51
|
Abstract
SARS-CoV2 infection or COVID-19 has created panic around the world since its first origin in December 2019 in Wuhan city, China. The COVID-19 pandemic has infected more than 46.4 million people, with 1,199,727 deaths. The immune system plays a crucial role in the severity of COVID-19 and the development of pneumonia-induced acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Along with providing protection, both innate and T cell-based adaptive immune response dysregulate during severe SARS-CoV2 infection. This dysregulation is more pronounced in older population and patients with comorbidities (Diabetes, hypertension, obesity, other pulmonary and autoimmune diseases). However, COVID-19 patients develop protective antibodies (Abs) against SARS-CoV2, but they do not long for last. The induction of the immune response against the pathogen also requires metabolic energy that generates through the process of immunometabolism. The change in the metabolic stage of immune cells from homeostasis to an inflammatory or infectious environment is called immunometabolic reprogramming. The article describes the cellular immunology (macrophages, T cells, B cells, dendritic cells, NK cells and pulmonary epithelial cells (PEC) and vascular endothelial cells) and the associated immune response during COVID-19. Immunometabolism may serve as a cell-specific therapeutic approach to target COVID-19.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
52
|
Terrén I, Orrantia A, Vitallé J, Astarloa-Pando G, Zenarruzabeitia O, Borrego F. Modulating NK cell metabolism for cancer immunotherapy. Semin Hematol 2020; 57:213-224. [PMID: 33256914 DOI: 10.1053/j.seminhematol.2020.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Natural killer (NK) cells are lymphocytes with potent antitumor functions and, therefore, multiple NK cell-based cancer immunotherapies have been developed and are currently being tested. However, there is a necessity to find new means to improve these therapies, and immunometabolism represents an attractive target. NK cell effector functions are intricately linked to their metabolism, and modulating the latter could be the key to release their full potential. In this review, we have summarized how NK cell metabolism is regulated during some processes, such as maturation, viral infection, and cytokine stimulation. Additionally, we provide an overview of how NK cell metabolism is affected by current therapeutic approaches aimed to promote NK cell expansion and/or to increase their effector functions. We have also recapitulated several strategies that could help alleviating the metabolic impairment that characterizes tumor-infiltrating NK cells, and thus increase or restore their effector functions. Furthermore, we have reviewed several therapeutic approaches targeting cancer metabolism that could synergize with NK cell-based cancer immunotherapies, and thus enhance their efficacy.
Collapse
Affiliation(s)
- Iñigo Terrén
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | - Ane Orrantia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | - Joana Vitallé
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain
| | | | - Olatz Zenarruzabeitia
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain.
| | - Francisco Borrego
- Biocruces Bizkaia Health Research Institute, Immunopathology Group, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
53
|
Dushnicky MJ, Nazarali S, Mir A, Portwine C, Samaan MC. Is There A Causal Relationship between Childhood Obesity and Acute Lymphoblastic Leukemia? A Review. Cancers (Basel) 2020; 12:E3082. [PMID: 33105727 PMCID: PMC7690432 DOI: 10.3390/cancers12113082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
Childhood obesity is a growing epidemic with numerous global health implications. Over the past few years, novel insights have emerged about the contribution of adult obesity to cancer risk, but the evidence base is far more limited in children. While pediatric patients with acute lymphoblastic leukemia (ALL) are at risk of obesity, it is unclear if there are potential causal mechanisms by which obesity leads to ALL development. This review explores the endocrine, metabolic and immune dysregulation triggered by obesity and its potential role in pediatric ALL's genesis. We describe possible mechanisms, including adipose tissue attraction and protection of lymphoblasts, and their impact on ALL chemotherapies' pharmacokinetics. We also explore the potential contribution of cytokines, growth factors, natural killer cells and adipose stem cells to ALL initiation and propagation. While there are no current definite causal links between obesity and ALL, critical questions persist as to whether the adipose tissue microenvironment and endocrine actions can play a causal role in childhood ALL, and there is a need for more research to address these questions.
Collapse
Affiliation(s)
- Molly J. Dushnicky
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Samina Nazarali
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Adhora Mir
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Carol Portwine
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Hematology/Oncology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
| | - Muder Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada; (M.J.D.); (S.N.); (A.M.); (C.P.)
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, ON L8N 3Z5, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
54
|
Chai W, Wang X, Wang W, Wang H, Mou W, Gui J. Decreased glycolysis induced dysfunction of NK cells in Henoch-Schonlein purpura patients. BMC Immunol 2020; 21:53. [PMID: 33036556 PMCID: PMC7547466 DOI: 10.1186/s12865-020-00382-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Henoch-Schonlein purpura (HSP) is the most common systemic vasculitis of the childhood. However, its mechanisms and pathogenesis still need more exploration. Natural killer (NK) cells are innate lymphocytes, and there is a growing appreciation that cellular metabolism is important in determining the immune responsiveness of lymphocytes. Thus, we aimed to analyze the NK cells phenotype and explore the association between glucose metabolism and NK cells function in HSP patients. RESULTS A total number of 64 HSP patients and 34 healthy children were included. The HSP patients were divided into two groups according to whether accompanied with nephritis or not. NK cells in HSP patients without nephritis showed a reduced frequency in peripheral blood, a down-regulated expression of activating receptors both NKp30 and NKp46, and an attenuated cytotoxic function against tumor cells. In addition, the function impairment of NK cells was shown to exacerbate in HSPN. Our data further revealed an aberrant metabolic reprogramming of NK cells in HSP patients. Upon stimulation with cytokines (IL-15, IL-12 and IL-2), NK cells from healthy controls switched to an elevated glycolysis rate to support their effector function. By contrast, the glycolysis rate of activated NK cells in HSP group was not significantly up-regulated from the resting level possibly owing to the inhibition of mTORC1. CONCLUSIONS Our study found that HSP patients were accompanied with dysfunction of NK cells. We concluded that the dysfunction of NK cells in HSP patients was induced with a decreased glycolysis rate and suggested that metabolic reprogramming of NK cells might be a player in the pathogenesis of HSP.
