51
|
Lüscher TF. They eat, what we eat, they digest, what we ingest: the microbiome and the vulnerable plaque. Cardiovasc Res 2021; 117:333-335. [PMID: 33270135 DOI: 10.1093/cvr/cvaa339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Thomas F Lüscher
- Imperial College and Royal Brompton & Harefield Hospitals and Imperial College, London, UK.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
52
|
Alsaigh T, Di Bartolo BA, Mulangala J, Figtree GA, Leeper NJ. Bench-to-Bedside in Vascular Medicine: Optimizing the Translational Pipeline for Patients With Peripheral Artery Disease. Circ Res 2021; 128:1927-1943. [PMID: 34110900 PMCID: PMC8208504 DOI: 10.1161/circresaha.121.318265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral arterial disease is a growing worldwide problem with a wide spectrum of clinical severity and is projected to consume >$21 billion per year in the United States alone. While vascular researchers have brought several therapies to the clinic in recent years, few of these approaches have leveraged advances in high-throughput discovery screens, novel translational models, or innovative trial designs. In the following review, we discuss recent advances in unbiased genomics and broader omics technology platforms, along with preclinical vascular models designed to enhance our understanding of disease pathobiology and prioritize targets for additional investigation. Furthermore, we summarize novel approaches to clinical studies in subjects with claudication and ischemic ulceration, with an emphasis on streamlining and accelerating bench-to-bedside translation. By providing a framework designed to enhance each aspect of future clinical development programs, we hope to enrich the pipeline of therapies that may prevent loss of life and limb for those with peripheral arterial disease.
Collapse
Affiliation(s)
- Tom Alsaigh
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Belinda A. Di Bartolo
- Cardiothoracic and Vascular Health, Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia
| | | | - Gemma A. Figtree
- Cardiothoracic and Vascular Health, Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
53
|
Reduction of TMAO level enhances the stability of carotid atherosclerotic plaque through promoting macrophage M2 polarization and efferocytosis. Biosci Rep 2021; 41:228612. [PMID: 33969376 PMCID: PMC8176787 DOI: 10.1042/bsr20204250] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/26/2022] Open
Abstract
It has been demonstrated that trimethylamine N-oxide (TMAO) serves as a driver of atherosclerosis, suggesting that reduction of TMAO level might be a potent method to prevent the progression of atherosclerosis. Herein, we explored the role of TMAO in the stability of carotid atherosclerotic plaques and disclosed the underlying mechanisms. The unstable carotid artery plaque models were established in C57/BL6 mice. L-carnitine (LCA) and methimazole (MMI) administration were applied to increase and reduce TMAO levels. Hematoxylin and eosin (H&E) staining, Sirius red, Perl's staining, Masson trichrome staining and immunohistochemical staining with CD68 staining were used for histopathology analysis of the carotid artery plaque. M1 and M2 macrophagocyte markers were assessed by RT-PCR to determine the polarization of RAW264.7 cells. MMI administration for 2 weeks significantly decreased the plaque area, increased the thickness of the fibrous cap and reduced the size of the necrotic lipid cores, whereas 5-week of administration of MMI induced intraplate hemorrhage. LCA treatment further deteriorated the carotid atherosclerotic plaque but with no significant difference. In mechanism, we found that TMAO treatment impaired the M2 polarization and efferocytosis of RAW264.7 cells with no obvious effect on the M1 polarization. In conclusion, the present study demonstrated that TMAO reduction enhanced the stability of carotid atherosclerotic plaque through promoting macrophage M2 polarization and efferocytosis.
Collapse
|
54
|
Kyaw T, Loveland P, Kanellakis P, Cao A, Kallies A, Huang AL, Peter K, Toh BH, Bobik A. Alarmin-activated B cells accelerate murine atherosclerosis after myocardial infarction via plasma cell-immunoglobulin-dependent mechanisms. Eur Heart J 2021; 42:938-947. [PMID: 33338208 DOI: 10.1093/eurheartj/ehaa995] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/30/2020] [Accepted: 11/29/2020] [Indexed: 12/25/2022] Open
Abstract
AIMS Myocardial infarction (MI) accelerates atherosclerosis and greatly increases the risk of recurrent cardiovascular events for many years, in particular, strokes and MIs. Because B cell-derived autoantibodies produced in response to MI also persist for years, we investigated the role of B cells in adaptive immune responses to MI. METHODS AND RESULTS We used an apolipoprotein-E-deficient (ApoE-/-) mouse model of MI-accelerated atherosclerosis to assess the importance of B cells. One week after inducing MI in atherosclerotic mice, we depleted B cells using an anti-CD20 antibody. This treatment prevented subsequent immunoglobulin G accumulation in plaques and MI-induced accelerated atherosclerosis. In gain of function experiments, we purified spleen B cells from mice 1 week after inducing MI and transferred these cells into atherosclerotic ApoE-/- mice, which greatly increased immunoglobulin G (IgG) accumulation in plaque and accelerated atherosclerosis. These B cells expressed many cytokines that promote humoural immunity and in addition, they formed germinal centres within the spleen where they differentiated into antibody-producing plasma cells. Specifically deleting Blimp-1 in B cells, the transcriptional regulator that drives their terminal differentiation into antibody-producing plasma cells prevented MI-accelerated atherosclerosis. Alarmins released from infarcted hearts were responsible for activating B cells via toll-like receptors and deleting MyD88, the canonical adaptor protein for inflammatory signalling downstream of toll-like receptors, prevented B-cell activation and MI-accelerated atherosclerosis. CONCLUSION Our data implicate early B-cell activation and autoantibodies as a central cause for accelerated atherosclerosis post-MI and identifies novel therapeutic strategies towards preventing recurrent cardiovascular events such as MI and stroke.
Collapse
Affiliation(s)
- Tin Kyaw
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Paula Loveland
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, University of Melbourne, 792 Elizabeth Street, Melbourne, Vic 3000, Australia
| | - Alex L Huang
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Department of Cardiology, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Department of Cardiology, Alfred Hospital, 55 Commercial Rd, Melbourne, VIC 3004, Australia.,Department of Immunology, Central Clinical School, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Medical Centre, 246 Clayton Road, Clayton, VIC 3168, Australia.,Department of Immunology, Central Clinical School, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| |
Collapse
|
55
|
Wang C, Cheng D, Jalali Motlagh N, Kuellenberg EG, Wojtkiewicz GR, Schmidt SP, Stocker R, Chen JW. Highly Efficient Activatable MRI Probe to Sense Myeloperoxidase Activity. J Med Chem 2021; 64:5874-5885. [PMID: 33945286 PMCID: PMC8564765 DOI: 10.1021/acs.jmedchem.1c00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myeloperoxidase (MPO) is a key component of innate immunity but can damage tissues when secreted abnormally. We developed a new generation of a highly efficient MPO-activatable MRI probe (heMAMP) to report MPO activity. heMAMP has improved Gd stability compared to bis-5-HT-Gd-DTPA (MPO-Gd) and demonstrates no significant cytotoxicity. Importantly, heMAMP is more efficiently activated by MPO compared to MPO-Gd, 5HT-DOTA(Gd), and 5HT-DOTAGA-Gd. Molecular docking simulations revealed that heMAMP has increased rigidity via hydrogen bonding intramolecularly and improved binding affinity to the active site of MPO. In animals with subcutaneous inflammation, activated heMAMP showed a 2-3-fold increased contrast-to-noise ratio (CNR) compared to activated MPO-Gd and 4-10 times higher CNR compared to conventional DOTA-Gd. This increased efficacy was further confirmed in a model of unstable atherosclerotic plaque where heMAMP demonstrated a comparable signal increase and responsiveness to MPO inhibition at a 3-fold lower dosage compared to MPO-Gd, further underscoring heMAMP as a potential translational candidate.
Collapse
Affiliation(s)
- Cuihua Wang
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - David Cheng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Negin Jalali Motlagh
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Enrico G Kuellenberg
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Stephen P Schmidt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
- Heart Research Institute, Newton, NSW 2042, Australia
| | - John W Chen
- Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
56
|
Li J, Montarello NJ, Hoogendoorn A, Verjans JW, Bursill CA, Peter K, Nicholls SJ, McLaughlin RA, Psaltis PJ. Multimodality Intravascular Imaging of High-Risk Coronary Plaque. JACC Cardiovasc Imaging 2021; 15:145-159. [PMID: 34023267 DOI: 10.1016/j.jcmg.2021.03.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 01/13/2023]
Abstract
The majority of coronary atherothrombotic events presenting as myocardial infarction (MI) occur as a result of plaque rupture or erosion. Understanding the evolution from a stable plaque into a life-threatening, high-risk plaque is required for advancing clinical approaches to predict atherothrombotic events, and better treat coronary atherosclerosis. Unfortunately, none of the coronary imaging approaches used in clinical practice can reliably predict which plaques will cause an MI. Currently used imaging techniques mostly identify morphological features of plaques, but are not capable of detecting essential molecular characteristics known to be important drivers of future risk. To address this challenge, engineers, scientists, and clinicians have been working hand-in-hand to advance a variety of multimodality intravascular imaging techniques, whereby 2 or more complementary modalities are integrated into the same imaging catheter. Some of these have already been tested in early clinical studies, with other next-generation techniques also in development. This review examines these emerging hybrid intracoronary imaging techniques and discusses their strengths, limitations, and potential for clinical translation from both an engineering and clinical perspective.
