51
|
Hao MM, Stamp LA. The many means of conversation between the brain and the gut. Nat Rev Gastroenterol Hepatol 2023; 20:73-74. [PMID: 36517617 DOI: 10.1038/s41575-022-00725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Marlene M Hao
- Department of Anatomy and Physiology, the University of Melbourne, Parkville, Victoria, Australia.
| | - Lincon A Stamp
- Department of Anatomy and Physiology, the University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
52
|
Kraaij R, Schuurmans IK, Radjabzadeh D, Tiemeier H, Dinan TG, Uitterlinden AG, Hillegers M, Jaddoe VW, Duijts L, Moll H, Rivadeneira F, Medina-Gomez C, Jansen PW, Cecil CA. The gut microbiome and child mental health: A population-based study. Brain Behav Immun 2023; 108:188-196. [PMID: 36494050 PMCID: PMC7614161 DOI: 10.1016/j.bbi.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The link between the gut microbiome and the brain has gained increasing scientific and public interest for its potential to explain psychiatric risk. While differences in gut microbiome composition have been associated with several mental health problems, evidence to date has been largely based on animal models and human studies with modest sample sizes. In this cross-sectional study in 1,784 ten-year-old children from the multi-ethnic, population-based Generation R Study, we aimed to characterize associations of the gut microbiome with child mental health problems. Gut microbiome was assessed from stool samples using 16S rRNA sequencing. We focused on overall psychiatric symptoms as well as with specific domains of emotional and behavioral problems, assessed via the maternally rated Child Behavior Checklist. While we observed lower gut microbiome diversity in relation to higher overall and specific mental health problems, associations were not significant. Likewise, we did not identify any taxonomic feature associated with mental health problems after multiple testing correction, although suggestive findings indicated depletion of genera previously associated with psychiatric disorders, including Hungatella, Anaerotruncus and Oscillospiraceae. The identified compositional abundance differences were found to be similar across all mental health problems. Finally, we did not find significant enrichment for specific microbial functions in relation to mental health problems. In conclusion, based on the largest sample examined to date, we do not find clear evidence of associations between gut microbiome diversity, taxonomies or functions and mental health problems in the general pediatric population. In future, the use of longitudinal designs with repeated measurements of microbiome and psychiatric outcomes will be critical to identify whether and when associations between the gut microbiome and mental health emerge across development and into adulthood.
Collapse
Affiliation(s)
- Robert Kraaij
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Isabel K. Schuurmans
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands,The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Djawad Radjabzadeh
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands,Department of Social and Behavioral Sciences, Harvard. T.H. Chan School of Public Health, Boston, MA, USA
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands,Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Manon Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Vincent W.V. Jaddoe
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands,Department of Pediatrics, Divisions of Respiratory Medicine and Allergology, and Neonatology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henriette Moll
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pauline W. Jansen
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Charlotte A.M. Cecil
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands,Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Rotterdam, The Netherlands,Corresponding authors at: Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, Rotterdam, The Netherlands (C. Cecil). addresses: (R. Kraaij), (C.A.M. Cecil)
| |
Collapse
|
53
|
Abstract
The gut microbiome is well known to impact host physiology and health. Given widespread control of physiology by circadian clocks, we asked how the microbiome interacts with circadian rhythms in the Drosophila gut. The microbiome did not cycle in flies fed ad libitum, and timed feeding (TF) drove limited cycling only in clockless per01 flies. However, TF and loss of the microbiome influenced the composition of the gut cycling transcriptome, independently and together. Moreover, both interventions increased the amplitude of rhythmic gene expression, with effects of TF at least partly due to changes in histone acetylation. Contrary to expectations, timed feeding rendered animals more sensitive to stress. Analysis of microbiome function in circadian physiology revealed that germ-free flies reset more rapidly with shifts in the light:dark cycle. We propose that the microbiome stabilizes cycling in the host gut to prevent rapid fluctuations with changing environmental conditions.
