51
|
Gan G, Lu B, Zhang R, Luo Y, Chen S, Lei H, Li Y, Cai Z, Huang X. Chronic apical periodontitis exacerbates atherosclerosis in apolipoprotein E-deficient mice and leads to changes in the diversity of gut microbiota. Int Endod J 2021; 55:152-163. [PMID: 34714545 PMCID: PMC9298730 DOI: 10.1111/iej.13655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Aim To investigate the impact of chronic apical periodontitis (CAP) on atherosclerosis and gut microbiota by establishing a Porphyromonas gingivalis (P. gingivalis)‐induced CAP in an apolipoprotein E‐deficient (apoE−/−) mice model. Methodology Twenty‐eight male apoE−/− mice were divided into two groups with 14 in each: CAP group and control group. In the CAP group, sterile cotton wool containing 108 colony‐forming units of P. gingivalis was placed into the pulp chamber after pulp exposure followed by coronal resin filling in bilateral maxillary first and second molars. The mice were fed with a chow diet to induce atherosclerosis. Animals were euthanized 16 weeks after the operation, and the periapical lesions of bilateral maxillary first and second molars were assessed by micro‐CT. After collection of aortic arches, atherosclerotic lesions were measured by Oil Red O staining. Serum levels of high‐density lipoprotein cholesterol (HDL‐C), low‐density lipoprotein cholesterol (LDL‐C), total cholesterol (TC), and triglycerides (TG) were measured. Stools were collected to detect alterations in gut microbiota by 16S rRNA gene sequencing. Independent samples t‐test was used to calculate the difference between the two groups. Results CAP was observed in 98.2% of molars. A significant increase in atherosclerotic plaque formation in the aortic arches was found in the CAP groups (CAP: 2.001% ± 0.27%, control: 0.927% ± 0.22%, p = .005). No significant difference was observed between sevum level of HDL‐C (CAP: 2.295 ± 0.31 mmol/L, Control: 3.037 ± 0.55 mmol/L, p = .264) or LDL‐C (CAP: 17.066 ± 3.95 mmol/L, Control: 10.948 ± 1.69 mmol/L, p = .177) in CAP group and Control group. There were no significant differences in TG (CAP: 1.076 ± 0.08 mmol/L, control: 1.034 ± 0.13 mmol/L, p = .794) or TC (CAP: 6.372 ± 0.98 mmol/L, control: 6.679 ± 0.75 mmol/L, p = .72) levels between the two groups (p > .05). The alpha diversity was elevated in the CAP group. In terms of beta diversity, the CAP and control groups were clearly distinguished by the microbial community. Conclusion In a mouse experimental model, pulp infection with P. gingivalis ‐induced CAP, thus aggravating the development of atherosclerosis. Meanwhile, CAP increased alpha diversity and altered the beta diversity of the gut microbiota.
Collapse
Affiliation(s)
- Guowu Gan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Beibei Lu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ren Zhang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yufang Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yijun Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
52
|
Shao Y, Yang WY, Saaoud F, Drummer C, Sun Y, Xu K, Lu Y, Shan H, Shevach EM, Jiang X, Wang H, Yang X. IL-35 promotes CD4+Foxp3+ Tregs and inhibits atherosclerosis via maintaining CCR5-amplified Treg-suppressive mechanisms. JCI Insight 2021; 6:152511. [PMID: 34622804 PMCID: PMC8525592 DOI: 10.1172/jci.insight.152511] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Tregs play vital roles in suppressing atherogenesis. Pathological conditions reshape Tregs and increase Treg-weakening plasticity. It remains unclear how Tregs preserve their function and how Tregs switch into alternative phenotypes in the environment of atherosclerosis. In this study, we observed a great induction of CD4+Foxp3+ Tregs in the spleen and aorta of ApoE–/– mice, accompanied by a significant increase of plasma IL-35 levels. To determine if IL-35 devotes its role in the rise of Tregs, we generated IL-35 subunit P35–deficient (IL-35P35–deficient) mice on an ApoE–/– background and found Treg reduction in the spleen and aorta compared with ApoE–/– controls. In addition, our RNA sequencing data show the elevation of a set of chemokine receptor transcripts in the ApoE–/– Tregs, and we have validated higher CCR5 expression in ApoE–/– Tregs in the presence of IL-35 than in the absence of IL-35. Furthermore, we observed that CCR5+ Tregs in ApoE–/– have lower Treg-weakening AKT-mTOR signaling, higher expression of inhibitory checkpoint receptors TIGIT and PD-1, and higher expression of IL-10 compared with WT CCR5+ Tregs. In conclusion, IL-35 counteracts hyperlipidemia in maintaining Treg-suppressive function by increasing 3 CCR5-amplified mechanisms, including Treg migration, inhibition of Treg weakening AKT-mTOR signaling, and promotion of TIGIT and PD-1 signaling.
Collapse
Affiliation(s)
| | | | | | | | - Yu Sun
- Centers for Cardiovascular Research
| | - Keman Xu
- Centers for Cardiovascular Research
| | - Yifan Lu
- Centers for Cardiovascular Research
| | - Huimin Shan
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ethan M Shevach
- Laboratory of Immune System Biology, Cellular Immunology Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Xiaohua Jiang
- Centers for Cardiovascular Research.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Xiaofeng Yang
- Centers for Cardiovascular Research.,Metabolic Disease Research & Thrombosis Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.,Centers for Inflammation, Translational & Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
53
|
Liu G, Lai P, Guo J, Wang Y, Xian X. Genetically-engineered hamster models: applications and perspective in dyslipidemia and atherosclerosis-related cardiovascular disease. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:92-110. [PMID: 37724074 PMCID: PMC10388752 DOI: 10.1515/mr-2021-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in both developed and developing countries, in which atherosclerosis triggered by dyslipidemia is the major pathological basis. Over the past 40 years, small rodent animals, such as mice, have been widely used for understanding of human atherosclerosis-related cardiovascular disease (ASCVD) with the advantages of low cost and ease of maintenance and manipulation. However, based on the concept of precision medicine and high demand of translational research, the applications of mouse models for human ASCVD study would be limited due to the natural differences in metabolic features between mice and humans even though they are still the most powerful tools in this research field, indicating that other species with biological similarity to humans need to be considered for studying ASCVD in future. With the development and breakthrough of novel gene editing technology, Syrian golden hamster, a small rodent animal replicating the metabolic characteristics of humans, has been genetically modified, suggesting that gene-targeted hamster models will provide new insights into the precision medicine and translational research of ASCVD. The purpose of this review was to summarize the genetically-modified hamster models with dyslipidemia to date, and their potential applications and perspective for ASCVD.
Collapse
Affiliation(s)
- George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Pingping Lai
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Jiabao Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, School of Basic Medical Sciences, Peking University 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
54
|
Giroud M, Jodeleit H, Prentice KJ, Bartelt A. Adipocyte function and the development of cardiometabolic disease. J Physiol 2021; 600:1189-1208. [PMID: 34555180 DOI: 10.1113/jp281979] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Obesity is a medical disorder caused by multiple mechanisms of dysregulated energy balance. A major consequence of obesity is an increased risk to develop diabetes, diabetic complications and cardiovascular disease. While a better understanding of the molecular mechanisms linking obesity, insulin resistance and cardiovascular disease is needed, translational research of the human pathology is hampered by the available cellular and rodent model systems. Major barriers are the species-specific differences in energy balance, vascular biology and adipose tissue physiology, especially related to white and brown adipocytes, and adipose tissue browning. In rodents, non-shivering thermogenesis is responsible for a large part of energy expenditure, but humans possess much less thermogenic fat, which means temperature is an important variable in translational research. Mouse models with predisposition to dyslipidaemia housed at thermoneutrality and fed a high-fat diet more closely reflect human physiology. Also, adipocytes play a key role in the endocrine regulation of cardiovascular function. Adipocytes secrete a variety of hormones, lipid mediators and other metabolites that directly influence the local microenvironment as well as distant tissues. This is specifically apparent in perivascular depots, where adipocytes modulate vascular function and inflammation. Altogether, these mechanisms highlight the critical role of adipocytes in the development of cardiometabolic disease.
Collapse
Affiliation(s)
- Maude Giroud
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
| | - Henrika Jodeleit
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany
| | - Kacey J Prentice
- Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany.,Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Bavaria, Germany.,Department of Molecular Metabolism & Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
55
|
High fat / high cholesterol diet does not provoke atherosclerosis in the ω3-and ω6-polyunsaturated fatty acid synthesis-inactivated Δ6-fatty acid desaturase-deficient mouse. Mol Metab 2021; 54:101335. [PMID: 34530175 PMCID: PMC8479258 DOI: 10.1016/j.molmet.2021.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Objective An increased ω6/ω3-polyunsaturated fatty acid ratio in the current Western diet is regarded as a critical epigenetic nutritional factor in the pathogenesis of several human lifestyle diseases, metabolic syndrome, cardiovascular disease, the central nervous system and the female and male reproductive systems. The impact of nutrient ω3-and ω6-PUFAs in the pathogenesis of dyslipoproteinemia and atherosclerosis has been a topic of intense efforts for several decades. Cellular homeostasis of the ω3-and ω6- PUFA pool is maintained by the synthesis of ω3-and ω6-PUFAs from essential fatty acids (EFA) (linoleic and α-linolenic acid) and their dietary supply. In this study, we used the auxotrophic Δ6-fatty acid desaturase- (FADS2) deficient mouse (fads2−/−), an unbiased model congenial for stringent feeding experiments, to investigate the molecular basis of the proposed protective role of dietary ω3-and ω6-PUFAs (Western diet) in the pathogenesis of multifactorial dyslipoproteinemia and atherosclerosis. We focused on the metabolic axis—liver endoplasmic reticulum (ER), serum lipoprotein system (Lp) and aorta vessel wall. Furthermore, we addressed the impact of the inactivated fads2-locus with inactivated PUFA synthesis on the development and progression of extended atherosclerosis in two different mouse mutants with disrupted cholesterol homeostasis, using the apoe−/− and ldlr−/− mutants and the fads2−/− x apoe−/− and fads2−/− x ldlr−/− double mutants. Methods Cohorts of +/+ and fads2−/− mice underwent two long-term dietary regimens: a) a PUFA-free standard chow diet containing only EFAs, essential for viability, and b) a high fat/high cholesterol (HFHC) diet, a mimicry of the human atherogenic “Western” diet. c) To study the molecular impact of PUFA synthesis deficiency on the development and progression of atherosclerosis in the hypercholesterolemic apoe−/− and ldlr−/− mouse models fed PUFA-free regular and sustained HFHC diets, we generated the fads2−/− x apoe−/− and the fads2−/− x ldlr−/− double knockout mutants. We assessed essential molecular, biochemical and cell biological links between the diet-induced modified lipidomes of the membrane systems of the endoplasmic reticulum/Golgi complex, the site of lipid synthesis, the PL monolayer and neutral lipid core of LD and serum-Lp profiles and cellular reactions in the aortic wall. Results ω3-and ω6-PUFA synthesis deficiency in the fads2−/− mouse causes a) hypocholesterolemia and hypotriglyceridemia, b) dyslipoproteinemia with a shift of high-density lipoprotein (HDL) to very low-density lipoprotein (VLDL)-enriched Lp-pattern and c) altered liver lipid droplet structures. d) Long-term HFHC diet does not trigger atherosclerotic plaque formation in the aortic arc, the thoracic and abdominal aorta of PUFA-deficient fads2−/− mice. Inactivation of the fads2−/− locus, abolishing systemic PUFA synthesis in the fads2−/− x apoe−/− and fads2−/− x ldlr−/− double knockout mouse lines. Conclusions Deficiency of ω3-and ω6-PUFA in the fads2−/− mutant perturbs liver lipid metabolism, causes hypocholesterolemia and hypotriglyceridemia and renders the fads2−/− mutant resistant to sustained atherogenic HFHC diet. Neither PUFA-free regular nor long-term HFHC-diet impacts the apoe- and LDL-receptor deficiency–provoked hypercholesterolemia and atherosclerotic plaque formation, size and distribution in the aorta. Our study strongly suggests that the absence of PUFAs as highly vulnerable chemical targets of autoxidation attenuates inflammatory responses and the formation of atherosclerotic lesions. The cumulative data and insight into the molecular basis of the pleiotropic functions of PUFAs challenge a differentiated view of PUFAs as culprits or benefactors during a lifespan, pivotal for legitimate dietary recommendations. ω3-and ω6-PUFA synthesis deficiency in the auxotrophic fads2−/− mouse. Perturbs liver membrane lipidomes and lipid metabolism Remodels the lipid droplet- and serum lipoprotein-systems Prevents PUFA-derived peroxidation products, protein modification, and inflammation Protects from high fat/high cholesterol (“Western diet”) that promotes atherosclerosis
Collapse
|
56
|
O'Morain VL, Chan Y, Williams JO, Alotibi R, Alahmadi A, Rodrigues NP, Plummer SF, Hughes TR, Michael DR, Ramji DP. The Lab4P Consortium of Probiotics Attenuates Atherosclerosis in LDL Receptor Deficient Mice Fed a High Fat Diet and Causes Plaque Stabilization by Inhibiting Inflammation and Several Pro-Atherogenic Processes. Mol Nutr Food Res 2021; 65:e2100214. [PMID: 34216185 PMCID: PMC9373067 DOI: 10.1002/mnfr.202100214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Previous studies show that Lab4 probiotic consortium plus Lactobacillus plantarum CUL66 (Lab4P) reduces diet-induced weight gain and plasma cholesterol levels in C57BL/6J mice fed a high fat diet (HFD). The effect of Lab4P on atherosclerosis is not known and is therefore investigated. METHODS AND RESULTS Atherosclerosis-associated parameters are analyzed in LDL receptor deficient mice fed HFD for 12 weeks alone or supplemented with Lab4P. Lab4P increases plasma HDL and triglyceride levels and decreases LDL/VLDL levels. Lab4P also reduces plaque burden and content of lipids and macrophages, indicative of dampened inflammation, and increases smooth muscle cell content, a marker of plaque stabilization. Atherosclerosis arrays show that Lab4P alters the liver expression of 19 key disease-associated genes. Lab4P also decreases the frequency of macrophages and T-cells in the bone marrow. In vitro assays using conditioned media from probiotic bacteria demonstrates attenuation of several atherosclerosis-associated processes in vitro such as chemokine-driven monocytic migration, proliferation of monocytes and macrophages, foam cell formation and associated changes in expression of key genes, and proliferation and migration of vascular smooth muscle cells. CONCLUSION This study provides new insights into the anti-atherogenic actions of Lab4P together with the underlying mechanisms and supports further assessments in human trials.