Collapse
Affiliation(s)
- Wenjia Chai
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaolin Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hui Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenjun Mou
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
55
|
Devillier R, Chrétien AS, Pagliardini T, Salem N, Blaise D, Olive D. Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches to harness NK cell potential for immunotherapy. J Leukoc Biol 2020; 109:1071-1088. [PMID: 32991746 DOI: 10.1002/jlb.5mr0920-198rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
NK cells are innate immune cells with inherent capabilities in both recognizing and killing cancer cells. NK cell phenotypes and functional alterations are being described with increasing precision among patients harboring various cancer types, emphasizing the critical role that NK cells play in antitumor immune responses. In addition, advances in understanding NK cell biology have improved our knowledge of such alterations, thereby expanding the potential exploitation of NK cells' anticancer capabilities. In this review, we present an overview of (1) the various types of NK cell alterations that may contribute to immune evasion in cancer patients and (2) the various strategies to improve NK cell-based anticancer immunotherapies, including pharmacologic modulation and/or genetic modification.
Collapse
Affiliation(s)
- Raynier Devillier
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France.,Hematology Department, Paoli-Calmettes Institute, Marseille, France
| | - Anne-Sophie Chrétien
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France
| | - Thomas Pagliardini
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France.,Hematology Department, Paoli-Calmettes Institute, Marseille, France
| | - Nassim Salem
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France
| | - Didier Blaise
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France.,Hematology Department, Paoli-Calmettes Institute, Marseille, France
| | - Daniel Olive
- Immunity and Cancer Team, Paoli-Calmettes Institute, Aix-Marseille University, CNRS, INSERM, CRCM, Marseille, France.,Immunomonitoring platform, Paoli-Calmettes Institute, Marseille, France
| |
Collapse
|
56
|
Choi C, Finlay DK. Diverse Immunoregulatory Roles of Oxysterols-The Oxidized Cholesterol Metabolites. Metabolites 2020; 10:metabo10100384. [PMID: 32998240 PMCID: PMC7601797 DOI: 10.3390/metabo10100384] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intermediates of both cholesterol synthesis and cholesterol metabolism can have diverse roles in the control of cellular processes that go beyond the control of cholesterol homeostasis. For example, oxidized forms of cholesterol, called oxysterols have functions ranging from the control of gene expression, signal transduction and cell migration. This is of particular interest in the context of immunology and immunometabolism where we now know that metabolic processes are key towards shaping the nature of immune responses. Equally, aberrant metabolic processes including altered cholesterol homeostasis contribute to immune dysregulation and dysfunction in pathological situations. This review article brings together our current understanding of how oxysterols affect the control of immune responses in diverse immunological settings.
Collapse
Affiliation(s)
- Chloe Choi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| |
Collapse
|
57
|
Naujoks W, Quandt D, Hauffe A, Kielstein H, Bähr I, Spielmann J. Characterization of Surface Receptor Expression and Cytotoxicity of Human NK Cells and NK Cell Subsets in Overweight and Obese Humans. Front Immunol 2020; 11:573200. [PMID: 33101297 PMCID: PMC7546782 DOI: 10.3389/fimmu.2020.573200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is associated with an increased risk for several cancer types and an altered phenotype and functionality of natural killer (NK) cells. This study aimed to investigate the association of overweight and obesity with NK cell functions and receptor expression profiles in humans. Therefore, peripheral blood mononuclear cells were isolated from normal weight, overweight, and obese healthy blood donors. In depth analysis of immune cell populations and 23 different surface markers, including NK cell receptors, NK-cell-related markers as well as functional intracellular markers on total NK cells and NK subgroups were performed by multicolor flow cytometry. The data revealed a decreased expression of the activating NK cell receptors KIR2DS4 and NKp46 as well as an increased expression of the inhibitory NK cell receptors NKG2A and Siglec-7 in overweight and obese compared to normal weight individuals. Additionally, the expression of the adhesion molecule CD62L and the maturation and differentiation marker CD27 was downregulated in NK cells of overweight and obese subjects. Furthermore, the cytotoxicity of NK cells against colorectal cancer cells was decreased in overweight and obese subjects. Investigations on underlying killing mechanisms demonstrated a reduced TRAIL expression on NK cells of obese subjects suggesting an impaired death receptor pathway in obesity. The present study gives new insights into an impaired functionality and phenotype of NK cells and NK cell subsets in overweight and obesity. These phenotypic alterations and dysfunction of NK cells might be an explanation for the increased cancer risk in obesity.
