51
|
Li J, Cui J. Purinergic P2X Receptors and Heightened Exercise Pressor Reflex in Peripheral Artery Disease. INTERNAL MEDICINE REVIEW (WASHINGTON, D.C. : ONLINE) 2016; 2. [PMID: 29862378 DOI: 10.18103/imr.v2i10.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arterial blood pressure (BP) and vasoconstriction regulated by sympathetic nerve activity (SNA) are heightened during exercise in patients with peripheral artery disease (PAD). The exercise pressor reflex is considered as a neural mechanism responsible for the exaggerated autonomic responses to exercise in PAD. A series of studies have employed a rat model of PAD to examine signal pathways at receptor and cellular levels by which the exercise pressor reflex is amplified. This review will summarize results obtained from recent human and animal studies with respect to contribution of muscle afferents to augmented SNA and BP responses in PAD. The role played by adenosine triphosphate (ATP) and ATP sensitive purinergic P2X receptors will be emphasized.
Collapse
Affiliation(s)
- Jianhua Li
- Heart & Vascular Institute, The Penn State University College of Medicine, Hershey, PA 17033
| | - Jian Cui
- Heart & Vascular Institute, The Penn State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
52
|
Barbosa TC, Vianna LC, Hashimoto T, Petersen LG, Olesen ND, Tsukamoto H, Sørensen H, Ogoh S, Nóbrega ACL, Secher NH. Carotid baroreflex function at the onset of cycling in men. Am J Physiol Regul Integr Comp Physiol 2016; 311:R870-R878. [DOI: 10.1152/ajpregu.00173.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/24/2016] [Indexed: 01/06/2023]
Abstract
Arterial baroreflex function is important for blood pressure control during exercise, but its contribution to cardiovascular adjustments at the onset of cycling exercise remains unclear. Fifteen healthy male subjects (24 ± 1 yr) performed 45-s trials of low- and moderate-intensity cycling, with carotid baroreceptor stimulation by neck suction at −60 Torr applied 0–5, 10–15, and 30–35 s after the onset of exercise. Cardiovascular responses to neck suction during cycling were compared with those obtained at rest. An attenuated reflex decrease in heart rate following neck suction was detected during moderate-intensity exercise, compared with the response at rest ( P < 0.05). Furthermore, compared with the reflex decrease in blood pressure elicited at rest, neck suction elicited an augmented decrease in blood pressure at 0–5 and 10–15 s during low-intensity exercise and in all periods during moderate-intensity exercise ( P < 0.05). The reflex depressor response at the onset of cycling was primarily mediated by an increase in the total vascular conductance. These findings evidence altered carotid baroreflex function during the first 35 s of cycling compared with rest, with attenuated bradycardic response, and augmented depressor response to carotid baroreceptor stimulation.
Collapse
Affiliation(s)
- Thales C. Barbosa
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
- The Copenhagen Muscle Research Centre, Department of Anesthesia, University of Copenhagen, Copenhagen, Denmark
| | - Lauro C. Vianna
- Faculty of Physical Education, University of Brasilia, Brasilia, Brazil
| | - Takeshi Hashimoto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kyoto, Japan
| | - Lonnie G. Petersen
- The Copenhagen Muscle Research Centre, Department of Anesthesia, University of Copenhagen, Copenhagen, Denmark
| | - Niels D. Olesen
- The Copenhagen Muscle Research Centre, Department of Anesthesia, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience and Pharmacology, University of Copenhagen; and
| | - Hayato Tsukamoto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kyoto, Japan
| | - Henrik Sørensen
- The Copenhagen Muscle Research Centre, Department of Anesthesia, University of Copenhagen, Copenhagen, Denmark
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Japan
| | - Antonio C. L. Nóbrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil
| | - Niels H. Secher
- The Copenhagen Muscle Research Centre, Department of Anesthesia, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
53
|
Badrov MB, Olver TD, Shoemaker JK. Central vs. peripheral determinants of sympathetic neural recruitment: insights from static handgrip exercise and postexercise circulatory occlusion. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1013-R1021. [PMID: 27784689 DOI: 10.1152/ajpregu.00360.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 11/22/2022]
Abstract
Sympathetic outflow is modified during acute homeostatic stress through increased firing of low-threshold axons, recruitment of latent axons, and synaptic delay modifications. However, the role of central mechanisms versus peripheral reflex control over sympathetic recruitment remains unknown. Here, we examined sympathetic discharge patterns during fatiguing static handgrip (SHG) exercise and postexercise circulatory occlusion (PECO) to study the central vs. peripheral reflex elements of sympathetic neural coding. Muscle sympathetic nerve activity (MSNA; microneurography) was measured in six males (25 ± 3 yr) at baseline (3 min) and during 5 min of SHG exercise completed at 20% maximal voluntary contraction. Isolation of the peripheral metaboreflex component was achieved by PECO for 3 min. Action potential (AP) patterns were studied using wavelet-based methodology. Compared with baseline, total MSNA increased by minute 3 of SHG, remaining elevated throughout the duration of exercise and PECO (all P < 0.05). The AP content per burst increased above baseline by minute 4 of SHG (Δ4 ± 2), remaining elevated at minute 5 (Δ6 ± 4) and PECO (Δ4 ± 4; all P < 0.05). Similarly, total AP clusters increased by minute 4 of SHG (Δ5 ± 5) and remained elevated at minute 5 (Δ6 ± 3) and PECO (Δ7 ± 5; all P < 0.01), indicating recruitment of latent subpopulations. Finally, the AP cluster size-latency profile was shifted downward during minutes 4 (-32 ± 22 ms) and 5 (-49 ± 17 ms; both P < 0.05) of SHG but was not different than baseline during PECO (P > 0.05). Our findings suggest that central perceptual factors play a specific role in the synaptic delay aspect of sympathetic discharge timing, whereas peripheral reflex mechanisms affect recruitment of latent axons.
Collapse
Affiliation(s)
- Mark B Badrov
- School of Kinesiology, Western University, London, Ontario, Canada
| | - T Dylan Olver
- School of Kinesiology, Western University, London, Ontario, Canada.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; and
| | - J Kevin Shoemaker
- School of Kinesiology, Western University, London, Ontario, Canada; .,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
54
|
Spranger MD, Kaur J, Sala-Mercado JA, Krishnan AC, Abu-Hamdah R, Alvarez A, Machado TM, Augustyniak RA, O'Leary DS. Exaggerated coronary vasoconstriction limits muscle metaboreflex-induced increases in ventricular performance in hypertension. Am J Physiol Heart Circ Physiol 2016; 312:H68-H79. [PMID: 27769997 DOI: 10.1152/ajpheart.00417.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Increases in myocardial oxygen consumption during exercise mainly occur via increases in coronary blood flow (CBF) as cardiac oxygen extraction is high even at rest. However, sympathetic coronary constrictor tone can limit increases in CBF. Increased sympathetic nerve activity (SNA) during exercise likely occurs via the action of and interaction among activation of skeletal muscle afferents, central command, and resetting of the arterial baroreflex. As SNA is heightened even at rest in subjects with hypertension (HTN), we tested whether HTN causes exaggerated coronary vasoconstriction in canines during mild treadmill exercise with muscle metaboreflex activation (MMA; elicited by reducing hindlimb blood flow by ~60%) thereby limiting increases in CBF and ventricular performance. Experiments were repeated after α1-adrenergic blockade (prazosin; 75 µg/kg) and in the same animals following induction of HTN (modified Goldblatt 2K1C model). HTN increased mean arterial pressure from 97.1 ± 2.6 to 132.1 ± 5.6 mmHg at rest and MMA-induced increases in CBF, left ventricular dP/dtmax, and cardiac output were markedly reduced to only 32 ± 13, 26 ± 11, and 28 ± 12% of the changes observed in control. In HTN, α1-adrenergic blockade restored the coronary vasodilation and increased in ventricular function to the levels observed when normotensive. We conclude that exaggerated MMA-induced increases in SNA functionally vasoconstrict the coronary vasculature impairing increases in CBF, which limits oxygen delivery and ventricular performance in HTN. NEW & NOTEWORTHY We found that metaboreflex-induced increases in coronary blood flow and ventricular contractility are attenuated in hypertension. α1-Adrenergic blockade restored these parameters toward normal levels. These findings indicate that the primary mechanism mediating impaired metaboreflex-induced increases in ventricular function in hypertension is accentuated coronary vasoconstriction.
Collapse
Affiliation(s)
- Marty D Spranger
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Jasdeep Kaur
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Javier A Sala-Mercado
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Abhinav C Krishnan
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Rania Abu-Hamdah
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Alberto Alvarez
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Tiago M Machado
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert A Augustyniak
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
55
|
Xing J, Lu J, Li J. ASIC3 contributes to the blunted muscle metaboreflex in heart failure. Med Sci Sports Exerc 2016; 47:257-63. [PMID: 24983337 DOI: 10.1249/mss.0000000000000415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION During exercise, the sympathetic nervous system is activated and blood pressure and HR increase. In heart failure (HF), the muscle metaboreceptor contribution to sympathetic outflow is attenuated and the mechanoreceptor contribution is accentuated. Previous studies suggest that lactic acid stimulates acid-sensing channel subtype 3 (ASIC3), inducing a neurally mediated pressor response. Thus, we hypothesized that the pressor response to ASIC3 stimulation is smaller in HF rats because of attenuation in expression and function of ASIC3 in sensory nerves. METHODS Lactic acid was injected into the arterial blood supply of the hind limb to stimulate ASIC3 in muscle afferent nerves and evoke muscle metaboreceptor response in control rats and HF rats. In addition, western blot analysis was used to examine expression of ASIC3 in dorsal root ganglion (DRG) and patch clamp to examine current response with ASIC3 activation. RESULTS Lactic acid (4 μmol·kg) increased mean arterial pressure by 28 ± 5 mm Hg in controls (n = 6) but only by 16 ± 3 mm Hg (P < 0.05 vs control) in HF (n = 8). In addition, HF decreased the protein levels of ASIC3 in DRG (optical density, 1.03 ± 0.02 in control, vs 0.79 ± 0.03 in HF; P < 0.05; n = 6 in each group). The peak current amplitude of dorsal DRG neuron in response to ASIC3 stimulation is smaller in HF rats than that in control rats. CONCLUSIONS Compared with those in controls, cardiovascular responses to lactic acid administered into the hind limb muscles are blunted in HF rats owing to attenuated ASIC3. This suggests that ASIC3 plays a role in engagement in the attenuated metaboreceptor component of the exercise pressor reflex in HF.
