endothelium-derived hyperpolarizing factor (EDHF). Under control conditions EDHF-type relaxations evoked by acetylcholine (ACh) in rabbit iliac arteries were transient, but in the presence of the cAMP phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) or the cell permeant cAMP analog 8-bromo-cAMP, relaxations became sustained with their maxima potentiated approximately 2-fold. Relaxation was associated with transient approximately 1.5-fold elevations in smooth muscle cAMP levels with both mechanical and nucleotide responses being abolished by interrupting gap junctional communication with the connexin-mimetic peptide Gap 27 and by endothelial denudation. However, IBMX induced a sustained endothelium-independent approximately 2-fold rise in cAMP levels, which was not further amplified by ACh, suggesting that the contribution of cAMP to the EDHF phenomenon is permissive. After selective loading of the endothelium with calcein AM, direct transfer of dye from the endothelium to the media was enhanced by IBMX or 8-bromo-cAMP, but not by 8-bromo-cGMP, whereas Gap 27 promoted sequestration within the intima. ACh-induced hyperpolarizations of subintimal smooth muscle in arterial strips with intact endothelium were abolished by Gap 27 and the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine but were unaffected by IBMX. By contrast, in strips partially denuded of endothelium, IBMX enhanced the transmission of hyperpolarization from the endothelium to remote smooth muscle cells. These findings support the hypothesis that endothelial hyperpolarization underpins the EDHF phenomenon, with cAMP governing subsequent electrotonic signaling via both myoendothelial and homocellular smooth muscle gap junctions.
Collapse
Affiliation(s)
- Tudor M Griffith
- Department of Diagnostic Radiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | | | | | | | |
Collapse
|
99
|
King LM, Ma J, Srettabunjong S, Graves J, Bradbury JA, Li L, Spiecker M, Liao JK, Mohrenweiser H, Zeldin DC. Cloning of CYP2J2 gene and identification of functional polymorphisms. Mol Pharmacol 2002; 61:840-52. [PMID: 11901223 DOI: 10.1124/mol.61.4.840] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2J2 is abundant in cardiovascular tissue and active in the metabolism of arachidonic acid to eicosanoids that possess potent anti-inflammatory, vasodilatory, and fibrinolytic properties. We cloned and sequenced the entire CYP2J2 gene (approximately 40.3 kb), which contains nine exons and eight introns. We then sequenced the CYP2J2 exons and intron-exon boundaries in 72 healthy persons representing African, Asian, and European/white populations as part of the National Institutes of Health/National Institute of Environmental Health Sciences Environmental Genome Single Nucleotide Polymorphism Program. A variety of polymorphisms were found, four of which resulted in coding changes (Arg158Cys, Ile192Asn, Asp342Asn, and Asn404Tyr). A fifth variant (Thr143Ala) was identified by screening a human heart cDNA library. All five variant cDNAs of CYP2J2 were generated by site-directed mutagenesis and expressed in Sf9 insect cells by using a baculovirus system. The recombinant wild-type and variant CYP2J2 proteins immunoreacted with peptide-based antibodies to CYP2J2 and displayed typical cytochrome P450 (P450) CO-difference spectra; however, the Asn404Tyr and Ile192Asn variants also had prominent spectral peaks at 420 nm. The ability of these variants to metabolize arachidonic acid and linoleic acid was compared with that of wild-type CYP2J2. Three variants (Asn404Tyr, Arg158Cys, and Thr143Ala) showed significantly reduced metabolism of both arachidonic acid and linoleic acid. The Ile192Asn variant showed significantly reduced activity toward arachidonic acid only. The Asp342Asn variant showed similar metabolism to wild-type CYP2J2 for both endogenous substrates. Based on these data, we conclude that allelic variants of the human CYP2J2 gene exist and that some of these variants result in a P450 protein that has reduced catalytic function. Insofar as CYP2J2 products have effects in the cardiovascular system, we speculate that these variants may be functionally relevant.
Collapse
Affiliation(s)
- Lorraine M King
- Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Chaytor AT, Taylor HJ, Griffith TM. Gap junction-dependent and -independent EDHF-type relaxations may involve smooth muscle cAMP accumulation. Am J Physiol Heart Circ Physiol 2002; 282:H1548-55. [PMID: 11893592 DOI: 10.1152/ajpheart.00903.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have compared the mechanisms that contribute to endothelium-derived hyperpolarizing factor (EDHF)-type responses induced by ACh and the Ca(2+) ionophore A-23187 in the rabbit iliac artery. Relaxations to both agents were associated with ~1.5-fold elevations in smooth muscle cAMP levels and were attenuated by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine (DDA) and potentiated by the cAMP phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Mechanical responses were inhibited by coadministration of the Ca(2+)-activated K(+) channel blockers apamin and charybdotoxin, both in the absence and presence of IBMX, but were unaffected by blockade of ATP-sensitive K(+) channels with the sulphonylurea glibenclamide. Relaxations and elevations in cAMP evoked by ACh were abolished by 18alpha-glycyrrhetinic acid, which disrupts gap junction plaques, whereas the corresponding responses to A-23187 were unaffected by this agent. Consistently, in "sandwich" bioassay experiments, A-23187, but not ACh, elicited extracellular release of a factor that evoked relaxations that were inhibited by DDA and potentiated by IBMX. These findings provide evidence that EDHF-type relaxations of rabbit iliac arteries evoked by ACh and A-23187 depend on cAMP accumulation in smooth muscle, but involve signaling via myoendothelial gap junctions and the extracellular space, respectively.
Collapse
Affiliation(s)
- Andrew T Chaytor
- Department of Diagnostic Radiology, Wales Heart Research Institute, University of Wales College of Medicine, Cardiff CF14 4XN, United Kingdom
| | | | | |
Collapse
|