Collapse
Affiliation(s)
- Wiebke Naujoks
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Anja Hauffe
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
58
|
Bähr I, Pörtner OJ, Glass M, Doberstein H, Goritz V, Hiller GGR, Spielmann J, Kielstein H. Characterization of natural killer cells in colorectal tumor tissue of rats fed a control diet or a high-fat diet. Ann Anat 2020; 233:151586. [PMID: 32916268 DOI: 10.1016/j.aanat.2020.151586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Obesity is a major public health problem with an increasing prevalence reaching pandemic levels. The incidence and mortality for colorectal cancer is augmented in overweight and obese individuals. Previous studies demonstrated an impaired number, phenotype and functionality of natural killer (NK) cells under obese conditions. So far, the influence of obesity on NK cells in colorectal cancer tissue remained unclear. Therefore, the aim of the study was to investigate the occurrence and localization of NK cells in colorectal tumors of normal weight and diet-induced obese rats. METHODS Wistar rats were fed a normal-fat diet (control) or a high-fat diet (HFD) to induce obesity. In half of the experimental groups azoxymethane (AOM) was injected to induce colorectal cancer. Tumors in colon and rectum were histopathologically classified in adenomas and adenocarcinomas and immunohistologically stained with the rat NK cell marker CD161. Occurrence and localization of NK cells were analyzed and quantified in the tunica mucosa and tunica submucosa of colorectal adenomas and the tunica submucosa of colorectal adenocarcinomas. RESULTS NK cells are localized in the tunica mucosa and the tunica submucosa of colorectal tumors with NK cell accumulations as follicle-like aggregates especially in regions of the lamina muscularis mucosae and the lamina propria mucosae of the tunica mucosa as well as in regions of the tunica submucosa adjacent to the lamina muscularis mucosae. Although not statistically significant, the CD161 staining was clearly reduced in the tunica mucosa of colorectal tumors of rats fed a HFD compared to rats fed a control diet. Moreover, the CD161 staining in the tunica mucosa was positively correlated with the final body weight of AOM-treated rats independent of the supplied diet. DISCUSSION For the first time, these results provide information about the localization and quantity of NK cells in colorectal tumor tissue of rats fed a control diet or high-fat diet. The slight reduction of NK cell number in colorectal tissue of rats fed a high-fat diet may contribute to an impaired tumor defense and the increased colorectal tumor outcome in diet-induced obese rats.
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - O J Pörtner
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Glass
- Institute of Molecular Medicine, Charles Tanford Protein Center, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Henriette Doberstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Vincent Goritz
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Grit Gesine Ruth Hiller
- Institute of Pathology, University Hospital of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
59
|
Downregulated Recycling Process but Not De Novo Synthesis of Glutathione Limits Antioxidant Capacity of Erythrocytes in Hypoxia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7834252. [PMID: 32963701 PMCID: PMC7492869 DOI: 10.1155/2020/7834252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022]
Abstract
Red blood cells (RBCs) are susceptible to sustained free radical damage during circulation, while the changes of antioxidant capacity and regulatory mechanism of RBCs under different oxygen gradients remain unclear. Here, we investigated the changes of oxidative damage and antioxidant capacity of RBCs in different oxygen gradients and identified the underlying mechanisms using an in vitro model of the hypoxanthine/xanthine oxidase (HX/XO) system. In the present study, we reported that the hypoxic RBCs showed much higher oxidative stress injury and lower antioxidant capacity compared with normoxic RBCs. In addition, we found that the disturbance of the recycling process, but not de novo synthesis of glutathione (GSH), accounted for the significantly decreased antioxidant capacity of hypoxic RBCs compared to normoxic RBCs. We further elucidated the underlying molecular mechanism by which oxidative phosphorylation of Band 3 blocked the hexose monophosphate pathway (HMP) and decreased NADPH production aggravating the dysfunction of GSH synthesis in hypoxic RBCs under oxidative conditions.
Collapse
|
60
|
Weihe P, Spielmann J, Kielstein H, Henning-Klusmann J, Weihrauch-Blüher S. Childhood Obesity and Cancer Risk in Adulthood. Curr Obes Rep 2020; 9:204-212. [PMID: 32519271 DOI: 10.1007/s13679-020-00387-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize our current understanding of the association between childhood obesity and cancer risk later in life. RECENT FINDINGS Adipose tissue secrets a variety of adipocytokines, and expression and/or secretion rate of most of them seems to be increased or dysregulated in obesity. In addition, obesity leads to increased secretion of proinflammatory cytokines such as interferon-γ (IFN-γ), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α), which promotes an infiltration of inflammatory immune cells into adipose tissue. This process may facilitate a state of "subclinical inflammation" (metaflammation) and may lead to the development of the metabolic syndrome (MetS), starting as early as during childhood. In addition, several oncogenes have been linked to inflammation and cancer development via different pathways, and several types of tumors need an inflammatory environment before a malignant change occurs. An inflammatory environment seems to promote the proliferation and survival of malignant cells as well as angiogenesis. Natural killer (NK) cells play an important role in this process, as they are able to kill transformed cells without prior sensitization and coordinate subsequent immune responses by producing distinct cytokines, thus providing antitumor immunity. First studies in children have suggested that NK cells from obese children are activated, metabolically stressed, and functionally deficient. This may lead to a suppression of antitumor immunity as early as during childhood, probably many years before the development of cancer. Epidemiological studies have shown a strong association between higher body mass index (BMI) during childhood and adolescence and increased risk for several malignancies in adulthood, including leukemia, Hodgkin's disease, colorectal cancer, and breast cancer. Underlying mechanisms are not completely understood, but several adipocytokines and inflammatory markers including NK cells seem to be "key players" in this process.
Collapse
Affiliation(s)
- Paul Weihe
- Clinic for Pediatrics I, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Henning-Klusmann
- Clinic for Pediatrics I, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Susann Weihrauch-Blüher
- Clinic for Pediatrics I, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
61
|
Cong J. Metabolism of Natural Killer Cells and Other Innate Lymphoid Cells. Front Immunol 2020; 11:1989. [PMID: 32983138 PMCID: PMC7484708 DOI: 10.3389/fimmu.2020.01989] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are the host's first line of defense against tumors and viral infections without prior sensitization. It is increasingly accepted that NK cells belong to the innate lymphoid cell (ILC) family. Other ILCs, comprising ILC1s, ILC2s, ILC3s and lymphoid tissue inducer (LTi) cells, are largely non-cytotoxic, tissue-resident cells, which function to protect local microenvironments against tissue insults and maintain homeostasis. Recently, evidence has accumulated that metabolism supports many aspects of the biology of NK cells and other ILCs, and that metabolic reprogramming regulates their development and function. Here, we outline the current understanding of ILC metabolism, and describe how metabolic processes are affected, and how metabolic defects are coupled to dysfunction of ILCs, in disease settings. Furthermore, we summarize the current and potential directions for immunotherapy involving targeting of ILC metabolism. Finally, we discuss the open questions in the rapidly expanding field of ILC metabolism.