Collapse
Affiliation(s)
- Jihong Xing
- 1Department of Emergency Medicine, The First Hospital of Jilin University, Norman Bethune College of Medicine, Jilin University, Changchun, CHINA; and 2Heart & Vascular Institute and Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA
| | | | | |
Collapse
|
56
|
Shimizu R, Hotta K, Yamamoto S, Matsumoto T, Kamiya K, Kato M, Hamazaki N, Kamekawa D, Akiyama A, Kamada Y, Tanaka S, Masuda T. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur J Appl Physiol 2016; 116:749-57. [PMID: 26822582 DOI: 10.1007/s00421-016-3328-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/27/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE The present study aimed to investigate the effects of low-intensity resistance training with blood flow restriction (BFR resistance training) on vascular endothelial function and peripheral blood circulation. METHODS Forty healthy elderly volunteers aged 71 ± 4 years were divided into two training groups. Twenty subjects performed BFR resistance training (BFR group), and the remaining 20 performed ordinary resistance training without BFR. Resistance training was performed at 20 % of each estimated one-repetition maximum for 4 weeks. We measured lactate (Lac), norepinephrine (NE), vascular endothelial growth factor (VEGF) and growth hormone (GH) before and after the initial resistance training. The reactive hyperemia index (RHI), von Willebrand factor (vWF) and transcutaneous oxygen pressure in the foot (Foot-tcPO2) were assessed before and after the 4-week resistance training period. RESULTS Lac, NE, VEGF and GH increased significantly from 8.2 ± 3.6 mg/dL, 619.5 ± 243.7 pg/mL, 43.3 ± 15.9 pg/mL and 0.9 ± 0.7 ng/mL to 49.2 ± 16.1 mg/dL, 960.2 ± 373.7 pg/mL, 61.6 ± 19.5 pg/mL and 3.1 ± 1.3 ng/mL, respectively, in the BFR group (each P < 0.01). RHI and Foot-tcPO2 increased significantly from 1.8 ± 0.2 and 62.4 ± 5.3 mmHg to 2.1 ± 0.3 and 68.9 ± 5.8 mmHg, respectively, in the BFR group (each P < 0.01). VWF decreased significantly from 175.7 ± 20.3 to 156.3 ± 38.1 % in the BFR group (P < 0.05). CONCLUSIONS BFR resistance training improved vascular endothelial function and peripheral blood circulation in healthy elderly people.
Collapse
Affiliation(s)
- Ryosuke Shimizu
- Department of Angiology and Cardiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| | - Kazuki Hotta
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Shuhei Yamamoto
- Department of Angiology and Cardiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
- Department of Rehabilitation, Shinsyu University Hospital, 3-1-1 Asahi, Matsumoto, 390-0862, Japan
| | - Takuya Matsumoto
- Department of Rehabilitation, Kitasato University Kitasato Institute Hospital, 5-9-1 Shirokane, Minato-ku, 108-8642, Japan
| | - Kentaro Kamiya
- Department of Rehabilitation, Kitasato University Hospital, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0375, Japan
| | - Michitaka Kato
- Department of Angiology and Cardiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
- Department of Shizuoka Physical Therapy, Faculty of Health Science, Tokoha University, Mizuochi, 1-30 Aoi-ku, Shizuoka, 420-0831, Japan
| | - Nobuaki Hamazaki
- Department of Angiology and Cardiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
- Department of Rehabilitation, Kitasato University Hospital, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0375, Japan
| | - Daisuke Kamekawa
- Department of Angiology and Cardiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| | - Ayako Akiyama
- Department of Angiology and Cardiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| | - Yumi Kamada
- Department of Angiology and Cardiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| | - Shinya Tanaka
- Department of Angiology and Cardiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| | - Takashi Masuda
- Department of Angiology and Cardiology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan.
| |
Collapse
|
57
|
Abstract
Aerobic exercise training leads to cardiovascular changes that markedly increase aerobic power and lead to improved endurance performance. The functionally most important adaptation is the improvement in maximal cardiac output which is the result of an enlargement in cardiac dimension, improved contractility, and an increase in blood volume, allowing for greater filling of the ventricles and a consequent larger stroke volume. In parallel with the greater maximal cardiac output, the perfusion capacity of the muscle is increased, permitting for greater oxygen delivery. To accommodate the higher aerobic demands and perfusion levels, arteries, arterioles, and capillaries adapt in structure and number. The diameters of the larger conduit and resistance arteries are increased minimizing resistance to flow as the cardiac output is distributed in the body and the wall thickness of the conduit and resistance arteries is reduced, a factor contributing to increased arterial compliance. Endurance training may also induce alterations in the vasodilator capacity, although such adaptations are more pronounced in individuals with reduced vascular function. The microvascular net increases in size within the muscle allowing for an improved capacity for oxygen extraction by the muscle through a greater area for diffusion, a shorter diffusion distance, and a longer mean transit time for the erythrocyte to pass through the smallest blood vessels. The present article addresses the effect of endurance training on systemic and peripheral cardiovascular adaptations with a focus on humans, but also covers animal data.
Collapse
Affiliation(s)
- Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
58
|
Spranger MD, Krishnan AC, Levy PD, O'Leary DS, Smith SA. Blood flow restriction training and the exercise pressor reflex: a call for concern. Am J Physiol Heart Circ Physiol 2015; 309:H1440-52. [PMID: 26342064 PMCID: PMC7002872 DOI: 10.1152/ajpheart.00208.2015] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. Therefore, the premise of BFR training is to simulate and receive the benefits of high-intensity resistance exercise while merely performing low-intensity resistance exercise. This technique has also been purported to provide health benefits to the elderly, individuals recovering from joint injuries, and patients undergoing cardiac rehabilitation. Since the seminal work of Alam and Smirk in the 1930s, it has been well established that reductions in blood flow to exercising muscle engage the exercise pressor reflex (EPR), a reflex that significantly contributes to the autonomic cardiovascular response to exercise. However, the EPR and its likely contribution to the BFR-mediated cardiovascular response to exercise is glaringly missing from the scientific literature. Inasmuch as the EPR has been shown to generate exaggerated increases in sympathetic nerve activity in disease states such as hypertension (HTN), heart failure (HF), and peripheral artery disease (PAD), concerns are raised that BFR training can be used safely for the rehabilitation of patients with cardiovascular disease, as has been suggested. Abnormal BFR-induced and EPR-mediated cardiovascular complications generated during exercise could precipitate adverse cardiovascular or cerebrovascular events (e.g., cardiac arrhythmia, myocardial infarction, stroke and sudden cardiac death). Moreover, although altered EPR function in HTN, HF, and PAD underlies our concern for the widespread implementation of BFR, use of this training mechanism may also have negative consequences in the absence of disease. That is, even normal, healthy individuals performing resistance training exercise with BFR are potentially at increased risk for deleterious cardiovascular events. This review provides a brief yet detailed overview of the mechanisms underlying the autonomic cardiovascular response to exercise with BFR. A more complete understanding of the consequences of BFR training is needed before this technique is passively explored by the layman athlete or prescribed by a health care professional.
Collapse
Affiliation(s)
- Marty D Spranger
- Department of Physiology, Michigan State University, East Lansing, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan;
| | - Abhinav C Krishnan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Phillip D Levy
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Scott A Smith
- Department of Health Care Sciences, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
59
|
Caron G, Marqueste T, Decherchi P. Long-Term Effects of Botulinum Toxin Complex Type A Injection on Mechano- and Metabo-Sensitive Afferent Fibers Originating from Gastrocnemius Muscle. PLoS One 2015; 10:e0140439. [PMID: 26485650 PMCID: PMC4617719 DOI: 10.1371/journal.pone.0140439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/25/2015] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to investigate long term effects of motor denervation by botulinum toxin complex type A (BoNT/A) from Clostridium Botulinum, on the afferent fibers originating from the gastrocnemius muscle of rats. Animals were divided in 2 experimental groups: 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle, the latter being itself divided into 3 subgroups according to their locomotor recovery with the help of a test based on footprint measurements of walking rats: i) no recovery (B0), ii) 50% recovery (B50) and iii) full recovery (B100). Then, muscle properties, metabosensitive afferent fiber responses to potassium chloride (KCl) and lactic acid injections and Electrically-Induced Fatigue (EIF), and mechanosensitive responses to tendon vibrations were measured. At the end of the experiment, rats were killed and the toxin injected muscles were weighted. After toxin injection, we observed a complete paralysis associated to a loss of force to muscle stimulation and a significant muscle atrophy, and a return to baseline when the animals recover. The response to fatigue was only decreased in the B0 group. The responses to KCl injections were only altered in the B100 groups while responses to lactic acid were altered in the 3 injected groups. Finally, our results indicated that neurotoxin altered the biphasic pattern of response of the mechanosensitive fiber to tendon vibrations in the B0 and B50 groups. These results indicated that neurotoxin injection induces muscle afferent activity alterations that persist and even worsen when the muscle has recovered his motor activity.
Collapse
Affiliation(s)
- Guillaume Caron
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM-EJM), Equipe, Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CC910 - 163 Avenue de Luminy, F-13288, Marseille, cedex 09, France
| | - Tanguy Marqueste
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM-EJM), Equipe, Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CC910 - 163 Avenue de Luminy, F-13288, Marseille, cedex 09, France
| | - Patrick Decherchi
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM-EJM), Equipe, Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy, Faculté des Sciences du Sport de Marseille, CC910 - 163 Avenue de Luminy, F-13288, Marseille, cedex 09, France
- * E-mail:
| |
Collapse
|
60
|
Cardiovascular Reflexes Activity and Their Interaction during Exercise. BIOMED RESEARCH INTERNATIONAL 2015; 2015:394183. [PMID: 26557662 PMCID: PMC4628760 DOI: 10.1155/2015/394183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023]
Abstract
Cardiac output and arterial blood pressure increase during dynamic exercise notwithstanding the exercise-induced vasodilation due to functional sympatholysis. These cardiovascular adjustments are regulated in part by neural reflexes which operate to guarantee adequate oxygen supply and by-products washout of the exercising muscles. Moreover, they maintain adequate perfusion of the vital organs and prevent excessive increments in blood pressure. In this review, we briefly summarize neural reflexes operating during dynamic exercise with particular emphasis on their interaction.
