51
|
Abstract
Viral myocarditis remains a prominent infectious-inflammatory disease for patients throughout the lifespan. The condition presents several challenges including varied modes of clinical presentation, a range of timepoints when patients come to attention, a diversity of approaches to diagnosis, a spectrum of clinical courses, and unsettled perspectives on therapeutics in different patient settings and in the face of different viral pathogens. In this review, we examine current knowledge about viral heart disease and especially provide information on evolving understanding of mechanisms of disease and efforts by investigators to identify and evaluate potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Gabriel Fung
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ye Qiu
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Decheng Yang
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce McManus
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
52
|
Mezzano V, Liang Y, Wright AT, Lyon RC, Pfeiffer E, Song MY, Gu Y, Dalton ND, Scheinman M, Peterson KL, Evans SM, Fowler S, Cerrone M, McCulloch AD, Sheikh F. Desmosomal junctions are necessary for adult sinus node function. Cardiovasc Res 2016; 111:274-86. [PMID: 27097650 DOI: 10.1093/cvr/cvw083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/08/2016] [Indexed: 12/20/2022] Open
Abstract
AIMS Current mechanisms driving cardiac pacemaker function have focused on ion channel and gap junction channel function, which are essential for action potential generation and propagation between pacemaker cells. However, pacemaker cells also harbour desmosomes that structurally anchor pacemaker cells to each other in tissue, but their role in pacemaker function remains unknown. METHODS AND RESULTS To determine the role of desmosomes in pacemaker function, we generated a novel mouse model harbouring cardiac conduction-specific ablation (csKO) of the central desmosomal protein, desmoplakin (DSP) using the Hcn4-Cre-ERT2 mouse line. Hcn4-Cre targets cells of the adult mouse sinoatrial node (SAN) and can ablate DSP expression in the adult DSP csKO SAN resulting in specific loss of desmosomal proteins and structures. Dysregulation of DSP via loss-of-function (adult DSP csKO mice) and mutation (clinical case of a patient harbouring a pathogenic DSP variant) in mice and man, respectively, revealed that desmosomal dysregulation is associated with a primary phenotype of increased sinus pauses/dysfunction in the absence of cardiomyopathy. Underlying defects in beat-to-beat regulation were also observed in DSP csKO mice in vivo and intact atria ex vivo. DSP csKO SAN exhibited migrating lead pacemaker sites associated with connexin 45 loss. In vitro studies exploiting ventricular cardiomyocytes that harbour DSP loss and concurrent early connexin loss phenocopied the loss of beat-to-beat regulation observed in DSP csKO mice and atria, extending the importance of DSP-associated mechanisms in driving beat-to-beat regulation of working cardiomyocytes. CONCLUSION We provide evidence of a mechanism that implicates an essential role for desmosomes in cardiac pacemaker function, which has broad implications in better understanding mechanisms underlying beat-to-beat regulation as well as sinus node disease and dysfunction.
Collapse
Affiliation(s)
- Valeria Mezzano
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Yan Liang
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Adam T Wright
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Robert C Lyon
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Emily Pfeiffer
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Michael Y Song
- Scripps Translational Science Institute, Department of Medicine, Scripps Green Hospital, La Jolla, CA 92037, USA
| | - Yusu Gu
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Nancy D Dalton
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Melvin Scheinman
- Department of Cardiac Electrophysiology, University of California-San Francisco, San Francisco, CA 94143, USA
| | - Kirk L Peterson
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| | - Sylvia M Evans
- Skaggs School of Pharmacy, University of California-San Diego, La Jolla, CA 92093, USA
| | - Steven Fowler
- Cardiovascular Genetics Program, New York University School of Medicine, New York, NY 10016, USA
| | - Marina Cerrone
- Cardiovascular Genetics Program, New York University School of Medicine, New York, NY 10016, USA
| | - Andrew D McCulloch
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, USA
| | - Farah Sheikh
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0613C, USA
| |
Collapse
|
53
|
Abstract
Sudden cardiac death (SCD) is defined by the World Health Organization (WHO) as death within 1 h of symptom onset (witnessed) or within 24 h of being observed alive and symptom free (unwitnessed). It affects more than 3 million people annually worldwide and affects approximately 1/1000 people each year in the USA. Familial studies of syndromes with Mendelian inheritance, candidate genes analyses, and genome-wide association studies (GWAS) have helped our understanding of the genetics of SCD. We will review the genetics of arrhythmogenic hereditary syndromes with Mendelian inheritance from familial studies with structural heart disease (hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic cardiomyopathy) as well as primary electrical causes (long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and short QT syndrome). In addition, we will review the genetics of intermediate phenotypes for SCD such as coronary artery disease and electrocardiographic variables (QT interval, QRS duration, and RR interval). Finally, we will review rare and common variants that are associated with SCD in the general population and were identified from candidate gene analyses and GWAS. Our understanding of the genetics of SCD will improve by the use of next-generation sequencing/whole-exome sequencing as well as whole-genome sequencing which have the potential to discover unsuspected common and rare genetic variants that might be associated with SCD.
Collapse
|
54
|
Loustalot F, Kremer EJ, Salinas S. Membrane Dynamics and Signaling of the Coxsackievirus and Adenovirus Receptor. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 322:331-62. [PMID: 26940522 DOI: 10.1016/bs.ircmb.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coxsackievirus and adenovirus receptor (CAR) belongs to the immunoglobulin superfamily and acts as a receptor for some adenovirus types and group B coxsackieviruses. Its role is best described in epithelia where CAR participates to tight junction integrity and maintenance. Recently, several studies aimed to characterize its potential interaction with intracellular signaling pathways and highlighted several features linking CAR to gene expression. In addition, the molecular mechanisms leading to CAR-specific membrane targeting via the secretory pathway in polarized cells and its internalization are starting to be unraveled. This chapter discusses the interaction between membrane dynamics, intracellular trafficking, and signaling of CAR.
Collapse
Affiliation(s)
- Fabien Loustalot
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France.
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, Montpellier, France.
| |
Collapse
|
55
|
Yamada K, Patel TK, Hochgräfe K, Mahan TE, Jiang H, Stewart FR, Mandelkow EM, Holtzman DM. Analysis of in vivo turnover of tau in a mouse model of tauopathy. Mol Neurodegener 2015; 10:55. [PMID: 26502977 PMCID: PMC4621881 DOI: 10.1186/s13024-015-0052-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/21/2015] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Intracellular accumulation of tau as neurofibrillary tangles (NFTs) is the hallmark of Alzheimer's disease (AD) as well as in other tauopathies. Tau is present not only in the cytoplasm but also in the extracellular space such as cerebrospinal fluid (CSF) and brain interstitial fluid (ISF). Although clearance is one critical parameter leading to such intracellular/extracellular tau accumulation, in vivo turnover of tau has not been well characterized. The current study has attempted to precisely determine in vivo turnover rates of tau utilizing tet-off regulatable mice. In particular, we assessed intracellular tau and extracellular tau, soluble tau, insoluble tau and phosphorylated tau at certain sites utilizing a combination of in vivo microdialysis, biochemical analysis and specific ELISAs recognizing each species. To examine the effect of a tauopathy-associated mutation on tau clearance, half-lives of various tau species were compared between the mice with a FTDP-17 mutation that induces β-sheet formation, ΔK280 mutation (pro-aggregant mice) and control mice with additional β-sheet breaking mutations (anti-aggregant mice). RESULTS Here we report that tau is metabolized at much slower turnover rates in vivo than in cell culture. We found that insoluble tau in pro-aggregant mice had a significantly slower half-life (t1/2 = ~34.2 days) than soluble tau (t1/2 = ~9.7 days). In contrast, soluble tau phosphorylated in the proline rich region was cleared faster than total soluble tau. When comparing pro-aggregant mice to anti-agregant mice, turnover rates of soluble tau species were not significantly different. CONCLUSIONS The current study provides a comprehensive description of in vivo turnover of various tau species present in mice that express human tau. The turnover rate of soluble tau was not significantly altered between pro-aggregant mice and anti-aggregant mice. This suggests that altered conformation by ΔK280 does not have a major impact on clearance pathways for soluble tau. In contrast, different tau species displayed different half-lives. Turnover was significantly delayed for insoluble tau whereas it was accelerated for soluble tau phosphorylated in the proline rich region. These differences in susceptibilities to clearance suggest that aggregation and phosphorylation influences tau clearance which may be important in tau pathogenesis.
Collapse
Affiliation(s)
- Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Tirth K Patel
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | - Katja Hochgräfe
- MPI for Neurological Research, Hamburg Outstation, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany.
| | - Thomas E Mahan
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | - Hong Jiang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | - Floy R Stewart
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | - Eva-Maria Mandelkow
- MPI for Neurological Research, Hamburg Outstation, c/o DESY, Notkestr. 85, 22607, Hamburg, Germany. .,DZNE (German Ctr Neurodegen. Diseases), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany. .,CAESAR Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| |
Collapse
|
56
|
Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 2015; 523:431-436. [PMID: 26176913 PMCID: PMC4718588 DOI: 10.1038/nature14658] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/11/2015] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD), whose defining pathologic features include tauopathy made of phosphorylated tau (p-tau). However, tauopathy has not been detected in early stages after TBI and how TBI leads to tauopathy is unknown. Here we find robust cis p-tau pathology after sport- and military-related TBI in humans and mice. Acutely after TBI in mice and stress in vitro, neurons prominently produce cis p-tau, which disrupts axonal microtubule network and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, termed “cistauosis”, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis p-tau is a major early driver after TBI and leads to tauopathy in CTE and AD, and cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury.