Collapse
Affiliation(s)
- Jingjing Cong
- Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Institue of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
62
|
Lipids in the tumor microenvironment: From cancer progression to treatment. Prog Lipid Res 2020; 80:101055. [PMID: 32791170 DOI: 10.1016/j.plipres.2020.101055] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
Over the past decade, the study of metabolic abnormalities in cancer cells has risen dramatically. Cancer cells can thrive in challenging environments, be it the hypoxic and nutrient-deplete tumor microenvironment or a distant tissue following metastasis. The ways in which cancer cells utilize lipids are often influenced by the complex interactions within the tumor microenvironment and adjacent stroma. Adipocytes can be activated by cancer cells to lipolyze their triglyceride stores, delivering secreted fatty acids to cancer cells for uptake through numerous fatty acid transporters. Cancer-associated fibroblasts are also implicated in lipid secretion for cancer cell catabolism and lipid signaling leading to activation of mitogenic and migratory pathways. As these cancer-stromal interactions are exacerbated during tumor progression, fatty acids secreted into the microenvironment can impact infiltrating immune cell function and phenotype. Lipid metabolic abnormalities such as increased fatty acid oxidation and de novo lipid synthesis can provide survival advantages for the tumor to resist chemotherapeutic and radiation treatments and alleviate cellular stresses involved in the metastatic cascade. In this review, we highlight recent literature that demonstrates how lipids can shape each part of the cancer lifecycle and show that there is significant potential for therapeutic intervention surrounding lipid metabolic and signaling pathways.
Collapse
|
63
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
64
|
Arivazhagan L, Ruiz HH, Wilson R, Manigrasso M, Gugger PF, Fisher EA, Moore KJ, Ramasamy R, Schmidt AM. An Eclectic Cast of Cellular Actors Orchestrates Innate Immune Responses in the Mechanisms Driving Obesity and Metabolic Perturbation. Circ Res 2020; 126:1565-1589. [PMID: 32437306 PMCID: PMC7250004 DOI: 10.1161/circresaha.120.315900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The escalating problem of obesity and its multiple metabolic and cardiovascular complications threatens the health and longevity of humans throughout the world. The cause of obesity and one of its chief complications, insulin resistance, involves the participation of multiple distinct organs and cell types. From the brain to the periphery, cell-intrinsic and intercellular networks converge to stimulate and propagate increases in body mass and adiposity, as well as disturbances of insulin sensitivity. This review focuses on the roles of the cadre of innate immune cells, both those that are resident in metabolic organs and those that are recruited into these organs in response to cues elicited by stressors such as overnutrition and reduced physical activity. Beyond the typical cast of innate immune characters invoked in the mechanisms of metabolic perturbation in these settings, such as neutrophils and monocytes/macrophages, these actors are joined by bone marrow-derived cells, such as eosinophils and mast cells and the intriguing innate lymphoid cells, which are present in the circulation and in metabolic organ depots. Upon high-fat feeding or reduced physical activity, phenotypic modulation of the cast of plastic innate immune cells ensues, leading to the production of mediators that affect inflammation, lipid handling, and metabolic signaling. Furthermore, their consequent interactions with adaptive immune cells, including myriad T-cell and B-cell subsets, compound these complexities. Notably, many of these innate immune cell-elicited signals in overnutrition may be modulated by weight loss, such as that induced by bariatric surgery. Recently, exciting insights into the biology and pathobiology of these cell type-specific niches are being uncovered by state-of-the-art techniques such as single-cell RNA-sequencing. This review considers the evolution of this field of research on innate immunity in obesity and metabolic perturbation, as well as future directions.
Collapse
Affiliation(s)
- Lakshmi Arivazhagan
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Henry H. Ruiz
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Robin Wilson
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Michaele Manigrasso
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Paul F. Gugger
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Edward A. Fisher
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Langone Medical Center, New York 10016
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, New York 10016
| | - Kathryn J. Moore
- The Leon H. Charney Division of Cardiology, Department of Medicine, The Marc and Ruti Bell Program in Vascular Biology, NYU Langone Medical Center, New York 10016
- NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, New York 10016
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
65
|
Gallagher P, Chan KR, Rivino L, Yacoub S. The association of obesity and severe dengue: possible pathophysiological mechanisms. J Infect 2020; 81:10-16. [PMID: 32413364 DOI: 10.1016/j.jinf.2020.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Dengue virus (DENV) is a medically important flavivirus and the aetiological agent of Dengue, a normally self-resolving febrile illness that, in some individuals, can progress into Severe Dengue (SD), a life-threatening disorder that manifests as organ impairment, bleeding and shock. Many different risk factors have been associated with the development of SD, one of which is obesity. In many countries where DENV is endemic, obesity is becoming more prevalent, therefore SD is becoming an increased public health concern. However, there is a paucity of research on the mechanistic links between obesity and SD. This is a narrative review based on original research and reviews sourced from PubMed and Google Scholar. Four key areas could possibly explain how obesity can promote viral pathogenesis. Firstly, obesity downregulates AMP-Protein Kinase (AMPK), which leads to an accumulation of lipids in the endoplasmic reticulum (ER) that facilitates viral replication. Secondly, the long-term production of pro-inflammatory adipokines found in obese individuals can cause endothelial and platelet dysfunction and can facilitate SD. Thirdly, obesity could also cause endothelial dysfunction in addition to chronic inflammation, through the production of reactive oxygen species (ROS) and possible damage to the glycocalyx found in the endothelium. Finally, obesity has several effects on immunomodulation that reduces NK cell function, B and T cell response and increased pre-disposition to stronger pro-inflammatory cytokine responses after viral infection. Together, these effects can lead to greater viral proliferation and greater tissue damage both of which could contribute to SD. The four mechanisms outlined in this review can be taken as reference starting points for investigating the link between obesity and SD, and to discover potential therapeutic strategies that can potentially reduce disease severity.