Collapse
Affiliation(s)
- Victoria L. O'Morain
- Cardiff School of BiosciencesCardiff UniversitySir Martin Evans Building, Museum AvenueCardiffCF10 3AXUK
| | - Yee‐Hung Chan
- Cardiff School of BiosciencesCardiff UniversitySir Martin Evans Building, Museum AvenueCardiffCF10 3AXUK
| | - Jessica O. Williams
- Cardiff School of BiosciencesCardiff UniversitySir Martin Evans Building, Museum AvenueCardiffCF10 3AXUK
| | - Reem Alotibi
- Cardiff School of BiosciencesCardiff UniversitySir Martin Evans Building, Museum AvenueCardiffCF10 3AXUK
| | - Alaa Alahmadi
- Cardiff School of BiosciencesCardiff UniversitySir Martin Evans Building, Museum AvenueCardiffCF10 3AXUK
| | - Neil P. Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff School of BiosciencesCardiff UniversityHadyn Ellis Building, Maindy RoadCardiffCF24 4HQUK
| | - Sue F. Plummer
- Cultech LimitedUnit 2 Christchurch Road, Baglan Industrial ParkPort TalbotSA12 7BZUK
| | - Timothy R. Hughes
- Systems Immunity Research Institute, School of MedicineCardiff UniversityCardiffCF14 4XNUK
| | - Daryn R. Michael
- Cultech LimitedUnit 2 Christchurch Road, Baglan Industrial ParkPort TalbotSA12 7BZUK
| | - Dipak P. Ramji
- Cardiff School of BiosciencesCardiff UniversitySir Martin Evans Building, Museum AvenueCardiffCF10 3AXUK
| |
Collapse
|
57
|
Han Q, Bagi Z, Rudic RD. Review: Circadian clocks and rhythms in the vascular tree. Curr Opin Pharmacol 2021; 59:52-60. [PMID: 34111736 DOI: 10.1016/j.coph.2021.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
The progression of vascular disease is influenced by many factors including aging, gender, diet, hypertension, and poor sleep. The intrinsic vascular circadian clock and the timing it imparts on the vasculature both conditions and is conditioned by all these variables. Circadian rhythms and their molecular components are rhythmically cycling in each endothelial cell, smooth muscle cell, in each artery, arteriole, vein, venule, and capillary. New research continues to tackle how circadian clocks act in the vasculature, describing influences in experimental and human disease, identifying potential target genes, compensatory molecules, that ultimately reveal a complexity that is vascular-bed-specific, cell-type-specific, and even single-cell-specific. Though we are yet to achieve a complete understanding, here we survey recent observations that are shedding more light on the nature of the interaction between circadian rhythms and the vascular system with implications for blood vessel disease.
Collapse
Affiliation(s)
- Qimei Han
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Raducu Daniel Rudic
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
58
|
Demandt JAF, van Kuijk K, Theelen TL, Marsch E, Heffron SP, Fisher EA, Carmeliet P, Biessen EAL, Sluimer JC. Whole-Body Prolyl Hydroxylase Domain (PHD) 3 Deficiency Increased Plasma Lipids and Hematocrit Without Impacting Plaque Size in Low-Density Lipoprotein Receptor Knockout Mice. Front Cell Dev Biol 2021; 9:664258. [PMID: 34055796 PMCID: PMC8160238 DOI: 10.3389/fcell.2021.664258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background and aims: Atherosclerosis is an important cause of clinical cardiovascular events. Atherosclerotic plaques are hypoxic, and reoxygenation improves plaque phenotype. Central players in hypoxia are hypoxia inducible factors (HIF) and their regulators, HIF-prolyl hydroxylase (PHD) isoforms 1, 2, and 3. PHD inhibitors, targeting all three isoforms, are used to alleviate anemia in chronic kidney disease. Likewise, whole-body PHD1 and PHD2ko ameliorate hypercholesterolemia and atherogenesis. As the effect of whole-body PHD3 is unknown, we investigated the effects of germline whole-body PHD3ko on atherosclerosis. Approach and Results: To initiate hypercholesterolemia and atherosclerosis low-density lipoprotein receptor knockout (LDLrko) and PHD3/LDLr double knockout (PHD3dko), mice were fed a high-cholesterol diet. Atherosclerosis and hypoxia marker pimonidazole were analyzed in aortic roots and brachiocephalic arteries. In contrast to earlier reports on PHD1- and PHD2-deficient mice, a small elevation in the body weight and an increase in the plasma cholesterol and triglyceride levels were observed after 10 weeks of diet. Dyslipidemia might be explained by an increase in hepatic mRNA expression of Cyp7a1 and fatty acid synthase, while lipid efflux of PHD3dko macrophages was comparable to controls. Despite dyslipidemia, plaque size, hypoxia, and phenotype were not altered in the aortic root or in the brachiocephalic artery of PHD3dko mice. Additionally, PHD3dko mice showed enhanced blood hematocrit levels, but no changes in circulating, splenic or lymphoid immune cell subsets. Conclusion: Here, we report that whole-body PHD3dko instigated an unfavorable lipid profile and increased hematocrit, in contrast to other PHD isoforms, yet without altering atherosclerotic plaque development.
Collapse
Affiliation(s)
- Jasper A. F. Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Kim van Kuijk
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas L. Theelen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Elke Marsch
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
| | - Sean P. Heffron
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, Grossman School of Medicine, New York University, New York, NY, United States
| | - Edward A. Fisher
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, Grossman School of Medicine, New York University, New York, NY, United States
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, Leuven, Belgium
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands
- BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
59
|
Wang X, Fu Y, Xie Z, Cao M, Qu W, Xi X, Zhong S, Piao M, Peng X, Jia Y, Meng L, Tian J. Establishment of a Novel Mouse Model for Atherosclerotic Vulnerable Plaque. Front Cardiovasc Med 2021; 8:642751. [PMID: 33796572 PMCID: PMC8007762 DOI: 10.3389/fcvm.2021.642751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Background and Aims: Acute coronary syndrome (ACS) is a group of clinical syndromes characterized by rupture or erosion of atherosclerotic unstable plaques. Effective intervention for vulnerable plaques (VP) is of great significance to reduce adverse cardiovascular events. Methods: Fbn1C1039G+/− mice were crossbred with LDLR−/− mice to obtain a novel model for atherosclerotic VP. After the mice were fed with a high-fat diet (HFD) for 12 or 24 weeks, pathological staining and immunohistochemistry analyses were employed to evaluate atherosclerotic lesions. Results: Compared to control mice, Fbn1C1039G+/−LDLR−/− mice developed more severe atherosclerotic lesions, and the positive area of oil red O staining in the aortic sinus was significantly increased after 12 weeks (21.7 ± 2.0 vs. 6.3 ± 2.1) and 24 weeks (32.6 ± 2.5 vs. 18.7 ± 2.6) on a HFD. Additional vulnerable plaque characteristics, including significantly larger necrotic cores (280 ± 19 vs. 105 ± 7), thinner fiber caps (14.0 ± 2.8 vs. 32.6 ± 2.7), apparent elastin fiber fragmentation and vessel dilation (3,010 ± 67 vs. 1,465 ± 49), a 2-fold increase in macrophage number (8.5 ± 1.0 vs. 5.0 ± 0.6), obviously decreased smooth muscle cell number (0.6 ± 0.1 vs. 2.1 ± 0.2) and an ~25% decrease in total collagen content (33.6 ± 0.3 vs. 44.9 ± 9.1) were observed in Fbn1C1039G+/−LDLR−/− mice compared with control mice after 24 weeks. Furthermore, spontaneous plaque rupture, neovascularization, and intraplaque hemorrhage were detected in the model mouse plaque regions but not in those of the control mice. Conclusions: Plaques in Fbn1C1039G+/−LDLR−/− mice fed a HFD show many features of human advanced atherosclerotic unstable plaques. These results suggest that the Fbn1C1039G+/−LDLR−/− mouse is a novel model for investigating the pathological and physiological mechanisms of advanced atherosclerotic unstable plaques.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Yahong Fu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Muhua Cao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Wenbo Qu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Shan Zhong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Minghui Piao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Xiang Peng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Ying Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Lingbo Meng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
60
|
da Silva IV, Whalen CA, Mattie FJ, Florindo C, Huang NK, Heil SG, Neuberger T, Ross AC, Soveral G, Castro R. An Atherogenic Diet Disturbs Aquaporin 5 Expression in Liver and Adipocyte Tissues of Apolipoprotein E-Deficient Mice: New Insights into an Old Model of Experimental Atherosclerosis. Biomedicines 2021; 9:150. [PMID: 33557105 PMCID: PMC7913888 DOI: 10.3390/biomedicines9020150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 01/30/2021] [Indexed: 12/16/2022] Open
Abstract
The dysfunction of vascular endothelial cells is profoundly implicated in the pathogenesis of atherosclerosis and cardiovascular disease, the global leading cause of death. Aquaporins (AQPs) are membrane channels that facilitate water and glycerol transport across cellular membranes recently implicated in the homeostasis of the cardiovascular system. Apolipoprotein-E deficient (apoE-/-) mice are a common model to study the progression of atherosclerosis. Nevertheless, the pattern of expression of AQPs in this atheroprone model is poorly characterized. In this study, apoE-/- mice were fed an atherogenic high-fat (HF) or a control diet. Plasma was collected at multiple time points to assess metabolic disturbances. At the endpoint, the aortic atherosclerotic burden was quantified using high field magnetic resonance imaging. Moreover, the transcriptional levels of several AQP isoforms were evaluated in the liver, white adipocyte tissue (WAT), and brown adipocyte tissue (BAT). The results revealed that HF-fed mice, when compared to controls, presented an exacerbated systemic inflammation and atherosclerotic phenotype, with no major differences in systemic methylation status, circulating amino acids, or plasma total glutathione. Moreover, an overexpression of the isoform AQP5 was detected in all studied tissues from HF-fed mice when compared to controls. These results suggest a novel role for AQP5 on diet-induced atherosclerosis that warrants further investigation.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Courtney A. Whalen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Floyd J. Mattie
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Cristina Florindo
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Neil K. Huang
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Sandra G. Heil
- Department of Clinical Chemistry, Medical Center Rotterdam, Erasmus MC University, 3015 GD Rotterdam, The Netherlands;
| | - Thomas Neuberger
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Rita Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (C.A.W.); (F.J.M.); (N.K.H.); (A.C.R.)
| |
Collapse
|
61
|
Yamazaki Y, Liu CC, Yamazaki A, Shue F, Martens YA, Chen Y, Qiao W, Kurti A, Oue H, Ren Y, Li Y, Aikawa T, Cherukuri Y, Fryer JD, Asmann YW, Kim BYS, Kanekiyo T, Bu G. Vascular ApoE4 Impairs Behavior by Modulating Gliovascular Function. Neuron 2021; 109:438-447.e6. [PMID: 33321072 PMCID: PMC7864888 DOI: 10.1016/j.neuron.2020.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/22/2020] [Accepted: 11/16/2020] [Indexed: 01/19/2023]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) is a strong genetic risk factor for Alzheimer's disease (AD) and multiple vascular conditions. ApoE is abundantly expressed in multiple brain cell types, including astrocytes, microglia, and vascular mural cells (VMCs). Here, we show that VMC-specific expression of apoE4 in mice impairs behavior and cerebrovascular function. Expression of either apoE3 or apoE4 in VMCs was sufficient to rescue the hypercholesterolemia and atherosclerosis phenotypes seen in Apoe knockout mice. Intriguingly, vascular expression of apoE4, but not apoE3, reduced arteriole blood flow, impaired spatial learning, and increased anxiety-like phenotypes. Single-cell RNA sequencing of vascular and glial cells revealed that apoE4 in VMCs was associated with astrocyte activation, while apoE3 was linked to angiogenic signature in pericytes. Together, our data support cell-autonomous effects of vascular apoE on brain homeostasis in an isoform-dependent manner, suggesting a critical contribution of vascular apoE to AD pathogenesis.