Collapse
|
61
|
Ansley L, Bonini M, Delgado L, Del Giacco S, Du Toit G, Khaitov M, Kurowski M, Hull JH, Moreira A, Robson-Ansley PJ. Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement. Allergy 2015; 70:1212-21. [PMID: 26100553 DOI: 10.1111/all.12677] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
This document is the result of a consensus on the mechanisms of exercise-induced anaphylaxis (EIAn), an unpredictable and potentially fatal syndrome. A multidisciplinary panel of experts including exercise physiologists, allergists, lung physicians, paediatricians and a biostatistician reached the given consensus. Exercise-induced anaphylaxis (EIAn) describes a rare and potentially fatal syndrome in which anaphylaxis occurs in conjunction with exercise. The pathophysiological mechanisms underlying EIAn have not yet been elucidated although a number of hypotheses have been proposed. This review evaluates the validity of each of the popular theories in relation to exercise physiology and immunology. On the basis of this evidence, it is concluded that proposed mechanisms lack validity, and it is recommended that a global research network is developed with a common approach to the diagnosis and treatment of EIAn in order to gain sufficient power for scientific evaluation.
Collapse
Affiliation(s)
- L. Ansley
- Faculty of Health & Life Sciences; Northumbria University; Newcastle Upon Tyne UK
| | - M. Bonini
- Department of Public Health and Infectious Diseases; ‘Sapienza University’; Rome Italy
| | - L. Delgado
- Serviço de Imunoalergologia; Centro Hospitalar São João and Immunology Laboratory; Faculty of Medicine; University of Porto; Porto Portugal
| | - S. Del Giacco
- Department of Medical Sciences ‘M. Aresu’; University of Cagliari; Cagliari Italy
| | - G. Du Toit
- Department of Paediatric Allergy; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; Division of Asthma, Allergy and Lung Biology; King's College London and Guy's and St Thomas' NHS Foundation Trust; London UK
| | - M. Khaitov
- National Research Center; Institute of Immunology; Federal Medicobiological Agency; Laboratory of Molecular immunology; Moscow Russian Federation
| | - M. Kurowski
- Department of Immunology, Rheumatology and Allergy; Medical University of Lodz; Lodz Poland
| | - J. H. Hull
- Department of Respiratory Medicine; Royal Brompton Hospital; London UK
| | - A. Moreira
- Serviço de Imunoalergologia; Centro Hospitalar São João and Immunology Laboratory; Faculty of Medicine; University of Porto; Porto Portugal
| | - P. J. Robson-Ansley
- Faculty of Health & Life Sciences; Northumbria University; Newcastle Upon Tyne UK
| |
Collapse
|
62
|
Gregory NS, Whitley PE, Sluka KA. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats. PLoS One 2015; 10:e0138576. [PMID: 26378796 PMCID: PMC4574767 DOI: 10.1371/journal.pone.0138576] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/01/2015] [Indexed: 11/27/2022] Open
Abstract
Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception.
Collapse
Affiliation(s)
- Nicholas S. Gregory
- Neuroscience Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
| | | | - Kathleen A. Sluka
- Neuroscience Graduate Program, University of Iowa, Iowa City, Iowa, United States of America
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
63
|
Xing J, Lu J, Li J. TRPA1 mediates amplified sympathetic responsiveness to activation of metabolically sensitive muscle afferents in rats with femoral artery occlusion. Front Physiol 2015; 6:249. [PMID: 26441669 PMCID: PMC4569976 DOI: 10.3389/fphys.2015.00249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/21/2015] [Indexed: 11/13/2022] Open
Abstract
Autonomic responses to activation of mechanically and metabolically sensitive muscle afferent nerves during static contraction are augmented in rats with femoral artery occlusion. Moreover, metabolically sensitive transient receptor potential cation channel subfamily A, member 1 (TRPA1) has been reported to contribute to sympathetic nerve activity (SNA) and arterial blood pressure (BP) responses evoked by static muscle contraction. Thus, in the present study, we examined the mechanisms by which afferent nerves' TRPA1 plays a role in regulating amplified sympathetic responsiveness due to a restriction of blood flow directed to the hindlimb muscles. Our data show that 24-72 h of femoral artery occlusion (1) upregulates the protein levels of TRPA1 in dorsal root ganglion (DRG) tissues; (2) selectively increases expression of TRPA1 in DRG neurons supplying metabolically sensitive afferent nerves of C-fiber (group IV); and (3) enhances renal SNA and BP responses to AITC (a TRPA1 agonist) injected into the hindlimb muscles. In addition, our data demonstrate that blocking TRPA1 attenuates SNA and BP responses during muscle contraction to a greater degree in ligated rats than those responses in control rats. In contrast, blocking TRPA1 fails to attenuate SNA and BP responses during passive tendon stretch in both groups. Overall, results of this study indicate that alternations in muscle afferent nerves' TRPA1 likely contribute to enhanced sympathetically mediated autonomic responses via the metabolic component of the muscle reflex under circumstances of chronic muscle ischemia.
Collapse
Affiliation(s)
- Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University Changchun, Jilin, China
| | - Jian Lu
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine Hershey, PA, USA
| | - Jianhua Li
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
64
|
White DW, Shoemaker JK, Raven PB. Methods and considerations for the analysis and standardization of assessing muscle sympathetic nerve activity in humans. Auton Neurosci 2015; 193:12-21. [PMID: 26299824 DOI: 10.1016/j.autneu.2015.08.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 01/20/2023]
Abstract
The technique of microneurography and the assessment of muscle sympathetic nerve activity (MSNA) are used in laboratories throughout the world. The variables used to describe MSNA, and the criteria by which these variables are quantified from the integrated neurogram, vary among studies and laboratories and, therefore, can become confusing to those starting to learn the technique. Therefore, the purpose of this educational review is to discuss guidelines and standards for the assessment of sympathetic nervous activity through the collection and analysis of MSNA. This review will reiterate common practices in the collection of MSNA, but will also introduce considerations for the evaluation and physiological inference using MSNA.
Collapse
Affiliation(s)
- Daniel W White
- The Department of Kinesiology & Nutrition, University of Illinois at Chicago, Chicago, IL, USA.
| | - J Kevin Shoemaker
- The School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Peter B Raven
- Department of Integrative Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
65
|
KIM KYUNGAE, STEBBINS CHARLESL, CHOI HYUNMIN, NHO HOSUNG, KIM JONGKYUNG. Mechanisms Underlying Exaggerated Metaboreflex Activation in Prehypertensive Men. Med Sci Sports Exerc 2015; 47:1605-12. [DOI: 10.1249/mss.0000000000000573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
66
|
Spranger MD, Kaur J, Sala-Mercado JA, Machado TM, Krishnan AC, Alvarez A, O'Leary DS. Attenuated muscle metaboreflex-induced pressor response during postexercise muscle ischemia in renovascular hypertension. Am J Physiol Regul Integr Comp Physiol 2015; 308:R650-8. [PMID: 25632024 DOI: 10.1152/ajpregu.00464.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/27/2015] [Indexed: 11/22/2022]
Abstract
During dynamic exercise, muscle metaboreflex activation (MMA; induced via partial hindlimb ischemia) markedly increases mean arterial pressure (MAP), and MAP is sustained when the ischemia is maintained following the cessation of exercise (postexercise muscle ischemia, PEMI). We previously reported that the sustained pressor response during PEMI in normal individuals is driven by a sustained increase in cardiac output (CO) with no peripheral vasoconstriction. However, we have recently shown that the rise in CO with MMA is significantly blunted in hypertension (HTN). The mechanisms sustaining the pressor response during PEMI in HTN are unknown. In six chronically instrumented canines, hemodynamic responses were observed during rest, mild exercise (3.2 km/h), MMA, and PEMI in the same animals before and after the induction of HTN [Goldblatt two kidney, one clip (2K1C)]. In controls, MAP, CO and HR increased with MMA (+52 ± 6 mmHg, +2.1 ± 0.3 l/min, and +37 ± 7 beats per minute). After induction of HTN, MAP at rest increased from 97 ± 3 to 130 ± 4 mmHg, and the metaboreflex responses were markedly attenuated (+32 ± 5 mmHg, +0.6 ± 0.2 l/min, and +11 ± 3 bpm). During PEMI in HTN, HR and CO were not sustained, and MAP fell to normal recovery levels. We conclude that the attenuated metaboreflex-induced HR, CO, and MAP responses are not sustained during PEMI in HTN.
Collapse
Affiliation(s)
- Marty D Spranger
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Jasdeep Kaur
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Javier A Sala-Mercado
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Tiago M Machado
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Abhinav C Krishnan
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Alberto Alvarez
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
67
|
|
68
|
Fisher JP, Fernandes IA, Barbosa TC, Prodel E, Coote JH, Nóbrega ACL, Vianna LC. Diving and exercise: The interaction of trigeminal receptors and muscle metaboreceptors on muscle sympathetic nerve activity in humans. Am J Physiol Heart Circ Physiol 2015; 308:H367-75. [DOI: 10.1152/ajpheart.00728.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Swimming involves muscular activity and submersion, creating a conflict of autonomic reflexes elicited by the trigeminal receptors and skeletal muscle afferents. We sought to determine the autonomic cardiovascular responses to separate and concurrent stimulation of the trigeminal cutaneous receptors and metabolically sensitive skeletal muscle afferents (muscle metaboreflex). In eight healthy men (30 ± 2 yr) muscle sympathetic nerve activity (MSNA; microneurography), mean arterial pressure (MAP; Finometer), femoral artery blood flow (duplex Doppler ultrasonography), and femoral vascular conductance (femoral artery blood flow/MAP) were assessed during the following three experimental conditions: 1) facial cooling (trigeminal nerve stimulation), 2) postexercise ischemia (PEI; muscle metaboreflex activation) following isometric handgrip, and 3) trigeminal nerve stimulation with concurrent PEI. Trigeminal nerve stimulation produced significant increases in MSNA total activity (Δ347 ± 167%) and MAP (Δ21 ± 5%) and a reduction in femoral artery vascular conductance (Δ−17 ± 9%). PEI also evoked significant increases in MSNA total activity (Δ234 ± 83%) and MAP (Δ36 ± 4%) and a slight nonsignificant reduction in femoral artery vascular conductance (Δ−9 ± 12%). Trigeminal nerve stimulation with concurrent PEI evoked changes in MSNA total activity (Δ341 ± 96%), MAP (Δ39 ± 4%), and femoral artery vascular conductance (Δ−20 ± 9%) that were similar to those evoked by either separate trigeminal nerve stimulation or separate PEI. Thus, excitatory inputs from the trigeminal nerve and metabolically sensitive skeletal muscle afferents do not summate algebraically in eliciting a MSNA and cardiovascular response but rather exhibit synaptic occlusion, suggesting a high degree of convergent inputs on output neurons.