Collapse
Affiliation(s)
- Peter Gallagher
- University of Warwick, Coventry, UK; Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | | | - Laura Rivino
- Duke-NUS Medical School, Singapore; School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Oxford University, UK.
| |
Collapse
|
66
|
Bekkering S, Saner C, Riksen NP, Netea MG, Sabin MA, Saffery R, Stienstra R, Burgner DP. Trained Immunity: Linking Obesity and Cardiovascular Disease across the Life-Course? Trends Endocrinol Metab 2020; 31:378-389. [PMID: 32305098 DOI: 10.1016/j.tem.2020.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/17/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Obesity, a chronic inflammatory disease, is the most prevalent modifiable risk factor for cardiovascular disease. The mechanisms underlying inflammation in obesity are incompletely understood. Recent developments have challenged the dogma of immunological memory occurring exclusively in the adaptive immune system and show that the innate immune system has potential to be reprogrammed. This innate immune memory (trained immunity) is characterized by epigenetic and metabolic reprogramming of myeloid cells following endogenous or exogenous stimulation, resulting in enhanced inflammation to subsequent stimuli. Trained immunity phenotypes have now been reported for other immune and non-immune cells. Here, we provide a novel perspective on the putative role of trained immunity in mediating the adverse cardiovascular effects of obesity and highlight potential translational pathways.
Collapse
Affiliation(s)
- Siroon Bekkering
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia; Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Christoph Saner
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia; Department of Endocrinology, The Royal Children's Hospital, Parkville, Victoria, Australia
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Matthew A Sabin
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia; Department of Endocrinology, The Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Rinke Stienstra
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands; Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - David P Burgner
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
67
|
Bähr I, Spielmann J, Quandt D, Kielstein H. Obesity-Associated Alterations of Natural Killer Cells and Immunosurveillance of Cancer. Front Immunol 2020; 11:245. [PMID: 32231659 PMCID: PMC7082404 DOI: 10.3389/fimmu.2020.00245] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity is accompanied by a systemic chronic low-grade inflammation as well as dysfunctions of several innate and adaptive immune cells. Recent findings emphasize an impaired functionality and phenotype of natural killer (NK) cells under obese conditions. This review provides a detailed overview on research related to overweight and obesity with a particular focus on NK cells. We discuss obesity-associated alterations in subsets, distribution, phenotype, cytotoxicity, cytokine secretion, and signaling cascades of NK cells investigated in vitro as well as in animal and human studies. In addition, we provide recent insights into the effects of physical activity and obesity-associated nutritional factors as well as the reduction of body weight and fat mass on NK cell functions of obese individuals. Finally, we highlight the impact of impaired NK cell physiology on obesity-associated diseases, focusing on the elevated susceptibility for viral infections and increased risk for cancer development and impaired treatment response.
Collapse
Affiliation(s)
- Ina Bähr
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julia Spielmann
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Dagmar Quandt
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Medical Faculty of Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
68
|
Fernø J, Strand K, Mellgren G, Stiglund N, Björkström NK. Natural Killer Cells as Sensors of Adipose Tissue Stress. Trends Endocrinol Metab 2020; 31:3-12. [PMID: 31597606 DOI: 10.1016/j.tem.2019.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 01/22/2023]
Abstract
Adipose tissue macrophages (ATMs) orchestrate low-grade chronic adipose tissue inflammation, linking obesity and insulin resistance. Whereas factors contributing to macrophage accumulation in adipose tissue are established, little is known regarding signals that link adipocyte stress to proinflammatory activation of macrophages. Natural killer (NK) cells are specialized innate lymphocytes that identify and respond to stressed cells. In this Opinion, we discuss the possibility of NK cells to function as sensors recognizing adipose tissue stress. We further summarize recent literature suggesting NK cells to play an important role in development of insulin resistance via secretion of cytokines that stimulate proinflammatory polarization of ATMs. This suggests adipose tissue-resident NK cells as a pharmacological target for the treatment of obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Kristina Strand
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, N-5021, Bergen, Norway; Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Stiglund
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
69
|
Slattery K, Gardiner CM. NK Cell Metabolism and TGFβ - Implications for Immunotherapy. Front Immunol 2019; 10:2915. [PMID: 31921174 PMCID: PMC6927492 DOI: 10.3389/fimmu.2019.02915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