Collapse
|
57
|
Lim BK, Yun SH, Ju ES, Kim BK, Lee YJ, Yoo DK, Kim YC, Jeon ES. Soluble coxsackievirus B3 3C protease inhibitor prevents cardiomyopathy in an experimental chronic myocarditis murine model. Virus Res 2015; 199:1-8. [PMID: 25485472 DOI: 10.1016/j.virusres.2014.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Coxsackievirus B3 (CVB3) is a common cause of myocarditis and dilated cardiomyopathy. CVB3 3C protease (3CP) cleaves the viral polyprotein during replication. We tested whether a water soluble 3CP inhibitor (3CPI) had antiviral effects in a chronic myocarditis model. METHODS Chronic myocarditis was established using DBA/2 strain mice. Starting on post-infection (p.i) day 3, CVB3-infected mice (n=41) were treated with 3CPI by daily intraperitoneal (i.p.) injection at a concentration of 50 μM (1.7 mg/kg/day) per day for 3 consecutive days. Additional mice (n=49) were injected with PBS as a control. RESULTS The 5-week survival rate was significantly higher with 3CPI treatment (82.3% versus 47.9%; P<0.05). Organ virus titers at day 3 and 7 and myocardial damage were significantly lower in 3CPI-treated mice. Echocardiography at day 31 indicated strong protection of heart function by 3CPI (FS, 51.2±1.5 versus 26.1±1.5%; P<0.001). Hemodynamic measurements indicated that 3CPI treatment markedly reduced CVB3-induced LV dysfunction on day 31 (dP/dTmax, 5302±352 versus 4103±408 mmHg/s, P<0.05; dP/dTmin, -3798±212 versus -2814±206 mmHg/s, P<0.01). CONCLUSIONS Water soluble 3CPI was delivered through i.p. injection after CVB3 infection. This agent preserved heart function and decreased organ viral titers and myocardial damage. Soluble 3CPI may be beneficial in the treatment of cardiomyopathy associated with enterovirus infection.
Collapse
Affiliation(s)
- Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, South Korea
| | - Soo-Hyeon Yun
- Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun-Seon Ju
- Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Bo-Kyoung Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - You-Jung Lee
- Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong-Kyeom Yoo
- Center for Molecular & Cellular Imaging, Samsung Biomedical Research Institute, Seoul, South Korea
| | - Young-Chul Kim
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Eun-Seok Jeon
- Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
58
|
Excoffon KJDA, Bowers JR, Sharma P. 1. Alternative splicing of viral receptors: A review of the diverse morphologies and physiologies of adenoviral receptors. RECENT RESEARCH DEVELOPMENTS IN VIROLOGY 2015; 9:1-24. [PMID: 25621323 PMCID: PMC4302334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding the biology of cell surface proteins is important particularly when they are utilized as viral receptors for viral entry. By manipulating the expression of cell surface receptors that have been coopted by viruses, the susceptibility of an individual to virus-induced disease or, alternatively, the effectiveness of viral-based gene therapy can be modified. The most commonly studied vector for gene therapy is adenovirus. The majority of adenovirus types utilize the coxsackievirus and adenovirus receptor (CAR) as a primary receptor to enter cells. Species B adenovirus do not interact with CAR, but instead interact with the cell surface proteins desmoglein-2 (DSG-2) and cluster of differentiation 46 (CD46). These cell surface proteins exhibit varying degrees of alternative mRNA splicing, creating an estimated 20 distinct protein isoforms. It is likely that alternative splice forms have allowed these proteins to optimize their effectiveness in a plethora of niches, including roles as cell adhesion proteins and regulators of the innate immune system. Interestingly, there are soluble isoforms of these viral receptors, which lack the transmembrane domain. These soluble isoforms can potentially bind to the surface of a virus in the extracellular compartment, blocking the ability of the virus to bind to the host cell, reducing viral infectivity. Finally, the diversity of viral receptor isoforms appears to facilitate an assortment of interactions between viral receptor proteins and cytosolic proteins, leading to differential sorting in polarized cells. Using adenoviral receptors as a model system, the purpose of this review is to highlight the role that isoform-specific protein localization plays in the entry of pathogenic viruses from the apical surface of polarized epithelial cells.
Collapse
|
59
|
Yan R, Sharma P, Kolawole AO, Martin SCT, Readler JM, Kotha PLN, Hostetler HA, Excoffon KJDA. The PDZ3 domain of the cellular scaffolding protein MAGI-1 interacts with the Coxsackievirus and adenovirus receptor (CAR). Int J Biochem Cell Biol 2015; 61:29-34. [PMID: 25622559 DOI: 10.1016/j.biocel.2015.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/31/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
Abstract
The Coxsackievirus and adenovirus receptor (CAR) is an essential cellular protein that is involved in cell-cell adhesion, protein trafficking, and viral infection. The major isoform of CAR is selectively sorted to the basolateral membrane of polarized epithelial cells where it co-localizes with the cellular scaffolding protein membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1). Previously, we demonstrated CAR interacts with MAGI-1 through a PDZ-domain dependent interaction. Here, we show that the PDZ3 domain of MAGI-1 is exclusively responsible for the high affinity interaction between the seven exon isoform of CAR and MAGI-1 using yeast-two-hybrid analysis and confirming this interaction biochemically and in cellular lysates by in vitro pull down assay and co-immunoprecipitation. The high affinity interaction between the PDZ3 domain and CAR C-terminus was measured by fluorescence resonance energy transfer. Further, we investigated the biological relevance of this high affinity interaction between CAR and the PDZ3 domain of MAGI-1 and found that it does not alter CAR-mediated adenovirus infection. By contrast, interruption of this high affinity interaction altered the localization of MAGI-1 indicating that CAR is able to traffic MAGI-1 to cell junctions. These data deepen the molecular understanding of the interaction between CAR and MAGI-1 and indicate that although CAR plays a role in trafficking PDZ-based scaffolding proteins to cellular junctions, association with a high affinity intracellular binding partner does not significantly alter adenovirus binding and entry via CAR.
Collapse
Affiliation(s)
- Ran Yan
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - Priyanka Sharma
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - Abimbola O Kolawole
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - Sterling C T Martin
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - James M Readler
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - Poornima L N Kotha
- Department of Biological Sciences, Wright State University, Dayton, OH 45435, USA
| | - Heather A Hostetler
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA.
| | | |
Collapse
|
60
|
Lim BK, Kim JH. ORI2 inhibits coxsackievirus replication and myocardial inflammation in experimental murine myocarditis. Biol Pharm Bull 2014; 37:1650-4. [PMID: 25273388 DOI: 10.1248/bpb.b14-00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We purified ORI2 [3-(3,4-dihydroxyphenyl)acrylic acid 1-(3,4-dihydroxyphenyl)-2-methoxycarbonylethyl ester] from an extract of the plant Isodon excisus. We tested the antiviral effect of ORI2 in a coxsackievirus-induced myocarditis model. Coxsackievirus B3 (CVB3) is a common cause of myocarditis and dilated cardiomyopathy. Activation of extracellular signal-regulated kinase (ERK) and Akt signaling in virus-infected cells is essential for CVB3 replication. Antiviral compounds were screened by HeLa cell survival assay. Several purified natural compounds were added to HeLa cells cultured in 96-well plates for 30 min after 1 multiplicity of infection (m.o.i) CVB3 infection. ORI2 significantly improved HeLa cell survival in a dose-dependent manner. For in vivo studies, BALB/c mice (n=20) were infected with CVB3, then 10 of the mice were treated by daily intraperitoneal injections of ORI2 (100 mM) for 3 consecutive days. ORI2 treatment significantly improved early survival in the treated mice compared to untreated mice (85% vs. 50%, respectively). Organ virus titers and myocardial damage were significantly lower in the ORI2-treated mice than in untreated mice. These results demonstrate that ORI2, delivered by intraperitoneal injection after CVB3 infection, has a significant antiviral effect by markedly inhibiting virus replication, resulting in a decrease in organ virus titer and myocardial damage. ORI2 may be developed as a potential therapeutic agent for the treatment of CVB3 infections.
Collapse
|
61
|
Kim BM, You MH, Chen CH, Lee S, Hong Y, Hong Y, Kimchi A, Zhou XZ, Lee TH. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis 2014; 5:e1237. [PMID: 24853415 PMCID: PMC4047864 DOI: 10.1038/cddis.2014.216] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 12/17/2022]
Abstract
The presence of tangles composed of phosphorylated tau is one of the neuropathological hallmarks of Alzheimer's disease (AD). Tau, a microtubule (MT)-associated protein, accumulates in AD potentially as a result of posttranslational modifications, such as hyperphosphorylation and conformational changes. However, it has not been fully understood how tau accumulation and phosphorylation are deregulated. In the present study, we identified a novel role of death-associated protein kinase 1 (DAPK1) in the regulation of the tau protein. We found that hippocampal DAPK1 expression is markedly increased in the brains of AD patients compared with age-matched normal subjects. DAPK1 overexpression increased tau protein stability and phosphorylation at multiple AD-related sites. In contrast, inhibition of DAPK1 by overexpression of a DAPK1 kinase-deficient mutant or by genetic knockout significantly decreased tau protein stability and abolished its phosphorylation in cell cultures and in mice. Mechanistically, DAPK1-enhanced tau protein stability was mediated by Ser71 phosphorylation of Pin1, a prolyl isomerase known to regulate tau protein stability, phosphorylation, and tau-related pathologies. In addition, inhibition of DAPK1 kinase activity significantly increased the assembly of MTs and accelerated nerve growth factor-mediated neurite outgrowth. Given that DAPK1 has been genetically linked to late onset AD, these results suggest that DAPK1 is a novel regulator of tau protein abundance, and that DAPK1 upregulation might contribute to tau-related pathologies in AD. Therefore, we offer that DAPK1 might be a novel therapeutic target for treating human AD and other tau-related pathologies.