Collapse
Affiliation(s)
- Jiawen Li
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Nicholas J Montarello
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Ayla Hoogendoorn
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia; Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Johan W Verjans
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia; Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Christina A Bursill
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia; Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | | | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Robert A McLaughlin
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Adelaide, Australia; Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia; Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| |
Collapse
|
57
|
Koay YC, Chen YC, Wali JA, Luk AWS, Li M, Doma H, Reimark R, Zaldivia MTK, Habtom HT, Franks AE, Fusco-Allison G, Yang J, Holmes A, Simpson SJ, Peter K, O’Sullivan JF. Plasma levels of trimethylamine-N-oxide can be increased with 'healthy' and 'unhealthy' diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc Res 2021; 117:435-449. [PMID: 32267921 PMCID: PMC8599768 DOI: 10.1093/cvr/cvaa094] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS The microbiome-derived metabolite trimethylamine-N-oxide (TMAO) has attracted major interest and controversy both as a diagnostic biomarker and therapeutic target in atherothrombosis. METHODS AND RESULTS Plasma TMAO increased in mice on 'unhealthy' high-choline diets and notably also on 'healthy' high-fibre diets. Interestingly, TMAO was found to be generated by direct oxidation in the gut in addition to oxidation by hepatic flavin-monooxygenases. Unexpectedly, two well-accepted mouse models of atherosclerosis, ApoE-/- and Ldlr-/- mice, which reflect the development of stable atherosclerosis, showed no association of TMAO with the extent of atherosclerosis. This finding was validated in the Framingham Heart Study showing no correlation between plasma TMAO and coronary artery calcium score or carotid intima-media thickness (IMT), as measures of atherosclerosis in human subjects. However, in the tandem-stenosis mouse model, which reflects plaque instability as typically seen in patients, TMAO levels correlated with several characteristics of plaque instability, such as markers of inflammation, platelet activation, and intraplaque haemorrhage. CONCLUSIONS Dietary-induced changes in the microbiome, of both 'healthy' and 'unhealthy' diets, can cause an increase in the plasma level of TMAO. The gut itself is a site of significant oxidative production of TMAO. Most importantly, our findings reconcile contradictory data on TMAO. There was no direct association of plasma TMAO and the extent of atherosclerosis, both in mice and humans. However, using a mouse model of plaque instability we demonstrated an association of TMAO plasma levels with atherosclerotic plaque instability. The latter confirms TMAO as being a marker of cardiovascular risk.
Collapse
Affiliation(s)
- Yen Chin Koay
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Yung-Chih Chen
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Jibran A Wali
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Alison W S Luk
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Mengbo Li
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Hemavarni Doma
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | - Rosa Reimark
- Baker Heart & Diabetes Institute, Melbourne, VIC, Australia
| | | | - Habteab T Habtom
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne, VIC, Australia
| | - Gabrielle Fusco-Allison
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jean Yang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia
| | - Andrew Holmes
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | | | - John F O’Sullivan
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
58
|
Teng Z, Wang S, Tokgoz A, Taviani V, Bird J, Sadat U, Huang Y, Patterson AJ, Figg N, Graves MJ, Gillard JH. Study on the association of wall shear stress and vessel structural stress with atherosclerosis: An experimental animal study. Atherosclerosis 2021; 320:38-46. [PMID: 33524908 DOI: 10.1016/j.atherosclerosis.2021.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Artery is subject to wall shear stress (WSS) and vessel structural stress (VSS) simultaneously. This study is designed to explore the role of VSS in development of atherosclerosis. METHODS Silastic collars were deployed on the carotid to create two constrictions on 13 rabbits for a distinct mechanical environment at the constriction. MRI was performed to visualize arteries' configuration. Animals with high fat (n = 9; Model-group) and normal diet (n = 4; Control-group) were sacrificed after 16 weeks. 3D fluid-structure interaction analysis was performed to quantify WSS and VSS simultaneously. RESULTS Twenty plaques were found in Model-group and 3 in Control-group. In Model-group, 8 plaques located proximally to the first constriction (Region-1, close to the heart) and 7 distally to the second (Region-2, close to the head) and 5 plaques were found on the contralateral side of 3 rabbits. Plaques at Region-1 tended to be bigger than those at Region-2 and the macrophage density at these locations was comparable. Minimum time-averaged WSS (TAWSS) in Region-1 was significantly higher than that in Region-2, and both maximum oscillatory shear index (OSI) and particle relative residence time (RRT) were significantly lower. Peak and mean VSS in Region-1 were significantly higher than those in Region-2. Correlation analyses indicated that low TAWSS, high OSI and RRT were only associated with plaque in Region-2, while lesions in Region-1 were only associated with high VSS. Moreover, only VSS was associated with wall thickness of plaque-free regions in both regions. CONCLUSIONS VSS might contribute to the initialization and development of atherosclerosis solely or in combination with WSS.
Collapse
Affiliation(s)
- Zhongzhao Teng
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Department of Engineering, University of Cambridge, Cambridge, United Kingdom.
| | - Shuo Wang
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Aziz Tokgoz
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Valentina Taviani
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Joseph Bird
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Umar Sadat
- Cambridge Vascular Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Yuan Huang
- EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, University of Cambridge, Cambridge, United Kingdom
| | - Andrew J Patterson
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Nichola Figg
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan H Gillard
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
59
|
Liu Y, Cai J, Qu L. Carotid Occlusion Accentuates Aortic Stenosis and Cardiac Remodeling With Preserved Systolic Function in LDL Receptor-Deficient Mice. Front Physiol 2021; 11:578722. [PMID: 33584325 PMCID: PMC7873957 DOI: 10.3389/fphys.2020.578722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Carotid atherosclerotic disease is associated with aortic stenosis and reduced cardiac function. The causality between carotid and cardiac pathologies is unknown. We aim to explore the effects of carotid stenosis or occlusion on cardiac pathology and function. Methods and Results: We produced carotid obstruction or stenosis in 36 atherogenic mice with 150- or 300-μm tandem surgery or sham surgery. The structure and function of the heart were assessed by histology and animal ultrasound. The 150-μm group had larger plaque burden and thicker valve leaflets in the aortic root than did the control group. Also, the two surgery groups had a thicker left ventricular posterior wall and smaller internal diameter compared with controls. Increased myocardial fibrosis was also found in the 150-μm group compared with controls, although the surgery groups had preserved systolic function compared with that of controls. Conclusions: In a mouse model, carotid occlusion accentuated the formation of aortic stenosis and promoted ventricular remodeling without impairing systolic function. Carotid atherosclerotic plaque may be a pathogenic factor for aortic stenosis and ventricular remodeling.
Collapse
Affiliation(s)
- Yandong Liu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiawei Cai
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
60
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
61
|
Noonan J, Bobik A, Peter K. The tandem stenosis mouse model: Towards understanding, imaging, and preventing atherosclerotic plaque instability and rupture. Br J Pharmacol 2020; 179:979-997. [PMID: 33368184 DOI: 10.1111/bph.15356] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
The rupture of unstable atherosclerotic plaques is the major cause of cardiovascular mortality and morbidity. Despite significant limitations in our understanding and ability to identify unstable plaque pathology and prevent plaque rupture, most atherosclerosis research utilises preclinical animal models exhibiting stable atherosclerosis. Here, we introduce the tandem stenosis (TS) mouse model that reflects plaque instability and rupture, as seen in patients. The TS model involves dual ligation of the right carotid artery, leading to locally predefined unstable atherosclerosis in hypercholesterolaemic mice. It exhibits key characteristics of human unstable plaques, including plaque rupture, luminal thrombosis, intraplaque haemorrhage, large necrotic cores, thin or ruptured fibrous caps and extensive immune cell accumulation. Altogether, the TS model represents an ideal preclinical tool for improving our understanding of human plaque instability and rupture, for the development of imaging technologies to identify unstable plaques, and for the development and testing of plaque-stabilising treatments for the prevention of atherosclerotic plaque rupture.
Collapse
Affiliation(s)
- Jonathan Noonan
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Immunology, Monash University, Melbourne, Victoria, Australia
| | - Alex Bobik
- Department of Immunology, Monash University, Melbourne, Victoria, Australia.,Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Immunology, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
62
|
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin motif (ADAMTS) family comprises 19 proteases that regulate the structure and function of extracellular proteins in the extracellular matrix and blood. The best characterized cardiovascular role is that of ADAMTS-13 in blood. Moderately low ADAMTS-13 levels increase the risk of ischeamic stroke and very low levels (less than 10%) can cause thrombotic thrombocytopenic purpura (TTP). Recombinant ADAMTS-13 is currently in clinical trials for treatment of TTP. Recently, new cardiovascular roles for ADAMTS proteases have been discovered. Several ADAMTS family members are important in the development of blood vessels and the heart, especially the valves. A number of studies have also investigated the potential role of ADAMTS-1, -4 and -5 in cardiovascular disease. They cleave proteoglycans such as versican, which represent major structural components of the arteries. ADAMTS-7 and -8 are attracting considerable interest owing to their implication in atherosclerosis and pulmonary arterial hypertension, respectively. Mutations in the ADAMTS19 gene cause progressive heart valve disease and missense variants in ADAMTS6 are associated with cardiac conduction. In this review, we discuss in detail the evidence for these and other cardiovascular roles of ADAMTS family members, their proteolytic substrates and the potential molecular mechanisms involved.
Collapse
Affiliation(s)
- Salvatore Santamaria
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Rens de Groot
- Centre for Haematology, Imperial College London, Du Cane Road, London W12 0NN, UK.,Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London WC1E 6HX, UK
| |
Collapse
|
63
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
64
|
Jarr KU, Ye J, Kojima Y, Nanda V, Flores AM, Tsantilas P, Wang Y, Hosseini-Nassab N, Eberhard AV, Lotfi M, Käller M, Smith BR, Maegdefessel L, Leeper NJ. 18F-Fluorodeoxyglucose-Positron Emission Tomography Imaging Detects Response to Therapeutic Intervention and Plaque Vulnerability in a Murine Model of Advanced Atherosclerotic Disease-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:2821-2828. [PMID: 33086865 DOI: 10.1161/atvbaha.120.315239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE This study sought to determine whether 18F-fluorodeoxyglucose-positron emission tomography/computed tomography could be applied to a murine model of advanced atherosclerotic plaque vulnerability to detect response to therapeutic intervention and changes in lesion stability. Approach and Results: To analyze plaques susceptible to rupture, we fed ApoE-/- mice a high-fat diet and induced vulnerable lesions by cast placement over the carotid artery. After 9 weeks of treatment with orthogonal therapeutic agents (including lipid-lowering and proefferocytic therapies), we assessed vascular inflammation and several features of plaque vulnerability by 18F-fluorodeoxyglucose-positron emission tomography/computed tomography and histopathology, respectively. We observed that 18F-fluorodeoxyglucose-positron emission tomography/computed tomography had the capacity to resolve histopathologically proven changes in plaque stability after treatment. Moreover, mean target-to-background ratios correlated with multiple characteristics of lesion instability, including the corrected vulnerability index. CONCLUSIONS These results suggest that the application of noninvasive 18F-fluorodeoxyglucose-positron emission tomography/computed tomography to a murine model can allow for the identification of vulnerable atherosclerotic plaques and their response to therapeutic intervention. This approach may prove useful as a drug discovery and prioritization method.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Atorvastatin/pharmacology
- CD47 Antigen/antagonists & inhibitors
- Carotid Artery Diseases/diagnostic imaging
- Carotid Artery Diseases/drug therapy
- Carotid Artery Diseases/pathology
- Carotid Artery, Common/diagnostic imaging
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/pathology
- Disease Models, Animal
- Fluorodeoxyglucose F18/administration & dosage
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic
- Positron Emission Tomography Computed Tomography
- Predictive Value of Tests
- Radiopharmaceuticals/administration & dosage
- Rupture, Spontaneous
Collapse
Affiliation(s)
- Kai-Uwe Jarr
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Jianqin Ye
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Yoko Kojima
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Vivek Nanda
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
- Department of Pathology, The University of Alabama at Birmingham (V.N.)
| | - Alyssa M Flores
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Pavlos Tsantilas
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (P.T., L.M.)
| | - Ying Wang
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | | | - Anne V Eberhard
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Mozhgan Lotfi
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Max Käller
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
| | - Bryan R Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing (B.R.S.)
