51
|
Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022; 185:62-76. [PMID: 34963057 PMCID: PMC8741740 DOI: 10.1016/j.cell.2021.12.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.
Collapse
Affiliation(s)
- Camille S Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
52
|
Helesbeux JJ, Carro L, McCarthy FO, Moreira VM, Giuntini F, O’Boyle N, Matthews SE, Bayraktar G, Bertrand S, Rochais C, Marchand P. 29th Annual GP2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2021; 14:ph14121278. [PMID: 34959677 PMCID: PMC8708472 DOI: 10.3390/ph14121278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
The 29th Annual GP2A (Group for the Promotion of Pharmaceutical chemistry in Academia) Conference was a virtual event this year due to the COVID-19 pandemic and spanned three days from Wednesday 25 to Friday 27 August 2021. The meeting brought together an international delegation of researchers with interests in medicinal chemistry and interfacing disciplines. Abstracts of keynote lectures given by the 10 invited speakers, along with those of the 8 young researcher talks and the 50 flash presentation posters, are included in this report. Like previous editions, the conference was a real success, with high-level scientific discussions on cutting-edge advances in the fields of pharmaceutical chemistry.
Collapse
Affiliation(s)
| | - Laura Carro
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Florence O. McCarthy
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, College Road, T12 K8AF Cork, Ireland;
| | - Vânia M. Moreira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Niamh O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 R590 Dublin, Ireland;
| | - Susan E. Matthews
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK;
| | - Gülşah Bayraktar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Izmir 35100, Turkey;
| | - Samuel Bertrand
- Institut des Substances et Organismes de la Mer, ISOmer, Nantes Université, UR 2160, F-44000 Nantes, France;
| | - Christophe Rochais
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ., F-14032 Caen, France;
| | - Pascal Marchand
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
- Correspondence: ; Tel.: +33-253-009-155
| |
Collapse
|
53
|
Gonzalez S, McHugh TLM, Yang T, Syriani W, Massa SM, Longo FM, Simmons DA. Small molecule modulation of TrkB and TrkC neurotrophin receptors prevents cholinergic neuron atrophy in an Alzheimer's disease mouse model at an advanced pathological stage. Neurobiol Dis 2021; 162:105563. [PMID: 34838668 DOI: 10.1016/j.nbd.2021.105563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Degeneration of basal forebrain cholinergic neurons (BFCNs) in the nucleus basalis of Meynert (NBM) and vertical diagonal band (VDB) along with their connections is a key pathological event leading to memory impairment in Alzheimer's disease (AD). Aberrant neurotrophin signaling via Trks and the p75 neurotrophin receptor (p75NTR) contributes importantly to BFCN dystrophy. While NGF/TrkA signaling has received the most attention in this regard, TrkB and TrkC signaling also provide trophic support to BFCNs and these receptors may be well located to preserve BFCN connectivity. We previously identified a small molecule TrkB/TrkC ligand, LM22B-10, that promotes cell survival and neurite outgrowth in vitro and activates TrkB/TrkC signaling in the hippocampus of aged mice when given intranasally, but shows poor oral bioavailability. An LM22B-10 derivative, PTX-BD10-2, with improved oral bioavailability has been developed and this study examined its effects on BFCN atrophy in the hAPPLond/Swe (APPL/S) AD mouse model. Oral delivery of PTX-BD10-2 was started after appreciable amyloid and cholinergic pathology was present to parallel the clinical context, as most AD patients start treatment at advanced pathological stages. PTX-BD10-2 restored cholinergic neurite integrity in the NBM and VDB, and reduced NBM neuronal atrophy in symptomatic APPL/S mice. Dystrophy of cholinergic neurites in BF target regions, including the cortex, hippocampus, and amygdala, was also reduced with treatment. Finally, PTX-BD10-2 reduced NBM tau pathology and improved the survival of cholinergic neurons derived from human induced pluripotent stem cells (iPSCs) after amyloid-β exposure. These data provide evidence that targeting TrkB and TrkC signaling with PTX-BD10-2 may be an effective disease-modifying strategy for combating cholinergic dysfunction in AD. The potential for clinical translation is further supported by the compound's reduction of AD-related degenerative processes that have progressed beyond early stages and its neuroprotective effects in human iPSC-derived cholinergic neurons.