Collapse
Affiliation(s)
- B M Kim
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - M-H You
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C-H Chen
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - S Lee
- 1] Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea [2] Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - Y Hong
- 1] Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea [2] Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - Y Hong
- 1] Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA [2] Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Korea [3] Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| | - A Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - X Z Zhou
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - T H Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
62
|
The Ig CAM CAR is Implicated in Cardiac Development and Modulates Electrical Conduction in the Mature Heart. J Cardiovasc Dev Dis 2014. [DOI: 10.3390/jcdd1010111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
63
|
Interspecies differences in virus uptake versus cardiac function of the coxsackievirus and adenovirus receptor. J Virol 2014; 88:7345-56. [PMID: 24741103 DOI: 10.1128/jvi.00104-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail links CAR to the cytoskeleton and intracellular signaling cascades. In the heart, CAR is crucial for embryonic development, electrophysiology, and coxsackievirus B infection. Noncardiac functions are less well understood, in part due to the lack of suitable animal models. Here, we generated a transgenic mouse that rescued the otherwise embryonic-lethal CAR knockout (KO) phenotype by expressing chicken CAR exclusively in the heart. Using this rescue model, we addressed interspecies differences in coxsackievirus uptake and noncardiac functions of CAR. Survival of the noncardiac CAR KO (ncKO) mouse indicates an essential role for CAR in the developing heart but not in other tissues. In adult animals, cardiac activity was normal, suggesting that chicken CAR can replace the physiological functions of mouse CAR in the cardiomyocyte. However, chicken CAR did not mediate virus entry in vivo, so that hearts expressing chicken instead of mouse CAR were protected from infection and myocarditis. Comparison of sequence homology and modeling of the D1 domain indicate differences between mammalian and chicken CAR that relate to the sites important for virus binding but not those involved in homodimerization. Thus, CAR-directed anticoxsackievirus therapy with only minor adverse effects in noncardiac tissue could be further improved by selectively targeting the virus-host interaction while maintaining cardiac function. IMPORTANCE Coxsackievirus B3 (CVB3) is one of the most common human pathogens causing myocarditis. Its receptor, the coxsackievirus and adenovirus receptor (CAR), not only mediates virus uptake but also relates to cytoskeletal organization and intracellular signaling. Animals without CAR die prenatally with major cardiac malformations. In the adult heart, CAR is important for virus entry and electrical conduction, but its nonmuscle functions are largely unknown. Here, we show that chicken CAR expression exclusively in the heart can rescue the otherwise embryonic-lethal CAR knockout phenotype but does not support CVB3 infection of adult cardiomyocytes. Our findings have implications for the evolution of virus-host versus physiological interactions involving CAR and could help to improve future coxsackievirus-directed therapies inhibiting virus replication while maintaining CAR's cellular functions.
Collapse
|
64
|
Mezzano V, Pellman J, Sheikh F. Cell junctions in the specialized conduction system of the heart. ACTA ACUST UNITED AC 2014; 21:149-59. [PMID: 24738884 DOI: 10.3109/15419061.2014.905928] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Anchoring cell junctions are integral in maintaining electro-mechanical coupling of ventricular working cardiomyocytes; however, their role in cardiomyocytes of the cardiac conduction system (CCS) remains less clear. Recent studies in genetic mouse models and humans highlight the appearance of these cell junctions alongside gap junctions in the CCS and also show that defects in these structures and their components are associated with conduction impairments in the CCS. Here we outline current evidence supporting an integral relationship between anchoring and gap junctions in the CCS. Specifically we focus on (1) molecular and ultrastructural evidence for cell-cell junctions in specialized cardiomyocytes of the CCS, (2) genetic mouse models specifically targeting cell-cell junction components in the heart which exhibit CCS conduction defects and (3) human clinical studies from patients with cell-cell junction-based diseases that exhibit CCS electrophysiological defects.
Collapse
Affiliation(s)
- Valeria Mezzano
- Leon H. Charney Division of Cardiology, New York University School of Medicine , New York , New York
| | | | | |
Collapse
|
65
|
Sultana T, Hou M, Stukenborg JB, Töhönen V, Inzunza J, Chagin AS, Sollerbrant K. Mice depleted of the coxsackievirus and adenovirus receptor display normal spermatogenesis and an intact blood-testis barrier. Reproduction 2014; 147:875-83. [PMID: 24625359 DOI: 10.1530/rep-13-0653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The coxsackievirus and adenovirus receptor (CXADR (CAR)) is a cell adhesion molecule expressed mainly in epithelial cells. Numerous evidence indicate that CXADR has an important role in testis development and function of the blood-testis barrier (BTB) in vitro. The role of CXADR in testis physiology in vivo has, however, not been addressed. We therefore constructed a conditional CXADR knockout (cKO) mouse model in which CXADR can be depleted at any chosen timepoint by the administration of tamoxifen. We report for the first time that testicular depletion of CXADR in adult and pubertal mice does not alter BTB permeability or germ cell migration across the BTB during spermatogenesis. Adult cKO mice display normal junctional ultra-structure and localization of the junctional proteins claudin-3, occludin, junction-associated molecule-A (JAM-A), and ZO1. The BTB was intact with no leakage of biotin and lanthanum tracers into the tubular lumen. Adult CXADR cKO mice were fertile with normal sperm parameters and litter size. Breeding experiments and genotyping of the pups demonstrated that CXADR-negative sperm could fertilize WT eggs. In addition, knocking down CXADR from postnatal day 9 (P9) does not affect testicular development and BTB formation. These cKO mice were analyzed at P49 and P90 and display an intact barrier and uncompromised fertility. We conclude that CXADR possesses no direct role in testicular physiology in vivo.
Collapse
Affiliation(s)
- Taranum Sultana
- Paediatric Endocrinology UnitDepartment of Women's and Children's HealthDepartment of Biosciences and NutritionNovumDepartment of Physiology and PharmacologyKarolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Mi Hou
- Paediatric Endocrinology UnitDepartment of Women's and Children's HealthDepartment of Biosciences and NutritionNovumDepartment of Physiology and PharmacologyKarolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Paediatric Endocrinology UnitDepartment of Women's and Children's HealthDepartment of Biosciences and NutritionNovumDepartment of Physiology and PharmacologyKarolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Virpi Töhönen
- Paediatric Endocrinology UnitDepartment of Women's and Children's HealthDepartment of Biosciences and NutritionNovumDepartment of Physiology and PharmacologyKarolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Jose Inzunza
- Paediatric Endocrinology UnitDepartment of Women's and Children's HealthDepartment of Biosciences and NutritionNovumDepartment of Physiology and PharmacologyKarolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Andrei S Chagin
- Paediatric Endocrinology UnitDepartment of Women's and Children's HealthDepartment of Biosciences and NutritionNovumDepartment of Physiology and PharmacologyKarolinska Institutet, Karolinska University Hospital, 17176 Stockholm, SwedenPaediatric Endocrinology UnitDepartment of Women's and Children's HealthDepartment of Biosciences and NutritionNovumDepartment of Physiology and PharmacologyKarolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Kerstin Sollerbrant
- Paediatric Endocrinology UnitDepartment of Women's and Children's HealthDepartment of Biosciences and NutritionNovumDepartment of Physiology and PharmacologyKarolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
66
|
Agullo-Pascual E, Cerrone M, Delmar M. Arrhythmogenic cardiomyopathy and Brugada syndrome: diseases of the connexome. FEBS Lett 2014; 588:1322-30. [PMID: 24548564 DOI: 10.1016/j.febslet.2014.02.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 11/30/2022]
Abstract
This review summarizes data in support of the notion that the cardiac intercalated disc is the host of a protein interacting network, called "the connexome", where molecules classically defined as belonging to one particular structure (e.g., desmosomes, gap junctions, sodium channel complex) actually interact with others, and together, control excitability, electrical coupling and intercellular adhesion in the heart. The concept of the connexome is then translated into the understanding of the mechanisms leading to two inherited arrhythmia diseases: arrhythmogenic cardiomyopathy, and Brugada syndrome. The cross-over points in these two diseases are addressed to then suggest that, though separate identifiable clinical entities, they represent "bookends" of a spectrum of manifestations that vary depending on the effect that a particular mutation has on the connexome as a whole.