- Institute for Quantitative Health Science and Engineering, East Lansing, MI (B.R.S.)
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (P.T., L.M.)
- German Center for Cardiovascular Research (DZHK partner site Munich), Germany (L.M.)
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery (K.-U.J., J.Y., Y.K., V.N., A.M.F., P.T., Y.W., A.V.E., M.L., M.K., N.J.L.), Stanford University School of Medicine, CA
- Division of Cardiovascular Medicine, Department of Medicine (N.J.L.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute, Stanford University, CA (N.J.L.)
| |
Collapse
|
65
|
Yan Z, Wang H, Liang J, Li Y, Li X. MicroRNA-503-5p improves carotid artery stenosis by inhibiting the proliferation of vascular smooth muscle cells. Exp Ther Med 2020; 20:85. [PMID: 32968442 PMCID: PMC7500050 DOI: 10.3892/etm.2020.9213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Carotid artery stenosis (CAS) is a common arteriosclerotic vascular disease affected by vascular smooth muscle cells (VSMCs). The aim of the present study was to investigate the expression and diagnostic value of microRNA (miR)-503-5p in asymptomatic patients with CAS and to further explore the effect of miR-503-5p on VSMC proliferation. The levels of miR-503-5p in the serum of 62 asymptomatic patients with CAS and 60 healthy controls were detected by reverse transcription-quantitative PCR. The association between miR-503-5p and the clinical characteristics of the patients was analyzed using the χ2 test. A receiver operating characteristic curve was drawn to evaluate the diagnostic value of miR-503-5p to distinguish asymptomatic patients with CAS from healthy controls. Finally, miR-503-5p inhibitors and mimics were transfected into VSMCs in vitro to detect the effect of miR-503-5p on the proliferation ability through Cell Counting Kit-8 assays. The serum levels of miR-503-5p in asymptomatic patients with CAS were significantly reduced as compared with those in healthy individuals. The expression levels of miR-503-5p were significantly associated with diabetes and arterial stenosis. Furthermore, the area under the ROC curve was 0.817, the specificity was 79.03% and the sensitivity was 83.30%, which proved that miR-503-5p had a high diagnostic accuracy in patients with CAS. Finally, the in vitro proliferation assay indicated that overexpression of miR-503-5p significantly inhibited the proliferation of VSMCs. In conclusion, miR-503-5p is a potential diagnostic biomarker for asymptomatic CAS and overexpression of miR-503-5p may inhibit the proliferation of VSMCs and improve CAS.
Collapse
Affiliation(s)
- Zhiyuan Yan
- Department of Neurology, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| | - Hong Wang
- Department of Neurology, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| | - Junjun Liang
- Department of Neurosurgery, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| | - Yuan Li
- Department of Electrocardiography, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| | - Xiaodong Li
- Department of Neurology, Anqiu People's Hospital, Weifang, Shandong 262100, P.R. China
| |
Collapse
|
66
|
Costopoulos C, Timmins LH, Huang Y, Hung OY, Molony DS, Brown AJ, Davis EL, Teng Z, Gillard JH, Samady H, Bennett MR. Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. Eur Heart J 2020; 40:1411-1422. [PMID: 30907406 PMCID: PMC6503452 DOI: 10.1093/eurheartj/ehz132] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/02/2018] [Accepted: 03/08/2019] [Indexed: 12/03/2022] Open
Affiliation(s)
- Charis Costopoulos
- Division of Cardiovascular Medicine, University of Cambridge, Level 6, ACCI, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Lucas H Timmins
- Division of Cardiology, Department of Medicine, Andreas Gruentzig Cardiovascular Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA.,Department of Bioengineering, University of Utah, 50 S. Central Campus Drive, Salt Lake City, UT, USA
| | - Yuan Huang
- EPSRC Centre for Mathematical and Statistical Analysis of Multimodal Imaging, University of Cambridge, 20 Clarkson Road, Cambridge, UK.,Department of Radiology, University of Cambridge, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Olivia Y Hung
- Division of Cardiology, Department of Medicine, Andreas Gruentzig Cardiovascular Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA
| | - David S Molony
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA
| | - Adam J Brown
- Division of Cardiovascular Medicine, University of Cambridge, Level 6, ACCI, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Emily L Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA
| | - Zhongzhao Teng
- Department of Radiology, University of Cambridge, Hills Road, Addenbrooke's Hospital, Cambridge, UK.,Department of Engineering, University of Cambridge, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Jonathan H Gillard
- Department of Radiology, University of Cambridge, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| | - Habib Samady
- Division of Cardiology, Department of Medicine, Andreas Gruentzig Cardiovascular Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA, USA
| | - Martin R Bennett
- Division of Cardiovascular Medicine, University of Cambridge, Level 6, ACCI, Hills Road, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
67
|
Vaisar T, Hu JH, Airhart N, Fox K, Heinecke J, Nicosia RF, Kohler T, Potter ZE, Simon GM, Dix MM, Cravatt BF, Gharib SA, Dichek DA. Parallel Murine and Human Plaque Proteomics Reveals Pathways of Plaque Rupture. Circ Res 2020; 127:997-1022. [PMID: 32762496 PMCID: PMC7508285 DOI: 10.1161/circresaha.120.317295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Plaque rupture is the proximate cause of most myocardial infarctions and many strokes. However, the molecular mechanisms that precipitate plaque rupture are unknown. OBJECTIVE By applying proteomic and bioinformatic approaches in mouse models of protease-induced plaque rupture and in ruptured human plaques, we aimed to illuminate biochemical pathways through which proteolysis causes plaque rupture and identify substrates that are cleaved in ruptured plaques. METHODS AND RESULTS We performed shotgun proteomics analyses of aortas of transgenic mice with macrophage-specific overexpression of urokinase (SR-uPA+/0 mice) and of SR-uPA+/0 bone marrow transplant recipients, and we used bioinformatic tools to evaluate protein abundance and functional category enrichment in these aortas. In parallel, we performed shotgun proteomics and bioinformatics studies on extracts of ruptured and stable areas of freshly harvested human carotid plaques. We also applied a separate protein-analysis method (protein topography and migration analysis platform) to attempt to identify substrates and proteolytic fragments in mouse and human plaque extracts. Approximately 10% of extracted aortic proteins were reproducibly altered in SR-uPA+/0 aortas. Proteases, inflammatory signaling molecules, as well as proteins involved with cell adhesion, the cytoskeleton, and apoptosis, were increased. ECM (Extracellular matrix) proteins, including basement-membrane proteins, were decreased. Approximately 40% of proteins were altered in ruptured versus stable areas of human carotid plaques, including many of the same functional categories that were altered in SR-uPA+/0 aortas. Collagens were minimally altered in SR-uPA+/0 aortas and ruptured human plaques; however, several basement-membrane proteins were reduced in both SR-uPA+/0 aortas and ruptured human plaques. Protein topography and migration analysis platform did not detect robust increases in proteolytic fragments of ECM proteins in either setting. CONCLUSIONS Parallel studies of SR-uPA+/0 mouse aortas and human plaques identify mechanisms that connect proteolysis with plaque rupture, including inflammation, basement-membrane protein loss, and apoptosis. Basement-membrane protein loss is a prominent feature of ruptured human plaques, suggesting a major role for basement-membrane proteins in maintaining plaque stability.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jie H Hu
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Nathan Airhart
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Kate Fox
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Jay Heinecke
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - Roberto F Nicosia
- Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (R.F.N.), VA Puget Sound Health Care System, Seattle, WA
| | - Ted Kohler
- Departments of Surgery (T.K.), University of Washington, Seattle.,Departments of Surgery (T.K.), VA Puget Sound Health Care System, Seattle, WA
| | - Zachary E Potter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | | | - Melissa M Dix
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA (Z.E.P., M.M.D., B.F.C.)