Collapse
|
54
|
Jin J, Xu Z, Zhang L, Zhang C, Zhao X, Mao Y, Zhang H, Liang X, Wu J, Yang Y, Zhang J. Gut-derived β-amyloid: Likely a centerpiece of the gut-brain axis contributing to Alzheimer's pathogenesis. Gut Microbes 2023; 15:2167172. [PMID: 36683147 PMCID: PMC9872956 DOI: 10.1080/19490976.2023.2167172] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Peripheral β-amyloid (Aβ), including those contained in the gut, may contribute to the formation of Aβ plaques in the brain, and gut microbiota appears to exert an impact on Alzheimer's disease (AD) via the gut-brain axis, although detailed mechanisms are not clearly defined. The current study focused on uncovering the potential interactions among gut-derived Aβ in aging, gut microbiota, and AD pathogenesis. To achieve this goal, the expression levels of Aβ and several key proteins involved in Aβ metabolism were initially assessed in mouse gut, with key results confirmed in human tissue. The results demonstrated that a high level of Aβ was detected throughout the gut in both mice and human, and gut Aβ42 increased with age in wild type and mutant amyloid precursor protein/presenilin 1 (APP/PS1) mice. Next, the gut microbiome of mice was characterized by 16S rRNA sequencing, and we found the gut microbiome altered significantly in aged APP/PS1 mice and fecal microbiota transplantation (FMT) of aged APP/PS1 mice increased gut BACE1 and Aβ42 levels. Intra-intestinal injection of isotope or fluorescence labeled Aβ combined with vagotomy was also performed to investigate the transmission of Aβ from gut to brain. The data showed that, in aged mice, the gut Aβ42 was transported to the brain mainly via blood rather than the vagal nerve. Furthermore, FMT of APP/PS1 mice induced neuroinflammation, a phenotype that mimics early AD pathology. Taken together, this study suggests that the gut is likely a critical source of Aβ in the brain, and gut microbiota can further upregulate gut Aβ production, thereby potentially contributing to AD pathogenesis.
Collapse
Affiliation(s)
- Jinghua Jin
- Department of Pathology, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Xu
- Department of Pathology, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Zhang
- Department of Pathology, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Can Zhang
- Department of Pathology, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoduo Zhao
- Department of Pathology, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxuan Mao
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Haojian Zhang
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingguang Liang
- Central Laboratory, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Juanli Wu
- National Human Brain Bank for Health and Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yang
- Department of Pathology, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhang
- Department of Pathology, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, China
- National Human Brain Bank for Health and Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
55
|
Cheng L, Wu H, Chen Z, Hao H, Zheng X. Gut microbiome at the crossroad of genetic variants and behavior disorders. Gut Microbes 2023; 15:2201156. [PMID: 37089016 PMCID: PMC10128504 DOI: 10.1080/19490976.2023.2201156] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Genetic variants are traditionally known to shape the susceptibility to neuropsychiatric disorders. An increasing number of studies indicate that remodeling of the gut microbiome by genetic variance serves as a versatile regulator of gut-brain crosstalk and behavior. Evidence also emerges that certain behavioral symptoms are specifically attributed to gut microbial remodeling and gut-to-brain signals, which necessitates rethinking of neuropsychiatric disease etiology and treatment from a systems perspective of reciprocal gene-microbe interactions. Here, we present an emerging picture of how gut microbes and host genetics interactively shape complex psychiatric phenotypes. We illustrate the growing understanding of how the gut microbiome is shaped by genetic changes and its connection to behavioral outcome. We also discuss working strategies and open questions in translating associative gene-microbiome-behavior findings into causal links and novel targets for neurobehavioral disorders. Dual targeting of the genetic and microbial factors may expand the space of drug discovery for neuropsychiatric diseases.
Collapse
Affiliation(s)
- Lingsha Cheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haoqian Wu
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zhuo Chen
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, Jiangsu Province Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
56
|
Potential relationship between Tourette syndrome and gut microbiome. J Pediatr (Rio J) 2023; 99:11-16. [PMID: 35914739 PMCID: PMC9875241 DOI: 10.1016/j.jped.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE In this article, the author aims to discuss and review the relationship between gut microbiota and Tourette syndrome, and whether the change in gut microbiota can affect the severity of Tourette syndrome. SOURCES Literature from PubMed, Google Scholar, and China National Knowledge Infrastructure was mainly reviewed. Both original studies and review articles were discussed. The articles were required to be published as of May 2022. SUMMARY OF THE FINDINGS Current studies on the gut microbiome have found that the gut microbiome and brain seem to interact. It is named the brain-gut-axis. The relationship between the brain-gut axis and neurological and psychiatric disorders has been a topic of intense interest. Tourette syndrome is a chronic neurological disease that seriously affects the quality of life of children, and there appears to be an increase in Ruminococcaceae and Bacteroides in the gut of patients with Tourette syndrome. After clinical observation and animal experiments, there appear to be particular gut microbiota changes in Tourette syndrome. It provides a new possible idea for the treatment of Tourette syndrome. Probiotics and fecal microbial transplantation have been tried to treat Tourette syndrome, especially Tourette syndrome which is not sensitive to drugs, and some results have been achieved. CONCLUSIONS The relationship between gut microbiota and Tourette syndrome and how to alleviate Tourette syndrome by improving gut microbiota are new topics, more in-depth and larger sample size research is still needed.