Collapse
Affiliation(s)
- Esperanza Agullo-Pascual
- Leon H Charney Division of Cardiology, New York University School of Medicine, 522 First avenue, Smilow 805, New York, NY 10016, United States
| | - Marina Cerrone
- Leon H Charney Division of Cardiology, New York University School of Medicine, 522 First avenue, Smilow 805, New York, NY 10016, United States
| | - Mario Delmar
- Leon H Charney Division of Cardiology, New York University School of Medicine, 522 First avenue, Smilow 805, New York, NY 10016, United States.
| |
Collapse
|
67
|
Alterations in Coxsackievirus and Adenovirus Receptor Confer Susceptibility to Ventricular Arrhythmia With an Ischemic Event. J Am Coll Cardiol 2014; 63:560-2. [DOI: 10.1016/j.jacc.2013.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 01/24/2023]
|
68
|
Schreiber J, Langhorst H, Jüttner R, Rathjen FG. The IgCAMs CAR, BT-IgSF, and CLMP: Structure, Function, and Diseases. ADVANCES IN NEUROBIOLOGY 2014; 8:21-45. [DOI: 10.1007/978-1-4614-8090-7_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
69
|
Marsman RF, Tan HL, Bezzina CR. Genetics of sudden cardiac death caused by ventricular arrhythmias. Nat Rev Cardiol 2013; 11:96-111. [PMID: 24322550 DOI: 10.1038/nrcardio.2013.186] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sudden cardiac death (SCD) resulting from ventricular tachyarrhythmia is a major contributor to mortality. Clinical management of SCD, currently based on clinical markers of SCD risk, can be improved by integrating genetic information. The identification of multiple disease-causing gene variants has already improved patient management and increased our understanding of the rare Mendelian diseases associated with SCD risk in the young, but marked variability in disease severity suggests that additional genetic modifiers exist. Next-generation DNA sequencing could be crucial to the discovery of SCD-associated genes, but large data sets can be difficult to interpret. SCD usually occurs in patients with an average age of 65 years who have complex cardiac disease stemming from multiple, common, acquired disorders. Heritable factors are largely unknown, but are likely to have a role in determining the risk of SCD in these patients. Numerous genetic loci have been identified that affect electrocardiogram indices, which are regarded as intermediate phenotypes for tachyarrhythmia. These loci could help to identify new molecules and pathways affecting cardiac electrical function. These loci are often located in intergenic regions, so our evolving understanding of the noncoding regulatory regions of the genome are likely to aid in the identification of novel genes that are important for cardiac electrical function and possibly SCD.
Collapse
Affiliation(s)
- Roos F Marsman
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Room L2-108, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Hanno L Tan
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Room L2-108, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Connie R Bezzina
- AMC Heart Center, Department of Clinical and Experimental Cardiology, Room L2-108, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
70
|
Marsman RFJ, Bezzina CR, Freiberg F, Verkerk AO, Adriaens ME, Podliesna S, Chen C, Purfürst B, Spallek B, Koopmann TT, Baczko I, Dos Remedios CG, George AL, Bishopric NH, Lodder EM, de Bakker JMT, Fischer R, Coronel R, Wilde AAM, Gotthardt M, Remme CA. Coxsackie and adenovirus receptor is a modifier of cardiac conduction and arrhythmia vulnerability in the setting of myocardial ischemia. J Am Coll Cardiol 2013; 63:549-59. [PMID: 24291282 DOI: 10.1016/j.jacc.2013.10.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 10/13/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the modulatory effect of the coxsackie and adenovirus receptor (CAR) on ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. BACKGROUND A heritable component in the risk of ventricular fibrillation during myocardial infarction has been well established. A recent genome-wide association study of ventricular fibrillation during acute myocardial infarction led to the identification of a locus on chromosome 21q21 (rs2824292) in the vicinity of the CXADR gene. CXADR encodes the CAR, a cell adhesion molecule predominantly located at the intercalated disks of the cardiomyocyte. METHODS The correlation between CAR transcript levels and rs2824292 genotype was investigated in human left ventricular samples. Electrophysiological studies and molecular analyses were performed using CAR haploinsufficient (CAR⁺/⁻) mice. RESULTS In human left ventricular samples, the risk allele at the chr21q21 genome-wide association study locus was associated with lower CXADR messenger ribonucleic acid levels, suggesting that decreased cardiac levels of CAR predispose to ischemia-induced ventricular fibrillation. Hearts from CAR⁺/⁻ mice displayed slowing of ventricular conduction in addition to an earlier onset of ventricular arrhythmias during the early phase of acute myocardial ischemia after ligation of the left anterior descending artery. Expression and distribution of connexin 43 were unaffected, but CAR⁺/⁻ hearts displayed increased arrhythmia susceptibility on pharmacological electrical uncoupling. Patch-clamp analysis of isolated CAR⁺/⁻ myocytes showed reduced sodium current magnitude specifically at the intercalated disk. Moreover, CAR coprecipitated with NaV1.5 in vitro, suggesting that CAR affects sodium channel function through a physical interaction with NaV1.5. CONCLUSIONS CAR is a novel modifier of ventricular conduction and arrhythmia vulnerability in the setting of myocardial ischemia. Genetic determinants of arrhythmia susceptibility (such as CAR) may constitute future targets for risk stratification of potentially lethal ventricular arrhythmias in patients with coronary artery disease.
Collapse
Affiliation(s)
- Roos F J Marsman
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Connie R Bezzina
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Fabian Freiberg
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Arie O Verkerk
- Heart Failure Research Center, Department of Anatomy, Embryology and Physiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Michiel E Adriaens
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Svitlana Podliesna
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Chen Chen
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Bettina Purfürst
- Electron Microscopy Core Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bastian Spallek
- Universitätsklinikum Benjamin Franklin, Charité, University Medicine Berlin, Berlin, Germany
| | - Tamara T Koopmann
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Cristobal G Dos Remedios
- Muscle Research Unit, Institute for Biomedical Research, University of Sydney, Sydney, Australia
| | - Alfred L George
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Nanette H Bishopric
- University of Miami Cardiovascular Genomics Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Elisabeth M Lodder
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Jacques M T de Bakker
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Robert Fischer
- Universitätsklinikum Benjamin Franklin, Charité, University Medicine Berlin, Berlin, Germany
| | - Ruben Coronel
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Arthur A M Wilde
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany; DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
| | - Carol Ann Remme
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
71
|
Lim BK, Peter AK, Xiong D, Narezkina A, Yung A, Dalton ND, Hwang KK, Yajima T, Chen J, Knowlton KU. Inhibition of Coxsackievirus-associated dystrophin cleavage prevents cardiomyopathy. J Clin Invest 2013; 123:5146-51. [PMID: 24200690 DOI: 10.1172/jci66271] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/05/2013] [Indexed: 01/10/2023] Open
Abstract
Heart failure in children and adults is often the consequence of myocarditis associated with Coxsackievirus (CV) infection. Upon CV infection, enteroviral protease 2A cleaves a small number of host proteins including dystrophin, which links actin filaments to the plasma membrane of muscle fiber cells (sarcolemma). It is unknown whether protease 2A-mediated cleavage of dystrophin and subsequent disruption of the sarcolemma play a role in CV-mediated myocarditis. We generated knockin mice harboring a mutation at the protease 2A cleavage site of the dystrophin gene, which prevents dystrophin cleavage following CV infection. Compared with wild-type mice, we found that mice expressing cleavage-resistant dystrophin had a decrease in sarcolemmal disruption and cardiac virus titer following CV infection. In addition, cleavage-resistant dystrophin inhibited the cardiomyopathy induced by cardiomyocyte-restricted expression of the CV protease 2A transgene. These findings indicate that protease 2A-mediated cleavage of dystrophin is critical for viral propagation, enteroviral-mediated cytopathic effects, and the development of cardiomyopathy.
Collapse
|
72
|
Butterfield DA, Swomley AM, Sultana R. Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 2013; 19:823-35. [PMID: 23249141 PMCID: PMC3749710 DOI: 10.1089/ars.2012.5027] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/05/2012] [Accepted: 12/17/2012] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Alzheimer disease (AD) is an age-related neurodegenerative disease. AD is characterized by progressive cognitive impairment. One of the main histopathological hallmarks of AD brain is the presence of senile plaques (SPs) and another is elevated oxidative stress. The main component of SPs is amyloid beta-peptide (Aβ) that is derived from the proteolytic cleavage of amyloid precursor protein. RECENT ADVANCES Recent studies are consistent with the notion that methionine present at 35 position of Aβ is critical to Aβ-induced oxidative stress and neurotoxicity. Further, we also discuss the signatures of oxidatively modified brain proteins, identified using redox proteomics approaches, during the progression of AD. CRITICAL ISSUES The exact relationships of the specifically oxidatively modified proteins in AD pathogenesis require additional investigation. FUTURE DIRECTIONS Further studies are needed to address whether the therapies directed toward brain oxidative stress and oxidatively modified key brain proteins might help delay or prevent the progression of AD.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, USA.
| | | | | |
Collapse
|
73
|
Houri N, Huang KC, Nalbantoglu J. The Coxsackievirus and Adenovirus Receptor (CAR) undergoes ectodomain shedding and regulated intramembrane proteolysis (RIP). PLoS One 2013; 8:e73296. [PMID: 24015300 PMCID: PMC3756012 DOI: 10.1371/journal.pone.0073296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/19/2013] [Indexed: 11/18/2022] Open
Abstract
The Coxsackievirus and Adenovirus Receptor (CAR) is a cell adhesion molecule originally characterized as a virus receptor but subsequently shown to be involved in physiological processes such as neuronal and heart development, epithelial tight junction integrity, and tumour suppression. Proteolysis of cell adhesion molecules and a wide variety of other cell surface proteins serves as a mechanism for protein turnover and, in some cases, cell signaling. Metalloproteases such as A Disintegrin and Metalloprotease (ADAM) family members cleave cell surface receptors to release their substrates' ectodomains, while the presenilin/ɣ-secretase complex mediates regulated intramembrane proteolysis (RIP), releasing intracellular domain fragments from the plasma membrane. In the case of some substrates such as Notch and amyloid precursor protein (APP), the released intracellular domains enter the nucleus to modulate gene expression. We report that CAR ectodomain is constitutively shed from glioma cells and developing neurons, and is also shed when cells are treated with the phorbol ester phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore ionomycin. We identified ADAM10 as a sheddase of CAR using assays involving shRNA knockdown and rescue, overexpression of wild-type ADAM10 and inhibition of ADAM10 activity by addition of its prodomain. In vitro peptide cleavage, mass spectrometry and mutagenesis revealed the amino acids M224 to L227 of CAR as the site of ADAM10-mediated ectodomain cleavage. CAR also undergoes RIP by the presenilin/γ-secretase complex, and the intracellular domain of CAR enters the nucleus. Ectodomain shedding is a prerequisite for RIP of CAR. Thus, CAR belongs to the increasing list of cell surface molecules that undergo ectodomain shedding and that are substrates for ɣ-secretase-mediated RIP.