| | - Sina A Gharib
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle
| | - David A Dichek
- Departments of Medicine (T.V., J.H.H., N.A., K.F., J.H., S.A.G., D.A.D.), University of Washington, Seattle.,Departments of Pathology and Laboratory Medicine (D.A.D., R.F.N.), University of Washington, Seattle
| |
Collapse
|
68
|
Fasolo F, Di Gregoli K, Maegdefessel L, Johnson JL. Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res 2020; 115:1732-1756. [PMID: 31389987 DOI: 10.1093/cvr/cvz203] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/14/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis underlies the predominant number of cardiovascular diseases and remains a leading cause of morbidity and mortality worldwide. The development, progression and formation of clinically relevant atherosclerotic plaques involves the interaction of distinct and over-lapping mechanisms which dictate the roles and actions of multiple resident and recruited cell types including endothelial cells, vascular smooth muscle cells, and monocyte/macrophages. The discovery of non-coding RNAs (ncRNAs) including microRNAs, long non-coding RNAs, and circular RNAs, and their identification as key mechanistic regulators of mRNA and protein expression has piqued interest in their potential contribution to atherosclerosis. Accruing evidence has revealed ncRNAs regulate pivotal cellular and molecular processes during all stages of atherosclerosis including cell invasion, growth, and survival; cellular uptake and efflux of lipids, expression and release of pro- and anti-inflammatory intermediaries, and proteolytic balance. The expression profile of ncRNAs within atherosclerotic lesions and the circulation have been determined with the aim of identifying individual or clusters of ncRNAs which may be viable therapeutic targets alongside deployment as biomarkers of atherosclerotic plaque progression. Consequently, numerous in vivo studies have been convened to determine the effects of moderating the function or expression of select ncRNAs in well-characterized animal models of atherosclerosis. Together, clinicopathological findings and studies in animal models have elucidated the multifaceted and frequently divergent effects ncRNAs impose both directly and indirectly on the formation and progression of atherosclerosis. From these findings' potential novel therapeutic targets and strategies have been discovered which may pave the way for further translational studies and possibly taken forward for clinical application.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar-Technical University Munich, Biedersteiner Strasse 29, Munich, Germany
| | - Karina Di Gregoli
- Laboratory of Cardiovascular Pathology, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lars Maegdefessel
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar-Technical University Munich, Biedersteiner Strasse 29, Munich, Germany.,Molecular Vascular Medicine, Karolinska Institute, Center for Molecular Medicine L8:03, 17176 Stockholm, Sweden.,German Center for Cardiovascular Research (DZHK), Partner Site Munich (Munich Heart Alliance), Munich, Germany
| | - Jason L Johnson
- Laboratory of Cardiovascular Pathology, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
69
|
Vedder VL, Aherrahrou Z, Erdmann J. Dare to Compare. Development of Atherosclerotic Lesions in Human, Mouse, and Zebrafish. Front Cardiovasc Med 2020; 7:109. [PMID: 32714944 PMCID: PMC7344238 DOI: 10.3389/fcvm.2020.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases, such as atherosclerosis, are the leading cause of death worldwide. Although mice are currently the most commonly used model for atherosclerosis, zebrafish are emerging as an alternative, especially for inflammatory and lipid metabolism studies. Here, we review the history of in vivo atherosclerosis models and highlight the potential for future studies on inflammatory responses in lipid deposits in zebrafish, based on known immune reactions in humans and mice, in anticipation of new zebrafish models with more advanced atherosclerotic plaques.
Collapse
Affiliation(s)
- Viviana L Vedder
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.,University Heart Centre Lübeck, Lübeck, Germany
| |
Collapse
|
70
|
Ning K, Wang MJ, Lin G, Zhang YL, Li MY, Yang BF, Chen Y, Huang Y, Li ZM, Huang YJ, Zhu L, Liang K, Yu B, Zhu YZ, Zhu YC. eNOS-Nitric Oxide System Contributes to a Novel Antiatherogenic Effect of Leonurine via Inflammation Inhibition and Plaque Stabilization. J Pharmacol Exp Ther 2020; 373:463-475. [PMID: 32238453 DOI: 10.1124/jpet.119.264887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 01/08/2023] Open
Abstract
Leonurine (LEO) is a bioactive small molecular compound that has protective effects on the cardiovascular system and prevents the early progression of atherosclerosis; however, it is not clear whether LEO is effective for plaque stability. A novel mouse atherosclerosis model involving tandem stenosis (TS) of the right carotid artery combined with western diet (WD) feeding was used. Apolipoprotein E gene-deficient mice were fed with a WD and received LEO administration daily for 13 weeks. TS was introduced 6 weeks after the onset of experiments. We found that LEO enhanced plaque stability by increasing fibrous cap thickness and collagen content while decreasing the population of CD68-positive cells. Enhanced plaque stability by LEO was associated with the nitric oxide synthase (NOS)-nitric oxide (NO) system. LEO restored the balance between endothelial NOS(E)- and inducible NOS(iNOS)-derived NO production; suppressed the NF-κB signaling pathway; reduced the level of the inflammatory infiltration in plaque, including cytokine interleukin 6; and downregulated the expression of adhesion molecules. These findings support the distinct role of LEO in plaque stabilization. In vitro studies with oxidized low-density lipoprotein-challenged human umbilical vein endothelial cells revealed that LEO balanced NO production and inhibited NF-κB/P65 nuclear translocation, thus mitigating inflammation. In conclusion, the restored balance of the NOS-NO system and mitigated inflammation contribute to the plaque-stabilizing effect of LEO. SIGNIFICANCE STATEMENT: LEO restored the balance between endothelial NOS and inducible NOS in NO production and inhibited excessive inflammation in atherosclerotic "unstable" and rupture-prone plaques in apolipoprotein E gene-deficient mice. The protective effect of LEO for stabilizing atherosclerotic plaques was due to improved collagen content, increased fibrous cap thickness, and decreased accumulation of macrophages/foam cells. So far, LEO has passed the safety and feasibility test of phase I clinical trial.
Collapse
Affiliation(s)
- Ke Ning
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ge Lin
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Lin Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Bao-Feng Yang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yong Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Zhi-Ming Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Jun Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Lei Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Kun Liang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Bo Yu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, Shanghai Medical College, School of Basic Medical Sciences (K.N., M.-J.W., G.L., Y.-L.Z., M.-Y.L., Y.C., Y.H., Z.-M.L., Y.-C.Z.), Department of Vascular Surgery, Huashan Hospital (Y.-J.H., L.Z., K.L., B.Y.), and Institutes of Science and Technology for Brain-inspired intelligence (B.-F.Y.), Fudan University, Shanghai, China; and State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China (Y.-Z.Z.)
| |
Collapse
|
71
|
Helical flow: A means to identify unstable plaques and a new direction for the design of vascular grafts and stents. Atherosclerosis 2020; 300:34-36. [PMID: 32216972 DOI: 10.1016/j.atherosclerosis.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022]
|
72
|
The impact of helical flow on coronary atherosclerotic plaque development. Atherosclerosis 2020; 300:39-46. [PMID: 32085872 DOI: 10.1016/j.atherosclerosis.2020.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 01/29/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND AIMS Atherosclerosis has been associated with near-wall hemodynamics and wall shear stress (WSS). However, the role of coronary intravascular hemodynamics, in particular of the helical flow (HF) patterns that physiologically develop in those arteries, is rarely considered. The purpose of this study was to assess how HF affects coronary plaque initiation and progression, definitively demonstrating its atheroprotective nature. METHODS The three main coronary arteries of five adult hypercholesterolemic mini-pigs on a high fat diet were imaged by computed coronary tomography angiography (CCTA) and intravascular ultrasound (IVUS) at 3 (T1, baseline) and 9.4 ± 1.9 (T2) months follow-up. The baseline geometries of imaged coronary arteries (n = 15) were reconstructed, and combined with pig-specific boundary conditions (based on in vivo Doppler blood flow measurements) to perform computational fluid dynamic simulations. Local wall thickness (WT) was measured on IVUS images at T1 and T2, and its temporal changes were assessed. Descriptors of HF and WSS nature were computed for each model, and statistically compared to WT data. RESULTS HF intensity was strongly positively associated with WSS magnitude (p < 0.001). Overall, coronary segments exposed to high baseline levels of HF intensity exhibited a significantly lower WT growth (p < 0.05), compared to regions with either mid or low HF intensity. CONCLUSIONS This study confirms the physiological significance of HF in coronary arteries, revealing its protective role against atherosclerotic WT growth and its potential in predicting regions undergoing WT development. These findings support future in vivo measurement of coronary HF as atherosclerotic risk marker, overcoming current limitations of in vivo WSS assessment.
Collapse
|
73
|
Karel MFA, Hechler B, Kuijpers MJE, Cosemans JMEM. Atherosclerotic plaque injury-mediated murine thrombosis models: advantages and limitations. Platelets 2020; 31:439-446. [DOI: 10.1080/09537104.2019.1708884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- MFA Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - B. Hechler
- Université de Strasbourg, INSERM, Etablissement Français du Sang (EFS)-Grand Est, BPPS UMR_S 1255, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - MJE Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - JMEM Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
74
|
Palasubramaniam J, Wang X, Peter K. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:e176-e185. [PMID: 31339782 DOI: 10.1161/atvbaha.119.312578] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jathushan Palasubramaniam
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| | - Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| |
Collapse
|
75
|
Increased hepcidin in hemorrhagic plaques correlates with iron-stimulated IL-6/STAT3 pathway activation in macrophages. Biochem Biophys Res Commun 2019; 515:394-400. [DOI: 10.1016/j.bbrc.2019.05.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 01/24/2023]
|
76
|
Yang S, Li J, Chen Y, Zhang S, Feng C, Hou Z, Cai J, Wang Y, Hui R, Lv B, Zhang W. MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase via the Smad3/NF-κB pathway. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1772-1781. [DOI: 10.1016/j.bbadis.2018.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 01/11/2023]
|
77
|
Cheng D, Talib J, Stanley CP, Rashid I, Michaëlsson E, Lindstedt EL, Croft KD, Kettle AJ, Maghzal GJ, Stocker R. Inhibition of MPO (Myeloperoxidase) Attenuates Endothelial Dysfunction in Mouse Models of Vascular Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:1448-1457. [DOI: 10.1161/atvbaha.119.312725] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective—
Inflammation-driven endothelial dysfunction initiates and contributes to the progression of atherosclerosis, and MPO (myeloperoxidase) has been implicated as a potential culprit. On release by circulating phagocytes, MPO is thought to contribute to endothelial dysfunction by limiting NO bioavailability via formation of reactive oxidants including hypochlorous acid. However, it remains largely untested whether specific pharmacological inhibition of MPO attenuates endothelial dysfunction. We, therefore, tested the ability of a mechanism-based MPO inhibitor, AZM198, to inhibit endothelial dysfunction in models of vascular inflammation.