Collapse
|
57
|
Xu Y, Wang J, Wu X, Jing H, Zhang S, Hu Z, Rao L, Chang Q, Wang L, Zhang Z. Gut microbiota alteration after cholecystectomy contributes to post-cholecystectomy diarrhea via bile acids stimulating colonic serotonin. Gut Microbes 2023; 15:2168101. [PMID: 36732497 PMCID: PMC9897804 DOI: 10.1080/19490976.2023.2168101] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Post-cholecystectomy diarrhea (PCD) is highly prevalent among outpatients with cholecystectomy, and gut microbiota alteration is correlated with it. However, how and to what extent changed fecal bacteria contributes to diarrhea are still unrevealed. Humanized gut microbiome mice model by fecal microbiota transplantation was established to explore the diarrhea-inducible effects of gut microbiota. The role of microbial bile acids (BAs) metabolites was identified by UPLC/MS and the underlying mechanisms were investigated with selective inhibitors and antagonists as probes. These mice transplanted with fecal microbiome of PCD patients (PCD mice) exhibited significantly enhanced gastrointestinal motility and elevated fecal water content, compared with these mice with fecal microbiome of NonPCD patients and HC. In analyzing gut microbiota, tryptophan metabolism was enriched in PCD microbiome. In addition, overabundant serotonin in serum and colon, along with elevated biosynthesis gene and reduced reuptake gene, and highly expressed 5-HT receptors (5-HTRs) in colon of PCD mice were found, but not in small intestine. Notably, diarrheal phenotypes in PCD mice were depleted by tryptophan hydroxylase 1 inhibitor (LX1606) and 5-HTRs selective antagonists (alosetron and GR113808). Furthermore, increased microbial secondary BAs metabolites of DCA, HDCA and LCA were revealed in feces of PCD mice and they were found responsible for stimulating 5-HT level in vitro and in vivo. Intriguingly, blocking BAs-conjugated TGR5/TRPA1 signaling pathway could significantly alleviate PCD. In conclusion, altered gut microbiota after cholecystectomy contributes to PCD by promoting secondary BAs in colon, which stimulates colonic 5-HT and increases colon motility.
Collapse
Affiliation(s)
- Yayun Xu
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Jianfa Wang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Xubo Wu
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Hui Jing
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Shilong Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P.R, China
| | - Zhiqiu Hu
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Longhua Rao
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Qimeng Chang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Lishun Wang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China,Center for Traditional Chinese Medicine and Gut Microbiota, Minhang Hospital, Fudan University, Shanghai, China
| | - Ziping Zhang
- Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, P.R. China,Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China,CONTACT Ziping Zhang Department of Hepatopancreatobiliary Surgery, Minhang Hospital, Fudan University, Shanghai, 201100, P.R. China
| |
Collapse
|
58
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
59
|
Feng J, Xie Z, Hu H. Ion channel regulation of gut immunity. J Gen Physiol 2022; 155:213734. [PMID: 36459135 PMCID: PMC9723512 DOI: 10.1085/jgp.202113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Mounting evidence indicates that gastrointestinal (GI) homeostasis hinges on communications among many cellular networks including the intestinal epithelium, the immune system, and both intrinsic and extrinsic nerves innervating the gut. The GI tract, especially the colon, is the home base for gut microbiome which dynamically regulates immune function. The gut's immune system also provides an effective defense against harmful pathogens entering the GI tract while maintaining immune homeostasis to avoid exaggerated immune reaction to innocuous food and commensal antigens which are important causes of inflammatory disorders such as