Collapse
Affiliation(s)
- Nadia Houri
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Kuo-Cheng Huang
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Josephine Nalbantoglu
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
74
|
Tang T, Lai NC, Wright AT, Gao MH, Lee P, Guo T, Tang R, McCulloch AD, Hammond HK. Adenylyl cyclase 6 deletion increases mortality during sustained β-adrenergic receptor stimulation. J Mol Cell Cardiol 2013; 60:60-7. [PMID: 23587598 PMCID: PMC3987812 DOI: 10.1016/j.yjmcc.2013.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/04/2013] [Accepted: 04/07/2013] [Indexed: 01/08/2023]
Abstract
Sustained β-adrenergic receptor stimulation is associated with cardiomyopathy, an affect thought to result from cAMP-associated cardiac injury. Using a murine line with adenylyl cyclase 6 gene deletion (AC6KO), we tested the hypothesis that AC6 deletion, by limiting cAMP production, would attenuate cardiomyopathy in the setting of sustained β-adrenergic receptor stimulation. During 7d isoproterenol infusion, there was unexpected higher mortality in AC6KO mice compared to wild type control mice (p<0.0001). However, left ventricular function was similarly impaired in isoproterenol-infused control and AC6KO mice. There were no group differences in left ventricular hypertrophy, apoptosis, and fibrosis. Telemetric electrocardiography showed progressive prolongation of PR interval (p<0.0001), QRS duration (p<0.0005), and QTc (p<0.0001), as well as reduction in heart rate (p<0.0001), in AC6KO mice during isoproterenol infusion. These defective electrophysiological properties in isoproterenol-infused AC6KO mice were associated with decreased longitudinal ventricular conduction velocity (p<0.05) and reduced phosphorylation of connexin 43 at S368 in left ventricular samples (p=0.006). Taken together, these data demonstrate that limiting cAMP production does not prevent sustained β-adrenergic receptor stimulation-induced cardiomyopathy. Moreover, AC6 deletion impairs electrophysiological properties and increases mortality during sustained β-adrenergic receptor stimulation. Decreased connexin 43 phosphorylation and impaired ventricular conduction may be of mechanistic importance for the defective electrophysiological properties.
Collapse
MESH Headings
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Adrenergic beta-Agonists/adverse effects
- Adrenergic beta-Agonists/pharmacology
- Animals
- Connexin 43/genetics
- Connexin 43/metabolism
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Gene Deletion
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Isoproterenol/adverse effects
- Isoproterenol/pharmacology
- Mice
- Mice, Knockout
- Phosphorylation/genetics
- Phosphorylation/physiology
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Ventricular Function, Left/drug effects
Collapse
Affiliation(s)
- Tong Tang
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - N. Chin Lai
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Adam T. Wright
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92039, USA
| | - Mei Hua Gao
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Paul Lee
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Tracy Guo
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Ruoying Tang
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Andrew D. McCulloch
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92039, USA
| | - H. Kirk Hammond
- Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
75
|
Kline CF, Mohler PJ. Evolving form to fit function: cardiomyocyte intercalated disc and transverse-tubule membranes. CURRENT TOPICS IN MEMBRANES 2013; 72:121-58. [PMID: 24210429 DOI: 10.1016/b978-0-12-417027-8.00004-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The vertebrate cardiac myocyte has evolved a highly organized cellular membrane architecture and cell-cell contacts in order to effectively transmit precisely timed and homogeneous depolarizing waves without failure (>2 billion times/human life span). Two unique specialized membrane domains, the intercalated disc and the transverse tubule (T-tubule), function to ensure the rapid and coordinated propagation of the action potential throughout the heart. Based on their critical roles in structure, signaling, and electric inter- and intracellular communication, it is not surprising that dysfunction in these membrane structures is associated with aberrant vertebrate physiology, resulting in potentially fatal congenital and acquired disease. This chapter will review the fundamental components of cardiomyocyte intercalated disc and transverse-tubule membranes with a focus on linking dysfunction in these membranes with human cardiovascular disease.
Collapse
Affiliation(s)
- Crystal F Kline
- The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | |
Collapse
|
76
|
De Ferrari GM, De Regibus V, Gionti V, Civardi D, Insolia R, Pedrazzini M, Gentilini D, Di Blasio A, Crotti L, Schwartz PJ. PREDESTINATION: PRimary vEntricular fibrillation and suDden dEath during a firST myocardIal iNfArcTION: Genetic Basis. CONTRIBUTIONS TO STATISTICS 2013. [DOI: 10.1007/978-88-470-5379-3_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
77
|
Kim JH, Seok H, Lim BK. Cardiac-specific Coxsackievirus and Adenovirus Receptor (CAR) Deletion Inhibit Enterovirus Infection in Murine Heart. ACTA ACUST UNITED AC 2013. [DOI: 10.4167/jbv.2013.43.3.210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jin-Hee Kim
- Department of Herber Skin Care, College of Herbal Bio-industry, Gyeongsan-si, Gyeongsangbuk-do, Korea
| | - Heon Seok
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Korea
| |
Collapse
|
78
|
Frank M, Wirth A, Andrié RP, Kreuzberg MM, Dobrowolski R, Seifert G, Offermanns S, Nickenig G, Willecke K, Schrickel JW. Connexin45 Provides Optimal Atrioventricular Nodal Conduction in the Adult Mouse Heart. Circ Res 2012; 111:1528-38. [DOI: 10.1161/circresaha.112.270561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rationale:
The gap junctional protein connexin (Cx) 45 is strongly expressed in the early embryonic myocardium. In the adult hearts of mice and humans, the expression mainly is restricted to the cardiac conduction system. Cx45 plays an essential role for development and function of the embryonic heart because general and cardiomyocyte-directed deficiencies of Cx45 in mice lead to embryonic lethality attributable to morphological and functional cardiovascular defects. The function of Cx45 in the adult mouse has not yet been cleared.
Objective:
To clarify the function of Cx45 in the adult mouse heart.
Methods and Results:
To circumvent the embryonic lethality resulting from Cx45 deficiency, mice were generated in which deletion of Cx45 specifically was induced in cardiomyocytes of adult mice. These Cx45-deficient mice were viable but showed a decrease in atrioventricular nodal conductivity. In addition, the Cx30.2 protein that is coexpressed with Cx45 in the cardiac conduction system was posttranscriptionally reduced by 70% in mutant hearts. Furthermore, deletion of both Cx45 and Cx30.2 resulted in viable mice that, however, showed stronger impairment of atrioventricular nodal conduction than the single Cx45-deficient mice.
Conclusions:
Cx45 is required for optimal impulse propagation in the atrioventricular node and stabilizes the level of the coexpressed Cx30.2 protein in the adult mouse heart. In contrast to the embryo, Cx45 is not essential for the viability of adult mice.
Collapse
Affiliation(s)
- Marina Frank
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| | - Angela Wirth
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| | - René P. Andrié
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| | - Maria M. Kreuzberg
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| | - Radoslaw Dobrowolski
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| | - Gerald Seifert
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| | - Stefan Offermanns
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| | - Georg Nickenig
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| | - Klaus Willecke
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| | - Jan W. Schrickel
- From the LIMES-Institute, Molecular Genetics (M.F., M.M.K., R.D., K.W.) and Institute of Cellular Neurosciences (G.S.), University of Bonn, Bonn, Germany; Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (A.W., S.O.); and Department of Medicine-Cardiology, University Hospital Bonn, Bonn, Germany (R.P.A., G.N., J.W.S.)