Collapse
Affiliation(s)
- James P. Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Igor A. Fernandes
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil; and
| | - Thales C. Barbosa
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil; and
| | - Eliza Prodel
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil; and
| | - John H. Coote
- School of Clinical and Experimental Medicine, College of Medicine and Dentistry, University of Birmingham, Birmingham, United Kingdom
| | | | - Lauro C. Vianna
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Brazil; and
| |
Collapse
|
69
|
Kaur J, Spranger MD, Hammond RL, Krishnan AC, Alvarez A, Augustyniak RA, O'Leary DS. Muscle metaboreflex activation during dynamic exercise evokes epinephrine release resulting in β2-mediated vasodilation. Am J Physiol Heart Circ Physiol 2014; 308:H524-9. [PMID: 25539712 DOI: 10.1152/ajpheart.00648.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Muscle metaboreflex-induced increases in mean arterial pressure (MAP) during submaximal dynamic exercise are mediated principally by increases in cardiac output. To what extent, if any, the peripheral vasculature contributes to this rise in MAP is debatable. In several studies, we observed that in response to muscle metaboreflex activation (MMA; induced by partial hindlimb ischemia) a small but significant increase in vascular conductance occurred within the nonischemic areas (calculated as cardiac output minus hindlimb blood flow and termed nonischemic vascular conductance; NIVC). We hypothesized that these increases in NIVC may stem from a metaboreflex-induced release of epinephrine, resulting in β2-mediated dilation. We measured NIVC and arterial plasma epinephrine levels in chronically instrumented dogs during rest, mild exercise (3.2 km/h), and MMA before and after β-blockade (propranolol; 2 mg/kg), α1-blockade (prazosin; 50 μg/kg), and α1 + β-blockade. Both epinephrine and NIVC increased significantly from exercise to MMA: 81.9 ± 18.6 to 141.3 ± 22.8 pg/ml and 33.8 ± 1.5 to 37.6 ± 1.6 ml·min(-1)·mmHg(-1), respectively. These metaboreflex-induced increases in NIVC were abolished after β-blockade (27.6 ± 1.8 to 27.5 ± 1.7 ml·min(-1)·mmHg(-1)) and potentiated after α1-blockade (36.6 ± 2.0 to 49.7 ± 2.9 ml·min(-1)·mmHg(-1)), while α1 + β-blockade also abolished any vasodilation (33.7 ± 2.9 to 30.4 ± 1.9 ml·min(-1)·mmHg(-1)). We conclude that MMA during mild dynamic exercise induces epinephrine release causing β2-mediated vasodilation.
Collapse
Affiliation(s)
- Jasdeep Kaur
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Marty D Spranger
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert L Hammond
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Abhinav C Krishnan
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Alberto Alvarez
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Robert A Augustyniak
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
70
|
Rapid onset pressor and sympathetic responses to static handgrip in older hypertensive adults. J Hum Hypertens 2014; 29:402-8. [PMID: 25471615 DOI: 10.1038/jhh.2014.106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/14/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
Exaggerated pressor and muscle sympathetic nerve activity (MSNA) responses have been reported during static handgrip in hypertensive (HTN) adults. Recent work suggests that such responses may occur much more rapidly in HTN patients; however, this has not been extensively studied. Thus, we examined the blood pressure (BP) and MSNA responses at the immediate onset of muscle contraction and tested the hypothesis that older HTN adults would exhibit rapid onset pressor and sympathetic responses compared with normotensive (NTN) adults. Heart rate (HR), BP (Finometer) and MSNA (peroneal microneurography) were retrospectively analyzed in 15 HTN (62 ± 1 years; resting BP 153 ± 3/91 ± 5 mm Hg) and 23 age-matched NTN (60 ± 1 years; resting BP 112 ± 1/67 ± 2 mm Hg) subjects during the first 30 s of static handgrip at 30 and 40% of maximal voluntary contraction (MVC). HTN adults demonstrated exaggerated increases in mean BP during the first 10 s of both 30% (NTN: Δ1 ± 1 vs HTN: Δ7 ± 2 mm Hg; P < 0.05) and 40% (NTN: Δ2 ± 1 vs HTN: Δ8 ± 2 mm Hg; P < 0.05) intensity handgrip. Likewise, HTN adults exhibited atypical increases in MSNA within 10 s. Increases in HR were also greater in HTN adults at 10 s of 30% MVC handgrip, although not at 40% MVC. There were no group differences in 10 s pressor or sympathetic responses to a cold pressor test, suggesting no differences in generalized sympathetic responsiveness. Thus, static handgrip evokes rapid onset pressor and sympathetic responses in older HTN adults. These findings suggest that older HTN adults likely have greater cardiovascular risk even during short duration activities of daily living that contain an isometric component.
Collapse
|
71
|
Xing J, Lu J, Li J. Nerve growth factor decreases in sympathetic and sensory nerves of rats with chronic heart failure. Neurochem Res 2014; 39:1564-70. [PMID: 24913185 DOI: 10.1007/s11064-014-1348-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/19/2014] [Accepted: 05/26/2014] [Indexed: 01/08/2023]
Abstract
Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6-20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF.
Collapse
Affiliation(s)
- Jihong Xing
- The First Hospital of Jilin University, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China,
| | | | | |
Collapse
|
72
|
Nobrega ACL, O'Leary D, Silva BM, Marongiu E, Piepoli MF, Crisafulli A. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. BIOMED RESEARCH INTERNATIONAL 2014; 2014:478965. [PMID: 24818143 PMCID: PMC4000959 DOI: 10.1155/2014/478965] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022]
Abstract
During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Antonio C. L. Nobrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Donal O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruno Moreira Silva
- Section of Exercise Physiology, Department of Physiology, Federal University of São Paulo, SP, Brazil
| | - Elisabetta Marongiu
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| | - Massimo F. Piepoli
- Heart Failure Unit, Cardiac Department, Guglielmo da Saliceto Polichirurgico Hospital, Piacenza, Italy
| | - Antonio Crisafulli
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| |
Collapse
|
73
|
Cardiovascular responses to plyometric exercise are affected by workload in athletes. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2014; 10:2-6. [PMID: 24799919 PMCID: PMC4007289 DOI: 10.5114/pwki.2014.41458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/05/2014] [Accepted: 01/09/2014] [Indexed: 12/04/2022] Open
Abstract
Introduction With regard to blood pressure responses to plyometric exercise and decreasing blood pressure after exercise (post-exercise hypotension), the influence of different workloads of plyometric exercise on blood pressure is not clear. Aim The purpose of this investigation was to examine the effects of a low, moderate and high workload of plyometric exercise on the post-exercise systolic (SBP) and diastolic blood pressure (DBP), heart rate (HR) and rate-pressure product (RPP) responses in athletes. Material and methods Ten male athletes (age: 22.6 ±0.5 years; height: 178.2 ±3.3 cm; and body mass: 75.2 ±2.8 kg) underwent PE protocols involving 5 × 10 reps (Low Workload – LW), 10 × 10 reps (Moderate Workload – MW), and 15 × 10 reps (High Workload – HW) depth jump exercise from a 50-cm box in 3 non-consecutive days. After each exercise session, SBP, DBP and HR were measured every 10 min for a period of 70 min. Results No significant differences were observed among post-exercise SBP and DBP when the protocols (LW, MW and HW) were compared. The MW and HW protocols showed greater increases in HR compared with LW. Also the HW indicated greater increases than LW in RPP at post-exercise (p < 0.05). Conclusions All protocols increased SBP, HR and RPP responses at the 10th and 20th min of post-exercise. With regard to different workloads of plyometric exercise, HW condition indicated greater increases in HR and RPP and strength and conditioning professionals and athletes must keep in their mind that HW of plyometric exercise induces greater cardiovascular responses.
Collapse
|
74
|
Caron G, Rouzi T, Grelot L, Magalon G, Marqueste T, Decherchi P. Mechano- and metabosensitive alterations after injection of botulinum toxin into gastrocnemius muscle. J Neurosci Res 2014; 92:904-14. [PMID: 24615939 DOI: 10.1002/jnr.23370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/14/2014] [Accepted: 01/16/2014] [Indexed: 12/16/2022]
Abstract
This study was designed to investigate effects of motor denervation by Clostridium botulinum toxin serotype A (BoNT/A) on the afferent activity of fibers originating from the gastrocnemius muscle of rats. Animals were randomized in two groups, 1) untreated animals acting as control and 2) treated animals in which the toxin was injected in the left muscle. Locomotor activity was evaluated once per day during 12 days with a test based on footprint measurements of walking rats (sciatic functional index). At the end of the functional assessment period, electrophysiological tests were used to measure muscle properties, metabosensitive afferent fiber responses to chemical (KCl and lactic acid) injections, electrically induced fatigue (EIF), and mechanosensitive responses to tendon vibrations. Additionally, ventilatory response was recorded during repetitive muscle contractions. Then, rats were sacrificed, and the BoNT/A-injected muscles were weighed. Twelve days postinjection we observed a complete motor denervation associated with a significant muscle atrophy and loss of force to direct muscle stimulation. In the BoNT/A group, the metabosensitive responses to KCl injections were unaltered. However, we observed alterations in responses to EIF and to 1 mM of lactic acid (which induces the greatest activation). The ventilatory adjustments during repetitive muscle activation were abolished, and the mechanosensitive fiber responses to tendon vibrations were reduced. These results indicate that BoNT/A alters the sensorimotor loop and may induce insufficient motor and physiological adjustments in patients in whom a motor denervation with BoNT/A was performed.