coeliac disease and inflammatory bowel diseases (IBD). Various ion channels have been detected in multiple cell types throughout the GI tract. By regulating membrane properties and intracellular biochemical signaling, ion channels play a critical role in synchronized signaling among diverse cellular components in the gut that orchestrates the GI immune response. This work focuses on the role of ion channels in immune cells, non-immune resident cells, and neuroimmune interactions in the gut at the steady state and pathological conditions. Understanding the cellular and molecular basis of ion channel signaling in these immune-related pathways and initial testing of pharmacological intervention will facilitate the development of ion channel-based therapeutic approaches for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, China,Correspondence to Jing Feng:
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO,Hongzhen Hu:
| |
Collapse
|
60
|
Xi X, Han L. Exploring the relationship between novel Coronavirus pneumonia and Parkinson's disease. Medicine (Baltimore) 2022; 101:e31813. [PMID: 36401405 PMCID: PMC9678520 DOI: 10.1097/md.0000000000031813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The hypothesis is that there is 0a relationship between Parkinson's disease and coronavirus disease 2019 (COVID-19). By summarizing the pathogenesis of Parkinson's disease and COVID-19 and the impact of COVID-19 on the central nervous system, the relationship between Parkinson's disease and COVID-19 was analyzed, including whether Parkinson's disease is a predisposition factor for COVID-19 and whether COVID-19 causes the occurrence of Parkinson's disease. Discuss the impact of COVID-19 on patients with Parkinson's disease, including symptoms and life impact. To summarize the principles, goals and methods of home rehabilitation for Parkinson's disease patients during COVID-19. Through the analysis of this paper, it is believed that COVID-19 may cause Parkinson's disease. Parkinson's disease has the condition of susceptibility to COVID-19, but this conclusion is still controversial.
Collapse
Affiliation(s)
- Xiaoming Xi
- Rehabilitation Center,Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Beijing
- * Correspondence: Xiaoming Xi, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, No.15, Badachu Xixizhuang, Shijingshan District, Beijing (e-mail: )
| | - Liang Han
- Shandong University of Traditional Chinese Medicine
| |
Collapse
|
61
|
Liu L, Tian F, Li GY, Xu W, Xia R. The effects and significance of gut microbiota and its metabolites on the regulation of osteoarthritis: Close coordination of gut-bone axis. Front Nutr 2022; 9:1012087. [PMID: 36204373 PMCID: PMC9530816 DOI: 10.3389/fnut.2022.1012087] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative disease of articular cartilage in middle-aged and older individuals, which can result in the joint pain and dysfunction, and even cause the joint deformity or disability. With the enhancing process of global aging, OA has gradually become a major public health problem worldwide. Explaining pathogenesis of OA is critical for the development of new preventive and therapeutic interventions. In recent years, gut microbiota (GM) has been generally regarded as a “multifunctional organ,” which is closely relevant with a variety of immune, metabolic and inflammatory functions. Meanwhile, more and more human and animal researches have indicated the existence of gut-bone axis and suggested that GM and its metabolites are closely involved in the pathogenic process of OA, which might become a potential and promising intervention target. Based on the close coordination of gut-bone axis, this review aims to summarize and discuss the mechanisms of GM and its metabolites influencing OA from the aspects of the intestinal mucosal barrier modulation, intestinal metabolites modulation, immune modulation and strategies for the prevention or treatment of OA based on perspectives of GM and its metabolites, thus providing a profound knowledge and recognition of it.