Approach and Results—
Three models of inflammation were used: femoral cuff, the tandem stenosis model of plaque rupture in
Apoe
−/−
mice, and C57BL/6J mice fed a high-fat, high-carbohydrate diet as a model of insulin resistance. Endothelial dysfunction was observed in all 3 models, and oral administration of AZM198 significantly improved endothelial function in the femoral cuff and tandem stenosis models only. Improvement in endothelial function was associated with decreased arterial MPO activity, determined by the in vivo conversion of hydroethidine to 2-chloroethidium, without affecting circulating inflammatory cytokines or arterial MPO content. Mechanistic studies in
Mpo
−/−
mice confirmed the contribution of MPO to endothelial dysfunction and revealed oxidation of sGC (soluble guanylyl cyclase) as the underlying cause of the observed limited NO bioavailability.
Conclusions—
Pharmacological inhibition of MPO is a potential strategy to limit endothelial dysfunction in vascular inflammation.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- David Cheng
- From the Vascular Biology Division, Victor Chang Cardiac Research Institute, NSW, Australia (D.C., J.T., C.P.S., I.R., G.J.M., R.S.)
- St Vincent’s Clinical School, University of New South Wales Medicine, Australia (D.C., J.T., C.P.S., R.S.)
| | - Jihan Talib
- From the Vascular Biology Division, Victor Chang Cardiac Research Institute, NSW, Australia (D.C., J.T., C.P.S., I.R., G.J.M., R.S.)
- St Vincent’s Clinical School, University of New South Wales Medicine, Australia (D.C., J.T., C.P.S., R.S.)
| | - Christopher P. Stanley
- From the Vascular Biology Division, Victor Chang Cardiac Research Institute, NSW, Australia (D.C., J.T., C.P.S., I.R., G.J.M., R.S.)
- St Vincent’s Clinical School, University of New South Wales Medicine, Australia (D.C., J.T., C.P.S., R.S.)
| | - Imran Rashid
- From the Vascular Biology Division, Victor Chang Cardiac Research Institute, NSW, Australia (D.C., J.T., C.P.S., I.R., G.J.M., R.S.)
| | - Erik Michaëlsson
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden (E.M., E.-L.L.)
| | - Eva-Lotte Lindstedt
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden (E.M., E.-L.L.)
| | - Kevin D. Croft
- School of Biomedical Science, University of Western Australia, Perth (K.D.C.)
| | - Anthony J. Kettle
- Centre for Free Radical Research, University of Otago Christchurch, New Zealand (A.J.K.)
| | - Ghassan J. Maghzal
- From the Vascular Biology Division, Victor Chang Cardiac Research Institute, NSW, Australia (D.C., J.T., C.P.S., I.R., G.J.M., R.S.)
| | - Roland Stocker
- From the Vascular Biology Division, Victor Chang Cardiac Research Institute, NSW, Australia (D.C., J.T., C.P.S., I.R., G.J.M., R.S.)
- St Vincent’s Clinical School, University of New South Wales Medicine, Australia (D.C., J.T., C.P.S., R.S.)
| |
Collapse
|
78
|
Wei X, Sun Y, Han T, Zhu J, Xie Y, Wang S, Wu Y, Fan Y, Sun X, Zhou J, Zhao Z, Jing Z. Upregulation of miR-330-5p is associated with carotid plaque's stability by targeting Talin-1 in symptomatic carotid stenosis patients. BMC Cardiovasc Disord 2019; 19:149. [PMID: 31215474 PMCID: PMC6582585 DOI: 10.1186/s12872-019-1120-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/27/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the relationship between Talin-1 and stability of carotid atherosclerosis plaque and also find out the role of miRNA, as an upstream regulator, in regulating the expression level of Talin-1. METHODS Human carotid plaques were obtained from 20 symptomatic carotid stenosis patients who underwent carotid endarterectomy (CEA) in our hospital between October 2014 and August 2017. Western blot analysis and immunohistochemistry was carried out to detect the distribution and expression level of Talin-1 in each plaque sample. The content of miRNAs in carotid plaque was decected by quantitative reverse transcription polymerase chain reaction (RT-qPCR), and the relative expression levels were calculated by 2-△△Ct method after the (cycle threshold) Ct value (power amplification knee point) was obtained. Dual-luciferase reporter assays were applied to verify the successful transfections. Finally, we compared all the groups with independent-samples t-test and one-way analysis of variance (ANOVA). RESULTS Talin-1 was significantly downregulated in human unstable carotid plaque samples compared with stable carotid plaques (P < 0.05), and the distribution of Talin-1 was mainly found in the fibrous cap of carotid plaque. The overexpression of miRNA-330-5p was found in unstable carotid plaque, which significantly induced the inhibition of expression level of Talin-1. CONCLUSION Upregulated miR-330-5p may lead to unstable carotid plaques by targeting Talin-1 in symptomatic carotid stenosis patients. This might be a new target for the treatment of atherosclerotic diseases through future studies.
Collapse
Affiliation(s)
- Xiaolong Wei
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yudong Sun
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.,Depaertment of general surgery, Nanjing General Hospital of Eastern Theater Command, Nanjing, China
| | - Tonglei Han
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Jiang Zhu
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yongfu Xie
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Shiying Wang
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yani Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yinxing Fan
- Zhenjiang Medical District, General Hospital of Eastern Theater Command, Zhenjiang, China
| | - Xiuli Sun
- Department of ophthalmology, Jinan aier eye hospital, Jinan, China
| | - Jian Zhou
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zhiqing Zhao
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| | - Zaiping Jing
- Department of Vascular Surgery, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
79
|
Affiliation(s)
- Jacob F Bentzon
- From the Experimental Pathology of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (J.F.B.); and Department of Clinical Medicine, Aarhus University, Denmark (J.F.B., E.F.).
| | - Erling Falk
- From the Experimental Pathology of Atherosclerosis, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (J.F.B.); and Department of Clinical Medicine, Aarhus University, Denmark (J.F.B., E.F.)
| |
Collapse
|
80
|
Marino A, Zhang Y, Rubinelli L, Riemma MA, Ip JE, Di Lorenzo A. Pressure overload leads to coronary plaque formation, progression, and myocardial events in ApoE-/- mice. JCI Insight 2019; 4:128220. [PMID: 31045580 DOI: 10.1172/jci.insight.128220] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/27/2019] [Indexed: 01/01/2023] Open
Abstract
Hypercholesterolemia and hypertension are two major risk factors for coronary artery diseases, which remain the major cause of mortality in the industrialized world. Current animal models of atherosclerosis do not recapitulate coronary plaque disruption, thrombosis, and myocardial infarction occurring in humans. Recently, we demonstrated that exposure of the heart to high pressure, by transverse aortic constriction (TAC), induced coronary lesions in ApoE-/- mice on chow diet. The aim of this study was to characterize the magnitude and location of coronary lesions in ApoE-/- mice after TAC and to assess the susceptibility of coronary plaque to disruption, leading to myocardial events. Here, we describe a reliable pathological condition in mice characterized by the development of coronary lesions and its progression, leading to myocardial infarction; this model better recapitulates human disease. Following TAC surgery, about 90% of ApoE-/- mice developed coronary lesions, especially in the left anterior descending artery, with 59% of the mice manifesting a different magnitude of LAD stenosis. Myocardial events, identified in 74% of the mice, were mainly due to coronary plaque thrombosis and occlusion. That TAC-induced development and progression of coronary lesions in ApoE-/- mice, leading to myocardial events, represents a potentially novel and important tool to investigate the development of coronary lesions and its sequelae in a setting that better resemble human conditions.
Collapse
Affiliation(s)
- Alice Marino
- Department of Pathology and Laboratory Medicine.,Cardiovascular Research Institute, and.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine.,Cardiovascular Research Institute, and.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Luisa Rubinelli
- Department of Pathology and Laboratory Medicine.,Cardiovascular Research Institute, and.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Maria Antonietta Riemma
- Department of Pathology and Laboratory Medicine.,Cardiovascular Research Institute, and.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA.,Department of Pharmacy, School of Medicine, University of Naples "Federico II," Naples, Italy
| | - James E Ip
- Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, New York, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine.,Cardiovascular Research Institute, and.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
81
|
Liu X, Ma J, Ma L, Liu F, Zhang C, Zhang Y, Ni M. Overexpression of tissue factor induced atherothrombosis in apolipoprotein E-/- mice via both enhanced plaque thrombogenicity and plaque instability. J Mol Cell Cardiol 2018; 127:1-10. [PMID: 30500376 DOI: 10.1016/j.yjmcc.2018.11.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023]
Abstract
The mechanisms leading to atherothrombosis from "vulnerable plaque" are more complex than initially proposed. We aimed to clarify whether plaque thrombogenicity is critical in atherothrombosis in mice. In a murine model of plaque destabilization, we enhanced plaque thrombogenicity by systemically overexpressing murine tissue factor (TF) by adenovirus-mediated gene transfer. The potential effects and mechanisms of TF on plaque destabilization were examined in cultured human aortic smooth muscle cells (HASMCs), RAW264.7 cells and human umbilical vein endothelial cells (HUVECs). To elucidate the TF noncoagulant effects on plaque destabilization, TF-overexpressed mice were treated with the protease-activated receptor 2 (PAR-2) antagonist ENMD-1068. In TF-overexpressing apolipoprotein (E)-deficient (ApoE-/-) mice, 67% (8 of 12) of carotid plaques exhibited plaque disruption and atherothrombosis. Moreover, 58% (7 of 12) showed plaque hemorrhage, including 1 due to plaque disruption, 4 neovascularization and 2 both. In contrast, only 17% (2 of 12) of control mice showed atherothrombosis, both with plaque hemorrhage but no neovascularization. On PCR, TF overexpression increased the expression of inflammatory factors. In cultured cells, the TF-FVIIa complex enhanced the expression of inflammatory factors and a vicious cycle of inflammation. Also, TF-FVIIa complex induced intra-plaque angiogenesis via PAR-2. ENMD-1068 treatment significantly inhibited the expression of inflammatory factors and neovascularization, and the incidence of intra-plaque hemorrhage decreased in TF-overexpressing mice. In conclusions, TF overexpression enhanced plaque thrombogenicity, which played a pivotal role in atherothrombosis in ApoE-/- mice. In addition, TF promoted plaque instability by activating inflammatory and proangiogenic effects via TF-FVIIa/PAR-2 signaling.