Collapse
Affiliation(s)
- Guillaume Caron
- Aix-Marseille Université (AMU) and Centre National de la Recherche Scientifique (CNRS), UMR 7287, Institut des Sciences du Mouvement: Etienne-Jules MAREY (ISM-EJM) Equipe Plasticité des Systèmes Nerveux et Musculaire, Parc Scientifique et Technologique de Luminy Faculté des Sciences du Sport de Marseille, Marseille, France
| | | | | | | | | | | |
Collapse
|
75
|
Li J, Xing J, Lu J. Nerve Growth Factor, Muscle Afferent Receptors and Autonomic Responsiveness with Femoral Artery Occlusion. JOURNAL OF MODERN PHYSIOLOGICAL RESEARCH 2014; 1:1-18. [PMID: 25346945 PMCID: PMC4207086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The exercise pressor reflex is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA). Studies of humans and animals have indicated that the exercise pressor reflex is exaggerated in a number of cardiovascular diseases. For the last several years, a series of studies have employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD), one of the most common cardiovascular disorders. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. Our studies have demonstrated that the receptors on thin fiber muscle afferents including transient receptor potential vanilloid type 1 (TRPV1), purinergic P2X3 and acid sensing ion channel subtype 3 (ASIC3) are engaged in augmented autonomic responses this disease. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic responses in PAD. We will emphasize the role played by nerve growth factor (NGF) in regulating those sensory receptors in the processing of amplified exercise pressor reflex. Also, we will discuss the role played by hypoxia-inducible facor-1α regarding the enhanced autonomic reflex with femoral artery occlusion. The purpose of this review is to focus on a theme namely that PAD accentuates reflexively autonomic responses to exercise and further address regulatory mechanisms leading to abnormal autonomic responsiveness.
Collapse
Affiliation(s)
- Jianhua Li
- Heart & Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jihong Xing
- Heart & Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jian Lu
- Heart & Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
76
|
Olson TP, Joyner MJ, Eisenach JH, Curry TB, Johnson BD. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure. Exp Physiol 2013; 99:414-26. [DOI: 10.1113/expphysiol.2013.075937] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas P. Olson
- Departments of Internal Medicine; Division of Cardiovascular Diseases
| | | | | | | | - Bruce D. Johnson
- Departments of Internal Medicine; Division of Cardiovascular Diseases
| |
Collapse
|
77
|
Abstract
NEW FINDINGS What is the topic of this review? This brief review describes the work of Professor John Coote and colleagues at the University of Birmingham, which has contributed to understanding of the role of muscle afferent involvement in cardiorespiratory control in exercise. What advances does it highlight? The seminal findings of John Coote's early work are highlighted, as well as more recent developments in the field, especially the role of muscle afferents in the control of human ventilation during exercise. Through the work of John Coote, research into the role of muscle afferent involvement in cardiorespiratory control has had strong links with Birmingham since the late 1960s. This brief review gives an historical background to John's early work and how his research and mentorship of colleagues continues to have a profound influence on the field today.
Collapse
Affiliation(s)
- Michael J White
- * School of Sport, Exercise & Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
78
|
Sala-Mercado JA, Spranger MD, Abu-Hamdah R, Kaur J, Coutsos M, Stayer D, Augustyniak RA, O'Leary DS. Attenuated muscle metaboreflex-induced increases in cardiac function in hypertension. Am J Physiol Heart Circ Physiol 2013; 305:H1548-54. [PMID: 24014673 DOI: 10.1152/ajpheart.00478.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sympathoactivation may be excessive during exercise in subjects with hypertension, leading to increased susceptibility to adverse cardiovascular events, including arrhythmias, infarction, stroke, and sudden cardiac death. The muscle metaboreflex is a powerful cardiovascular reflex capable of eliciting marked increases in sympathetic activity during exercise. We used conscious, chronically instrumented dogs trained to run on a motor-driven treadmill to investigate the effects of hypertension on the mechanisms of the muscle metaboreflex. Experiments were performed before and 30.9 ± 4.2 days after induction of hypertension, which was induced via partial, unilateral renal artery occlusion. After induction of hypertension, resting mean arterial pressure was significantly elevated from 98.2 ± 2.6 to 141.9 ± 7.4 mmHg. The hypertension was caused by elevated total peripheral resistance. Although cardiac output was not significantly different at rest or during exercise after induction of hypertension, the rise in cardiac output with muscle metaboreflex activation was significantly reduced in hypertension. Metaboreflex-induced increases in left ventricular function were also depressed. These attenuated cardiac responses caused a smaller metaboreflex-induced rise in mean arterial pressure. We conclude that the ability of the muscle metaboreflex to elicit increases in cardiac function is impaired in hypertension, which may contribute to exercise intolerance.
Collapse
Affiliation(s)
- Javier A Sala-Mercado
- Department of Physiology and The Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Ooue A, Sato K, Hirasawa A, Sadamoto T. Superficial venous vascular response of the resting limb during static exercise and postexercise muscle ischemia. Appl Physiol Nutr Metab 2013; 38:941-6. [PMID: 23905659 DOI: 10.1139/apnm-2012-0472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Superficial venous vascular response to exercise is mediated sympathetically, although the mechanism is not fully understood. We examined whether sympathetic activation via muscle metaboreflex plays a role in the control of a superficial vein in the contralateral resting limb during exercise. The experimental condition involved selective stimulation of muscle metaboreceptors: 12 subjects performed static handgrip exercises at 45% maximal voluntary contraction for 1.5 min followed by a recovery period with arterial occlusion of the exercise arm (OCCL). For the control condition (CONT), the same exercise protocol was performed except that the recovery period occurred without arterial occlusion. Heart rate (HR) and mean arterial blood pressure (MAP) were measured. The cross-sectional area of the basilic superficial vein (CSAvein) and blood velocity (Vvein) in the resting upper arm were measured by ultrasound while the cuff on resting upper arm was inflated constantly to a subdiastolic pressure of 50 mm Hg. Basilic vein blood flow (BFvein) was calculated as CSAvein × Vvein. During exercise under both OCCL and CONT, HR and MAP increased (p < 0.05), while CSAvein decreased (p < 0.05). During recovery under OCCL, HR returned to baseline, but the exercise-induced increase in MAP and decrease in CSAvein were maintained (p < 0.05). During recovery under CONT, HR, MAP, and CSAvein returned to baseline. BFvein did not change during exercise or recovery under either condition. These results suggest that sympathoexcitation via muscle metaboreflex may be one of the factors responsible for exercise-induced constriction of the superficial veins per se in the resting limb.
Collapse
Affiliation(s)
- Anna Ooue
- a Research Institute of Physical Fitness, Japan Women's College of Physical Education. 8-19-1 Kita-karasuyama, Setagaya-ku, Tokyo 157-8565, Japan
| | | | | | | |
Collapse
|
80
|
Ichinose M, Maeda S, Kondo N, Nishiyasu T. Blood pressure regulation II: what happens when one system must serve two masters--oxygen delivery and pressure regulation? Eur J Appl Physiol 2013; 114:451-65. [PMID: 23846841 DOI: 10.1007/s00421-013-2691-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/02/2013] [Indexed: 11/30/2022]
Abstract
During high-intensity dynamic exercise, O2 delivery to active skeletal muscles is enhanced through marked increases in both cardiac output and skeletal muscle blood flow. When the musculature is vigorously engaged in exercise, the human heart lacks the pumping capacity to meet the blood flow demands of both the skeletal muscles and other organs such as the brain. Vasoconstriction must therefore be induced through activation of sympathetic nervous activity to maintain blood flow to the brain and to produce the added driving pressure needed to increase flow to the skeletal muscles. In this review, we first briefly summarize the local vascular and neural control mechanisms operating during high-intensity exercise. This is followed by a review of the major neural mechanisms regulating blood pressure during high-intensity exercise, focusing mainly on the integrated activities of the arterial baroreflex and muscle metaboreflex. In high cardiac output situations, such as during high-intensity dynamic exercise, small changes in total peripheral resistance can induce large changes in blood pressure, which means that rapid and fine regulation is necessary to avoid unacceptable drops in blood pressure. To accomplish this rapid regulation, arterial baroreflex function may be modulated in various ways through activation of the muscle metaboreflex and/or other neural mechanisms. Moreover, this modulation of the arterial baroreflex may change over the time course of an exercise bout, or to accommodate changes in exercise intensity. Within this model, integration of arterial baroreflex modulation with other neural mechanisms plays an important role in cardiovascular control during high-intensity exercise.
Collapse
Affiliation(s)
- Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | | | | | | |
Collapse
|
81
|
Arazi H, Asadi A, Rahimzadeh M, Moradkhani AH. Post-plyometric exercise hypotension and heart rate in normotensive individuals: influence of exercise intensity. Asian J Sports Med 2013; 4:235-40. [PMID: 24799997 PMCID: PMC3977206 DOI: 10.5812/asjsm.34240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/25/2013] [Indexed: 11/16/2022] Open
Abstract
Purpose The purpose of this study was to compare the effects of high, moderate and low intensity plyometric exercise on the post-exercise systolic and diastolic blood pressure and heart rate responses. Methods Ten healthy normotensive men (age, 21.1±0.9 years; height, 175.8±6 cm; and body mass, 69.1±13.6 kg) volunteered to participate in this study and were evaluated for three non-consecutive days in depth jump exercise from 20-cm box (low intensity [LI]), 40-cm box (moderate intensity [MI]) and 60-cm box (high intensity [HI]) for 5 sets of 20 repetitions. After each exercise session, systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured every 10 min for a period of 90 min. Results No significant differences were observed among post-exercise SBP, DBP and HR when the protocols (LI, MI and HI) were compared. The LI and HI protocols showed greater reduction in SBP at 40th-70th min of post-exercise (~9%), whereas the LI and MI protocols indicated greater reduction in DBP at 10th-50th min of post exercise (~10%). In addition, the change in the DBP for HI was not significant and the increases in the HR were similar for all intensities. Conclusion It can be concluded that a plyometric exercise (PE) can reduce SBP and DBP post-exercise and therefore we can say that PE has significant effects for reducing BP and HR or post-exercise hypotension.