Collapse
|
62
|
Cao S, Huang K, Wen X, Gao J, Cui B, Yao K, Zhan X, Hu S, Wu Q, Xiao H, Zhu C, Jiang Z, Wang L. Dietary supplementation with potassium-magnesium sulfate modulates the antioxidant capacity, immunity, and gut microbiota in weaned piglets. Front Microbiol 2022; 13:961989. [PMID: 36081792 PMCID: PMC9445808 DOI: 10.3389/fmicb.2022.961989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
The purpose of this study was to evaluate the effects of different levels of potassium magnesium sulfateon (PMS) on growth performance, diarrhea rate, intestinal morphology, antioxidant capacity, intestinal immunity, and gut microbiota in weaned piglets. A total of 216 weaned piglets were randomly divided into six dietary groups: the basal diet with 0% (CON), 0.15, 0.3, 0.45, 0.6, and 0.75% PMS. The results showed that the ADFI of 29–42 days and 1–42 days was linearly and quadratically increased by the PMS supplementation (P < 0.05), and significantly reduced the diarrhea rate in weaned piglets (P < 0.05). Moreover, dietary supplementation with PMS significantly reduced the serum adrenaline and noradrenaline levels in weaned piglets (P < 0.05). Furthermore, 0.3% PMS significantly increased the activity of glutathione peroxidase (GSH-Px) in the jejunum (P < 0.05) and tended to increase the activity of superoxide dismutase (SOD) in the jejunal mucosa of piglets (P < 0.1). Additionally, dietary supplementation with PMS significantly reduced the interleukin-1β (IL-1β) level in the jejunal mucosa (P < 0.05), and 0.3% PMS increased the serum IgM content in piglets (P < 0.05). Furthermore, the analysis of colonic microbiota by 16S RNA sequencing showed that the addition of PMS increased the Shannon index (P < 0.05) and Observed Species index (P < 0.05). Based on linear discriminant analysis effect size (LEfSe) and T-test analysis, the addition of PMS increased the relative abundance of Ruminococcaceae and Peptostreptococcaceae in the colonic digesta (P < 0.05). Spearman analysis showed that there was a positive correlation between intestinal GSH-Px activity and the relative abundance of Peptostreptococcaceae. These results showed that dietary supplementation with PMS could improve growth performance, alleviate diarrhea incidence, and modulate the antioxidant capacity and intestinal immunity in weaned piglets, which was partially related to the significant changes in colonic microbiota composition.
Collapse
Affiliation(s)
- Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaiyong Huang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Xiaolu Wen
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jingchun Gao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bailei Cui
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kang Yao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xianliang Zhan
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Cui Zhu
- School of Life Sciences and Engineering, Foshan University, Foshan, China
- Cui Zhu,
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Li Wang,
| |
Collapse
|
63
|
Yang W, Pham J, King SK, Newgreen DF, Young HM, Stamp LA, Hao MM. A Novel Method for Identifying the Transition Zone in Long-Segment Hirschsprung Disease: Investigating the Muscle Unit to Ganglion Ratio. Biomolecules 2022; 12:biom12081101. [PMID: 36008996 PMCID: PMC9406109 DOI: 10.3390/biom12081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Hirschsprung disease (HSCR) is characterised by the absence of enteric ganglia along variable lengths of the distal bowel. Current gold standard treatment involves the surgical resection of the defective, aganglionic bowel. Clear and reliable distinction of the normoganglionated bowel from the transition zone is key for successful resection of the entire defective bowel, and the avoidance of subsequent postoperative complications. However, the intraoperative nature of the tissue analysis and the variability of patient samples, sample preparation, and operator objectivity, make reproducible identification of the transition zone difficult. Here, we have described a novel method for using muscle units as a distinctive landmark for quantifying the density of enteric ganglia in resection specimens from HSCR patients. We show that the muscle unit to ganglion ratio is greater in the transition zone when compared with the proximal, normoganglionated region for long-segment HSCR patients. Patients with short-segment HSCR were also investigated, however, the muscle unit to ganglion ratio was not significantly different in these patients. Immunohistochemical examination of individual ganglia showed that there were no differences in the proportions of either enteric neurons or glial cells through the different regions of the resected colon. In addition, we identified that the size of enteric ganglia was smaller for patients that went on to develop HSCR associated enterocolitis; although the density of ganglia, as determined by the muscle unit to ganglia ratio, was not different when compared with patients that had no further complications. This suggests that subtle changes in the enteric nervous system, even in the “normoganglionated” colon, could be involved in changes in immune function and subsequent bacterial dysbiosis.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10663, Taiwan
| | - Jenny Pham
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
| | - Sebastian K. King
- Murdoch Children’s Research Institute, Parkville 3052, Australia
- Department of Paediatric Surgery, The Royal Children’s Hospital, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3010, Australia
| | | | - Heather M. Young
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
| | - Lincon A. Stamp
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
- Correspondence: (L.A.S.); (M.M.H.)
| | - Marlene M. Hao
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, Australia
- Correspondence: (L.A.S.); (M.M.H.)