Collapse
Affiliation(s)
- Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Akari Yamazaki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yuanxin Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroshi Oue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yingxue Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ying Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55902, USA
| | - Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yesesri Cherukuri
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - John D Fryer
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
62
|
Koay YC, Chen YC, Wali JA, Luk AWS, Li M, Doma H, Reimark R, Zaldivia MTK, Habtom HT, Franks AE, Fusco-Allison G, Yang J, Holmes A, Simpson SJ, Peter K, O’Sullivan JF. Plasma levels of trimethylamine-N-oxide can be increased with 'healthy' and 'unhealthy' diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc Res 2021; 117:435-449. [PMID: 32267921 PMCID: PMC8599768 DOI: 10.1093/cvr/cvaa094] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS The microbiome-derived metabolite trimethylamine-N-oxide (TMAO) has attracted major interest and controversy both as a diagnostic biomarker and therapeutic target in atherothrombosis. METHODS AND RESULTS Plasma TMAO increased in mice on 'unhealthy' high-choline diets and notably also on 'healthy' high-fibre diets. Interestingly, TMAO was found to be generated by direct oxidation in the gut in addition to oxidation by hepatic flavin-monooxygenases. Unexpectedly, two well-accepted mouse models of atherosclerosis, ApoE-/- and Ldlr-/- mice, which reflect the development of stable atherosclerosis, showed no association of TMAO with the extent of atherosclerosis. This finding was validated in the Framingham Heart Study showing no correlation between plasma TMAO and coronary artery calcium score or carotid intima-media thickness (IMT), as measures of atherosclerosis in human subjects. However, in the tandem-stenosis mouse model, which reflects plaque instability as typically seen in patients, TMAO levels correlated with several characteristics of plaque instability, such as markers of inflammation, platelet activation, and intraplaque haemorrhage. CONCLUSIONS Dietary-induced changes in the microbiome, of both 'healthy' and 'unhealthy' diets, can cause an increase in the plasma level of TMAO. The gut itself is a site of significant oxidative production of TMAO. Most importantly, our findings reconcile contradictory data on TMAO. There was no direct association of plasma TMAO and the extent of atherosclerosis, both in mice and humans. However, using a mouse model of plaque instability we demonstrated an association of TMAO plasma levels with atherosclerotic plaque instability. The latter confirms TMAO as being a marker of cardiovascular risk.
Collapse
Affiliation(s)
- Yen Chin Koay
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Yung-Chih Chen
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Alison W S Luk
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Mengbo Li
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Hemavarni Doma
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Rosa Reimark
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | | | - Habteab T Habtom
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| | - Gabrielle Fusco-Allison
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jean Yang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - John F O’Sullivan
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
63
|
Lin Y, Tsai M, Hsieh I, Wen M, Wang C. Deficiency of circadian gene cryptochromes in bone marrow‐derived cells protects against atherosclerosis in
LDLR
−/−
mice. FASEB J 2021; 35:e21309. [DOI: 10.1096/fj.202001818rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yu‐Sheng Lin
- Healthcare Center Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Ming‐Lung Tsai
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - I‐Chang Hsieh
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Ming‐Shien Wen
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Chao‐Yung Wang
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
- Institute of Cellular and System Medicine National Health Research Institutes Zhunan Taiwan
- Department of Medical Science National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
64
|
Fu Y, Sun C, Li Q, Qian F, Li C, Xi X, Shang D, Wang C, Peng X, Piao M, Qu W, Tian J, Yu B, Gu X, Tian J. Differential RNA expression profiles and competing endogenous RNA-associated regulatory networks during the progression of atherosclerosis. Epigenomics 2021; 13:99-112. [PMID: 33406894 DOI: 10.2217/epi-2020-0252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To identify differential mRNA and ncRNA expression profiles and competing endogenous RNA-associated regulatory networks during the progression of atherosclerosis (AS). Materials & methods: We systematically analyzed whole-transcriptome sequencing of samples from different stages of AS to evaluate their long noncoding RNA (lncRNA), circular RNA (circRNA), miRNA and mRNA profiles. Results: We constructed three AS-related competing endogenous RNA regulatory networks of differentially expressed circRNAs, lncRNAs, miRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the circRNAs in the network were enriched in lipid metabolic processes and participated in the PPAR signaling pathway. Furthermore, lncRNAs were related to receptor activity, myofibrils and cardiovascular system development. Conclusion: The current findings further clarified the regulatory mechanisms at different stages of AS and may provide new ideas and targets for AS.
Collapse
Affiliation(s)
- Yahong Fu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, 541004, Guangxi, China
| | - Changbin Sun
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Qi Li
- Department of Pathology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Fengcui Qian
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, Heilongjiang, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, Heilongjiang, China
| | - Xiangwen Xi
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Desi Shang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Chuhan Wang
- Department of Pathology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xiang Peng
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Minghui Piao
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Wenbo Qu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Jinwei Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China.,Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin, 541004, Guangxi, China
| | - Bo Yu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| | - Xia Gu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China.,Heilongjiang Provincial Hospital, Harbin, 150030, Heilongjiang, China
| | - Jiangtian Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.,The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150086, Heilongjiang, China
| |
Collapse
|
65
|
Olkowicz M, Czyzynska-Cichon I, Szupryczynska N, Kostogrys RB, Kochan Z, Debski J, Dadlez M, Chlopicki S, Smolenski RT. Multi-omic signatures of atherogenic dyslipidaemia: pre-clinical target identification and validation in humans. J Transl Med 2021; 19:6. [PMID: 33407555 PMCID: PMC7789501 DOI: 10.1186/s12967-020-02663-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dyslipidaemia is a major risk factor for atherosclerosis and cardiovascular diseases. The molecular mechanisms that translate dyslipidaemia into atherogenesis and reliable markers of its progression are yet to be fully elucidated. To address this issue, we conducted a comprehensive metabolomic and proteomic analysis in an experimental model of dyslipidaemia and in patients with familial hypercholesterolemia (FH). METHODS Liquid chromatography/mass spectrometry (LC/MS) and immunoassays were used to find out blood alterations at metabolite and protein levels in dyslipidaemic ApoE-/-/LDLR-/- mice and in FH patients to evaluate their human relevance. RESULTS We identified 15 metabolites (inhibitors and substrates of nitric oxide synthase (NOS), low-molecular-weight antioxidants (glutamine, taurine), homocysteine, methionine, 1-methylnicotinamide, alanine and hydroxyproline) and 9 proteins (C-reactive protein, proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III, soluble intercellular adhesion molecule-1, angiotensinogen, paraoxonase-1, fetuin-B, vitamin K-dependent protein S and biglycan) that differentiated FH patients from healthy controls. Most of these changes were consistently found in dyslipidaemic mice and were further amplified if mice were fed an atherogenic (Western or low-carbohydrate, high-protein) diet. CONCLUSIONS The alterations highlighted the involvement of an immune-inflammatory response system, oxidative stress, hyper-coagulation and impairment in the vascular function/regenerative capacity in response to dyslipidaemia that may also be directly engaged in development of atherosclerosis. Our study further identified potential biomarkers for an increased risk of atherosclerosis that may aid in clinical diagnosis or in the personalized treatment.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland. .,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland
| | - Natalia Szupryczynska
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211, Gdansk, Poland
| | - Renata B Kostogrys
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149, Krakow, Poland
| | - Zdzislaw Kochan
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211, Gdansk, Poland
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St., 31-531, Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland.
| |
Collapse
|
66
|
Olkowicz M, Tomczyk M, Debski J, Tyrankiewicz U, Przyborowski K, Borkowski T, Zabielska-Kaczorowska M, Szupryczynska N, Kochan Z, Smeda M, Dadlez M, Chlopicki S, Smolenski RT. Enhanced cardiac hypoxic injury in atherogenic dyslipidaemia results from alterations in the energy metabolism pattern. Metabolism 2021; 114:154400. [PMID: 33058853 DOI: 10.1016/j.metabol.2020.154400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Dyslipidaemia is a major risk factor for myocardial infarction that is known to correlate with atherosclerosis in the coronary arteries. We sought to clarify whether metabolic alterations induced by dyslipidaemia in cardiomyocytes collectively constitute an alternative pathway that escalates myocardial injury. METHODS Dyslipidaemic apolipoprotein E and low-density lipoprotein receptor (ApoE/LDLR) double knockout (ApoE-/-/LDLR-/-) and wild-type C57BL/6 (WT) mice aged six months old were studied. Cardiac injury under reduced oxygen supply was evaluated by 5 min exposure to 5% oxygen in the breathing air under electrocardiogram (ECG) recording and with the assessment of troponin I release. To address the mechanisms LC/MS was used to analyse the cardiac proteome pattern or in vivo metabolism of stable isotope-labelled substrates and HPLC was applied to measure concentrations of cardiac high-energy phosphates. Furthermore, the effect of blocking fatty acid use with ranolazine on the substrate preference and cardiac hypoxic damage was studied in ApoE-/-/LDLR-/- mice. RESULTS Hypoxia induced profound changes in ECG ST-segment and troponin I leakage in ApoE-/-/LDLR-/- mice but not in WT mice. The evaluation of the cardiac proteomic pattern revealed that ApoE-/-/LDLR-/- as compared with WT mice were characterised by coordinated increased expression of mitochondrial proteins, including enzymes of fatty acids' and branched-chain amino acids' oxidation, accompanied by decreased expression levels of glycolytic enzymes. These findings correlated with in vivo analysis, revealing a reduction in the entry of glucose and enhanced entry of leucine into the cardiac Krebs cycle, with the cardiac high-energy phosphates pool maintained. These changes were accompanied by the activation of molecular targets controlling mitochondrial metabolism. Ranolazine reversed the oxidative metabolic shift in ApoE-/-/LDLR-/- mice and reduced cardiac damage induced by hypoxia. CONCLUSIONS We suggest a novel mechanism for myocardial injury in dyslipidaemia that is consequent to an increased reliance on oxidative metabolism in the heart. The alterations in the metabolic pattern that we identified constitute an adaptive mechanism that facilitates maintenance of metabolic equilibrium and cardiac function under normoxia. However, this adaptation could account for myocardial injury even in a mild reduction of oxygen supply.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Marta Tomczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106 Warsaw, Poland
| | - Urszula Tyrankiewicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Tomasz Borkowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Magdalena Zabielska-Kaczorowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; Department of Physiology, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Natalia Szupryczynska
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Zdzislaw Kochan
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106 Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348 Krakow, Poland; Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St., 31-531 Krakow, Poland.
| | - Ryszard T Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland.