Collapse
Affiliation(s)
- Hamid Arazi
- Faculty of Sport Sciences, Department of Exercise Physiology, University of Guilan, Rasht, Iran
- Address: Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht, Iran.
| | - Abbas Asadi
- Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mehdi Rahimzadeh
- Faculty of Sport Sciences, Department of Exercise Physiology, University of Guilan, Rasht, Iran
| | - Amir-Hossein Moradkhani
- Faculty of Sport Sciences, Department of Exercise Physiology, University of Guilan, Rasht, Iran
| |
Collapse
|
82
|
Mortensen SP, Svendsen JH, Ersbøll M, Hellsten Y, Secher NH, Saltin B. Skeletal muscle signaling and the heart rate and blood pressure response to exercise: insight from heart rate pacing during exercise with a trained and a deconditioned muscle group. Hypertension 2013; 61:1126-33. [PMID: 23478101 DOI: 10.1161/hypertensionaha.111.00328] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endurance training lowers heart rate and blood pressure responses to exercise, but the mechanisms and consequences remain unclear. To determine the role of skeletal muscle for the cardioventilatory response to exercise, 8 healthy young men were studied before and after 5 weeks of 1-legged knee-extensor training and 2 weeks of deconditioning of the other leg (leg cast). Hemodynamics and muscle interstitial nucleotides were determined during exercise with the (1) deconditioned leg, (2) trained leg, and (3) trained leg with atrial pacing to the heart rate obtained with the deconditioned leg. Heart rate was ≈ 15 bpm lower during exercise with the trained leg (P<0.05), but stroke volume was higher (P<0.05) and cardiac output was similar. Arterial and central venous pressures, rate-pressure product, and ventilation were lower during exercise with the trained leg (P<0.05), whereas pulmonary capillary wedge pressure was similar. When heart rate was controlled by atrial pacing, stroke volume decreased (P<0.05), but cardiac output, peripheral blood flow, arterial pressures, and pulmonary capillary wedge pressure remained unchanged. Circulating [norepinephrine], [lactate] and [K(+)] were lower and interstitial [ATP] and pH were higher in the trained leg (P<0.05). The lower cardioventilatory response to exercise with the trained leg is partly coupled to a reduced signaling from skeletal muscle likely mediated by K(+), lactate, or pH, whereas the lower cardiac afterload increases stroke volume. These results demonstrate that skeletal muscle training reduces the cardioventilatory response to exercise without compromising O2 delivery, and it can therefore be used to reduce the load on the heart during physical activity.
Collapse
Affiliation(s)
- Stefan P Mortensen
- Centre of Inflammation and Metabolism, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
83
|
Spranger MD, Sala-Mercado JA, Coutsos M, Kaur J, Stayer D, Augustyniak RA, O'Leary DS. Role of cardiac output versus peripheral vasoconstriction in mediating muscle metaboreflex pressor responses: dynamic exercise versus postexercise muscle ischemia. Am J Physiol Regul Integr Comp Physiol 2013; 304:R657-63. [PMID: 23427084 DOI: 10.1152/ajpregu.00601.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle metaboreflex activation (MMA) during submaximal dynamic exercise in normal individuals increases mean arterial pressure (MAP) via increases in cardiac output (CO) with little peripheral vasoconstriction. The rise in CO occurs primarily via increases in heart rate (HR) with maintained or slightly increased stroke volume. When the reflex is sustained during recovery (postexercise muscle ischemia, PEMI), HR declines yet MAP remains elevated. The role of CO in mediating the pressor response during PEMI is controversial. In seven chronically instrumented canines, steady-state values with MMA during mild exercise (3.2 km/h) were observed by reducing hindlimb blood flow by ~60% for 3-5 min. MMA during exercise was followed by 60 s of PEMI. Control experiments consisted of normal exercise and recovery. MMA during exercise increased MAP, HR, and CO by 55.3 ± 4.9 mmHg, 42.5 ± 6.9 beats/min, and 2.5 ± 0.4 l/min, respectively. During sustained MMA via PEMI, MAP remained elevated and CO remained well above the normal recovery levels. Neither MMA during dynamic exercise nor during PEMI significantly affected peripheral vascular conductance. We conclude that the sustained increase in MAP during PEMI is driven by a sustained increase in CO not peripheral vasoconstriction.
Collapse
Affiliation(s)
- Marty D Spranger
- Department of Physiology and The Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Coutsos M, Sala-Mercado JA, Ichinose M, Li Z, Dawe EJ, O'Leary DS. Muscle metaboreflex-induced coronary vasoconstriction limits ventricular contractility during dynamic exercise in heart failure. Am J Physiol Heart Circ Physiol 2013; 304:H1029-37. [PMID: 23355344 DOI: 10.1152/ajpheart.00879.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Muscle metaboreflex activation (MMA) during dynamic exercise increases cardiac work and myocardial O2 demand via increases in heart rate, ventricular contractility, and afterload. This increase in cardiac work should lead to metabolic coronary vasodilation; however, no change in coronary vascular conductance occurs. This indicates that the MMA-induced increase in sympathetic activity to the heart, which raises heart rate, ventricular contractility, and cardiac output, also elicits coronary vasoconstriction. In heart failure, cardiac output does not increase with MMA presumably due to impaired ability to improve left ventricular contractility. In this setting actual coronary vasoconstriction is observed. We tested whether this coronary vasoconstriction could explain, in part, the reduced ability to increase cardiac performance during MMA. In conscious, chronically instrumented dogs before and after pacing-induced heart failure, MMA responses during mild exercise were observed before and after α1-adrenergic blockade (prazosin 20-50 μg/kg). During MMA, the increases in coronary vascular conductance, coronary blood flow, maximal rate of left ventricular pressure change, and cardiac output were significantly greater after α1-adrenergic blockade. We conclude that in subjects with heart failure, coronary vasoconstriction during MMA limits the ability to increase left ventricular contractility.
Collapse
Affiliation(s)
- Matthew Coutsos
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
85
|
Li J, Gao Z, Lu J, Xing J. Exaggerated Pressor Response in Relation to Attenuated Muscle Temperature Response during Contraction in Ischemic Heart Failure. Front Physiol 2012. [PMID: 23189061 PMCID: PMC3505840 DOI: 10.3389/fphys.2012.00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is known that muscle temperature (Tm) increases with exercise. The purpose of this study was to examine if contraction-induced increase in Tm was altered in rats with heart failure (HF) induced by chronic myocardial infraction (MI) as compared with healthy control animals. A temperature probe was inserted in the triceps surae muscle to continuously measure Tm throughout experiments. Static muscle contraction was induced by electrical stimulation of the sciatic nerve for 1 min. As baseline Tm was 34°C, contraction increased temperature by 1.6 ± 0.18°C in nine health control rats and by 1.0 ± 0.15°C in 10 MI rats (P < 0.05 vs. control). Note that there were no differences in developed muscle tension and muscle weight between the two groups. In addition, muscle contraction increased mean arterial pressure by 23 ± 3 mmHg in control rats and by 31 ± 3 mmHg in MI rats (P < 0.05 vs. control). A regression analysis further shows that there is an inverse liner relationship between the pressor response and static contraction-induced increase in Tm. Our data suggest that Tm increase evoked by contraction is impaired in MI rats. The abnormal alteration in Tm likely modifies the reflex cardiovascular responses in MI via mechanisms of temperature-sensitive receptors on muscle afferent nerves.
Collapse
Affiliation(s)
- Jianhua Li
- Heart and Vascular Institute, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine Hershey, PA, USA ; Department of Medicine, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine Hershey, PA, USA
| | | | | | | |
Collapse
|
86
|
Ooue A, Sato K, Hirasawa A, Sadamoto T. Tendon vibration attenuates superficial venous vessel response of the resting limb during static arm exercise. J Physiol Anthropol 2012; 31:29. [PMID: 23134654 PMCID: PMC3520744 DOI: 10.1186/1880-6805-31-29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 10/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The superficial vein of the resting limb constricts sympathetically during exercise. Central command is the one of the neural mechanisms that controls the cardiovascular response to exercise. However, it is not clear whether central command contributes to venous vessel response during exercise. Tendon vibration during static elbow flexion causes primary muscle spindle afferents, such that a lower central command is required to achieve a given force without altering muscle force. The purpose of this study was therefore to investigate whether a reduction in central command during static exercise with tendon vibration influences the superficial venous vessel response in the resting limb. METHODS Eleven subjects performed static elbow flexion at 35% of maximal voluntary contraction with (EX + VIB) and without (EX) vibration of the biceps brachii tendon. The heart rate, mean arterial pressure, and rating of perceived exertion (RPE) in overall and exercising muscle were measured. The cross-sectional area (CSAvein) and blood velocity of the basilic vein in the resting upper arm were assessed by ultrasound, and blood flow (BFvein) was calculated using both variables. RESULTS Muscle tension during exercise was similar between EX and EX + VIB. However, RPEs at EX + VIB were lower than those at EX (P <0.05). Increases in heart rate and mean arterial pressure during exercise at EX + VIB were also lower than those at EX (P <0.05). CSAvein in the resting limb at EX decreased during exercise from baseline (P <0.05), but CSAvein at EX + VIB did not change during exercise. CSAvein during exercise at EX was smaller than that at EX + VIB (P <0.05). However, BFvein did not change during the protocol under either condition. The decreases in circulatory response and RPEs during EX + VIB, despite identical muscle tension, showed that activation of central command was less during EX + VIB than during EX. Abolishment of the decrease in CSAvein during exercise at EX + VIB may thus have been caused by a lower level of central command at EX + VIB rather than EX. CONCLUSION Diminished central command induced by tendon vibration may attenuate the superficial venous vessel response of the resting limb during sustained static arm exercise.