NK cells are innate lymphocytes which play an essential role in protection against cancer and viral infection. Their functions are dictated by many factors including the receptors they express, cytokines they respond to and changes in the external environment. These cell processes are regulated within NK cells at many levels including genetic, epigenetic and expression (RNA and protein) levels. The last decade has revealed cellular metabolism as another level of immune regulation. Specific immune cells adopt metabolic configurations that support their functions, and this is a dynamic process with cells undergoing metabolic reprogramming during the course of an immune response. Upon activation with pro-inflammatory cytokines, NK cells upregulate both glycolysis and oxphos metabolic pathways and this supports their anti-cancer functions. Perturbation of these pathways inhibits NK cell effector functions. Anti-inflammatory cytokines such as TGFβ can inhibit metabolic changes and reduce functional outputs. Although a lot remains to be learned, our knowledge of potential molecular mechanisms involved is growing quickly. This review will discuss our current knowledge on the role of TGFβ in regulating NK cell metabolism and will draw on a wider knowledge base regarding TGFβ regulation of cellular metabolic pathways, in order to highlight potential ways in which TGFβ might be targeted to contribute to the exciting progress that is being made in terms of adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
70
|
Natural Killer Cells Integrate Signals Received from Tumour Interactions and IL2 to Induce Robust and Prolonged Anti-Tumour and Metabolic Responses. IMMUNOMETABOLISM 2019; 1:e190014. [PMID: 31595191 PMCID: PMC6783304 DOI: 10.20900/immunometab20190014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Natural Killer (NK) cells are lymphocytes with an important role in anti-tumour responses. NK cells bridge the innate and adaptive arms of the immune system; they are primed for immediate anti-tumour function but can also have prolonged actions alongside the adaptive T cell response. However, the key signals and cellular processes that are required for extended NK cell responses are not fully known. Herein we show that murine NK cell interaction with tumour cells induces the expression of CD25, the high affinity IL2 receptor, rendering these NK cells highly sensitive to the T cell-derived cytokine IL2. In response to IL2, CD25high NK cells show robust increases in metabolic signalling pathways (mTORC1, cMyc), nutrient transporter expression (CD71, CD98), cellular growth and in NK cell effector functions (IFNγ, granzyme B). Specific ligation of an individual activating NK cell receptor, NK1.1, showed similar increases in CD25 expression and IL2-induced responses. NK cell receptor ligation and IL2 collaborate to induce mTORC1/cMyc signalling leading to high rates of glycolysis and oxidative phosphorylation (OXPHOS) and prolonged NK cell survival. Disrupting mTORC1 and cMyc signalling in CD25high tumour interacting NK cells prevents IL2-induced cell growth and function and compromises NK cell viability. This study reveals that tumour cell interactions and T cell-derived IL2 cooperate to promote robust and prolonged NK cell anti-tumour metabolic responses.
Collapse
|
71
|
Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell Metabolism and Tumor Microenvironment. Front Immunol 2019; 10:2278. [PMID: 31616440 PMCID: PMC6769035 DOI: 10.3389/fimmu.2019.02278] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022] Open
Abstract
Natural Killer (NK) cells are characterized by their potential to kill tumor cells by different means without previous sensitization and have, therefore, become a valuable tool in cancer immunotherapy. However, their efficacy against solid tumors is still poor and further studies are required to improve it. One of the major restrictions for NK cell activity is the immunosuppressive tumor microenvironment (TME). There, tumor and other immune cells create the appropriate conditions for tumor proliferation while, among others, preventing NK cell activation. Furthermore, NK cell metabolism is impaired in the TME, presumably due to nutrient and oxygen deprivation, and the higher concentration of tumor-derived metabolic end products, such as lactate. This metabolic restriction of NK cells limits their effector functions, and it could represent a potential target to focus on to improve the efficacy of NK cell-based therapies against solid tumors. In this review, we discuss the potential effect of TME into NK cell metabolism and its influence in NK cell effector functions.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
72
|
Cuff AO, Sillito F, Dertschnig S, Hall A, Luong TV, Chakraverty R, Male V. The Obese Liver Environment Mediates Conversion of NK Cells to a Less Cytotoxic ILC1-Like Phenotype. Front Immunol 2019; 10:2180. [PMID: 31572388 PMCID: PMC6749082 DOI: 10.3389/fimmu.2019.02180] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 01/22/2023] Open
Abstract
The liver contains both NK cells and their less cytotoxic relatives, ILC1. Here, we investigate the role of NK cells and ILC1 in the obesity-associated condition, non-alcoholic fatty liver disease (NAFLD). In the livers of mice suffering from NAFLD, NK cells are less able to degranulate, express lower levels of perforin and are less able to kill cancerous target cells than those from healthy animals. This is associated with a decreased ability to kill cancer cells in vivo. On the other hand, we find that perforin-deficient mice suffer from less severe NAFLD, suggesting that this reduction in NK cell cytotoxicity may be protective in the obese liver, albeit at the cost of increased susceptibility to cancer. The decrease in cytotoxicity is associated with a shift toward a transcriptional profile characteristic of ILC1, increased expression of the ILC1-associated proteins CD200R1 and CD49a, and an altered metabolic profile mimicking that of ILC1. We show that the conversion of NK cells to this less cytotoxic phenotype is at least partially mediated by TGFβ, which is expressed at high levels in the obese liver. Finally, we show that reduced cytotoxicity is also a feature of NK cells in the livers of human NAFLD patients.