Collapse
Affiliation(s)
- Xiaoling Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lianyue Ma
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fangfang Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Ni
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
82
|
Defective autophagy in vascular smooth muscle cells enhances atherosclerotic plaque instability. Biochem Biophys Res Commun 2018; 505:1141-1147. [DOI: 10.1016/j.bbrc.2018.09.192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 09/30/2018] [Indexed: 12/11/2022]
|
83
|
Johnson JL. Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vascul Pharmacol 2018; 114:31-48. [PMID: 30389614 PMCID: PMC6445803 DOI: 10.1016/j.vph.2018.10.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/13/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases encompassing atherosclerosis, aortic aneurysms, restenosis, and pulmonary arterial hypertension, remain the leading cause of morbidity and mortality worldwide. In response to a range of stimuli, the dynamic interplay between biochemical and biomechanical mechanisms affect the behaviour and function of multiple cell types, driving the development and progression of cardiovascular diseases. Accumulating evidence has highlighted microRNAs (miRs) as significant regulators and micro-managers of key cellular and molecular pathophysiological processes involved in predominant cardiovascular diseases, including cell mitosis, motility and viability, lipid metabolism, generation of inflammatory mediators, and dysregulated proteolysis. Human pathological and clinical studies have aimed to identify select microRNA which may serve as biomarkers of disease and their progression, which are discussed within this review. In addition, I provide comprehensive coverage of in vivo investigations elucidating the modulation of distinct microRNA on the pathophysiology of atherosclerosis, abdominal aortic aneurysms, restenosis, and pulmonary arterial hypertension. Collectively, clinical and animal studies have begun to unravel the complex and often diverse effects microRNAs and their targets impart during the development of cardiovascular diseases and revealed promising therapeutic strategies through which modulation of microRNA function may be applied clinically.
Collapse
Affiliation(s)
- Jason L Johnson
- Laboratory of Cardiovascular Pathology, Bristol Medical School, University of Bristol, UK.
| |
Collapse
|
84
|
Wight TN. A role for proteoglycans in vascular disease. Matrix Biol 2018; 71-72:396-420. [PMID: 29499356 PMCID: PMC6110991 DOI: 10.1016/j.matbio.2018.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
The content of proteoglycans (PGs) is low in the extracellular matrix (ECM) of vascular tissue, but increases dramatically in all phases of vascular disease. Early studies demonstrated that glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) accumulate in vascular lesions in both humans and in animal models in areas of the vasculature that are susceptible to disease initiation (such as at branch points) and are frequently coincident with lipid deposits. Later studies showed the GAGs were covalently attached to specific types of core proteins that accumulate in vascular lesions. These molecules include versican (CSPG), biglycan and decorin (DS/CSPGs), lumican and fibromodulin (KSPGs) and perlecan (HSPG), although other types of PGs are present, but in lesser quantities. While the overall molecular design of these macromolecules is similar, there is tremendous structural diversity among the different PG families creating multiple forms that have selective roles in critical events that form the basis of vascular disease. PGs interact with a variety of different molecules involved in disease pathogenesis. For example, PGs bind and trap serum components that accumulate in vascular lesions such as lipoproteins, amyloid, calcium, and clotting factors. PGs interact with other ECM components and regulate, in part, ECM assembly and turnover. PGs interact with cells within the lesion and alter the phenotypes of both resident cells and cells that invade the lesion from the circulation. A number of therapeutic strategies have been developed to target specific PGs involved in key pathways that promote vascular disease. This review will provide a historical perspective of this field of research and then highlight some of the evidence that defines the involvement of PGs and their roles in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, United States.
| |
Collapse
|
85
|
Lee YB, Choi KM. Diet-Modulated Lipoprotein Metabolism and Vascular Inflammation Evaluated by 18F-fluorodeoxyglucose Positron Emission Tomography. Nutrients 2018; 10:nu10101382. [PMID: 30274193 PMCID: PMC6212959 DOI: 10.3390/nu10101382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular inflammation plays a central role in atherosclerosis, from initiation and progression to acute thrombotic complications. Modified low-density lipoproteins (LDLs) and apoB-containing particles stimulate plaque inflammation by interacting with macrophages. Loss of function of high-density lipoprotein (HDL) for preventing LDL particles from oxidative modification in dyslipidemic states may amplify modified LDL actions, accelerating plaque inflammation. Diets are one of the most important factors that can affect these processes of lipoprotein oxidation and vascular inflammation. Recently, 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has emerged as a reliable noninvasive imaging modality for identifying and quantifying vascular inflammation within atherosclerotic lesions based on the high glycolytic activity of macrophages infiltrating active atherosclerotic plaques. Vascular inflammation evaluated by FDG PET has been positively related to metabolic syndrome components and traditional risk factors of cardiovascular disease, including high-sensitivity C-reactive protein, body mass index, and insulin resistance. A positive association of vascular inflammation with endothelial dysfunction, resistin levels, pericardial adipose tissue, and visceral fat area has also been reported. In contrast, HDL cholesterol and adiponectin have been inversely related to vascular inflammation detected by FDG PET. Because of its reproducibility, serial FDG PET shows potential for tracking the effects of dietary interventions and other systemic and local antiatherosclerotic therapies for plaque inflammation.
Collapse
Affiliation(s)
- You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea.
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea.
| |
Collapse
|
86
|
Affiliation(s)
- Max L Senders
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
87
|
LPS-Induced Systemic Inflammation Does Not Alter Atherosclerotic Plaque Area or Inflammation in APOE3∗LEIDEN Mice in the Early Phase Up to 15 Days. Shock 2018; 50:360-365. [DOI: 10.1097/shk.0000000000001026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
88
|
Chen YC, Huang AL, Kyaw TS, Bobik A, Peter K. Atherosclerotic Plaque Rupture: Identifying the Straw That Breaks the Camel's Back. Arterioscler Thromb Vasc Biol 2018; 36:e63-72. [PMID: 27466619 DOI: 10.1161/atvbaha.116.307993] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Yung-Chih Chen
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Alex L Huang
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Tin S Kyaw
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Alex Bobik
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory (Y.-C.C., A.L.H., K.P.), and Vascular Biology and Atherosclerosis Laboratory (T.S.K., A.B.), Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; and Departments of Medicine and Immunology, Monash University, Melbourne, Victoria, Australia (A.L.H., A.B., K.P.).
| |
Collapse
|
89
|
Osonoi Y, Mita T, Azuma K, Nakajima K, Masuyama A, Goto H, Nishida Y, Miyatsuka T, Fujitani Y, Koike M, Mitsumata M, Watada H. Defective autophagy in vascular smooth muscle cells enhances cell death and atherosclerosis. Autophagy 2018; 14:1991-2006. [PMID: 30025494 DOI: 10.1080/15548627.2018.1501132] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macroautophagy/autophagy is considered as an evolutionarily conserved cellular catabolic process. In this study, we aimed to elucidate the role of autophagy in vascular smooth muscle cells (SMCs) on atherosclerosis. SMCs cultured from mice with SMC-specific deletion of the essential autophagy gene atg7 (Atg7cKO) showed reduced serum-induced cell growth, increased cell death, and decreased cell proliferation rate. Furthermore, 7-ketocholestrerol enhanced apoptosis and the expression of CCL2 (chemokine [C-C motif] ligand 2) with the activation of TRP53, the mouse ortholog of human and rat TP53, in SMCs from Atg7cKO mice. In addition, Atg7cKO mice crossed with Apoe (apolipoprotein E)-deficient mice (apoeKO; Atg7cKO:apoeKO) showed reduced medial cellularity and increased TUNEL-positive cells in the descending aorta at 10 weeks of age. Intriguingly, Atg7cKO: apoeKO mice fed a Western diet containing 1.25% cholesterol for 14 weeks showed a reduced survival rate. Autopsy of the mice demonstrated the presence of aortic rupture. Analysis of the descending aorta in Atg7cKO:apoeKO mice showed increased plaque area, increased TUNEL-positive area, decreased SMC-positive area, accumulation of macrophages in the media, and adventitia and perivascular tissue, increased CCL2 expression in SMCs in the vascular wall, medial disruption, and aneurysm formation. In conclusion, our data suggest that defective autophagy in SMCs enhances atherosclerotic changes with outward arterial remodeling.