| |
Collapse
|
79
|
Nakamura K, Zhen Zhou X, Ping Lu K. Cis phosphorylated tau as the earliest detectable pathogenic conformation in Alzheimer disease, offering novel diagnostic and therapeutic strategies. Prion 2012; 7:117-20. [PMID: 23154634 DOI: 10.4161/pri.22849] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
After protein phosphorylation on certain serine or threonine residues preceding a proline (pSer/Thr-Pro), the function of certain phosphorylated protein is further regulated by cis-trans conformational change. Due to the lack of any tool to detect such two conformations in cells, however, it is not even known whether any cis or trans conformation exists in vivo, not to mention their conformation-specific functions or regulation. We developed a novel peptide chemistry technology to generate the first pair of antibodies that can distinguish cis from trans pThr231-Pro tau. Cis, but not trans, pThr231-tau appears early in mild cognitive impairment (MCI) neurons and further accumulates in only degenerating neurons as Alzheimer disease (AD) progresses, localizing to dystrophic neurites, which are known to correlate well with memory loss. Unlike trans p-tau, the cis cannot promote microtubule assembly, and is more resistant to dephosphorylation and degradation and more prone to aggregation. Pin1 accelerates cis to trans isomerization to prevent tau pathology in AD. Thus, during MCI and AD development, cis pThr231-Pro tau is the earliest detectable pathogenic tau conformation and antibodies and vaccines against the pathogenic cis p-tau may be used for the early diagnosis and treatment of AD. These findings offer in vivo approach to study conformational regulation of Pro-directed phosphorylation signaling.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
80
|
Su L, Mruk DD, Cheng CY. Regulation of the blood-testis barrier by coxsackievirus and adenovirus receptor. Am J Physiol Cell Physiol 2012; 303:C843-53. [PMID: 22875787 DOI: 10.1152/ajpcell.00218.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The blood-testis barrier (BTB) divides the seminiferous epithelium into the basal and the adluminal compartment. It restricts paracellular diffusion of molecules between Sertoli cells, confers cell polarity, and creates a unique microenvironment in the adluminal compartment for spermatid development. However, it undergoes restructuring during the epithelial cycle so that preleptotene spermatocytes differentiated from type B spermatogonia residing in the basal compartment can traverse the BTB at stage VIII of the cycle, while the immunological barrier is maintained. Herein, coxsackievirus and adenovirus receptor (CAR), a tight junction (TJ) integral membrane protein in the testis and multiple epithelia and endothelia, was found to act as a regulatory protein at the BTB, besides serving as a structural adhesion protein. RNAi-mediated knockdown of CAR in a Sertoli cell epithelium with an established TJ-permeability barrier that mimicked the BTB in vivo resulted in a disruption of the TJ barrier and an increase in endocytosis of the TJ-protein occludin. Furthermore, such an enhancement in occludin endocytosis was accompanied by a downregulation of Thr-phosphorylation in occludin and an increase in the association of endocytosed occludin with early endosome antigen-1. These findings were confirmed by overexpressing CAR in Sertoli cells, which was found to "tighten" the Sertoli cell TJ barrier, promoting BTB function. These findings support the emerging concept that CAR is not only a structural protein, it is involved in conferring the phosphorylation status of other adhesion proteins at the BTB (e.g., occludin) possibly mediated via its structural interactions with nonreceptor protein kinases, thereby modulating endocytic vesicle-mediated protein trafficking.
Collapse
Affiliation(s)
- Linlin Su
- Center for Biomedical Research, Population Council, New York, New York 10065, USA
| | | | | |
Collapse
|
81
|
Coxsackievirus and adenovirus receptor (CAR) mediates trafficking of acid sensing ion channel 3 (ASIC3) via PSD-95. Biochem Biophys Res Commun 2012; 425:13-8. [PMID: 22809504 DOI: 10.1016/j.bbrc.2012.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/07/2012] [Indexed: 01/14/2023]
Abstract
We have previously shown that the Coxsackievirus and adenovirus receptor (CAR) can interact with post-synaptic density 95 (PSD-95) and localize PSD-95 to cell-cell junctions. We have also shown that activity of the acid sensing ion channel (ASIC3), a H(+)-gated cation channel that plays a role in mechanosensation and pain signaling, is negatively modulated by PSD-95 through a PDZ-based interaction. We asked whether CAR and ASIC3 simultaneously interact with PSD-95, and if so, whether co-expression of these proteins alters their cellular distribution and localization. Results indicate that CAR and ASIC3 co-immunoprecipitate only when co-expressed with PSD-95. CAR also brings both PSD-95 and ASIC3 to the junctions of heterologous cells. Moreover, CAR rescues PSD-95-mediated inhibition of ASIC3 currents. These data suggest that, in addition to activity as a viral receptor and adhesion molecule, CAR can play a role in trafficking proteins, including ion channels, in a PDZ-based scaffolding complex.
Collapse
|
82
|
Role of the myristoylation site in expressing exogenous functional proteins in coxsackieviral vector. Biosci Biotechnol Biochem 2012; 76:1173-6. [PMID: 22790942 DOI: 10.1271/bbb.120045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We generated a cardiotropic replication-competent chimeric coxsackievirus B3 (CVB3) to express alcohol dehydrogenase (ADH). Although exogenously expressed ADH was found by Western blot analysis, its enzyme function was repressed. To define the factor that inhibits the enzymatic function of ADH, we introduced a site-directed mutation at the second amino acid (MGAQEF···) of the CVB3 VP0 capsid protein, effectively changing glycine to alanine. This glycine is known to be a myristoylation site during viral capsid protein maturation in infected cells. In contrast to the unmodified virus, ADH expression and enzymatic function were readily detectable in the mutated rCVB3-ADH (G2A) virus. While expression of ADH required mutation of the CVB3 VP0 myristoylation site for proper function, another chimeric virus that expresses green fluorescent protein (rCVB3-GFP (G or A)) worked independently of the myristoylation site. Indeed, infected HeLa cells displayed GFP under a fluorescent microscope. These results indicate that the myristoylation site in the VP0 capsid protein inhibited the expression of enzymatically active ADH but not GFP. VP0 myristoylation is dispensable for chimeric CVB3 virus replication.
Collapse
|
83
|
Affiliation(s)
- Rajat Deo
- Section of Electrophysiology, Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
84
|
Mezzano V, Sheikh F. Cell-cell junction remodeling in the heart: possible role in cardiac conduction system function and arrhythmias? Life Sci 2011; 90:313-21. [PMID: 22227473 DOI: 10.1016/j.lfs.2011.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/28/2022]
Abstract
Anchoring cell-cell junctions (desmosomes, fascia adherens) play crucial roles in maintaining mechanical integrity of cardiac muscle cells and tissue. Genetic mutations and/or loss of critical components in these macromolecular structures are increasingly being associated with arrhythmogenic cardiomyopathies; however, their specific roles have been primarily attributed to effects within the working (ventricular) cardiac muscle. Growing evidence also points to a key role for anchoring cell-cell junction components in cardiac muscle cells of the cardiac conduction system. This is not only evidenced by the molecular and ultra-structural presence of anchoring cell junctions in specific compartments/structures of the cardiac conduction system (sinoatrial node, atrioventricular node, His-Purkinje system), but also because conduction system-related arrhythmias can be found in humans and mouse models of cardiomyopathies harboring defects and/or mutations in key anchoring cell-cell junction proteins. These studies emphasize the clinical need to understand the molecular and cellular role(s) for anchoring cell-cell junctions in cardiac conduction system function and arrhythmias. This review will focus on (i) experimental findings that underline an important role for anchoring cell-cell junctions in the cardiac conduction system, (ii) insights regarding involvement of these structures in age-related cardiac remodeling of the conduction system, (iii) summarizing available genetic mouse models that can target cardiac conduction system structures and (iv) implications of these findings on future therapies for arrhythmogenic heart diseases.
Collapse
Affiliation(s)
- Valeria Mezzano
- Department of Medicine (Cardiology Division), University of California-San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
85
|
Hypermorphic mutation of the voltage-gated sodium channel encoding gene Scn10a causes a dramatic stimulus-dependent neurobehavioral phenotype. Proc Natl Acad Sci U S A 2011; 108:19413-8. [PMID: 22087007 DOI: 10.1073/pnas.1117020108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel Na(v)1.8 is known to function in the transmission of pain signals induced by cold, heat, and mechanical stimuli. Sequence variants of human Na(v)1.8 have been linked to altered cardiac conduction. We identified an allele of Scn10a encoding the α-subunit of Na(v)1.8 among mice homozygous for N-ethyl-N-nitrosourea-induced mutations. The allele creates a dominant neurobehavioral phenotype termed Possum, characterized by transient whole-body tonic immobility induced by pinching the skin at the back of the neck ("scruffing"). The Possum mutation enhanced Na(v)1.8 sodium currents and neuronal excitability and heightened sensitivity of mutants to cold stimuli. Striking electroencephalographic changes were observed concomitant with the scruffing-induced behavioral change. In addition, electrocardiography demonstrated that Possum mice exhibited marked sinus bradycardia and R-R variability upon scruffing, abrogated by infusion of atropine. However, atropine failed to prevent or mitigate the tonic immobility response. Hyperactive sodium conduction via Na(v)1.8 thus leads to a complex neurobehavioral phenotype, which resembles catatonia in schizophrenic humans and tonic immobility in other mammals upon application of a discrete stimulus; no other form of mechanosensory stimulus could induce the immobility phenotype. Our data confirm the involvement of Na(v)1.8 in transducing pain initiated by cold and additionally implicate Na(v)1.8 in previously unknown functions in the central nervous system and heart.
Collapse
|
86
|
Pei L, Leblanc M, Barish G, Atkins A, Nofsinger R, Whyte J, Gold D, He M, Kawamura K, Li HR, Downes M, Yu RT, Powell H, Lingrel JB, Evans RM. Thyroid hormone receptor repression is linked to type I pneumocyte-associated respiratory distress syndrome. Nat Med 2011; 17:1466-72. [PMID: 22001906 PMCID: PMC3210920 DOI: 10.1038/nm.2450] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/21/2011] [Indexed: 12/15/2022]
Abstract
Although the lung is a defining feature of air-breathing animals, the pathway controlling the formation of type I pneumocytes, the cells that mediate gas exchange, is poorly understood. In contrast, the glucocorticoid receptor and its cognate ligand have long been known to promote type II pneumocyte maturation; prenatal administration of glucocorticoids is commonly used to attenuate the severity of infant respiratory distress syndrome (RDS). Here we show that knock-in mutations of the nuclear co-repressor SMRT (silencing mediator of retinoid and thyroid hormone receptors) in C57BL/6 mice (SMRTmRID) produces a previously unidentified respiratory distress syndrome caused by prematurity of the type I pneumocyte. Though unresponsive to glucocorticoids, treatment with anti-thyroid hormone drugs (propylthiouracil or methimazole) completely rescues SMRT-induced RDS, suggesting an unrecognized and essential role for the thyroid hormone receptor (TR) in lung development. We show that TR and SMRT control type I pneumocyte differentiation through Klf2, which, in turn, seems to directly activate the type I pneumocyte gene program. Conversely, mice without lung Klf2 lack mature type I pneumocytes and die shortly after birth, closely recapitulating the SMRTmRID phenotype. These results identify TR as a second nuclear receptor involved in lung development, specifically type I pneumocyte differentiation, and suggest a possible new type of therapeutic option in the treatment of RDS that is unresponsive to glucocorticoids.