| |
Collapse
|
64
|
Yang L, Hung LY, Zhu Y, Ding S, Margolis KG, Leong KW. Material Engineering in Gut Microbiome and Human Health. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9804014. [PMID: 35958108 PMCID: PMC9343081 DOI: 10.34133/2022/9804014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Tremendous progress has been made in the past decade regarding our understanding of the gut microbiome's role in human health. Currently, however, a comprehensive and focused review marrying the two distinct fields of gut microbiome and material research is lacking. To bridge the gap, the current paper discusses critical aspects of the rapidly emerging research topic of "material engineering in the gut microbiome and human health." By engaging scientists with diverse backgrounds in biomaterials, gut-microbiome axis, neuroscience, synthetic biology, tissue engineering, and biosensing in a dialogue, our goal is to accelerate the development of research tools for gut microbiome research and the development of therapeutics that target the gut microbiome. For this purpose, state-of-the-art knowledge is presented here on biomaterial technologies that facilitate the study, analysis, and manipulation of the gut microbiome, including intestinal organoids, gut-on-chip models, hydrogels for spatial mapping of gut microbiome compositions, microbiome biosensors, and oral bacteria delivery systems. In addition, a discussion is provided regarding the microbiome-gut-brain axis and the critical roles that biomaterials can play to investigate and regulate the axis. Lastly, perspectives are provided regarding future directions on how to develop and use novel biomaterials in gut microbiome research, as well as essential regulatory rules in clinical translation. In this way, we hope to inspire research into future biomaterial technologies to advance gut microbiome research and gut microbiome-based theragnostics.
Collapse
Affiliation(s)
- Letao Yang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lin Y. Hung
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kara G. Margolis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| |
Collapse
|
65
|
Holzer P. Gut Signals and Gut Feelings: Science at the Interface of Data and Beliefs. Front Behav Neurosci 2022; 16:929332. [PMID: 35874652 PMCID: PMC9296981 DOI: 10.3389/fnbeh.2022.929332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
|
66
|
Piazza M, Di Cicco M, Pecoraro L, Ghezzi M, Peroni D, Comberiati P. Long COVID-19 in Children: From the Pathogenesis to the Biologically Plausible Roots of the Syndrome. Biomolecules 2022; 12:556. [PMID: 35454144 PMCID: PMC9024951 DOI: 10.3390/biom12040556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
Long Coronavirus disease-19 (COVID-19) refers to the persistence of symptoms related to the infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). This condition is described as persistent and can manifest in various combinations of signs and symptoms, such as fatigue, headache, dyspnea, depression, cognitive impairment, and altered perception of smells and tastes. Long COVID-19 may be due to long-term damage to different organs-such as lung, brain, kidney, and heart-caused by persisting viral-induced inflammation, immune dysregulation, autoimmunity, diffuse endothelial damage, and micro thrombosis. In this review, we discuss the potential and biologically plausible role of some vitamins, essential elements, and functional foods based on the hypothesis that an individual's dietary status may play an important adjunctive role in protective immunity against COVID-19 and possibly against its long-term consequences.
Collapse
Affiliation(s)
- Michele Piazza
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37126 Verona, Italy; (M.P.); (L.P.)
| | - Maria Di Cicco
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (P.C.)
| | - Luca Pecoraro
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, 37126 Verona, Italy; (M.P.); (L.P.)
| | - Michele Ghezzi
- Allergology and Pneumology Unit, V. Buzzi Children’s Hospital, 20154 Milan, Italy;
| | - Diego Peroni
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (P.C.)
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy; (M.D.C.); (P.C.)