| |
Collapse
|
67
|
Bjørnholm KD, Skovsted GF, Mitgaard-Thomsen A, Rakipovski G, Tveden-Nyborg P, Lykkesfeldt J, Povlsen GK. Liraglutide treatment improves endothelial function in the Ldlr-/- mouse model of atherosclerosis and affects genes involved in vascular remodelling and inflammation. Basic Clin Pharmacol Toxicol 2021; 128:103-114. [PMID: 32896073 DOI: 10.1111/bcpt.13486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Recent clinical intervention studies have shown that the GLP1 analogue liraglutide lowers cardiovascular risk, but the underlying mechanism has not yet been fully elucidated. This study investigated the effects of liraglutide on endothelial function in the Ldlr-/- mouse model. Mice (n = 12/group) were fed Western diet (WD) or chow for 12 weeks followed by 4 weeks of treatment with liraglutide (1 mg/kg/day) or vehicle subcutaneously. Weight loss, blood lipid content, plaque burden, vasomotor function of the aorta and gene expression pattern in aorta and brachiocephalic artery were monitored. Liraglutide treatment significantly induced weight loss (P < .0001), decreased blood triglycerides (P < .0001) and total cholesterol (P < .0001) in WD-fed mice but did not decrease plaque burden. Liraglutide also improved endothelium-mediated dilation of the distal thoracis aorta (P = .0067), but it did not affect phenylephrine or sodium nitroprusside responses. Fluidigm analyses of 96 genes showed significantly altered expression of seven genes related to inflammation, vascular smooth muscle cells and extracellular matrix composition in liraglutide-treated animals. We conclude that treatment with liraglutide decreased endothelial dysfunction and that this could be linked to decreased inflammation or regulation of vascular remodelling.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Atherosclerosis/drug therapy
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- Disease Models, Animal
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Gene Expression Regulation
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/physiopathology
- Inflammation/prevention & control
- Liraglutide/pharmacology
- Male
- Mice, Knockout
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
- Vasodilation/drug effects
- Mice
Collapse
Affiliation(s)
- Katrine Dahl Bjørnholm
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
- Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark
| | - Gry Freja Skovsted
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | | | - Günaj Rakipovski
- Department of Cardiovascular Disease Research, Novo Nordisk, Måløv, Denmark
| | - Pernille Tveden-Nyborg
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Lykkesfeldt
- Department of Experimental Animal Models, University of Copenhagen, Frederiksberg, Denmark
| | | |
Collapse
|
68
|
Truong R, Thankam FG, Agrawal DK. Immunological mechanisms underlying sterile inflammation in the pathogenesis of atherosclerosis: potential sites for intervention. Expert Rev Clin Immunol 2020; 17:37-50. [PMID: 33280442 DOI: 10.1080/1744666x.2020.1860757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Innate and adaptive immunity play a critical role in the underlying pathological mechanisms of atherosclerosis and potential target sites of sterile inflammation open opportunities to develop novel therapeutics. In response to oxidized LDL in the intimal layer, T cell subsets are recruited and activated at the site of atheroma to upregulate pro-atherogenic cytokines which exacerbate plaque formation instability.Areas covered: A systematic search of PubMed and the Web of Science was performed between January 2001- September 2020 and relevant articles in sterile inflammation and atherosclerosis were critically reviewed. The original information was collected on the interconnection between danger associated molecular patterns (DAMPs) as the mediators of sterile inflammation and the receptor complex of CD36-TLR4-TLR6 that primes and activates inflammasomes in the pathophysiology of atherosclerosis. Mediators of sterile inflammation are identified to target therapeutic strategies in the management of atherosclerosis.Expert opinion: Sterile inflammation via NLRP3 inflammasome is perpetuated by the activation of IL-1β and IL-18 and induction of pyroptosis resulting in the release of additional inflammatory cytokines and DAMPs. Challenges with current inhibitors of the NLRP3 inflammasome lie in the specificity, stability, and efficacy in targeting the NLRP3 inflammasome constituents without ameliorating upstream or downstream responses necessary for survival.
Collapse
Affiliation(s)
- Roland Truong
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
69
|
van Geffen JP, Swieringa F, van Kuijk K, Tullemans BME, Solari FA, Peng B, Clemetson KJ, Farndale RW, Dubois LJ, Sickmann A, Zahedi RP, Ahrends R, Biessen EAL, Sluimer JC, Heemskerk JWM, Kuijpers MJE. Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome. Sci Rep 2020; 10:21407. [PMID: 33293576 PMCID: PMC7722935 DOI: 10.1038/s41598-020-78522-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Hyperlipidemia is a well-established risk factor for cardiovascular diseases. Millions of people worldwide display mildly elevated levels of plasma lipids and cholesterol linked to diet and life-style. While the prothrombotic risk of severe hyperlipidemia has been established, the effects of moderate hyperlipidemia are less clear. Here, we studied platelet activation and arterial thrombus formation in Apoe-/- and Ldlr-/- mice fed a normal chow diet, resulting in mildly increased plasma cholesterol. In blood from both knockout mice, collagen-dependent thrombus and fibrin formation under flow were enhanced. These effects did not increase in severe hyperlipidemic blood from aged mice and upon feeding a high-fat diet (Apoe-/- mice). Bone marrow from wild-type or Ldlr-/- mice was transplanted into irradiated Ldlr-/- recipients. Markedly, thrombus formation was enhanced in blood from chimeric mice, suggesting that the hyperlipidemic environment altered the wild-type platelets, rather than the genetic modification. The platelet proteome revealed high similarity between the three genotypes, without clear indication for a common protein-based gain-of-function. The platelet lipidome revealed an altered lipid profile in mildly hyperlipidemic mice. In conclusion, in Apoe-/- and Ldlr-/- mice, modest elevation in plasma and platelet cholesterol increased platelet responsiveness in thrombus formation and ensuing fibrin formation, resulting in a prothrombotic phenotype.
Collapse
Affiliation(s)
- Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.,Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Kim van Kuijk
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Bibian M E Tullemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Fiorella A Solari
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Bing Peng
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - Kenneth J Clemetson
- Department of Haematology, Inselspital, University of Bern, Bern, Switzerland
| | | | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany
| | - René P Zahedi
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany.,Segal Cancer Proteomics Centre, Jewish General Hospital, McGill University, Montreal, Canada
| | - Robert Ahrends
- Leibniz Institut für Analytische Wissenschaften - ISAS- e.V, Dortmund, Germany.,Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Erik A L Biessen
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands.,Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Judith C Sluimer
- Department of Pathology, CARIM, Maastricht University, Maastricht, The Netherlands.,BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
70
|
Aravani D, Kassi E, Chatzigeorgiou A, Vakrou S. Cardiometabolic Syndrome: An Update on Available Mouse Models. Thromb Haemost 2020; 121:703-715. [PMID: 33280078 DOI: 10.1055/s-0040-1721388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiometabolic syndrome (CMS), a disease entity characterized by abdominal obesity, insulin resistance (IR), hypertension, and hyperlipidemia, is a global epidemic with approximately 25% prevalence in adults globally. CMS is associated with increased risk for cardiovascular disease (CVD) and development of diabetes. Due to its multifactorial etiology, the development of several animal models to simulate CMS has contributed significantly to the elucidation of the disease pathophysiology and the design of therapies. In this review we aimed to present the most common mouse models used in the research of CMS. We found that CMS can be induced either by genetic manipulation, leading to dyslipidemia, lipodystrophy, obesity and IR, or obesity and hypertension, or by administration of specific diets and drugs. In the last decade, the ob/ob and db/db mice were the most common obesity and IR models, whereas Ldlr-/- and Apoe-/- were widely used to induce hyperlipidemia. These mice have been used either as a single transgenic or combined with a different background with or without diet treatment. High-fat diet with modifications is the preferred protocol, generally leading to increased body weight, hyperlipidemia, and IR. A plethora of genetically engineered mouse models, diets, drugs, or synthetic compounds that are available have advanced the understanding of CMS. However, each researcher should carefully select the most appropriate model and validate its consistency. It is important to consider the differences between strains of the same animal species, different animals, and most importantly differences to human when translating results.
Collapse
Affiliation(s)
- Dimitra Aravani
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Styliani Vakrou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Cardiology, "Laiko" General Hospital, Athens, Greece
| |
Collapse
|
71
|
Shabir O, Moll TA, Matuszyk MM, Eyre B, Dake MD, Berwick J, Francis SE. Preclinical models of disease and multimorbidity with focus upon cardiovascular disease and dementia. Mech Ageing Dev 2020; 192:111361. [DOI: 10.1016/j.mad.2020.111361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/28/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
|
72
|
Zhang X, Bishawi M, Zhang G, Prasad V, Salmon E, Breithaupt JJ, Zhang Q, Truskey GA. Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nat Commun 2020; 11:5426. [PMID: 33110060 PMCID: PMC7591486 DOI: 10.1038/s41467-020-19197-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Novel atherosclerosis models are needed to guide clinical therapy. Here, we report an in vitro model of early atherosclerosis by fabricating and perfusing multi-layer arteriole-scale human tissue-engineered blood vessels (TEBVs) by plastic compression. TEBVs maintain mechanical strength, vasoactivity, and nitric oxide (NO) production for at least 4 weeks. Perfusion of TEBVs at a physiological shear stress with enzyme-modified low-density-lipoprotein (eLDL) with or without TNFα promotes monocyte accumulation, reduces vasoactivity, alters NO production, which leads to endothelial cell activation, monocyte accumulation, foam cell formation and expression of pro-inflammatory cytokines. Removing eLDL leads to recovery of vasoactivity, but not loss of foam cells or recovery of permeability, while pretreatment with lovastatin or the P2Y11 inhibitor NF157 reduces monocyte accumulation and blocks foam cell formation. Perfusion with blood leads to increased monocyte adhesion. This atherosclerosis model can identify the role of drugs on specific vascular functions that cannot be assessed in vivo.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Muath Bishawi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, 27708, USA
| | - Ge Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, 116044, Dalian, China
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Varun Prasad
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ellen Salmon
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason J Breithaupt
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- University of Miami Miller School of Medicine, Miami, FL, 33163, USA
| | - Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
73
|
Nevado RM, Hamczyk MR, Gonzalo P, Andrés-Manzano MJ, Andrés V. Premature Vascular Aging with Features of Plaque Vulnerability in an Atheroprone Mouse Model of Hutchinson-Gilford Progeria Syndrome with Ldlr Deficiency. Cells 2020; 9:cells9102252. [PMID: 33049978 PMCID: PMC7601818 DOI: 10.3390/cells9102252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 12/21/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is among the most devastating of the laminopathies, rare genetic diseases caused by mutations in genes encoding nuclear lamina proteins. HGPS patients age prematurely and die in adolescence, typically of atherosclerosis-associated complications. The mechanisms of HGPS-related atherosclerosis are not fully understood due to the scarcity of patient-derived samples and the availability of only one atheroprone mouse model of the disease. Here, we generated a new atherosusceptible model of HGPS by crossing progeroid LmnaG609G/G609G mice, which carry a disease-causing mutation in the Lmna gene, with Ldlr−/− mice, a commonly used preclinical atherosclerosis model. Ldlr−/−LmnaG609G/G609G mice aged prematurely and had reduced body weight and survival. Compared with control mice, Ldlr−/−LmnaG609G/G609G mouse aortas showed a higher atherosclerosis burden and structural abnormalities typical of HGPS patients, including vascular smooth muscle cell depletion in the media, adventitial thickening, and elastin structure alterations. Atheromas of Ldlr−/−LmnaG609G/G609G mice had features of unstable plaques, including the presence of erythrocytes and iron deposits and reduced smooth muscle cell and collagen content. Ldlr−/−LmnaG609G/G609G mice faithfully recapitulate vascular features found in patients and thus provide a new tool for studying the mechanisms of HGPS-related atherosclerosis and for testing therapies.
Collapse
MESH Headings
- Aging, Premature/metabolism
- Aging, Premature/physiopathology
- Animals
- Aorta/metabolism
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Disease Models, Animal
- Female
- Lamin Type A/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/metabolism
- Nuclear Lamina/metabolism
- Plaque, Atherosclerotic/metabolism
- Progeria/metabolism
- Progeria/physiopathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
Collapse
Affiliation(s)
- Rosa M. Nevado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; (R.M.N.); (P.G.); (M.J.A.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Magda R. Hamczyk
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; (R.M.N.); (P.G.); (M.J.A.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Pilar Gonzalo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; (R.M.N.); (P.G.); (M.J.A.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - María Jesús Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; (R.M.N.); (P.G.); (M.J.A.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; (R.M.N.); (P.G.); (M.J.A.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-91-453-1200
| |
Collapse
|
74
|
Hofheinz K, Seibert F, Ackermann JA, Dietel B, Tauchi M, Oszvar-Kozma M, Kühn H, Schett G, Binder CJ, Krönke G. Formation of atherosclerotic lesions is independent of eosinophils in male mice. Atherosclerosis 2020; 311:67-72. [PMID: 32947200 DOI: 10.1016/j.atherosclerosis.2020.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND AIMS Oxidation of low-density lipoprotein (LDL) and oxidized LDL-mediated activation of the innate immune system have been recognized as early key events during the pathogenesis of atherosclerosis. Recent evidence identified eosinophils as a major source of enzymatic lipid oxidation and suggested a potential role of type 2 immunity in atherogenesis. However, the involvement of individual type 2 immune cell subsets involved in this process has been incompletely defined. We therefore sought to determine the role of eosinophils during LDL oxidation and the pathogenesis of this disease. METHODS Using eosinophil-deficient dblGATA1 mice, we studied the role of eosinophils in two established mouse models of atherosclerosis. RESULTS These experiments revealed that the presence of eosinophils did neither affect biomarkers of LDL oxidation nor atherosclerotic lesion development. CONCLUSIONS The obtained results show that LDL oxidation and development of atherosclerosis are largely independent of eosinophils or eosinophil-mediated LDL oxidation.