Collapse
Affiliation(s)
- Antonia O. Cuff
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Francesca Sillito
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Simone Dertschnig
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Andrew Hall
- Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London, United Kingdom
| | - Tu Vinh Luong
- Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London, United Kingdom
| | - Ronjon Chakraverty
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Victoria Male
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
73
|
Stiglund N, Strand K, Cornillet M, Stål P, Thorell A, Zimmer CL, Näslund E, Karlgren S, Nilsson H, Mellgren G, Fernø J, Hagström H, Björkström NK. Retained NK Cell Phenotype and Functionality in Non-alcoholic Fatty Liver Disease. Front Immunol 2019; 10:1255. [PMID: 31214196 PMCID: PMC6558016 DOI: 10.3389/fimmu.2019.01255] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/17/2019] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), and the progressive stage non-alcoholic steatohepatitis (NASH), is the predominant cause of chronic liver disease globally. As part of the complex pathogenesis, natural killer (NK) cells have been implicated in the development of liver inflammation in experimental murine models of NASH. However, there is a lack of knowledge on how NK cells are affected in humans with this disease. Here, we explored the presence of disease-specific changes within circulating and tissue-resident NK cell populations, as well as within other major immune cell subsets, in patients with liver biopsy-confirmed NAFLD. Using 18-color-flow cytometry, substantial changes were observed in certain myeloid populations in patients as compared to controls. NK cell numbers, on the other hand, were not altered. Furthermore, only minor differences in expression of activating and inhibitory NK cell receptors were noted, with the exception of an increased expression of NKG2D on NK cells from patients with NASH. NK cell differentiation remained constant, and NK cells from these patients retain their ability to respond adequately upon stimulation. Instead, considerable alterations were observed between liver, adipose tissue, and peripheral blood NK cells, independently of disease status. Taken together, these results increase our understanding of the importance of the local microenvironment in shaping the NK cell compartment and stress the need for further studies exploring how NASH affects intrahepatic NK cells in humans.
Collapse
Affiliation(s)
- Natalie Stiglund
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Strand
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Martin Cornillet
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Stål
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anders Thorell
- Department of Surgery, Ersta Hospital, Stockholm, Sweden.,Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Christine L Zimmer
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Näslund
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Silja Karlgren
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Henrik Nilsson
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Solna, Sweden
| | - Gunnar Mellgren
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.,Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hannes Hagström
- Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
74
|
O'Brien A, Loftus RM, Pisarska MM, Tobin LM, Bergin R, Wood NAW, Foley C, Mat A, Tinley FC, Bannan C, Sommerville G, Veerapen N, Besra GS, Sinclair LV, Moynagh PN, Lynch L, Finlay DK, O'Shea D, Hogan AE. Obesity Reduces mTORC1 Activity in Mucosal-Associated Invariant T Cells, Driving Defective Metabolic and Functional Responses. THE JOURNAL OF IMMUNOLOGY 2019; 202:3404-3411. [PMID: 31076528 DOI: 10.4049/jimmunol.1801600] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-γ production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-γ production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses.
Collapse
Affiliation(s)
- Aisling O'Brien
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - Roisin M Loftus
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Marta M Pisarska
- National Children's Research Centre, Dublin 12, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Laura M Tobin
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland.,National Children's Research Centre, Dublin 12, Ireland
| | - Ronan Bergin
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Nicole A W Wood
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Cathriona Foley
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Arimin Mat
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland
| | - Frances C Tinley
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Ciaran Bannan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Gary Sommerville
- Dana Farber Cancer Institute, Molecular Biology Core Facilities, Boston, MA 02215
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Linda V Sinclair
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Paul N Moynagh
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland.,School of Medicine, Dentistry and Biomedical Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast BT9 7BL, United Kingdom
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.,School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 4, Ireland; and.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin 2, Ireland
| | - Donal O'Shea
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland.,National Children's Research Centre, Dublin 12, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| | - Andrew E Hogan
- Obesity Immunology Group, Education and Research Centre, St. Vincent's University Hospital, University College Dublin, Dublin 4, Ireland; .,National Children's Research Centre, Dublin 12, Ireland.,Department of Biology, Institute of Immunology, Maynooth University, Maynooth, County Kildare W23 F2K8, Ireland
| |
Collapse
|
75
|
Dysregulation of Natural Killer Cells in Obesity. Cancers (Basel) 2019; 11:cancers11040573. [PMID: 31018563 PMCID: PMC6521109 DOI: 10.3390/cancers11040573] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells are a population of lymphocytes which classically form part of the innate immune system. They are defined as innate lymphocytes, due to their ability to kill infected or transformed cells without prior activation. In addition to their cytotoxic abilities, NK cells are also rapid producers of inflammatory cytokines such as interferon gamma (IFN-γ) and are therefore a critical component of early immune responses. Due to these unique abilities, NK cells are a very important component of host protection, especially anti-tumour and anti-viral immunity. Obesity is a worldwide epidemic, with over 600 million adults and 124 million children now classified as obese. It is well established that individuals who are obese are at a higher risk of many acute and chronic conditions, including cancer and viral infections. Over the past 10 years, many studies have investigated the impact of obesity on NK cell biology, detailing systemic dysregulation of NK cell functions. More recently, several studies have investigated the role of NK cells in the homeostasis of adipose tissue and the pathophysiology of obesity. In this review, we will discuss in detail these studies and focus on emerging data detailing the metabolic mechanisms altering NK cells in obesity.
Collapse
|
76
|
|
77
|
Affiliation(s)
- Clair M. Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
78
|
Del Cornò M, Conti L, Gessani S. Innate Lymphocytes in Adipose Tissue Homeostasis and Their Alterations in Obesity and Colorectal Cancer. Front Immunol 2018; 9:2556. [PMID: 30455701 PMCID: PMC6230679 DOI: 10.3389/fimmu.2018.02556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/17/2018] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and a leading cause of death, with burden expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is associated with increased cancer incidence representing an important indicator of survival, prognosis, recurrence rates, and response to therapy for several tumors including CRC. Compelling evidence has been achieved that the low-grade chronic inflammation characterizing obesity represents a main factor that can favor carcinogenesis. Adipocytes and adipose tissue (AT) infiltrating immune cells contribute to obesity-related inflammation by releasing soluble factors affecting, both locally and systemically, the function of several cell types, including immune and cancer cells. The unbalanced production of immune mediators as well as the profound changes in the repertoire and activation state of immune cells in AT of obese subjects represent key events in the processes that set the basis for a pro-tumorigenic microenvironment. AT harbors a unique profile of immune cells of different origin that play an important role in tissue homeostasis. Among these, tissue-resident innate lymphocytes are emerging as important AT components whose depletion/aberrant activation occurring in obesity could have an impact on inflammation and immune-surveillance against tumors. However, a direct link between obesity-induced dysfunction and cancer development has not been demonstrated yet. In this review, we provide an overview of human obesity- and CRC-induced alterations of blood and adipose tissue-associated innate lymphocytes, and discuss how the adipose tissue microenvironment in obesity might influence the development of CRC.