Collapse
Affiliation(s)
- Yusuke Osonoi
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan.,b Center for Identification of Diabetic Therapeutic Targets , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | - Tomoya Mita
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan.,b Center for Identification of Diabetic Therapeutic Targets , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan.,c Center for Therapeutic Innovations in Diabetes , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | - Kosuke Azuma
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | - Kenichi Nakajima
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | - Atsushi Masuyama
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | - Hiromasa Goto
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | - Yuya Nishida
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | - Takeshi Miyatsuka
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan.,c Center for Therapeutic Innovations in Diabetes , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| | - Yoshio Fujitani
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan.,d Laboratory of Developmental Biology and Metabolism, Institute for Molecular and Cellular Regulation , Gunma University , Maebashi , Japan
| | - Masato Koike
- e Department of Cell Biology and Neuroscience , Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Masako Mitsumata
- f Division of Cardiology, Department of Medicine , Nihon University School of Medicine , Tokyo , Japan
| | - Hirotaka Watada
- a Department of Metabolism & Endocrinology , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan.,b Center for Identification of Diabetic Therapeutic Targets , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan.,c Center for Therapeutic Innovations in Diabetes , Juntendo University Graduate School of Medicine , 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 , Japan
| |
Collapse
|
90
|
Rashid I, Maghzal GJ, Chen YC, Cheng D, Talib J, Newington D, Ren M, Vajandar SK, Searle A, Maluenda A, Lindstedt EL, Jabbour A, Kettle AJ, Bongers A, Power C, Michaëlsson E, Peter K, Stocker R. Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque. Eur Heart J 2018; 39:3301-3310. [DOI: 10.1093/eurheartj/ehy419] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/04/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Imran Rashid
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst NSW, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst NSW, Australia
- St Vincent’s Clinical School, University of New South Wales Medicine, NSW, Australia
| | - Yung-Chih Chen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road Melbourne, VIC, Australia
| | - David Cheng
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst NSW, Australia
| | - Jihan Talib
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst NSW, Australia
| | - Darren Newington
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst NSW, Australia
| | - Minqin Ren
- Department of Physics, Centre for Ion Beam Applications, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Saumitra K Vajandar
- Department of Physics, Centre for Ion Beam Applications, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Amy Searle
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road Melbourne, VIC, Australia
| | - Ana Maluenda
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road Melbourne, VIC, Australia
| | - Eva-Lotte Lindstedt
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Andrew Jabbour
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst NSW, Australia
- Department of Cardiology, St Vincent's Hospital Sydney, 390 Victoria Street, Darlinghurst NSW, Australia
| | - Antony J Kettle
- Centre for Free Radical Research, University of Otago Christchurch, Christchurch, New Zealand
| | - Andre Bongers
- Biological Resources Imaging Laboratory, University of New South Wales, High Street, Sydney NSW, Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, University of New South Wales, High Street, Sydney NSW, Australia
| | - Erik Michaëlsson
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road Melbourne, VIC, Australia
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst NSW, Australia
- St Vincent’s Clinical School, University of New South Wales Medicine, NSW, Australia
| |
Collapse
|
91
|
Angiopoietin-Like 3 (ANGPTL3) and Atherosclerosis: Lipid and Non-Lipid Related Effects. J Cardiovasc Dev Dis 2018; 5:jcdd5030039. [PMID: 30011918 PMCID: PMC6162638 DOI: 10.3390/jcdd5030039] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/13/2023] Open
Abstract
Genetic and clinical studies have demonstrated that loss-of-function variants in the angiopoietin-like 3 (ANGPTL3) gene are associated with decreased plasma levels of triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), which leads to a significant reduction in cardiovascular risk. For this reason, ANGPTL3 is considered an important new pharmacological target for the treatment of cardiovascular diseases (CVDs) together with more conventional lipid lowering therapies, such as statins and anti proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies. Experimental evidence demonstrates that anti-ANGPTL3 therapies have an important anti-atherosclerotic effect. Results from phase I clinical trials with a monoclonal anti-ANGPTL3 antibody (evinacumab) and anti-sense oligonucleotide (ASO) clearly show a significant lipid lowering effect. In addition, from the analysis of the protein structure of ANGPTL3, it has been hypothesized that, beyond its inhibitory activity on lipoprotein and endothelial lipases, this molecule may have a pro-inflammatory, pro-angiogenic effect and a negative effect on cholesterol efflux, implying additional pro-atherosclerotic properties. In the future, data from phase II clinical trials and additional experimental evidence will help to define the efficacy and the additional anti-atherosclerotic properties of anti-ANGPTL3 therapies beyond the already available lipid lowering therapies.
Collapse
|
92
|
Jehle J, Schöne B, Bagheri S, Avraamidou E, Danisch M, Frank I, Pfeifer P, Bindila L, Lutz B, Lütjohann D, Zimmer A, Nickenig G. Elevated levels of 2-arachidonoylglycerol promote atherogenesis in ApoE-/- mice. PLoS One 2018; 13:e0197751. [PMID: 29813086 PMCID: PMC5973571 DOI: 10.1371/journal.pone.0197751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is a known modulator of inflammation and ligand to both, pro-inflammatory cannabinoid receptor 1 (CB1) and anti-inflammatory CB2. While the role of both receptors in atherogenesis has been studied extensively, the significance of 2-AG for atherogenesis is less well characterized. METHODS The impact of 2-AG on atherogenesis was studied in two treatment groups of ApoE-/- mice. One group received the monoacylglycerol lipase (MAGL)-inhibitor JZL184 [5 mg/kg i.p.], which impairs 2-AG degradation and thus causes elevated 2-AG levels, the other group received vehicle for four weeks. Simultaneously, both groups were fed a high-cholesterol diet. The atherosclerotic plaque burden was assessed in frozen sections through the aortic sinus following oil red O staining and infiltrating macrophages were detected by immunofluorescence targeting CD68. In vitro, the effect of 2-AG on B6MCL macrophage migration was assessed by Boyden chamber experiments. Transcription of adhesion molecules and chemokine receptors in macrophages was assessed by qPCR. RESULTS As expected, application of the MAGL-inhibitor JZL184 resulted in a significant increase in 2-AG levels in vascular tissue (98.2 ± 16.1 nmol/g vs. 27.3 ± 4.5 nmol/g; n = 14-16; p < 0.001). ApoE-/- mice with elevated 2-AG levels displayed a significantly increased plaque burden compared to vehicle treated controls (0.44 ± 0.03 vs. 0.31 ± 0.04; n = 14; p = 0.0117). This was accompanied by a significant increase in infiltrating macrophages within the atherosclerotic vessel wall (0.33 ± 0.02 vs. 0.27 ± 0.01; n = 13-14; p = 0.0076). While there was no alteration to the white blood counts of JZL184-treated animals, 2-AG enhanced macrophage migration in vitro by 1.8 ± 0.2 -fold (n = 4-6; p = 0.0393) compared to vehicle, which was completely abolished by co-administration of either CB1- or CB2-receptor-antagonists. qPCR analyses of 2-AG-stimulated macrophages showed an enhanced transcription of the chemokine CCL5 (1.59 ± 0.23 -fold; n = 5-6; p = 0.0589) and its corresponding receptors CCR1 (2.04 ± 0.46 -fold; n = 10-11; p = 0.0472) and CCR5 (2.45 ± 0.62 -fold; n = 5-6; p = 0.0554). CONCLUSION Taken together, elevated 2-AG levels appear to promote atherogenesis in vivo. Our data suggest that 2-AG promotes macrophage migration, possibly by the CCL5-CCR5/CCR1 axis, and thereby contributes to vascular inflammation. Thus, decreasing vascular 2-AG levels might represent a promising therapeutic strategy in patients suffering from atherosclerosis and coronary heart disease.
Collapse
Affiliation(s)
- Julian Jehle
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Benedikt Schöne
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Sayeh Bagheri
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Elina Avraamidou
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Melina Danisch
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Imke Frank
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Philipp Pfeifer
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dieter Lütjohann
- Insitute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Andreas Zimmer
- Department of Molecular Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
93
|
Circulating miRNA levels differ with respect to carotid plaque characteristics and symptom occurrence in patients with carotid artery stenosis and provide information on future cardiovascular events. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2018; 14:75-84. [PMID: 29743907 PMCID: PMC5939548 DOI: 10.5114/aic.2018.74358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/29/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Circulating microRNAs (miRNAs) levels are potentially important biomarkers and therapeutic targets of cerebral ischemic event (CIE) in patients with internal carotid artery stenosis (ICAS). Aim This prospective study investigated associations between circulating miRNAs and symptomatic and asymptomatic ICAS, carotid plaque morphology and future cardiovascular events. Material and methods Circulating miRNAs (miR-1-3p, miR-16-5p, miR-34a-5p, miR-124-3p, miR-133a-3p, miR-133b, miR-134-5p, miR-208b-3p, miR-375 and miR-499-5p) were analyzed in 92 consecutive patients with significant ICAS referred for revascularization. Group I comprised 65 subjects (41 males, age 69.3 ±9.7 years) with a recent CIE. Group II comprised 27 patients (15 males, age 68.2 ±8.4 years) with asymptomatic ICAS. The ICAS degree and plaque morphology was assessed by ultrasonography. The incidences of cardiovascular death (CVD), myocardial infarction (MI) and recurrent CIE (CVD/MI/CIE) were recorded prospectively (mean: 38.7 ±3.8 months). Results Groups II and I differed significantly in levels of miR-124-3p (p = 0.036), miR-133a-3p (p = 0.043) and miR-134-5p (p = 0.02). Hypoechogenic, as compared to echogenic, plaques differed in levels of miR-124-3p (p = 0.038), miR-34a-5p (p = 0.006), miR-133b (p = 0.048), miR-134-5p (p = 0.045), and miR-375 (p = 0.016), while calcified plaques differed in miR-16-5p (p = 0.023). Ulcerated plaques showed higher levels of miR-1-3p (p = 0.04) and miR-16-5p (p = 0.003), while thrombotic plaques showed lower levels of miR-1-3p (p = 0.032). CVD/MI/CIE occurred in 14 (15.5%) out of 90 follow-up patients. Multivariate Cox and ROC analysis showed associations between miR-1-3p and CVD (AUC = 0.634; HR = 4.84; 95% CI: 1.62–14.5; p = 0.005), MI (AUC = 0.743; HR = 7.8; 95% CI: 2.01–30.0; p = 0.003), and CVD/MI/CIE (AUC = 0.560; HR = 4.6; 95% CI: 1.61–13.1; p = 0.004), while miR-133b was associated with recurrent CIE (AUC = 0.581; HR = 2.25; 95% CI: 1.01–5.02; p = 0.047). Conclusions A significant difference in levels of selected miRNAs is observed in symptomatic vs. asymptomatic ICAS. Plaque morphology and structure is associated with change of miRNA levels. The expression of miR-1-3p may be a potential prognostic factor for future cardiovascular events.
Collapse
|
94
|
Daemen MJ, Gijsen FJH, Heiden KVD, Hoogendoorn A. Animal models for plaque rupture: a biomechanical assessment. Thromb Haemost 2018; 115:501-8. [DOI: 10.1160/th15-07-0614] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/22/2015] [Indexed: 11/05/2022]
Abstract
SummaryRupture of atherosclerotic plaques is the main cause of acute cardiovascular events. Animal models of plaque rupture are rare but essential for testing new imaging modalities to enable diagnosis of the patient at risk. Moreover, they enable the design of new treatment strategies to prevent plaque rupture. Several animal models for the study of atherosclerosis are available. Plaque rupture in these models only occurs following severe surgical or pharmaceutical intervention. In the process of plaque rupture, composition, biology and mechanics each play a role, but the latter has been disregarded in many animal studies. The biomechanical environment for atherosclerotic plaques is comprised of two parts, the pressure-induced stress distribution, mainly - but not exclusively – influenced by plaque composition, and the strength distribution throughout the plaque, largely determined by the inflammatory state. This environment differs considerably between humans and most animals, resulting in suboptimal conditions for plaque rupture. In this review we describe the role of the biomechanical environment in plaque rupture and assess this environment in animal models that present with plaque rupture.