Collapse
Affiliation(s)
- Katharina Hofheinz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian Seibert
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jochen A Ackermann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Barbara Dietel
- Department of Internal Medicine 2 - Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miyuki Tauchi
- Department of Internal Medicine 2 - Cardiology and Angiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria Oszvar-Kozma
- Department of Laboratory Medicine, Medical University of Vienna, CeMM Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria; CeMM Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria
| | - Hartmut Kühn
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, CeMM Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria; CeMM Research Center for Molecular Medicine of Austrian Academy of Sciences, Vienna, Austria
| | - Gerhard Krönke
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
75
|
Wang S, Cao N. Uncovering potential differentially expressed miRNAs and targeted mRNAs in myocardial infarction based on integrating analysis. Mol Med Rep 2020; 22:4383-4395. [PMID: 33000230 PMCID: PMC7533449 DOI: 10.3892/mmr.2020.11517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death globally. The aim of the present study was to find valuable microRNAs (miRNAs/miRs) and target mRNAs in order to contribute to our understanding of the pathology of MI. miRNA and mRNA data were downloaded for differential expression analysis. Then, a regulatory network between miRNAs and mRNAs was established, followed by function annotation of target mRNAs. Thirdly, prognosis and diagnostic analysis of differentially methylated target mRNAs were performed. Finally, an in vitro experiment was used to validate the expression of selected miRNAs and target mRNAs. A total of 19 differentially expressed miRNAs and 1,007 differentially expressed mRNAs were identified. Several regulatory interaction pairs between miRNA and mRNAs were identified, such as hsa-miR-142-2p-long-chain-fatty-acid-CoA ligase 1 (ACSL1), hsa-miR-15a-3p-nicotinamide phosphoribosyltransferase (NAMPT), hsa-miR-33b-5p-regulator of G-protein signaling 2 (RGS2), hsa-miR-17-3p-Jun dimerization protein 2 (JDP2), hsa-miR-24-1-5p-aquaporin-9 (AQP9) and hsa-miR-34a-5p-STAT1/AKT3. Of note, it was demonstrated that ACSL1, NAMPT, RGS2, JDP2, AQP9, STAT1 and AKT3 had diagnostic and prognostic values for patients with MI. In addition, STAT1 was involved in the ‘chemokine signaling pathway’ and ‘Jak-STAT signaling pathway’. AKT3 was involved in both the ‘MAPK signaling pathway’ and ‘T cell receptor signaling pathway’. Reverse transcription-quantitative PCR validation of hsa-miR-142-3p, hsa-miR-15a-3p, hsa-miR-33b-5p, ACSL1, NAMPT, RGS2 and JDP2 expression was consistent with the bioinformatics analysis. In conclusion, the identified miRNAs and mRNAs may be involved in the pathology of MI.
Collapse
Affiliation(s)
- Shiai Wang
- Department of Cardiology, Jinan Jigang Hospital, Jinan, Shandong 250000, P.R. China
| | - Na Cao
- Department of Cardiology, Jinan Jigang Hospital, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
76
|
Mika M, Wikiera A, Antończyk A, Grabacka M. The impact of catechins included in high fat diet on AMP-dependent protein kinase in apoE knock-out mice. Int J Food Sci Nutr 2020; 72:348-356. [PMID: 32900230 DOI: 10.1080/09637486.2020.1817345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Due to their health-promoting effects green tea catechins have gained a keen interest in recent years in the context of bodyweight reduction treatments and alleviation of inflammatory diseases. This study was designed to evaluate the impact of native and thermally modified catechins (TMC) on the body weight gain, fatty acid profile in subcutaneous adipose tissue and the activity of the enzymes involved in lipid metabolism regulation: AMP-dependent protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in apoE-deficient mice maintained on a high-fat diet. We observed that TMC decreased bodyweight gain as compared to the control group. Furthermore, TMC increased AMPK activity and reduced ACC activity in the metabolically important tissues: intestine, liver and subcutaneous adipose tissue and affected adipose tissue fatty acid composition. Native catechins produced less pronounced effects. These results suggest that TMC down-regulate endogenous fatty acid synthesis, which should be taken into account in dietary applications of catechins.
Collapse
Affiliation(s)
- Magdalena Mika
- Faculty of Food Technology, Department of Biotechnology and General Technology of Foods, University of Agriculture, Krakow, Poland
| | - Agnieszka Wikiera
- Faculty of Food Technology, Department of Biotechnology and General Technology of Foods, University of Agriculture, Krakow, Poland
| | - Anna Antończyk
- Faculty of Food Technology, Department of Biotechnology and General Technology of Foods, University of Agriculture, Krakow, Poland
| | - Maja Grabacka
- Faculty of Food Technology, Department of Biotechnology and General Technology of Foods, University of Agriculture, Krakow, Poland
| |
Collapse
|
77
|
de Yébenes VG, Briones AM, Martos-Folgado I, Mur SM, Oller J, Bilal F, González-Amor M, Méndez-Barbero N, Silla-Castro JC, Were F, Jiménez-Borreguero LJ, Sánchez-Cabo F, Bueno H, Salaices M, Redondo JM, Ramiro AR. Aging-Associated miR-217 Aggravates Atherosclerosis and Promotes Cardiovascular Dysfunction. Arterioscler Thromb Vasc Biol 2020; 40:2408-2424. [PMID: 32847388 PMCID: PMC7505150 DOI: 10.1161/atvbaha.120.314333] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Objective: microRNAs are master regulators of gene expression with essential roles in virtually all biological processes. miR-217 has been associated with aging and cellular senescence, but its role in vascular disease is not understood. Approach and Results: We have used an inducible endothelium-specific knock-in mouse model to address the role of miR-217 in vascular function and atherosclerosis. miR-217 reduced NO production and promoted endothelial dysfunction, increased blood pressure, and exacerbated atherosclerosis in proatherogenic apoE−/− mice. Moreover, increased endothelial miR-217 expression led to the development of coronary artery disease and altered left ventricular heart function, inducing diastolic and systolic dysfunction. Conversely, inhibition of endogenous vascular miR-217 in apoE−/− mice improved vascular contractility and diminished atherosclerosis. Transcriptome analysis revealed that miR-217 regulates an endothelial signaling hub and downregulates a network of eNOS (endothelial NO synthase) activators, including VEGF (vascular endothelial growth factor) and apelin receptor pathways, resulting in diminished eNOS expression. Further analysis revealed that human plasma miR-217 is a biomarker of vascular aging and cardiovascular risk. Conclusions: Our results highlight the therapeutic potential of miR-217 inhibitors in aging-related cardiovascular disease.
Collapse
Affiliation(s)
- Virginia G de Yébenes
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 12 de Octubre Health Research Institute, Madrid, Spain (V.G.d.Y.)
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Spain (A.M.B., M.G.-A., M.S.).,CIBER de Enfermedades Cardiovasculares, Spain (A.M.B., M.G.-A., M.S., J.M.R.)
| | - Inmaculada Martos-Folgado
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Sonia M Mur
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jorge Oller
- Gene Regulation in Cardiovascular Remodelling and Inflammation Lab (J.O., N.M.-B., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Faiz Bilal
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - María González-Amor
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Spain (A.M.B., M.G.-A., M.S.).,CIBER de Enfermedades Cardiovasculares, Spain (A.M.B., M.G.-A., M.S., J.M.R.)
| | - Nerea Méndez-Barbero
- Gene Regulation in Cardiovascular Remodelling and Inflammation Lab (J.O., N.M.-B., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Juan Carlos Silla-Castro
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (J.C.S.-C., F.W., F.S.-C.)
| | - Felipe Were
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (J.C.S.-C., F.W., F.S.-C.)
| | | | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (J.C.S.-C., F.W., F.S.-C.)
| | - Héctor Bueno
- Department of Cell & Developmental Biology, Multidisciplinary Translational Cardiovascular Research (H.B.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Spain (A.M.B., M.G.-A., M.S.).,CIBER de Enfermedades Cardiovasculares, Spain (A.M.B., M.G.-A., M.S., J.M.R.)
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Lab (J.O., N.M.-B., J.M.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz, Spain (A.M.B., M.G.-A., M.S.).,CIBER de Enfermedades Cardiovasculares, Spain (A.M.B., M.G.-A., M.S., J.M.R.)
| | - Almudena R Ramiro
- Department of Vascular Physiopathology, B Lymphocyte Biology Lab (V.G.d.Y., I.M.-F., S.M.M., F.B., A.R.R.), Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
78
|
Turk JR, Deaton AM, Yin J, Stolina M, Felx M, Boyd G, Bienvenu JG, Varela A, Guillot M, Holdsworth G, Wolfreys A, Dwyer D, Kumar SV, de Koning EM, Qu Y, Engwall M, Locher K, Ward LD, Glaus C, He YD, Boyce RW. Nonclinical cardiovascular safety evaluation of romosozumab, an inhibitor of sclerostin for the treatment of osteoporosis in postmenopausal women at high risk of fracture. Regul Toxicol Pharmacol 2020; 115:104697. [PMID: 32590049 DOI: 10.1016/j.yrtph.2020.104697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Romosozumab (EVENITY™ [romosozumab-aqqg in the US]) is a humanized monoclonal antibody that inhibits sclerostin and has been approved in several countries for the treatment of osteoporosis in postmenopausal women at high risk of fracture. Sclerostin is expressed in bone and aortic vascular smooth muscle (AVSM). Its function in AVSM is unclear but it has been proposed to inhibit vascular calcification, atheroprogression, and inflammation. An increased incidence of positively adjudicated serious cardiovascular adverse events driven by an increase in myocardial infarction and stroke was observed in romosozumab-treated subjects in a clinical trial comparing alendronate with romosozumab (ARCH; NCT01631214) but not in a placebo-controlled trial (FRAME; NCT01575834). To investigate the effects of sclerostin inhibition with sclerostin antibody on the cardiovascular system, a comprehensive nonclinical toxicology package with additional cardiovascular studies was conducted. Although pharmacodynamic effects were observed in the bone, there were no functional, morphological, or transcriptional effects on the cardiovascular system in animal models in the presence or absence of atherosclerosis. These nonclinical studies did not identify evidence that proves the association between sclerostin inhibition and adverse cardiovascular function, increased cardiovascular calcification, and atheroprogression.
Collapse
Affiliation(s)
- James R Turk
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA.
| | - Aimee M Deaton
- Translational Safety and Bioanalytical Sciences, Amgen Research, Cambridge, MA, USA
| | - Jun Yin
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Marina Stolina
- Cardiometabolic Disorders Research, Amgen Research, Thousand Oaks, CA, USA
| | - Melanie Felx
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Gabrielle Boyd
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | | | - Aurore Varela
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Martin Guillot
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | | | | | - Denise Dwyer
- Cardiometabolic Disorders Research, Amgen Research, Thousand Oaks, CA, USA
| | - Sheetal V Kumar
- Translational Safety and Bioanalytical Sciences, Amgen Research, Cambridge, MA, USA
| | - Emily M de Koning
- Translational Safety and Bioanalytical Sciences, Amgen Research, Cambridge, MA, USA
| | - Yusheng Qu
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA
| | - Michael Engwall
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA
| | - Kathrin Locher
- Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, CA, USA
| | - Lucas D Ward
- Translational Safety and Bioanalytical Sciences, Amgen Research, Cambridge, MA, USA
| | - Charles Glaus
- Cardiometabolic Disorders Research, Amgen Research, Thousand Oaks, CA, USA
| | - Yudong D He
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA; Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Rogely Waite Boyce
- Translational Safety and Bioanalytical Sciences, Amgen Research, Thousand Oaks, CA, USA
| |
Collapse
|
79
|
The Impact of Dietary Supplementation of Whole Foods and Polyphenols on Atherosclerosis. Nutrients 2020; 12:nu12072069. [PMID: 32664664 PMCID: PMC7400924 DOI: 10.3390/nu12072069] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose of this review is to highlight current research on the benefits of supplementation with foods with a diverse polyphenol composition, including fruits, vegetables, nuts, grains, oils, spices, and teas in blunting atherosclerosis. We searched PubMed for publications utilizing whole food or polyphenols prepared from whole foods in Apolipoprotein E (ApoE) or Low-Density Lipoprotein Receptor (LDLR) knockout mice, and identified 73 studies in which plaque was measured. The majority of the studies reported a reduction in plaque. Nine interventions showed no effect, while three using Agaricus blazei mushroom, HYJA-ri-4 rice variety, and safrole-2', 3'-oxide (SFO) increased plaque. The mechanisms by which atherosclerosis was reduced include improved lipid profile, antioxidant status, and cholesterol clearance, and reduced inflammation. Importantly, not all dietary interventions that reduce plaque showed an improvement in lipid profile. Additionally, we found that, out of 73 studies, only 9 used female mice and only 6 compared both sexes. Only one study compared the two models (LDLR vs. ApoE), showing that the treatment worked in one but not the other. Not all supplementations work in both male and female animals, suggesting that increasing the variety of foods with different polyphenol compositions may be more effective in mitigating atherosclerosis.