Collapse
Affiliation(s)
- Manuela Del Cornò
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Conti
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
79
|
Zitti B, Bryceson YT. Natural killer cells in inflammation and autoimmunity. Cytokine Growth Factor Rev 2018; 42:37-46. [PMID: 30122459 DOI: 10.1016/j.cytogfr.2018.08.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022]
Abstract
First described 40 years ago, natural killer (NK) cells represent the founding members of the innate lymphoid cell (ILC) family. They were initially defined by their ability to kill cancer cells of hematopoietic origin. More recently, NK cells are recognized not only for their ability to kill infected or malignant cells, but also for mediating cytotoxicity against a range of normal immune cells. They thereby play an important physiological role in controlling immune responses and maintaining homeostasis. Besides cytotoxic activity, NK cells activation is accompanied by secretion of pro-inflammatory cytokines. Hence, NK cells have the potential to act both in driving inflammation and in restricting adaptive immune responses that may otherwise lead to excessive inflammation or even autoimmunity. Here, we highlight how NK cell activity is linked to inflammasome activation and review new molecular insights to the roles of NK cells in inflammation and autoimmunity. Furthermore, in light of new insights to NK cell differentiation and memory, we deliberate on how distinct NK cell subsets may impact immunoregulatory functions. Hypothetically, memory-like or adaptive NK cells could drive NK cell-mediated autoreactive diseases. Together, new findings underscore the complex yet important physiological roles of NK cells in both promoting inflammation and exerting immunoregulation and maintenance of immune homeostasis. Insights raise intriguing questions as to how NK cells themselves maintain self-tolerance.
Collapse
Affiliation(s)
- Beatrice Zitti
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
80
|
Ratter JM, Tack CJ, Netea MG, Stienstra R. Environmental Signals Influencing Myeloid Cell Metabolism and Function in Diabetes. Trends Endocrinol Metab 2018; 29:468-480. [PMID: 29789206 DOI: 10.1016/j.tem.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022]
Abstract
The environment induces metabolic reprogramming of immune cells via specific signaling pathways. Recent studies have revealed that changes in cell metabolism affect key immune cell functions including cytokine production and migration. In diabetes, these functions are either insufficiently or excessively activated, translating into diabetes-associated complications, including increased susceptibility to infection and accelerated cardiovascular disease. Diabetes alters the abundance of environmental signals, including glucose, insulin, and lipids. Subsequently, changes in environmental signals drive metabolic reprogramming, impair immune cell function, and ultimately contribute to diabetes-associated complications. We review here recent studies on changes in innate immune cell metabolism, especially in myeloid cells, that are driven by environmental signals relevant to diabetes, and discuss therapeutic perspectives of targeting metabolism of immune cells in diabetes.
Collapse
Affiliation(s)
- Jacqueline M Ratter
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
81
|
Bähr I, Jahn J, Zipprich A, Pahlow I, Spielmann J, Kielstein H. Impaired natural killer cell subset phenotypes in human obesity. Immunol Res 2018; 66:234-244. [PMID: 29560551 PMCID: PMC5899081 DOI: 10.1007/s12026-018-8989-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Obesity is associated with alterations in functionality of immune cells, like macrophages and natural killer (NK) cells, leading to an increased risk for severe infections and several cancer types. This study aimed to examine immune cell populations and functional NK cell parameters focusing on NK cell subset phenotypes in normal-weight and obese humans. Therefore, peripheral blood mononuclear cells (PBMCs) were isolated from normal-weight and obese individuals and analyzed by flow cytometry. Results show no significant changes in the frequency of monocytes, B lymphocytes, or NKT cells but a significantly increased frequency of T lymphocytes in obesity. The frequency of total NK cells was unaltered, whereas the number of low cytotoxic CD56bright NK cell subset was increased, and the number of high cytotoxic CD56dim NK cell subset was decreased in obese subjects. In addition, the frequency of CD56bright NK cells expressing the activating NK cell receptor NKG2D as well as intracellular interferon (IFN)-γ was elevated in the obese study group. In contrast, the frequency of NKG2D- and IFN-γ-positive CD56dim NK cells was lower in obesity compared to normal-weight individuals. Moreover, the expression of the activation marker CD69 was decreased in NK cells, which can be attributed to a reduction of CD69-positive CD56dim NK cells in obese subjects. In conclusion, data reveal an impaired NK cell phenotype and NK cell subset alterations in obese individuals. This NK cell dysfunction might be one link to the higher cancer risk and the elevated susceptibility for viral infections in obesity.
Collapse
Affiliation(s)
- Ina Bähr
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle/Saale, Germany.
| | - Janine Jahn
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle/Saale, Germany
| | - Alexander Zipprich
- Clinic of Internal Medicine I, University Hospital of Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120, Halle/Saale, Germany
| | - Inge Pahlow
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle/Saale, Germany
| | - Julia Spielmann
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle/Saale, Germany
| | - Heike Kielstein
- Department of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108, Halle/Saale, Germany
| |
Collapse
|