| |
Collapse
|
67
|
Fujita K, Matsushita M, Banno E, De Velasco MA, Hatano K, Nonomura N, Uemura H. Gut microbiome and prostate cancer. Int J Urol 2022; 29:793-798. [PMID: 35388531 DOI: 10.1111/iju.14894] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 12/16/2022]
Abstract
The gut microbiome is linked to several diseases such as Alzheimer's disease, rheumatoid arthritis, and colon cancer. The gut microbiome is also associated with the modulation of immune function, resulting in a different response to immune checkpoint therapy. The gut microbiome differs according to lifestyle, diet, sex, race, genetic background, and country. Lifestyle, especially diet, plays an important role in the development and progression of prostate cancer. Recent studies have revealed a connection between the gut microbiome and prostate cancer. A high-fat diet causes gut dysbiosis and gut bacterial metabolites, such as short-chain fatty acids and phospholipids that enter systemic circulation result in promoting prostate cancer growth. Additionally, the gut microbiota can serve as a source of testosterone, which affects prostate cancer progression. Men with castration-resistant prostate cancer have an increased abundance of gut bacteria with androgenic functions. Men with high-risk prostate cancer share a specific gut microbial profile and profiling gut microbiota could be a potentially effective tool to screen men with high-risk prostate cancer. Lifestyle modifications can improve the gut microbiome. Furthermore, altering the gut microbiome using prebiotic or probiotic interventions may prevent or delay prostate cancer development. Further study into the "Gut-Prostate Axis" would help in the discovery of new strategies for the prevention, screening, and treatment of prostate cancer.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eri Banno
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Marco A De Velasco
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
68
|
Weber HC. Gastrointestinal regulatory peptides. Curr Opin Endocrinol Diabetes Obes 2022; 29:167-168. [PMID: 35197424 DOI: 10.1097/med.0000000000000719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- H Christian Weber
- Boston University School of Medicine, Section of Gastroenterology and Hepatology
- VA Boston Healthcare System, Section of Gastroenterology and Hepatology, Boston, Massachusetts, USA
| |
Collapse
|
69
|
García-Sanmartín J, Bobadilla M, Mirpuri E, Grifoll V, Pérez-Clavijo M, Martínez A. Agaricus Mushroom-Enriched Diets Modulate the Microbiota-Gut-Brain Axis and Reduce Brain Oxidative Stress in Mice. Antioxidants (Basel) 2022; 11:antiox11040695. [PMID: 35453380 PMCID: PMC9026521 DOI: 10.3390/antiox11040695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases pose a major problem for developed countries, and stress has been identified as one of the main risk factors in the development of these disorders. Here, we have examined the protective properties against brain oxidative stress of two diets supplemented with 5% (w/w) of Agaricus bisporus (white button mushroom) or Agaricus bisporus brunnescens (Portobello mushroom) in mice. These diets did not modify the weight gain of the animals when compared to those fed with a regular diet, even after feeding on them for 15 weeks. The long-term modification of the microbiota after 12 weeks on the diets was investigated. At the phylum level, there was a large increase of Verrucomicrobia and a reduction of Cyanobacteria associated with the mushroom diets. No changes were observed in the Firmicutes/Bacteroidetes ratio, whose stability is a marker for a healthy diet. At the family level, three groups presented significant variations. These included Akkermansiaceae and Tannerellaceae, which significantly increased with both diets; and Prevotellaceae, which significantly decreased with both diets. These bacteria participate in the generation of microbiota-derived short-chain fatty acids (SCFAs) and provide a link between the microbiota and the brain. Mice subjected to restraint stress showed an upregulation of Il-6, Nox-2, and Hmox-1 expression; a reduction in the enzymatic activities of catalase and superoxide dismutase; and an increase in lipid peroxidation in their brains. All these parameters were significantly prevented by feeding for 3 weeks on the Agaricus-supplemented diets. In summary, the supplementation of a healthy diet with Agaricus mushrooms may significantly contribute to prevent neurodegenerative diseases in the general population.
Collapse
Affiliation(s)
- Josune García-Sanmartín
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (M.B.); (E.M.)
| | - Miriam Bobadilla
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (M.B.); (E.M.)
| | - Eduardo Mirpuri
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (M.B.); (E.M.)
| | - Vanessa Grifoll
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH), 26560 Autol, Spain; (V.G.); (M.P.-C.)
| | - Margarita Pérez-Clavijo
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH), 26560 Autol, Spain; (V.G.); (M.P.-C.)
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain; (J.G.-S.); (M.B.); (E.M.)
- Correspondence: ; Tel.: +34-941-278-775
| |
Collapse
|
70
|
Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied Composition and Underlying Mechanisms of Gut Microbiome in Neuroinflammation. Microorganisms 2022; 10:705. [PMID: 35456757 PMCID: PMC9032006 DOI: 10.3390/microorganisms10040705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The human gut microbiome has been implicated in a host of bodily functions and their regulation, including brain development and cognition. Neuroinflammation is a relatively newer piece of the puzzle and is implicated in the pathogenesis of many neurological disorders. The microbiome of the gut may alter the inflammatory signaling inside the brain through the secretion of short-chain fatty acids, controlling the availability of amino acid tryptophan and altering vagal activation. Studies in Korea and elsewhere highlight a strong link between microbiome dynamics and neurocognitive states, including personality. For these reasons, re-establishing microbial flora of the gut looks critical for keeping neuroinflammation from putting the whole system aflame through probiotics and allotransplantation of the fecal microbiome. However, the numerosity of the microbiome remains a challenge. For this purpose, it is suggested that wherever possible, a fecal microbial auto-transplant may prove more effective. This review summarizes the current knowledge about the role of the microbiome in neuroinflammation and the various mechanism involved in this process. As an example, we have also discussed the autism spectrum disorder and the implication of neuroinflammation and microbiome in its pathogenesis.