Collapse
|
80
|
A Timing Effect of 17-β Estradiol on Atherosclerotic Lesion Development in Female ApoE -/- Mice. Int J Mol Sci 2020; 21:ijms21134710. [PMID: 32630298 PMCID: PMC7369926 DOI: 10.3390/ijms21134710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
Differences in size or composition of existing plaques at the initiation of estrogen (E2) therapy may underpin evidence of increased risk of atherosclerosis-associated clinical sequelae. We investigated whether E2 had divergent effects on actively-growing versus established-advanced atherosclerotic lesions. Eight weeks of subcutaneous bi-weekly injections of 3 µg/g 17β-estradiol (n = 18) or vehicle control (n = 22) were administered to female Apolipoprotein null-mice aged 25- or 45 weeks old. Histological assessment of lesion size within the brachiocephalic artery was conducted. Lesion composition was also assessed with acellular, calcification and fibrosis areas measured and other cellular features (intimal thickening, foam cells, lipid pools and cholesterol) scored (0–3) for severity. The comparison showed increased lesion size and calcified area with advancing age but no effect of E2. However, subtle changes in composition were observed following E2. Within the younger group, E2 increased intima thickening and acceleration of calcification. In the older group, E2 increased the thickness of the lesion cap. Therefore, this study shows different effects of E2 depending on the underlying stage of lesion development at the time of initiation of treatment. These divergent changes help explain the controversy of the adverse effects of E2 treatment in cardiovascular disease.
Collapse
|
81
|
Mehta S, Srivastava N, Bhatia A, Dhawan V. Exposure of cigarette smoke condensate activates NLRP3 inflammasome in vitro and in vivo: A connotation of innate immunity and atherosclerosis. Int Immunopharmacol 2020; 84:106561. [PMID: 32402952 DOI: 10.1016/j.intimp.2020.106561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Smoking is known to have detrimental effects on cardiovascular system. However, the potential molecular basis of smoking-induced atherosclerosis remains unclear. NLRP3 inflammasome is implicated in perpetuation of inflammatory response in atherosclerosis. Therefore, we aimed to explore the cytotoxic effects of cigarette smoke condensate (CSC) on the activation of NLRP3 inflammasome in vitro and in vivo. METHODS For in vitro study, the pro-atherogenic effects of CSC were evaluated in THP-1 monocytes with different dose concentrations (0.1, 1, 5, 10 and 20 µg/ml) for varied time periods (6, 12, 24 and 48 h). For in vivo study, 30 male C57BL/6J mice were employed. 6 mice were sacrificed for baseline investigations. 24 mice were randomly divided into four groups: Group-I:Control mice, Group-II:CSC model, Group-III:High-fat diet(HFD) model, and Group-IV:HFD + CSC model for 14 weeks (n = 6/group). The group-II and IV mice were injected with 720 µg CSC/20 g body weight intraperitoneally (6 days/week). RESULTS In vitro, higher dosage of CSC (20 µg/ml) was toxic to cells as significant decline in cell viability and proliferation was observed. Furthermore, the mRNA expression of NLRP3 inflammasome and its pro-cytokine levels were significantly augmented on CSC exposure in a dose-dependent manner but impeded in time-dependent manner. In vivo, CSC and HFD independently augmented the expression of NLRP3 inflammasome (~4-10 fold-change) along with pro-cytokine levels in Group-II and III vs Group-I mice whereas, HFD + CSC treatment demonstrated synergistic effects in Group-IV. CONCLUSION Our data suggest that CSC activates NLRP3 inflammasome in vitro and in vivo and collectively with HFD has synergistic effects in vivo that may promote atherosclerosis.
Collapse
Affiliation(s)
- Sakshi Mehta
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Niharika Srivastava
- Department of Dermatology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Veena Dhawan
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
82
|
Zhao Y, Qu H, Wang Y, Xiao W, Zhang Y, Shi D. Small rodent models of atherosclerosis. Biomed Pharmacother 2020; 129:110426. [PMID: 32574973 DOI: 10.1016/j.biopha.2020.110426] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/30/2022] Open
Abstract
The ease of breeding, low cost of maintenance, and relatively short period for developing atherosclerosis make rodents ideal for atherosclerosis research. However, none of the current models accurately model human lipoprotein profile or atherosclerosis progression since each has its advantages and disadvantages. The advent of transgenic technologies much supports animal models' establishment. Notably, two classic transgenic mouse models, apoE-/- and Ldlr-/-, constitute the primary platforms for studying underlying mechanisms and development of pharmaceutical approaches. However, there exist crucial differences between mice and humans, such as the unhumanized lipoprotein profile, and the different plaque progression and characteristics. Among rodents, hamsters and guinea pigs might be the more realistic models in atherosclerosis research based on the similarities in lipoprotein metabolism to humans. Studies involving rat models, a rodent with natural resistance to atherosclerosis, have revealed evidence of atherosclerotic plaques under dietary induction and genetic manipulation by novel technologies, notably CRISPR-Cas9. Ldlr-/- hamster models were established in recent years with severe hyperlipidemia and atherosclerotic lesion formation, which could offer an alternative to classic transgenic mouse models. In this review, we provide an overview of classic and innovative small rodent models in atherosclerosis researches, including mice, rats, hamsters, and guinea pigs, focusing on their lipoprotein metabolism and histopathological changes.
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Qu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Wenli Xiao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
83
|
Deng H, Sun Y, Zeng W, Li H, Guo M, Yang L, Lu B, Yu B, Fan G, Gao Q, Jiang X. New Classification of Macrophages in Plaques: a Revolution. Curr Atheroscler Rep 2020; 22:31. [PMID: 32556603 DOI: 10.1007/s11883-020-00850-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Macrophages play vital roles in the development of atherosclerosis in responding to lipid accumulation and inflammation. Macrophages were classified as inflammatory (M1) and alternatively activated (M2) macrophage types based on results of in vitro experiments. On the other hand, the composition of macrophages in vivo is more complex and remains unresolved. This review summarizes the transcriptional variations of macrophages in atherosclerosis plaques that were discovered by single-cell RNA sequencing (scRNA-seq) to better understand their contribution to atherosclerosis. RECENT FINDINGS ScRNA-seq provides a more detailed transcriptional landscape of macrophages in atherosclerosis, which challenges the traditional view. By mining the data of GSE97310, we discovered the transcriptional variations of macrophages in LDLR-/- mice that were fed with high-fat diet (HFD) for 11 and 20 weeks. Cells were represented in a two-dimensional tSNE plane and clusters were identified and annotated via Seurat and SingleR respectively, which were R toolkits for single-cell genomics. The results showed that in healthy conditions, Trem2hi (high expression of triggering receptors expressed on myeloid cells 2)-positive, inflammatory, and resident-like macrophages make up 68%, 18%, and 6% of total macrophages respectively. When mice were fed with HFD for 11 weeks, Trem2hi, monocytes, and monocyte-derived dendritic cells take possession of 40%, 18%, and 17% of total macrophages respectively. After 20 weeks of HFD feeding, Trem2hi, inflammatory, and resident-like macrophages occupied 12%, 37%, and 35% of total macrophages respectively. The phenotypes of macrophages are very different from the previous studies. In general, Trem2hi macrophages are the most abundant population in healthy mice, while the proportion of monocytes increases after 11 weeks of HFD. Most importantly, inflammatory and resident-like macrophages make up 70% of the macrophage populations after 20 weeks of HFD. These strongly indicate that inflammatory and resident-like macrophages promote the progression of atherosclerosis plaques.
Collapse
Affiliation(s)
- Hao Deng
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingxin Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
84
|
Watanabe K, Taketomi Y, Miki Y, Kugiyama K, Murakami M. Group V secreted phospholipase A 2 plays a protective role against aortic dissection. J Biol Chem 2020; 295:10092-10111. [PMID: 32482892 DOI: 10.1074/jbc.ra120.013753] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Aortic dissection is a life-threatening aortopathy involving separation of the aortic wall, whose underlying mechanisms are still incompletely understood. Epidemiological evidence suggests that unsaturated fatty acids improve cardiovascular health. Here, using quantitative RT-PCR, histological analyses, magnetic cell sorting and flow cytometry assays, and MS-based lipidomics, we show that the activity of a lipid-metabolizing enzyme, secreted phospholipase A2 group V (sPLA2-V), protects against aortic dissection by endogenously mobilizing vasoprotective lipids. Global and endothelial cell-specific sPLA2-V-deficient mice frequently developed aortic dissection shortly after infusion of angiotensin II (AT-II). We observed that in the AT-II-treated aorta, endothelial sPLA2-V mobilized oleic and linoleic acids, which attenuated endoplasmic reticulum stress, increased the expression of lysyl oxidase, and thereby stabilized the extracellular matrix in the aorta. Of note, dietary supplementation with oleic or linoleic acid reversed the increased susceptibility of sPLA2-V-deficient mice to aortic dissection. These findings reveal an unexplored functional link between sPLA2-driven phospholipid metabolism and aortic stability, possibly contributing to the development of improved diagnostic and/or therapeutic strategies for preventing aortic dissection.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan.,Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshimi Miki
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kiyotaka Kugiyama
- Department of Internal Medicine II, University of Yamanashi, Department of Internal Medicine II, Chuo, Yamanashi Japan .,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan .,Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.,FORCE, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
85
|
Chen S, Wang Y, Pan Y, Liu Y, Zheng S, Ding K, Mu K, Yuan Y, Li Z, Song H, Jin Y, Fu J. Novel Role for Tranilast in Regulating NLRP3 Ubiquitination, Vascular Inflammation, and Atherosclerosis. J Am Heart Assoc 2020; 9:e015513. [PMID: 32476536 PMCID: PMC7429049 DOI: 10.1161/jaha.119.015513] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Aberrant activation of the NLRP3 (nucleotide‐binding oligomerization domain, leucine‐rich repeat–containing receptor family pyrin domain‐containing 3) inflammasome is thought to play a causative role in atherosclerosis. NLRP3 is kept in an inactive ubiquitinated state to avoid unwanted NLRP3 inflammasome activation. This study aimed to test the hypothesis that pharmacologic manipulating of NLRP3 ubiquitination blunts the assembly and activation of the NLRP3 inflammasome and protects against vascular inflammation and atherosclerosis. Since genetic studies yielded mixed results about the role for this inflammasome in atherosclerosis in low‐density lipoprotein receptor– or apolipoprotein E–deficient mice, this study attempted to clarify the discrepancy with the pharmacologic approach using both models. Methods and Results We provided the first evidence demonstrating that tranilast facilitates NLRP3 ubiquitination. We showed that tranilast restricted NLRP3 oligomerization and inhibited NLRP3 inflammasome assembly. Tranilast markedly suppressed NLRP3 inflammasome activation in low‐density lipoprotein receptor– and apolipoprotein E–deficient macrophages. Through reconstitution of the NLRP3 inflammasome in human embryonic kidney 293T cells, we found that tranilast directly limited NLRP3 inflammasome activation. By adopting different regimens for tranilast treatment of low‐density lipoprotein receptor– and apolipoprotein E–deficient mice, we demonstrated that tranilast blunted the initiation and progression of atherosclerosis. Mice receiving tranilast displayed a significant reduction in atherosclerotic lesion size, concomitant with a pronounced decline in macrophage content and expression of inflammatory molecules in the plaques compared with the control group. Moreover, tranilast treatment of mice substantially hindered the expression and activation of the NLRP3 inflammasome in the atherosclerotic lesions. Conclusions Tranilast potently enhances NLRP3 ubiquitination, blunts the assembly and activation of the NLRP3 inflammasome, and ameliorates vascular inflammation and atherosclerosis in both low‐density lipoprotein receptor– and apolipoprotein E–deficient mice.