Collapse
Affiliation(s)
- Anna Ooue
- Research Institute of Physical Fitness, Japan Women's College of Physical Education, 8-19-1 Kitakarasuyama, Setagaya-ku, Tokyo 157-8565, Japan.
| | | | | | | |
Collapse
|
87
|
Leicht CA, Bishop NC, Goosey-Tolfrey VL. Mucosal immune responses during court training in elite tetraplegic athletes. Spinal Cord 2012; 50:760-5. [DOI: 10.1038/sc.2012.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
88
|
Abstract
Exercise-induced anaphylaxis (EIA) is a distinct form of physical allergy. The development of anaphylaxis during exertion often requires the concomitant exposure to triggering factors such as intake of foods (food dependent exercise-induced anaphylaxis) or drugs prior to exercise, extreme environmental conditions. EIA is a rare, but serious disorder, which is often undetected or inadequately treated. This article summarizes current evidences on pathophysiology, diagnosis and management. We reviewed recent advances in factors triggering the release of mediators from mast cells which seems to play a pathogenetic role. A correct diagnosis is essential to avoid unnecessary restricted diet, to allow physical activity in subjects with EIA dependent from triggering factors such as food, and to manage attacks. An algorithm for diagnosing EIA based on medical history, IgE tests and exercise challenge test has been provided. In the long-term management of EIA, there is a need for educating patients and care-givers to avoid exposure to precipitating factors and to recognize and treat episodes. Future researches on existing questions are discussed.
Collapse
Affiliation(s)
- Carlotta Povesi Dascola
- Clinica Pediatrica, Dipartimento di Medicina Clinica e Sperimentale, Azienda Ospedaliera-Universitaria di Parma, Università degli Studi di Parma, Via Gramsci 14, Parma, Italy
| | - Carlo Caffarelli
- Clinica Pediatrica, Dipartimento di Medicina Clinica e Sperimentale, Azienda Ospedaliera-Universitaria di Parma, Università degli Studi di Parma, Via Gramsci 14, Parma, Italy
| |
Collapse
|
89
|
Casey DP, Joyner MJ. α-Adrenergic Blockade Unmasks a Greater Compensatory Vasodilation in Hypoperfused Contracting Muscle. Front Physiol 2012; 3:271. [PMID: 22934025 PMCID: PMC3429045 DOI: 10.3389/fphys.2012.00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
We previously demonstrated that acute hypoperfusion in exercising human muscle causes an immediate increase in vascular resistance that is followed by a partial restoration (less than 100% recovery) of flow. In the current study we examined the contribution of α-adrenergic vasoconstriction in the initial changes in vascular resistance at the onset of hypoperfusion as well as in the recovery of flow over time. Nine healthy male subjects (29 ± 2) performed rhythmic forearm exercise (20% of maximum) during hypoperfusion evoked by intra-arterial balloon inflation. Each trial included; baseline, exercise prior to inflation, exercise with inflation, and exercise after deflation (3 min each). Forearm blood flow (FBF; ultrasound), local (brachial artery), and systemic arterial pressure (MAP; Finometer) were measured. The trial was repeated during phentolamine infusion (α-adrenergic receptor blockade). Forearm vascular conductance (FVC; ml min(-1) 100 mmHg(-1)) and resistance (mmHg ml min(-1)) was calculated from BF (ml min(-1)) and local MAP (mmHg). Recovery of FBF and FVC (steady state inflation plus exercise value - nadir)/[steady state exercise (control) value - nadir] with phentolamine was enhanced compared with the respective control (no drug) trial (FBF = 97 ± 5% vs. 81 ± 6%, P < 0.05; FVC = 126 ± 9% vs. 91 ± 5%, P < 0.01). However, the absolute (0.05 ± 0.01 vs. 0.06 ± 0.01 mmHg ml min(-1); P = 0.17) and relative (35 ± 5% vs. 31 ± 2%; P = 0.41) increase in vascular resistance at the onset of balloon inflation was not different between the α-adrenergic receptor inhibition and control (no drug) trials. Therefore, our data indicate that α-adrenergic mediated vasoconstriction restricts compensatory vasodilation during forearm exercise with hypoperfusion, but is not responsible for the initial increase in vascular resistance at the onset of hypoperfusion.
Collapse
Affiliation(s)
- Darren P Casey
- Human and Integrative Physiology Laboratory, Department of Anesthesiology, Mayo Clinic Rochester, MN, USA
| | | |
Collapse
|
90
|
Li J, Xing J. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease. Front Physiol 2012; 3:247. [PMID: 22934005 PMCID: PMC3429025 DOI: 10.3389/fphys.2012.00247] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/17/2012] [Indexed: 01/23/2023] Open
Abstract
The exercise pressor reflex (EPR) is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure (BP) and heart rate primarily through activation of sympathetic nerve activity (SNA). Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and BP to static exercise are heightened in peripheral artery disease (PAD), one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1), purinergic P2X, and acid sensing ion channel (ASIC). The role played by nerve growth factor in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.
Collapse
Affiliation(s)
- Jianhua Li
- Heart and Vascular Institute, Penn State University College of Medicine Hershey, PA, USA
| | | |
Collapse
|
91
|
Lu J, Xing J, Li J. Role for NGF in augmented sympathetic nerve response to activation of mechanically and metabolically sensitive muscle afferents in rats with femoral artery occlusion. J Appl Physiol (1985) 2012; 113:1311-22. [PMID: 22744968 DOI: 10.1152/japplphysiol.00617.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arterial blood pressure and heart rate responses to static contraction of the hindlimb muscles are greater in rats whose femoral arteries were previously ligated than in control rats. Also, the prior findings demonstrate that nerve growth factor (NGF) is increased in sensory neurons-dorsal root ganglion (DRG) neurons of occluded rats. However, the role for endogenous NGF in engagement of the augmented sympathetic and pressor responses to stimulation of mechanically and/or metabolically sensitive muscle afferent nerves during static contraction after femoral artery ligation has not been specifically determined. In the present study, both afferent nerves and either of them were activated by muscle contraction, passive tendon stretch, and arterial injection of lactic acid into the hindlimb muscles. Data showed that femoral occlusion-augmented blood pressure response to contraction was significantly attenuated by a prior administration of the NGF antibody (NGF-Ab) into the hindlimb muscles. The effects of NGF neutralization were not seen when the sympathetic nerve and pressor responses were evoked by stimulation of mechanically sensitive muscle afferent nerves with tendon stretch in occluded rats. In addition, chemically sensitive muscle afferent nerves were stimulated by lactic acid injected into arterial blood supply of the hindlimb muscles after the prior NGF-Ab, demonstrating that the reflex muscle responses to lactic acid were significantly attenuated. The results of this study further showed that NGF-Ab attenuated an increase in acid-sensing ion channel subtype 3 (ASIC3) of DRG in occluded rats. Moreover, immunohistochemistry was employed to examine the number of C-fiber and A-fiber DRG neurons. The data showed that distribution of DRG neurons with different thin fiber phenotypes was not notably altered when NGF was infused into the hindlimb muscles. However, NGF increased expression of ASIC3 in DRG neurons with C-fiber but not A-fiber. Overall, these data suggest that 1) NGF is amplified in sensory nerves of occluded rats and contributes to augmented reflex sympathetic and blood pressure responses evoked by stimulation of chemically, but not mechanically, sensitive muscle afferent nerves and 2) NGF likely plays a role in modulating the muscle metaboreflex via enhancement of ASIC3 expression in C-fiber of DRG neurons.
Collapse
Affiliation(s)
- Jian Lu
- Pennsylvania State Heart and Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
92
|
Rimaud D, Calmels P, Pichot V, Bethoux F, Roche F. Effects of compression stockings on sympathetic activity and heart rate variability in individuals with spinal cord injury. J Spinal Cord Med 2012; 35:81-8. [PMID: 22333734 PMCID: PMC3304561 DOI: 10.1179/2045772311y.0000000054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To investigate whether wearing graduated compression stockings (GCS) could affect the sympatho-adrenergic and heart rate variability (HRV) responses at rest and after a strenuous wheelchair exercise in individuals with spinal cord injury (SCI). DESIGN Crossover trial. SETTING Department of Physical Medicine and Rehabilitation, Saint Etienne, France. PARTICIPANTS Nine men with SCI (five with low paraplegia: LP, four with high paraplegia: HP). INTERVENTIONS Two maximal wheelchair exercise tests: with and without GCS (21 mmHg). MAIN OUTCOME MEASURES HRV measurements: high frequency (HF), low frequency (LF), and LF/HF ratio. Norepinephrine (NOR) and epinephrine (EPI), at rest and post-exercise. Secondary measures were: blood pressure, heart rate, maximal power output, oxygen uptake, stroke volume, cardiac output, at rest, during and after exercise. RESULTS When wearing GCS: LFnu(wavelet-post) significantly increased and HFnu(wavelet-post) significantly decreased (P < 0.05) in SCI subjects, leading to an enhance ratio of LF(wavelet)/HF(wavelet) and a significantly increased in NOR(rest) (P < 0.05). CONCLUSIONS GCS induces an enhanced sympathetic activity in individuals with paraplegia, regardless of the level of the injury. Enhanced post-exercise sympathetic activity with GCS may help prevent orthostatic hypotension or post-exercise hypotension.
Collapse
Affiliation(s)
- Diana Rimaud
- Service de Medecine Physique et de Readaptation, CHU Bellevue, Saint Etienne, France.
| | - Paul Calmels
- Service de Medecine Physique et de Readaptation, CHU Bellevue, Saint Etienne, France
| | - Vincent Pichot
- Service de Physiologie Clinique et de l'Exercise, CHU Nord, Saint-Etienne, France
| | | | - Frederic Roche
- Service de Physiologie Clinique et de l'Exercise, CHU Nord, Saint-Etienne, France
| |
Collapse
|
93
|
Dipla K, Nassis GP, Vrabas IS. Blood Pressure Control at Rest and during Exercise in Obese Children and Adults. J Obes 2012; 2012:147385. [PMID: 22666555 PMCID: PMC3361254 DOI: 10.1155/2012/147385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/19/2012] [Accepted: 03/01/2012] [Indexed: 11/17/2022] Open
Abstract
The hemodynamic responses to exercise have been studied to a great extent over the past decades, and an exaggerated blood pressure response during an acute exercise bout has been considered as an indicator of cardiovascular risk. Obesity is a major factor influencing the blood pressure response to exercise since evidence indicates that the arterial pressure response to exercise is exacerbated in obese compared with lean adults. Signs of augmented responses (such as an exaggerated blood pressure response) to physical exertion appear early in life (from the prepubertal years) in obese individuals. Understanding the mechanisms that drive the altered hemodynamic responses during exercise in obese individuals and prevent the progression to hypertension is vitally important. This paper focuses on the evidence linking obesity with alterations of the autonomic nervous system and discusses the potential mechanisms and consequences of the altered sympathetic nervous system behavior in obese individuals at rest and during exercise. Furthermore, this paper presents the alterations in the reflex regulatory mechanisms ("exercise pressor reflex" and baroreflex) in obese children and adults and addresses the effects of training on obesity-related disturbances.