Collapse
Affiliation(s)
- Rai Khalid Farooq
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Widyan Alamoudi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Korea;
| | - Fuad A. Abdulla
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (W.A.); (A.A.); (F.A.A.)
- Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, P.O. Box 2435, Dammam 31441, Saudi Arabia
| |
Collapse
|
71
|
Roe K. An Alternative Explanation for Alzheimer's Disease and Parkinson's Disease Initiation from Specific Antibiotics, Gut Microbiota Dysbiosis and Neurotoxins. Neurochem Res 2022; 47:517-530. [PMID: 34669122 DOI: 10.1007/s11064-021-03467-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023]
Abstract
The late onset neuropathologies, including Alzheimer's disease and Parkinson's disease, have become increasingly prevalent. Their causation has been linked to genetics, gut microbiota dysbiosis (gut dysbiosis), autoimmune diseases, pathogens and exposures to neurotoxins. An alternative explanatory hypothesis is provided for their pathogenesis. Virtually everyone has pervasive daily exposures to neurotoxins, through inhalation, skin contact, direct blood transmission and through the gastrointestinal tract by ingestion. As a result, every individual has substantial and fluctuating neurotoxin blood levels. Two major barriers to neurotoxin entry into the central nervous system are the blood-brain barrier and the intestinal wall, in the absence of gut dysbiosis. Inflammation from gut dysbiosis, induced by antibiotic usage, can increase the intestinal wall permeability for neurotoxins to reach the bloodstream, and also increase the blood-brain barrier permeability to neurotoxins. Gut dysbiosis, including gut dysbiosis caused by antibiotic treatments, is an especially high risk for neurotoxin entry into the brain to cause late onset neuropathologies. Gut dysbiosis has far-reaching immune system and central nervous system effects, and even a transient gut dysbiosis can act in combination with neurotoxins, such as aluminum, mercury, lead, arsenic, cadmium, selenium, manganese, organophosphate pesticides and organochlorines, to reach neurotoxin blood levels that can initiate a late onset neuropathology, depending on an individual's age and genetic vulnerability.
Collapse
|
72
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
73
|
Roe K. Autism Spectrum Disorder Initiation by Inflammation-Facilitated Neurotoxin Transport. Neurochem Res 2022; 47:1150-1165. [PMID: 35050480 DOI: 10.1007/s11064-022-03527-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/31/2022]
Abstract
Autism spectrum disorders have been linked to genetics, gut microbiota dysbiosis (gut dysbiosis), neurotoxin exposures, maternal allergies or autoimmune diseases. Two barriers to ingested neurotoxin transport into the central nervous system of a fetus or child are the gastrointestinal wall of the mother or child and the blood-brain barrier of the fetus or child. Inflammation from gut dysbiosis or inflammation from a disease or other agent can increase the gastrointestinal wall and the blood-brain barrier permeabilities to enable neurotoxins to reach the brain of a fetus or child. Postnatal gut dysbiosis is a particular inflammation risk for autism spectrum disorders caused by neurotoxin transport into a child's brain. An extensive gut dysbiosis or another source of inflammation such as a disease or other agent in combination with neurotoxins, including aluminum, mercury, lead, arsenic, cadmium, arsenic, organophosphates, and neurotoxic bacterial toxins and fungal toxins resulting from the gut dysbiosis, can elevate neurotoxin levels in a fetal or child brain to cause neurodevelopmental damage and initiate an autism spectrum disorder. The neurotoxins aluminum and mercury are especially synergistic in causing neurodevelopmental damage. There are three plausible causational pathways for autism spectrum disorders. They include inflammation and neurotoxin loading into the fetal brain during the prenatal neurodevelopment period, inflammation and neurotoxin loading into the brain during the postnatal neurodevelopment period or a two-stage loading of neurotoxins into the brain during both the prenatal and postnatal neurodevelopment periods.
Collapse
|