Collapse
|
95
|
Xing R, Moerman AM, Ridwan Y, Daemen MJ, van der Steen AFW, Gijsen FJH, van der Heiden K. Temporal and spatial changes in wall shear stress during atherosclerotic plaque progression in mice. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171447. [PMID: 29657758 PMCID: PMC5882682 DOI: 10.1098/rsos.171447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/07/2018] [Indexed: 05/03/2023]
Abstract
Wall shear stress (WSS) is involved in atherosclerotic plaque initiation, yet its role in plaque progression remains unclear. We aimed to study (i) the temporal and spatial changes in WSS over a growing plaque and (ii) the correlation between WSS and plaque composition, using animal-specific data in an atherosclerotic mouse model. Tapered casts were placed around the right common carotid arteries (RCCA) of ApoE-/- mice. At 5, 7 and 9 weeks after cast placement, RCCA geometry was reconstructed using contrast-enhanced micro-CT. Lumen narrowing was observed in all mice, indicating the progression of a lumen intruding plaque. Next, we determined the flow rate in the RCCA of each mouse using Doppler Ultrasound and computed WSS at all time points. Over time, as the plaque developed and further intruded into the lumen, absolute WSS significantly decreased. Finally at week 9, plaque composition was histologically characterized. The proximal part of the plaque was small and eccentric, exposed to relatively lower WSS. Close to the cast a larger and concentric plaque was present, exposed to relatively higher WSS. Lower WSS was significantly correlated to the accumulation of macrophages in the eccentric plaque. When pooling data of all animals, correlation between WSS and plaque composition was weak and no longer statistically significant. In conclusion, our data showed that in our mouse model absolute WSS strikingly decreased during disease progression, which was significantly correlated to plaque area and macrophage content. Besides, our study demonstrates the necessity to analyse individual animals and plaques when studying correlations between WSS and plaque composition.
Collapse
Affiliation(s)
- R. Xing
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A. M. Moerman
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Y. Ridwan
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M. J. Daemen
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - A. F. W. van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - F. J. H. Gijsen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Authors for correspondence: F. J. H. Gijsen e-mail:
| | - K. van der Heiden
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Authors for correspondence: K. van der Heiden e-mail:
| |
Collapse
|
96
|
Zhang J, Liu Z, Pei Y, Yang W, Xie C, Long S. RETRACTED ARTICLE: MicroRNA-322 Cluster Promotes Tau Phosphorylation via Targeting Brain-Derived Neurotrophic Factor. Neurochem Res 2018; 43:736-744. [DOI: 10.1007/s11064-018-2475-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
|
97
|
Madonna R, Pieragostino D, Balistreri CR, Rossi C, Geng YJ, Del Boccio P, De Caterina R. Diabetic macroangiopathy: Pathogenetic insights and novel therapeutic approaches with focus on high glucose-mediated vascular damage. Vascul Pharmacol 2018; 107:S1537-1891(17)30322-1. [PMID: 29425894 DOI: 10.1016/j.vph.2018.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/22/2017] [Accepted: 01/31/2018] [Indexed: 12/11/2022]
Abstract
Diabetic macroangiopathy - a specific form of accelerated atherosclerosis - is characterized by intra-plaque new vessel formation due to excessive/abnormal neovasculogenesis and angiogenesis, increased vascular permeability of the capillary vessels, and tissue edema, resulting in frequent atherosclerotic plaque hemorrhage and plaque rupture. Mechanisms that may explain the premature and rapidly progressive nature of atherosclerosis in diabetes are multiple, and to a large extent still unclear. However, mechanisms related to hyperglycemia certainly play an important role. These include a dysregulated vascular regeneration. In addition, oxidative and hyperosmolar stresses, as well as the activation of inflammatory pathways triggered by a dysregulated activation of membrane channel proteins aquaporins, have been recognized as key events. Here, we review recent knowledge of cellular and molecular pathways of macrovascular disease related to hyperglycemia in diabetes. We also here highlight how new insights into pathogenic mechanisms of vascular damage in diabetes may indicate new targets for prevention and treatment.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy; Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Damiana Pieragostino
- Analitical Biochemistry and Proteomics Unit Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Carmela Rita Balistreri
- Department of Patho-biology and Medical Biotechnologies, University of Palermo, Palermo, Italy
| | - Claudia Rossi
- Analitical Biochemistry and Proteomics Unit Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Yong-Jian Geng
- Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Piero Del Boccio
- Analitical Biochemistry and Proteomics Unit Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy
| | - Raffaele De Caterina
- Center of Aging Sciences and Translational Medicine - CESI-MeT, Institute of Cardiology, Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
98
|
Karamariti E, Zhai C, Yu B, Qiao L, Wang Z, Potter CMF, Wong MM, Simpson RML, Zhang Z, Wang X, Del Barco Barrantes I, Niehrs C, Kong D, Zhao Q, Zhang Y, Hu Y, Zhang C, Xu Q. DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2017; 38:425-437. [PMID: 29284609 DOI: 10.1161/atvbaha.117.310079] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 12/13/2017] [Indexed: 01/31/2023]
Abstract
OBJECTIVE DKK3 (dickkopf 3), a 36-kD secreted glycoprotein, has been shown to be involved in the differentiation of partially reprogrammed cells and embryonic stem cells to smooth muscle cells (SMCs), but little is known about its involvement in vascular disease. This study aims to assess the effects of DKK3 on atherosclerotic plaque composition. APPROACH AND RESULTS In the present study, we used a murine model of atherosclerosis (ApoE-/-) in conjunction with DKK3-/- and performed tandem stenosis of the carotid artery to evaluate atherosclerotic plaque development. We found that the absence of DKK3 leads to vulnerable atherosclerotic plaques, because of a reduced number of SMCs and reduced matrix protein deposition, as well as increased hemorrhage and macrophage infiltration. Further in vitro studies revealed that DKK3 can induce differentiation of Sca1+ (stem cells antigen 1) vascular progenitors and fibroblasts into SMCs via activation of the TGF-β (transforming growth factor-β)/ATF6 (activating transcription factor 6) and Wnt signaling pathways. Finally, we assessed the therapeutic potential of DKK3 in mouse and rabbit models and found that DKK3 altered the atherosclerotic plaque content via increasing SMC numbers and reducing vascular inflammation. CONCLUSIONS Cumulatively, we provide the first evidence that DKK3 is a potent SMC differentiation factor, which might have a therapeutic effect in reducing intraplaque hemorrhage related to atherosclerotic plaque phenotype.
Collapse
Affiliation(s)
- Eirini Karamariti
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Chungang Zhai
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Baoqi Yu
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Lei Qiao
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Zhihong Wang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Claire M F Potter
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Mei Mei Wong
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Russell M L Simpson
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Xiaocong Wang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Ivan Del Barco Barrantes
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Christof Niehrs
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Deling Kong
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Qiang Zhao
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Yun Zhang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Yanhua Hu
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.)
| | - Cheng Zhang
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.).
| | - Qingbo Xu
- From the School of Cardiovascular Medicine & Sciences, King's College London BHF Centre, United Kingdom (E.K., B.Y., C.M.F.P., M.M.W., R.M.L.S., Z.Z., X.W., Y.H., Q.X.); The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, China (C. Zhai, L.Q., Y.Z., C. Zhang); State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China (Z.W., D.K., Q.Z.); Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany (I.d.B.B., C.N.); and Institute of Molecular Biology (IMB), Mainz, Germany (C.N.).
| |
Collapse
|
99
|
Chih Chen Y, Rivera J, Fitzgerald M, Hausding C, Ying YL, Wang X, Todorova K, Hayrabedyan S, Barnea ER, Peter K. PreImplantation factor prevents atherosclerosis via its immunomodulatory effects without affecting serum lipids. Thromb Haemost 2017; 115:1010-24. [DOI: 10.1160/th15-08-0640] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/11/2016] [Indexed: 01/08/2023]
Abstract
SummaryPreImplantation factor (PIF) is a 15-amino acid peptide endogenously secreted by viable embryos, regulating/enabling maternal (host) acceptance/tolerance to the “invading” embryo (allograft) all-while preserving maternal immunity to fight infections. Such attributes make PIF a potential therapeutic agent for chronic inflammatory diseases. We investigated whether PIF’s immunomodulatory properties prevent progression of atherosclerosis in the hyper-cholesterolaemic ApoEdeficient murine model. Male, high-fat diet fed, ApoE-deficient (ApoE-/-) mice were administered either PBS, scrambled PIF (0.3–3 mg/kg) or PIF (0.3–3 mg/kg) for seven weeks. After treatment, PIF (3 mg/kg)-treated ApoE-/- mice displayed significantly reduced atherosclerosis lesion burden in the aortic sinus and aortic arch, without any effect on lipid profile. PIF also caused a significant reduction in infiltration of macrophages, decreased expression of pro-inflammatory adhesion molecules, cytokines and chemokines in the plaque, and reduced circulating IFN-γ levels. PIF preferentially binds to monocytes/neutrophils. In vitro, PIF attenuated monocyte migration (MCP-1-induced chemotaxis assay) and in vivo in LPS peritonitis model. Also PIF prevented leukocyte extravasation (peritonitis thioglycollate-induced model), demonstrating that PIF exerts its effect in part by modulation of monocyte function. Inhibition of the potassium channel KCNAB3 (Kv1.3) and of the insulin degrading enzyme (IDE) was demonstrated as potential mechanism of PIF’s immunomodulatory effects. In conclusion, PIF regulates/lowers inflammation and prevents atherosclerosis development without affecting circulating lipids. Overall our findings establish PIF as a strong immunomodulatory drug candidate for atherosclerosis therapy.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
100
|
Animal models of atherosclerosis. Eur J Pharmacol 2017; 816:3-13. [DOI: 10.1016/j.ejphar.2017.05.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
|