Collapse
Affiliation(s)
- Suwen Chen
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Yadong Wang
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Yamu Pan
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Yao Liu
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Shuang Zheng
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Ke Ding
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Kaiyu Mu
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Ye Yuan
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Zhaoyang Li
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Hongxian Song
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| | - Ying Jin
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China.,Renmin Hospital Hubei University of Medicine Hubei China
| | - Jian Fu
- The Laboratory of Inflammation and Vascular Biology Institute of Clinical Medicine Department of Cardiology Hubei China
| |
Collapse
|
86
|
Liu Y, Cheng P, Wu AH. Honokiol inhibits carotid artery atherosclerotic plaque formation by suppressing inflammation and oxidative stress. Aging (Albany NY) 2020; 12:8016-8028. [PMID: 32365054 PMCID: PMC7244088 DOI: 10.18632/aging.103120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022]
Abstract
Honokiol is a natural active compound extracted from Chinese herbal medicine, Magnolia officinalis. In this study, the role of honokiol in the development of carotid artery atherosclerotic lesions was evaluated in an ApoE-/- mouse model fed with a normal diet (ND) or a Western-type diet (WD) for ten weeks. After first two weeks, a perivascular collar was surgically placed on the right common carotid arteries of the mice. Then, WD-fed mice were intraperitoneally injected with honokiol (10 or 20 mg/kg) or administrated with 10 mg/kg atorvastatin calcium by gavage once a day for eight weeks. After that, the right common carotid arteries were excised for further experiments. The result showed that honokiol substantially inhibited the development of atherosclerotic lesions. Furthermore, honokiol downregulated the expression of pro-inflammatory markers, like tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. Additionally, honokiol treatment decreased reactive oxygen species level and enhanced superoxide dismutase activity. Nitric oxide level, inducible nitric oxide synthase (iNOS) expression, and aberrant activation of nuclear factor-κB pathway were also significantly inhibited by honokiol treatment. Together, these findings suggest that honokiol protects against atherosclerotic plaque formation in carotid artery, and may be an effective drug candidate for the treatment of carotid artery atherosclerotic stenosis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - An-Hua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
87
|
Oteng AB, Kersten S. Mechanisms of Action of trans Fatty Acids. Adv Nutr 2020; 11:697-708. [PMID: 31782488 PMCID: PMC7231579 DOI: 10.1093/advances/nmz125] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Human studies have established a positive association between the intake of industrial trans fatty acids and the development of cardiovascular diseases, leading several countries to enact laws that restrict the presence of industrial trans fatty acids in food products. However, trans fatty acids cannot be completely eliminated from the human diet since they are also naturally present in meat and dairy products of ruminant animals. Moreover, bans on industrial trans fatty acids have not yet been instituted in all countries. The epidemiological evidence against trans fatty acids by far overshadows mechanistic insights that may explain how trans fatty acids achieve their damaging effects. This review focuses on the mechanisms that underlie the deleterious effects of trans fatty acids by juxtaposing effects of trans fatty acids against those of cis-unsaturated fatty acids and saturated fatty acids (SFAs). This review also carefully explores the argument that ruminant trans fatty acids have differential effects from industrial trans fatty acids. Overall, in vivo and in vitro studies demonstrate that industrial trans fatty acids promote inflammation and endoplasmic reticulum (ER) stress, although to a lesser degree than SFAs, whereas cis-unsaturated fatty acids are protective against ER stress and inflammation. Additionally, industrial trans fatty acids promote fat storage in the liver at the expense of adipose tissue compared with cis-unsaturated fatty acids and SFAs. In cultured hepatocytes and adipocytes, industrial trans fatty acids, but not cis-unsaturated fatty acids or SFAs, stimulate the cholesterol synthesis pathway by activating sterol regulatory element binding protein (SREBP) 2-mediated gene regulation. Interestingly, although industrial and ruminant trans fatty acids show similar effects on human plasma lipoproteins, in preclinical models, only industrial trans fatty acids promote inflammation, ER stress, and cholesterol synthesis. Overall, clearer insight into the molecular mechanisms of action of trans fatty acids may create new therapeutic windows for the treatment of diseases characterized by disrupted lipid metabolism.
Collapse
Affiliation(s)
- Antwi-Boasiako Oteng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
88
|
Huang S, Che J, Chu Q, Zhang P. The Role of NLRP3 Inflammasome in Radiation-Induced Cardiovascular Injury. Front Cell Dev Biol 2020; 8:140. [PMID: 32226786 PMCID: PMC7080656 DOI: 10.3389/fcell.2020.00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing risk of long-term adverse effects from radiotherapy on the cardiovascular structure is receiving increasing attention. However, the mechanisms underlying this increased risk remain poorly understood. Recently, the nucleotide-binding domain and leucine-rich-repeat-containing family pyrin 3 (NLRP3) inflammasome was suggested to play a critical role in radiation-induced cardiovascular injury. However, the relationship between ionizing radiation and the NLRP3 inflammasome in acute and chronic inflammation is complex. We reviewed literature detailing pathological changes and molecular mechanisms associated with radiation-induced damage to the cardiovascular structure, with a specific focus on NLRP3 inflammasome-related cardiovascular diseases. We also summarized possible therapeutic strategies for the prevention of radiation-induced heart disease (RIHD).
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Che
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
89
|
Berlin‐Broner Y, Alexiou M, Levin L, Febbraio M. Characterization of a mouse model to study the relationship between apical periodontitis and atherosclerosis. Int Endod J 2020; 53:812-823. [DOI: 10.1111/iej.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Y. Berlin‐Broner
- Faculty of Medicine and Dentistry University of Alberta Edmonton AB Canada
| | - M. Alexiou
- Faculty of Medicine and Dentistry University of Alberta Edmonton AB Canada
| | - L. Levin
- Faculty of Medicine and Dentistry University of Alberta Edmonton AB Canada
| | - M. Febbraio
- Faculty of Medicine and Dentistry University of Alberta Edmonton AB Canada
| |
Collapse
|
90
|
Wunderer F, Traeger L, Sigurslid HH, Meybohm P, Bloch DB, Malhotra R. The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacol Res 2020; 153:104664. [PMID: 31991168 PMCID: PMC7066581 DOI: 10.1016/j.phrs.2020.104664] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/20/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerotic cardiovascular disease is a major burden on global health and a leading cause of death worldwide. The pathophysiology of this chronic disease is complex, involving inflammation, lipoprotein oxidation and accumulation, plaque formation, and calcification. In 1981, Dr. Jerome Sullivan formulated the 'Iron Hypothesis', suggesting that higher levels of stored iron promote cardiovascular diseases, whereas iron deficiency may have an atheroprotective effect. This hypothesis has stimulated research focused on clarifying the role of iron in the development of atherosclerosis. However, preclinical and clinical studies have produced contradictory results and the observation that patients with hemochromatosis do not appear to have an increased risk of atherosclerosis seemed incongruous with Sullivan's initial hypothesis. The 'paradox' of systemic iron overload not being accompanied by an increased risk for atherosclerosis led to a refinement of the iron hypothesis focusing on intracellular macrophage iron. More recent in vitro and animal studies have elucidated the complex signaling pathways regulating iron, with a particular focus on hepcidin, the master regulator of body iron homeostasis. Bone morphogenetic protein (BMP) signaling is the major pathway that is required for induction of hepcidin expression in response to increasing levels of iron. Strong links between iron homeostasis, BMP signaling, inflammation and atherosclerosis have been established in both mechanistic and human studies. This review summarizes the current understanding of the role of iron homeostasis and hepcidin in the development of atherosclerosis and discusses the BMP-hepcidin-ferroportin axis as a novel therapeutic target for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Florian Wunderer
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Lisa Traeger
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Haakon H. Sigurslid
- Cardiovascular Research Center and the Cardiology Division of the Department of medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Patrick Meybohm
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- Department of Anaesthesiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Donald B. Bloch
- Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
- Division of Rheumatology, Allergy and Immunology of the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Rajeev Malhotra
- Cardiovascular Research Center and the Cardiology Division of the Department of medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
91
|
Karel MFA, Hechler B, Kuijpers MJE, Cosemans JMEM. Atherosclerotic plaque injury-mediated murine thrombosis models: advantages and limitations. Platelets 2020; 31:439-446. [DOI: 10.1080/09537104.2019.1708884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- MFA Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - B. Hechler
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS)-Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - MJE Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - JMEM Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
92
|
Liao J, Xie Y, Lin Q, Yang X, An X, Xia Y, Du J, Wang F, Li HH. Immunoproteasome subunit β5i regulates diet-induced atherosclerosis through altering MERTK-mediated efferocytosis in Apoe knockout mice. J Pathol 2020; 250:275-287. [PMID: 31758542 DOI: 10.1002/path.5368] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/01/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022]
Abstract
The immunoproteasome contains three catalytic subunits (β1i, β2i and β5i) that are important modulators of immune cell homeostasis. A previous study showed a correlation between β5i and human atherosclerotic plaque instability; however, the causative role of β5i in atherosclerosis and the underlying mechanisms remain unknown. Here we explored this issue in apolipoprotein E (Apoe) knockout (eKO) mice with genetic deletion or pharmacological inhibition of β5i. We found that β5i expression was upregulated in lesional macrophages after an atherogenic diet (ATD). β5i/Apoe double KO (dKO) mice fed on the ATD had a significant decrease in both lesion area and necrotic core area, compared with eKO controls. Moreover, dKO mice had less caspase-3+ apoptotic cell accumulation but enhanced efferocytosis of apoptotic cells and increased expression of Mer receptor tyrosine kinase (MERTK). Consistently, similar phenotypes were observed in eKO mice transplanted with dKO bone marrow or treated with β5i-specific inhibitor PR-957. Mechanistic studies in vitro revealed that β5i deletion reduced IκBα degradation and inhibited NF-κB activation, promoting Mertk transcription and efferocytosis, thereby attenuating apoptotic cell accumulation. In conclusion, we demonstrate that β5i plays an important role in diet-induced atherosclerosis by altering MERTK-mediated efferocytosis. β5i might be a potential pharmaceutical target against atherosclerosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jiawei Liao
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunpeng Xie
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Qiuyue Lin
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xiaolei Yang
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xiangbo An
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Yunlong Xia
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Jie Du
- Beijing AnZhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Feng Wang
- Department of Interventional Therapy, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Hui-Hua Li
- Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| |
Collapse
|
93
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
94
|
Johnston JM, Francis SE, Kiss-Toth E. Experimental models of murine atherosclerosis: does perception match reality? Cardiovasc Res 2019; 114:1845-1847. [PMID: 29878146 PMCID: PMC6255687 DOI: 10.1093/cvr/cvy140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jessica M Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Sheila E Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
95
|
Tsilingiri K, de la Fuente H, Relaño M, Sánchez-Díaz R, Rodríguez C, Crespo J, Sánchez-Cabo F, Dopazo A, Alonso-Lebrero JL, Vara A, Vázquez J, Casasnovas JM, Alfonso F, Ibáñez B, Fuster V, Martínez-González J, Martín P, Sánchez-Madrid F. Oxidized Low-Density Lipoprotein Receptor in Lymphocytes Prevents Atherosclerosis and Predicts Subclinical Disease. Circulation 2019; 139:243-255. [PMID: 30586697 DOI: 10.1161/circulationaha.118.034326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although the role of Th17 and regulatory T cells in the progression of atherosclerosis has been highlighted in recent years, their molecular mediators remain elusive. We aimed to evaluate the association between the CD69 receptor, a regulator of Th17/regulatory T cell immunity, and atherosclerosis development in animal models and in patients with subclinical disease. METHODS Low-density lipoprotein receptor-deficient chimeric mice expressing or not expressing CD69 on either myeloid or lymphoid cells were subjected to a high fat diet. In vitro functional assays with human T cells were performed to decipher the mechanism of the observed phenotypes. Expression of CD69 and NR4A nuclear receptors was evaluated by reverse transcription-polymerase chain reaction in 305 male participants of the PESA study (Progression of Early Subclinical Atherosclerosis) with extensive (n=128) or focal (n=55) subclinical atherosclerosis and without disease (n=122). RESULTS After a high fat diet, mice lacking CD69 on lymphoid cells developed large atheroma plaque along with an increased Th17/regulatory T cell ratio in blood. Oxidized low-density lipoprotein was shown to bind specifically and functionally to CD69 on human T lymphocytes, inhibiting the development of Th17 cells through the activation of NR4A nuclear receptors. Participants of the PESA study with evidence of subclinical atherosclerosis displayed a significant CD69 and NR4A1 mRNA downregulation in peripheral blood leukocytes compared with participants without disease. The expression of CD69 remained associated with the risk of subclinical atherosclerosis in an adjusted multivariable logistic regression model (odds ratio, 0.62; 95% CI, 0.40-0.94; P=0.006) after adjustment for traditional risk factors, the expression of NR4A1, the level of oxidized low-density lipoprotein, and the counts of different leucocyte subsets. CONCLUSIONS CD69 depletion from the lymphoid compartment promotes a Th17/regulatory T cell imbalance and exacerbates the development of atherosclerosis. CD69 binding to oxidized low-density lipoprotein on T cells induces the expression of anti-inflammatory transcription factors. Data from a cohort of the PESA study with subclinical atherosclerosis indicate that CD69 expression in PBLs inversely correlates with the presence of disease. The expression of CD69 remained an independent predictor of subclinical atherosclerosis after adjustment for traditional risk factors.