Collapse
Affiliation(s)
- Liming Pei
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mathias Leblanc
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Grant Barish
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Annette Atkins
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Russell Nofsinger
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jamie Whyte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Gold
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mingxiao He
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kazuko Kawamura
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hai-Ri Li
- VA San Diego Healthcare System and Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Harry Powell
- VA San Diego Healthcare System and Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jerry B. Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Ronald M. Evans
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
87
|
Fechner H, Pinkert S, Geisler A, Poller W, Kurreck J. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules 2011; 16:8475-503. [PMID: 21989310 PMCID: PMC6264230 DOI: 10.3390/molecules16108475] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/16/2023] Open
Abstract
Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.
Collapse
Affiliation(s)
- Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
- Author to whom correspondence should be addressed; ; Tel.: +49-30-31472181; Fax: +49-30-31427502
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| | - Anja Geisler
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Wolfgang Poller
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| |
Collapse
|
88
|
Affiliation(s)
- André G Kléber
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 022215, USA.
| |
Collapse
|
89
|
Palatinus JA, Rhett JM, Gourdie RG. The connexin43 carboxyl terminus and cardiac gap junction organization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1831-43. [PMID: 21856279 DOI: 10.1016/j.bbamem.2011.08.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 12/09/2022]
Abstract
The precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein-protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Joseph A Palatinus
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
90
|
Pazirandeh A, Sultana T, Mirza M, Rozell B, Hultenby K, Wallis K, Vennström B, Davis B, Arner A, Heuchel R, Löhr M, Philipson L, Sollerbrant K. Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car) gene. PLoS One 2011; 6:e20203. [PMID: 21674029 PMCID: PMC3108585 DOI: 10.1371/journal.pone.0020203] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/27/2011] [Indexed: 11/18/2022] Open
Abstract
To determine the normal function of the Coxsackievirus and Adenovirus Receptor (CAR), a protein found in tight junctions and other intercellular complexes, we constructed a mouse line in which the CAR gene could be disrupted at any chosen time point in a broad spectrum of cell types and tissues. All knockouts examined displayed a dilated intestinal tract and atrophy of the exocrine pancreas with appearance of tubular complexes characteristic of acinar-to-ductal metaplasia. The mice also exhibited a complete atrio-ventricular block and abnormal thymopoiesis. These results demonstrate that CAR exerts important functions in the physiology of several organs in vivo.
Collapse
Affiliation(s)
- Ahmad Pazirandeh
- Ludwig Institutet for Cancer Research, Stockholm Branch, Stockholm, Sweden
| | - Taranum Sultana
- Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Momina Mirza
- Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Björn Rozell
- Department of Laboratory Medicine, Karolinska Institutet and University Hospital, Huddinge, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institutet and University Hospital, Huddinge, Sweden
| | - Karin Wallis
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Vennström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Davis
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rainer Heuchel
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden
| | - Matthias Löhr
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Sweden
| | - Lennart Philipson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kerstin Sollerbrant
- Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
91
|
Marsman RFJ, Wilde AAM, Bezzina CR. Genetic predisposition for sudden cardiac death in myocardial ischaemia: the Arrhythmia Genetics in the NEtherlandS study. Neth Heart J 2011; 19:96-100. [PMID: 21461030 PMCID: PMC3040308 DOI: 10.1007/s12471-010-0070-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sudden cardiac death from ventricular fibrillation during myocardial infarction is a leading cause of total and cardiovascular mortality. This multifactorial, complex condition clusters in families, suggesting a substantial genetic cause. We carried out a genomewide association study (GWAS) for sudden cardiac death, in the AGNES (Arrhythmia Genetics in the Netherlands) population, consisting of patients with (cases) and without (controls) ventricular fibrillation during a first ST-elevation myocardial infarction. The most significant association was found at chromosome 21q21 (rs2824292; odds ratio = 1.78, 95% CI 1.47–2.13, P = 3.3 × 10−10), 98 kb proximal of the CXADR gene, encoding the Coxsackie and adenovirus receptor. This locus has not previously been implicated in arrhythmia susceptibility. Further research on the mechanism of this locus will ultimately provide novel insight into arrhythmia mechanisms in this condition.
Collapse
Affiliation(s)
- R. F. J. Marsman
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - A. A. M. Wilde
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
- Department of Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - C. R. Bezzina
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
92
|
Yuen S, Smith J, Caruso L, Balan M, Opavsky MA. The coxsackie-adenovirus receptor induces an inflammatory cardiomyopathy independent of viral infection. J Mol Cell Cardiol 2011; 50:826-40. [PMID: 21352828 DOI: 10.1016/j.yjmcc.2011.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 01/17/2023]
Abstract
The coxsackie-adenovirus receptor (CAR) is a viral receptor for Group B coxsackieviruses (CVBs) and adenoviruses. CAR has been linked with the innate immune response to CVB myocarditis, and with activation of inflammatory cells in vitro. We hypothesized that CAR activates signals that promote inflammation in the myocardium independent of viral infection. To test this we conditionally overexpressed murine CAR in cardiomyocytes of adult binary transgenic mice under the control of a tetracycline-responsive (tet-off) α-myosin heavy chain (αMtTA) promoter (mCAR(+)/αMtTA(+) mice). An inflammatory cardiomyopathy developed in both lines generated (6-mCAR(+)/αMtTA(+) and 12-mCAR(+)/αMtTA(+)) following withdrawal of doxycycline. Cardiac CAR was upregulated at 4weeks of age in 6-mCAR(+)/αMtTA(+) mice and induced a mild inflammatory infiltrate (score 1.3 of 4.0±0.3) at 6weeks, with 95% of mice surviving to that time. In the second line, 12-mCAR(+)/αMtTA(+) mice, CAR was upregulated in the majority of mice by 3weeks of age, and by 5weeks of age more severe cardiac inflammation (score 2.8 of 4.0±0.4) developed with only 56% of mice surviving. The cardiac inflammatory infiltrate was primarily natural killer cells and macrophages in both mCAR(+)/αMtTA(+) lines. A proinflammatory cytokine response with increased cardiac interferon-γ, interleukin (IL)-12, IL-1β, tumor necrosis factor-α and IL-6 was detected by real-time RT-PCR. CAR has been linked to signaling via the inflammatory mitogen-activated protein kinase (MAPK) cascades; therefore, we evaluated the response of these pathways in hearts with upregulated CAR. Both stress-activated JNK and p38MAPK were activated in mCAR(+)/αMtTA(+) hearts prior to onset of inflammation and in isolated mCAR(+)/αMtTA(+) cardiomyocytes. In conclusion, we show for the first time that CAR upregulation in the adult mouse heart induces cardiac inflammation reminiscent of early viral myocarditis. CAR-induced stress-activated MAPK signaling may contribute to the development of cardiac inflammation unrelated to viral infection per se.
Collapse
Affiliation(s)
- Stella Yuen
- Cell Biology Program, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
93
|
Soohoo CY, Shi R, Lee TH, Huang P, Lu KP, Zhou XZ. Telomerase inhibitor PinX1 provides a link between TRF1 and telomerase to prevent telomere elongation. J Biol Chem 2010; 286:3894-906. [PMID: 21119197 DOI: 10.1074/jbc.m110.180174] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Telomere maintenance is essential for protecting chromosome ends. Aberrations in telomere length have been implicated in cancer and aging. Telomere elongation by human telomerase is inhibited in cis by the telomeric protein TRF1 and its associated proteins. However, the link between TRF1 and inhibition of telomerase elongation of telomeres remains elusive because TRF1 has no direct effect on telomerase activity. We have previously identified one Pin2/TRF1-interacting protein, PinX1, that has the unique property of directly binding and inhibiting telomerase catalytic activity (Zhou, X. Z., and Lu, K. P. (2001) Cell 107, 347-359). However, nothing is known about the role of the PinX1-TRF1 interaction in the regulation of telomere maintenance. By identifying functional domains and key amino acid residues in PinX1 and TRF1 responsible for the PinX1-TRF1 interaction, we show that the TRF homology domain of TRF1 interacts with a minimal 20-amino acid sequence of PinX1 via hydrophilic and hydrophobic interactions. Significantly, either disrupting this interaction by mutating the critical Leu-291 residue in PinX1 or knocking down endogenous TRF1 by RNAi abolishes the ability of PinX1 to localize to telomeres and to inhibit telomere elongation in cells even though neither has any effect on telomerase activity per se. Thus, the telomerase inhibitor PinX1 is recruited to telomeres by TRF1 and provides a critical link between TRF1 and telomerase inhibition to prevent telomere elongation and help maintain telomere homeostasis.
Collapse
Affiliation(s)
- Christina Y Soohoo
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Sudden cardiac death (SCD) is a leading cause of total and cardiovascular mortality, and ventricular fibrillation is the underlying arrhythmia in the majority of cases. In the young, where the incidence of SCD is low, a great proportion of SCDs occur in the context of inherited disorders such as cardiomyopathy or primary electrical disease, where a monogenic hereditary component is a strong determinant of risk. Marked advancement has been made over the past 15 years in the understanding of the genetic basis of the primary electrical disorders, and this has had an enormous impact on the management of these patients. At older ages, the great majority of SCDs occur in the context of acute myocardial ischemia and infarction. Although epidemiologic studies have shown that heritable factors also determine risk in these cases, inheritance is likely complex and multifactorial, and progress in understanding the genetic and molecular mechanisms that determine susceptibility to these arrhythmias, affecting a greater proportion of the population, has been very limited. We review the most recent insights gained into the genetic basis of both the monogenic and the more complex ventricular arrhythmias.