Collapse
Affiliation(s)
- Konstantina Dipla
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
- *Konstantina Dipla:
| | - George P. Nassis
- Department of Sport Medicine and Biology of Exercise, Faculty of Physical Education and Sport Science, University of Athens, 17237 Daphne, Greece
| | - Ioannis S. Vrabas
- Exercise Physiology and Biochemistry Laboratory, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Agios Ioannis, 62110 Serres, Greece
| |
Collapse
|
94
|
Xing J, Lu J, Li J. Acid-sensing ion channel subtype 3 function and immunolabelling increases in skeletal muscle sensory neurons following femoral artery occlusion. J Physiol 2011; 590:1261-72. [PMID: 22183722 DOI: 10.1113/jphysiol.2011.221788] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sympathetic nerve activity and arterial blood pressure responses to static hindlimb muscle contractions are greater in rats with femoral arteries that were previously ligated (24-72 h earlier) than in control rats. Studies further demonstrate that acid-sensing ion channel subtype 3 (ASIC(3)) in thin-fibre muscle afferents contributes to the amplified reflex muscle responses observed in occluded rats, probably due to enhanced ASIC(3) expression in muscle sensory neurons. The purpose of this study was to characterize acid-induced current with activation of ASIC(3) in dorsal root ganglion (DRG) neurons of control rats and rats with 24 h of femoral occlusion using whole-cell patch clamp methods. Also, immunohistochemistry was employed to examine existence of ASIC(3) expression in DRG neurons of thin-fibre afferents. DRG neurons from 4- to 6-week-old rats were labelled by injecting the fluorescence tracer DiI into the hindlimb muscles 4-5 days prior to the recording experiments. The results of this study show that ∼90% of current responses evoked by pH 6.7 in DRG neurons innervating the hindlimb muscles are ASIC(3)-like. The peak current amplitude to pH 6.7 is significantly attenuated with application of rAPETx2, a specific ASIC(3) antagonist. In addition, ASIC(3)-like current responses to pH 6.7 are observed in small, medium and large DRG neurons, and size distribution of DRG neurons is similar in control and occluded animals. However, the peak current amplitude of DRG neuron response induced by ASIC(3) stimulation is larger in occluded rats than that in control rats. Moreover, the percentage of DRG neurons with ASIC(3)-like currents is greater after arterial occlusion compared with control. Furthermore, results from double immunofluorescence experiments show that femoral artery occlusion mainly augments ASIC(3) expression within DRG neurons projecting C-fibre afferents. Taken together, these data suggest that (1) the majority of current responses to pH 6.7 are ASIC(3)-like in DRG neurons with nerve endings in the hindlimb muscles, (2) a greater acid-induced current responding to pH 6.7 develops when hindlimb arterial blood supply is deficient under ischaemic conditions, and (3) increased ASIC(3) expression is largely observed in thin C-fibres of DRG neurons after hindlimb ischaemia.
Collapse
Affiliation(s)
- Jihong Xing
- Pennsylvania State Heart & Vascular Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
95
|
Casey DP, Joyner MJ. Local control of skeletal muscle blood flow during exercise: influence of available oxygen. J Appl Physiol (1985) 2011; 111:1527-38. [PMID: 21885800 DOI: 10.1152/japplphysiol.00895.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reductions in oxygen availability (O(2)) by either reduced arterial O(2) content or reduced perfusion pressure can have profound influences on the circulation, including vasodilation in skeletal muscle vascular beds. The purpose of this review is to put into context the present evidence regarding mechanisms responsible for the local control of blood flow during acute systemic hypoxia and/or local hypoperfusion in contracting muscle. The combination of submaximal exercise and hypoxia produces a "compensatory" vasodilation and augmented blood flow in contracting muscles relative to the same level of exercise under normoxic conditions. A similar compensatory vasodilation is observed in response to local reductions in oxygen availability (i.e., hypoperfusion) during normoxic exercise. Available evidence suggests that nitric oxide (NO) contributes to the compensatory dilator response under each of these conditions, whereas adenosine appears to only play a role during hypoperfusion. During systemic hypoxia the NO-mediated component of the compensatory vasodilation is regulated through a β-adrenergic receptor mechanism at low-intensity exercise, while an additional (not yet identified) source of NO is likely to be engaged as exercise intensity increases during hypoxia. Potential candidates for stimulating and/or interacting with NO at higher exercise intensities include prostaglandins and/or ATP. Conversely, prostaglandins do not appear to play a role in the compensatory vasodilation during exercise with hypoperfusion. Taken together, the data for both hypoxia and hypoperfusion suggest NO is important in the compensatory vasodilation seen when oxygen availability is limited. This is important from a basic biological perspective and also has pathophysiological implications for diseases associated with either hypoxia or hypoperfusion.
Collapse
Affiliation(s)
- Darren P Casey
- Dept. of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
96
|
LEICHT CHRISTOFANDREAS, BISHOP NICOLETTECLAIRE, GOOSEY-TOLFREY VICTORIALOUISE. Mucosal Immune Responses to Treadmill Exercise in Elite Wheelchair Athletes. Med Sci Sports Exerc 2011; 43:1414-21. [DOI: 10.1249/mss.0b013e31820ac959] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
Effect of transcutaneous electrical nerve stimulation on muscle metaboreflex in healthy young and older subjects. Eur J Appl Physiol 2011; 112:1327-34. [DOI: 10.1007/s00421-011-2084-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
|
98
|
Jarvis SS, VanGundy TB, Galbreath MM, Shibata S, Okazaki K, Reelick MF, Levine BD, Fu Q. Sex differences in the modulation of vasomotor sympathetic outflow during static handgrip exercise in healthy young humans. Am J Physiol Regul Integr Comp Physiol 2011; 301:R193-200. [PMID: 21508291 DOI: 10.1152/ajpregu.00562.2010] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences in sympathetic neural control during static exercise in humans are few and the findings are inconsistent. We hypothesized women would have an attenuated vasomotor sympathetic response to static exercise, which would be further reduced during the high sex hormone [midluteal (ML)] vs. the low hormone phase [early follicular (EF)]. We measured heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) in 11 women and 10 men during a cold pressor test (CPT) and static handgrip to fatigue with 2 min of postexercise circulatory arrest (PECA). HR increased during handgrip, reached its peak at fatigue, and was comparable between sexes. BP increased during handgrip and PECA where men had larger increases from baseline. Mean ± SD MSNA burst frequency (BF) during handgrip and PECA was lower in women (EF, P < 0.05), as was ΔMSNA-BF smaller (main effect, both P < 0.01). ΔTotal activity was higher in men at fatigue (EF: 632 ± 418 vs. ML: 598 ± 342 vs. men: 1,025 ± 416 a.u./min, P < 0.001 for EF and ML vs. men) and during PECA (EF: 354 ± 321 vs. ML: 341 ± 199 vs. men: 599 ± 327 a.u./min, P < 0.05 for EF and ML vs. men). During CPT, HR and MSNA responses were similar between sexes and hormone phases, confirming that central integration and the sympathetic efferent pathway was comparable between the sexes and across hormone phases. Women demonstrated a blunted metaboreflex, unaffected by sex hormones, which may be due to differences in muscle mass or fiber type and, therefore, metabolic stimulation of group IV afferents.
Collapse
Affiliation(s)
- Sara S Jarvis
- Institute for Exercise and Environmental Medicine, 7232 Greenville Ave., Suite 435, Dallas, TX 75231, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Vongpatanasin W, Wang Z, Arbique D, Arbique G, Adams-Huet B, Mitchell JH, Victor RG, Thomas GD. Functional sympatholysis is impaired in hypertensive humans. J Physiol 2011; 589:1209-20. [PMID: 21224235 DOI: 10.1113/jphysiol.2010.203026] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In healthy individuals, sympathetic vasoconstriction is markedly blunted in exercising muscles to optimize blood flow to the metabolically active muscle fibres. This protective mechanism, termed functional sympatholysis, is impaired in rat models of angiotensin-dependent hypertension. However, the relevance of these findings to human hypertension is unknown. Therefore, in 13 hypertensive and 17 normotensive subjects we measured muscle oxygenation and forearm blood flow (FBF) responses to reflex increases in sympathetic nerve activity (SNA) evoked by lower body negative pressure (LBNP) at rest and during moderate-intensity rhythmic handgrip exercise. In the normotensives, LBNP caused decreases in oxygenation and FBF (−16 ± 2% and −23 ± 4%, respectively) in resting forearm but not in exercising forearm (−1 ± 2% and −1 ± 3%, respectively; P < 0.05 vs. rest). In the hypertensives, LBNP evoked decreases in oxygenation and FBF that were similar in the resting and exercising forearm (−14 ± 2% vs. −12 ± 2% and −20 ± 3% vs. −13 ± 2%, respectively; P > 0.05), indicating impaired functional sympatholysis. In the hypertensives, SNA was unexpectedly increased by 54 ± 11% during handgrip alone. However, when SNA was experimentally increased during exercise in the normotensives, sympatholysis was unaffected. Treatment for 4 weeks with the angiotensin receptor blocker irbesartan, but not with the thiazide-type diuretic chlorthalidone, restored sympatholysis in the hypertensives. These data provide the first evidence that functional sympatholysis is impaired in hypertensive humans by a mechanism that appears to involve an angiotensin-dependent increase in sympathetic vasoconstriction in the exercising muscles.
Collapse
Affiliation(s)
- Wanpen Vongpatanasin
- Hypertension Section, Cardiology Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., U9.400, Dallas, TX 75390-8586, USA.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Kaufman MP, Forster HV. Reflexes Controlling Circulatory, Ventilatory and Airway Responses to Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|