Collapse
Affiliation(s)
- Katerina Tsilingiri
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Hortensia de la Fuente
- Department of Immunology (H.d.L.F., J.L.A.-L., A.V., F.S.-M.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Marta Relaño
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Raquel Sánchez-Díaz
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Cristina Rodríguez
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, IIB-Sant Pau, Barcelona, Spain (C.R., J.C.).,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Javier Crespo
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau-Programa ICCC, IIB-Sant Pau, Barcelona, Spain (C.R., J.C.).,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit (F.S.-C.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Ana Dopazo
- Genomics Unit (A.D.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - José L Alonso-Lebrero
- Department of Immunology (H.d.L.F., J.L.A.-L., A.V., F.S.-M.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain
| | - Alicia Vara
- Department of Immunology (H.d.L.F., J.L.A.-L., A.V., F.S.-M.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain
| | - Jesús Vázquez
- Proteomics Unit (J.V.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | | | - Fernando Alfonso
- Department of Cardiology (F.A.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain
| | - Borja Ibáñez
- Myocardial Pathophysiology Area (B.I.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain (B.I.).,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Valentín Fuster
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (V.F.)
| | - José Martínez-González
- Instituto de Investigaciones Biomédicas de Barcelona, IIB-Sant Pau, Spain (J.M.-G.).,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Pilar Martín
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area (K.T., M.R., R.S.-D., V.F., P.M., F.S.-M.), Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Department of Immunology (H.d.L.F., J.L.A.-L., A.V., F.S.-M.), Instituto de Investigación Sanitaria Hospital de la Princesa, IIS-IP, Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain (H.d.L.F., R.S.-D., C.R., J.V., B.I., J.M.-G, P.M., F.S.-M.)
| |
Collapse
|
96
|
Abstract
Inflammation is an important driver of atherosclerosis, the underlying pathology of cardiovascular diseases. Therefore, therapeutic targeting of inflammatory pathways is suggested to improve cardiovascular outcomes in patients with cardiovascular diseases. This concept was recently proven by CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study), which demonstrated the therapeutic potential of the monoclonal IL (interleukin)-1β-neutralizing antibody canakinumab. IL-1β and other IL-1 family cytokines are important vascular and systemic inflammatory mediators, which contribute to atherogenesis. The NLRP3 (NOD [nucleotide oligomerization domain]-, LRR [leucine-rich repeat]-, and PYD [pyrin domain]-containing protein 3) inflammasome, an innate immune signaling complex, is the key mediator of IL-1 family cytokine production in atherosclerosis. NLRP3 is activated by various endogenous danger signals abundantly present in atherosclerotic lesions, such as oxidized low-density lipoprotein and cholesterol crystals. Consequently, NLRP3 inflammasome activation contributes to the vascular inflammatory response driving atherosclerosis development and progression. Here, we review the mechanisms of NLRP3 inflammasome activation and proinflammatory IL-1 family cytokine production in the context of atherosclerosis and discuss treatment possibilities in light of the positive outcomes of the CANTOS trial.
Collapse
Affiliation(s)
- Alena Grebe
- From the Institute of Innate Immunity, University Hospital Bonn, Germany (A.G., F.H., E.L.)
| | - Florian Hoss
- From the Institute of Innate Immunity, University Hospital Bonn, Germany (A.G., F.H., E.L.)
| | - Eicke Latz
- From the Institute of Innate Immunity, University Hospital Bonn, Germany (A.G., F.H., E.L.) .,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester (E.L.).,German Center of Neurodegenerative Diseases (DZNE), Bonn, Germany (E.L.).,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (E.L.)
| |
Collapse
|
97
|
Baumer Y, McCurdy S, Jin X, Weatherby TM, Dey AK, Mehta NN, Yap JK, Kruth HS, Boisvert WA. Ultramorphological analysis of plaque advancement and cholesterol crystal formation in Ldlr knockout mouse atherosclerosis. Atherosclerosis 2019; 287:100-111. [PMID: 31247346 DOI: 10.1016/j.atherosclerosis.2019.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023]
Abstract
BACKGOUND AND AIMS The low-density lipoprotein receptor-deficient (Ldlr-/-) mouse has been utilized by cardiovascular researchers for more than two decades to study atherosclerosis. However, there has not yet been a systematic effort to document the ultrastructural changes that accompany the progression of atherosclerotic plaque in this model. METHODS Employing several different staining and microscopic techniques, including immunohistochemistry, as well as electron and polarized microscopy, we analyzed atherosclerotic lesion development in Ldlr-/- mice fed an atherogenic diet over time. RESULTS Lipid-like deposits occurred in the subendothelial space after only one week of atherogenic diet. At two weeks, cholesterol crystals (CC) formed and increased thereafter. Lipid, CC, vascular smooth muscles cells, and collagen progressively increased over time, while after 4 weeks, relative macrophage content decreased. Accelerated accumulation of plate- and needle-shaped CC accompanied plaque core necrosis. Lastly, CC were surrounded by cholesterol microdomains, which co-localized with CC through all stages of atherosclerosis, indicating that the cholesterol microdomains may be a source of CC. CONCLUSIONS Here, we have documented, for the first time in a comprehensive way, atherosclerotic plaque morphology and composition from early to advanced stages in the Ldlr-/- mouse, one of the most commonly used animal models utilized in atherosclerosis research.
Collapse
Affiliation(s)
- Yvonne Baumer
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Sara McCurdy
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Xueting Jin
- Section of Experimental Atherosclerosis, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Tina M Weatherby
- Pacific Biosciences Research Center, Biological Electron Microscope Facility, University of Hawaii, 2538 The Mall, Snyder Hall, Honolulu, HI, 96822, USA
| | - Amit K Dey
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Jonathan K Yap
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA
| | - Howard S Kruth
- Section of Experimental Atherosclerosis, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI, 96813, USA; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
98
|
He K, Wang J, Shi H, Yu Q, Zhang X, Guo M, Sun H, Lin X, Wu Y, Wang L, Wang Y, Xian X, Liu G. An interspecies study of lipid profiles and atherosclerosis in familial hypercholesterolemia animal models with low-density lipoprotein receptor deficiency. Am J Transl Res 2019; 11:3116-3127. [PMID: 31217881 PMCID: PMC6556657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Small rodents, especially mice and rats, have been widely used in atherosclerosis studies even though humans exhibit completely different lipoprotein metabolism and atherosclerotic characteristics. Until recently, various rodent models of human familial hypercholesterolemia (FH) have been created, including mice, rats, and golden Syrian hamsters. Although hamsters reportedly possess metabolic features similar to humans, there is no systematic characterization of the properties of circulating lipids and atherosclerotic lesions in these rodent models. We used three FH animal species (mice, rats, and hamsters) with low-density lipoprotein receptor (Ldlr) deficiency to fully assess lipoprotein metabolism and atherosclerotic characteristics. Compared to chow diet-fed mice and rats, Ldlr knockout (KO) hamsters showed increased cholesterols in LDL fractions similar to human FH patients. Upon 12-week high-cholesterol/high-fat diet feeding, both heterozygous and homozygous Ldlr KO hamsters displayed hyperlipidemic phenotypes, whereas only homozygous Ldlr KO mice and rats showed only moderate increases in plasma lipid levels. Moreover, rats were resistant to diet-induced atherosclerosis compared to mice, and hamsters showed more atherosclerotic lesions in the aortas and coronary arteries. Further morphological study revealed that only hamsters developed atherosclerosis in the abdominal segments, which is highly similar to FH patients. This unique animal model will provide insight into the translational study of human atherosclerosis and could be useful for developing novel treatments for FH patients.
Collapse
Affiliation(s)
- Kunxiang He
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking UniversityBeijing 100191, China
| | - Jinjie Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking UniversityBeijing 100191, China
| | - Haozhe Shi
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking UniversityBeijing 100191, China
| | - Qiongyang Yu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking UniversityBeijing 100191, China
| | - Xin Zhang
- Hebei Invivo Biotech CoShijiazhuang, China
| | - Mengmeng Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking UniversityBeijing 100191, China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical UniversityDalian 116044, China
| | - Xiao Lin
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking UniversityBeijing 100191, China
| | - Yue Wu
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing 100029, China
| | - Luya Wang
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing An Zhen Hospital Affiliated to Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing 100029, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking UniversityBeijing 100191, China
| | - Xunde Xian
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas 75390, Texas, USA
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking UniversityBeijing 100191, China
| |
Collapse
|
99
|
Burke AC, Sutherland BG, Telford DE, Morrow MR, Sawyez CG, Edwards JY, Huff MW. Naringenin enhances the regression of atherosclerosis induced by a chow diet in Ldlr -/- mice. Atherosclerosis 2019; 286:60-70. [PMID: 31102954 DOI: 10.1016/j.atherosclerosis.2019.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/31/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Naringenin is a citrus-derived flavonoid with lipid-lowering and insulin-sensitizing effects leading to athero-protection in Ldlr-/- mice fed a high-fat diet. However, the ability of naringenin to promote atherosclerosis regression is unknown. In the present study, we assessed the capacity of naringenin to enhance regression in Ldlr-/- mice with diet-induced intermediate atherosclerosis intervened with a chow diet. METHODS Male Ldlr-/- mice were fed a high-fat, cholesterol-containing (HFHC) diet for 12 weeks to induce intermediate atherosclerosis and metabolic dysfunction. Subsequently, a group of these mice were sacrificed for baseline analyses and the remainder either 1) continued on the HFHC diet, 2) switched to a chow diet or 3) switched to chow diet supplemented with naringenin. RESULTS After 12 weeks induction, intermediate lesions developed in the aortic sinus. Intervention with chow alone slowed lesion growth, while intervention with naringenin-supplemented chow completely halted lesion growth. Lesions were characterized by features of improved morphology. Compared to chow alone, naringenin reduced plaque macrophages and modestly increased smooth muscle cells. Investigating processes that contributed to improved plaque morphology, we showed naringenin further reduced plasma triglycerides and cholesterol compared to chow alone. Furthermore, elevated monocytosis and myelopoiesis were further corrected by intervention with naringenin compared to chow alone. Metabolically, naringenin enhanced the correction of insulin resistance, hepatic steatosis and obesity compared to chow alone, potentially contributing to enhanced regression. CONCLUSIONS Naringenin supplementation to chow enhances atherosclerosis regression in male Ldlr-/- mice. These studies further underscore the potential therapeutic utility of naringenin.
Collapse
Affiliation(s)
- Amy C Burke
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Biochemistry, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Brian G Sutherland
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Dawn E Telford
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Marisa R Morrow
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Cynthia G Sawyez
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Jane Y Edwards
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada
| | - Murray W Huff
- Molecular Medicine, Robarts Research Institute, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Biochemistry, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada; Department of Medicine, The University of Western Ontario, 1151 Richmond St N., London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
100
|
Meng Z, Wang M, Xing J, Liu Y, Li H. Myricetin ameliorates atherosclerosis in the low-density-lipoprotein receptor knockout mice by suppression of cholesterol accumulation in macrophage foam cells. Nutr Metab (Lond) 2019; 16:25. [PMID: 31049071 PMCID: PMC6482568 DOI: 10.1186/s12986-019-0354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/15/2019] [Indexed: 01/02/2023] Open
Abstract
Background Myricetin, a major flavonoid found in several foods including berries, grapes and wine, exhibited strong antioxidant potency, yet the effect on atherosclerosis is not fully understood. In this study, we examined the effect of myricetin on lipid accumulation in macrophage and atherosclerosis in atherosclerosis-prone low density lipoprotein receptor-deficient (Ldlr -/- ) mice. Methods Ldlr -/- mice were fed an atherogenic diet supplemented with myricetin (0.15% in the diet, v/v) for 8 weeks. Body weight, adipose tissue weight, food intake, serum biochemical parameters were measured. Atherosclerosis lesions and macrophages accumulaton in lesions were analyzed and quantified. Macrophages were exposed to 20 μM of myricetin before incubated with oxidized low-density lipoprotein (ox-LDL) (25μg/mL) or Dil-ox-LDL for the indicated time. Lipid uptake and foam cell formation were evaluated by flow cytometry and microscopy. The intracellular lipids were extracted and measured. mRNA expression and protein of cholesterol metabolism related receptors were analyzed. Results Myricetin administration reduced the weight, plasma lipid levels but not food intake in Ldlr -/- mice when fed an atherogenic diet. Myceritin-treated Ldlr -/- mice displayed significantly less atherosclerotic areas and macrophages in the cross sections of the aortic root. There were also less lipophilic areas in En face Oil red O staining of aorta from myceritin-treated Ldlr -/- mice. Myceritin treatment also markedly ameliorated ox-LDL-induced cholesterol accumulation in macrophages. The expression of CD36 were decreased in myricetin treated macrophages with ox-LDL incubation, while scavenger receptors class A (SR-A) and scavenger receptors class B (SR-BI) expression was not altered, indicating that these effect of myricetin were dependent on CD36 pathway. Conclusions Our findings indicated that myricetin suppressed cholesterol accumulation in macrophage foam cells by inhibition of CD36-mediated ox-LDL uptake, and suggested myricetin may have an important therapeutic function for atherosclerosis.
Collapse
Affiliation(s)
- Zhe Meng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengyu Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Junhui Xing
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuzhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Haiyu Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|