Collapse
Affiliation(s)
- Raha Pazoki
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
- Department of Clinical Epidemiology Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A. M. Wilde
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
| | - Connie R. Bezzina
- Department of Clinical and Experimental Cardiology, Heart Failure Research Center, Amsterdam, The Netherlands
- Department of Experimental Cardiology, Academic Medical Center, Room L2-108-1 Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
95
|
Bru T, Salinas S, Kremer EJ. An update on canine adenovirus type 2 and its vectors. Viruses 2010; 2:2134-2153. [PMID: 21994722 PMCID: PMC3185752 DOI: 10.3390/v2092134] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/23/2010] [Accepted: 09/24/2010] [Indexed: 12/27/2022] Open
Abstract
Adenovirus vectors have significant potential for long- or short-term gene transfer. Preclinical and clinical studies using human derived adenoviruses (HAd) have demonstrated the feasibility of flexible hybrid vector designs, robust expression and induction of protective immunity. However, clinical use of HAd vectors can, under some conditions, be limited by pre-existing vector immunity. Pre-existing humoral and cellular anti-capsid immunity limits the efficacy and duration of transgene expression and is poorly circumvented by injections of larger doses and immuno-suppressing drugs. This review updates canine adenovirus serotype 2 (CAV-2, also known as CAdV-2) biology and gives an overview of the generation of early region 1 (E1)-deleted to helper-dependent (HD) CAV-2 vectors. We also summarize the essential characteristics concerning their interaction with the anti-HAd memory immune responses in humans, the preferential transduction of neurons, and its high level of retrograde axonal transport in the central and peripheral nervous system. CAV-2 vectors are particularly interesting tools to study the pathophysiology and potential treatment of neurodegenerative diseases, as anti-tumoral and anti-viral vaccines, tracer of synaptic junctions, oncolytic virus and as a platform to generate chimeric vectors.
Collapse
Affiliation(s)
- Thierry Bru
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende Montpellier, 34293 France; E-Mails: (T.B.); (S.S.)
- Université de Montpellier I, 5 Bd Henri IV, 34000 Montpellier, France
- Université de Montpellier II, place Eugène Bataillon, 34090 Montpellier, France
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende Montpellier, 34293 France; E-Mails: (T.B.); (S.S.)
- Université de Montpellier I, 5 Bd Henri IV, 34000 Montpellier, France
- Université de Montpellier II, place Eugène Bataillon, 34090 Montpellier, France
| | - Eric J. Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919 Route de Mende Montpellier, 34293 France; E-Mails: (T.B.); (S.S.)
- Université de Montpellier I, 5 Bd Henri IV, 34000 Montpellier, France
- Université de Montpellier II, place Eugène Bataillon, 34090 Montpellier, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-467-613-372; Fax: +33-467-040-231
| |
Collapse
|
96
|
Abstract
Conduction diseases (CD) include defects in impulse generation and conduction. Patients with CD may manifest a wide range of clinical presentations, from asymptomatic to potentially life-threatening arrhythmias. The pathophysiologic mechanisms underlying CD are diverse and may have implications for diagnosis, treatment, and prognosis. Known causes of functional CD include cardiac ion channelopathies or defects in modifying proteins, such as cytoskeletal proteins. Progress in molecular biology and genetics along with development of animal models has increased the understanding of the molecular mechanisms of these disorders. This article discusses the genetic basis for CD and its clinical implications.
Collapse
Affiliation(s)
- Roy Beinart
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
97
|
Bezzina CR, Pazoki R, Bardai A, Marsman RF, de Jong JSSG, Blom MT, Scicluna BP, Jukema JW, Bindraban NR, Lichtner P, Pfeufer A, Bishopric NH, Roden DM, Meitinger T, Chugh SS, Myerburg RJ, Jouven X, Kääb S, Dekker LRC, Tan HL, Tanck MWT, Wilde AAM. Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nat Genet 2010; 42:688-691. [PMID: 20622880 DOI: 10.1038/ng.623] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/15/2010] [Indexed: 11/09/2022]
Abstract
Sudden cardiac death from ventricular fibrillation during acute myocardial infarction is a leading cause of total and cardiovascular mortality. To our knowledge, we here report the first genome-wide association study for this trait, conducted in a set of 972 individuals with a first acute myocardial infarction, 515 of whom had ventricular fibrillation and 457 of whom did not, from the Arrhythmia Genetics in The Netherlands (AGNES) study. The most significant association to ventricular fibrillation was found at 21q21 (rs2824292, odds ratio = 1.78, 95% CI 1.47-2.13, P = 3.3 x 10(-10)). The association of rs2824292 with ventricular fibrillation was replicated in an independent case-control set consisting of 146 out-of-hospital cardiac arrest individuals with myocardial infarction complicated by ventricular fibrillation and 391 individuals who survived a myocardial infarction (controls) (odds ratio = 1.49, 95% CI 1.14-1.95, P = 0.004). The closest gene to this SNP is CXADR, which encodes a viral receptor previously implicated in myocarditis and dilated cardiomyopathy and which has recently been identified as a modulator of cardiac conduction. This locus has not previously been implicated in arrhythmia susceptibility.
Collapse
Affiliation(s)
- Connie R Bezzina
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Raha Pazoki
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Abdennasser Bardai
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Roos F Marsman
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jonas S S G de Jong
- Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Marieke T Blom
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.,Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
| | - Navin R Bindraban
- Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Social Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Lichtner
- Institute of Human Genetics, Klinikum Rechts der Isar Technische Universität München, Munich, Germany
| | - Arne Pfeufer
- Institute of Human Genetics, Klinikum Rechts der Isar Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Nanette H Bishopric
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum Rechts der Isar Technische Universität München, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Sumeet S Chugh
- The Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Robert J Myerburg
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xavier Jouven
- Université Paris Descartes, Assistance Publique-Hopitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Stefan Kääb
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lukas R C Dekker
- Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, Catharina Hospital, Eindhoven, The Netherlands
| | - Hanno L Tan
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Heart Failure Research Center, Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
98
|
Shi Y, Fukuoka M, Li G, Liu Y, Chen M, Konviser M, Chen X, Opavsky MA, Liu PP. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway. Circulation 2010; 121:2624-34. [PMID: 20530002 DOI: 10.1161/circulationaha.109.893248] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Coxsackievirus B3 infection is an excellent model of human myocarditis and dilated cardiomyopathy. Cardiac injury is caused either by a direct cytopathic effect of the virus or through immune-mediated mechanisms. Regulatory T cells (Tregs) play an important role in the negative modulation of host immune responses and set the threshold of autoimmune activation. This study was designed to test the protective effects of Tregs and to determine the underlying mechanisms. METHODS AND RESULTS Carboxyfluorescein diacetate succinimidyl ester-labeled Tregs or naïve CD4(+) T cells were injected intravenously once every 2 weeks 3 times into mice. The mice were then challenged with intraperitoneal coxsackievirus B3 immediately after the last cell transfer. Transfer of Tregs showed higher survival rates than transfer of CD4(+) T cells (P=0.0136) but not compared with the PBS injection group (P=0.0589). Interestingly, Tregs also significantly decreased virus titers and inflammatory scores in the heart. Transforming growth factor-beta and phosphorylated AKT were upregulated in Tregs-transferred mice and coxsackie-adenovirus receptor expression was decreased in the heart compared with control groups. Transforming growth factor-beta decreased coxsackie-adenovirus receptor expression and inhibited coxsackievirus B3 infection in HL-1 cells and neonatal cardiac myocytes. Splenocytes collected from Treg-, CD4(+) T-cell-, and PBS-treated mice proliferated equally when stimulated with heat-inactivated virus, whereas in the Treg group, the proliferation rate was reduced significantly when stimulated with noninfected heart tissue homogenate. CONCLUSIONS Adoptive transfer of Tregs protected mice from coxsackievirus B3-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway and thus suppresses the immune response to cardiac tissue, maintaining the antiviral immune response.
Collapse
Affiliation(s)
- Yu Shi
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Intercalated disks (ICDs) are highly organized cell-cell adhesion structures, which connect cardiomyocytes to one another. They are composed of three major complexes: desmosomes, fascia adherens, and gap junctions. Desmosomes and fascia adherens junction are necessary for mechanically coupling and reinforcing cardiomyocytes, whereas gap junctions are essential for rapid electrical transmission between cells. Because human genetics and mouse models have revealed that mutations and/or deficiencies in various ICD components can lead to cardiomyopathies and arrhythmias, considerable attention has focused on the biologic function of the ICD. This review will discuss recent scientific developments related to the ICD and focus on its role in regulating cardiac muscle structure, signaling, and disease.
Collapse
Affiliation(s)
- Farah Sheikh
- Department of Medicine, University of California-San Diego, CA 92093, USA
| | | | | |
Collapse
|
100
|
Caruso L, Yuen S, Smith J, Husain M, Opavsky MA. Cardiomyocyte-targeted overexpression of the coxsackie–adenovirus receptor causes a cardiomyopathy in association with β-catenin signaling. J Mol Cell Cardiol 2010; 48:1194-205. [DOI: 10.1016/j.yjmcc.2010.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/29/2009] [Accepted: 01/30/2010] [Indexed: 01/09/2023]
|