Collapse
Affiliation(s)
- Selena Gonzalez
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tyne L M McHugh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Wassim Syriani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Stephen M Massa
- Department of Neurology, Laboratory for Computational Neurochemistry and Drug Discovery, Veterans Affairs Health Care System and Department of Neurology, University of California-San Francisco, San Francisco, CA 94121, United States of America
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, United States of America.
| |
Collapse
|
54
|
Agonistic analog of growth hormone-releasing hormone promotes neurofunctional recovery and neural regeneration in ischemic stroke. Proc Natl Acad Sci U S A 2021; 118:2109600118. [PMID: 34782465 DOI: 10.1073/pnas.2109600118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke can induce neurogenesis. However, most stroke-generated newborn neurons cannot survive. It has been shown that MR-409, a potent synthetic agonistic analog of growth hormone-releasing hormone (GHRH), can protect against some life-threatening pathological conditions by promoting cell proliferation and survival. The present study shows that long-term treatment with MR-409 (5 or 10 μg/mouse/d) by subcutaneous (s.c.) injection significantly reduces the mortality, ischemic insult, and hippocampal atrophy, and improves neurological functional recovery in mice operated on for transient middle cerebral artery occlusion (tMCAO). Besides, MR-409 can stimulate endogenous neurogenesis and improve the tMCAO-induced loss of neuroplasticity. MR-409 also enhances the proliferation and inhibits apoptosis of neural stem cells treated with oxygen and glucose deprivation-reperfusion. The neuroprotective effects of MR-409 are closely related to the activation of AKT/CREB and BDNF/TrkB pathways. In conclusion, the present study demonstrates that GHRH agonist MR-409 has remarkable neuroprotective effects through enhancing endogenous neurogenesis in cerebral ischemic mice.
Collapse
|
55
|
Arituluk ZC, Horne J, Adhikari B, Steltzner J, Mansur S, Ahirwar P, Velu SE, Gray NE, Ciesla LM, Bao Y. Identification of TrkB Binders from Complex Matrices Using a Magnetic Drug Screening Nanoplatform. ACS APPLIED BIO MATERIALS 2021; 4:6244-6255. [PMID: 35006910 DOI: 10.1021/acsabm.1c00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.
Collapse
Affiliation(s)
- Zekiye Ceren Arituluk
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States.,Department of Pharmaceutical Botany, Hacettepe University, Ankara 06100, Turkey
| | - Jesse Horne
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Bishnu Adhikari
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Jeffrey Steltzner
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shomit Mansur
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Parmanand Ahirwar
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Yuping Bao
- Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
56
|
Memory impairment and depressive-like phenotype are accompanied by downregulation of hippocampal insulin and BDNF signaling pathways in prediabetic mice. Physiol Behav 2021; 237:113346. [DOI: 10.1016/j.physbeh.2021.113346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
|
57
|
Dahlström M, Madjid N, Nordvall G, Halldin MM, Vazquez-Juarez E, Lindskog M, Sandin J, Winblad B, Eriksdotter M, Forsell P. Identification of Novel Positive Allosteric Modulators of Neurotrophin Receptors for the Treatment of Cognitive Dysfunction. Cells 2021; 10:1871. [PMID: 34440640 PMCID: PMC8391421 DOI: 10.3390/cells10081871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and results in severe neurodegeneration and progressive cognitive decline. Neurotrophins are growth factors involved in the development and survival of neurons, but also in underlying mechanisms for memory formation such as hippocampal long-term potentiation. Our aim was to identify small molecules with stimulatory effects on the signaling of two neurotrophins, the nerve growth factor (NGF) and the brain derived neurotrophic factor (BDNF). To identify molecules that could potentiate neurotrophin signaling, 25,000 molecules were screened, which led to the identification of the triazinetrione derivatives ACD855 (Ponazuril) and later on ACD856, as positive allosteric modulators of tropomyosin related kinase (Trk) receptors. ACD855 or ACD856 potentiated the cellular signaling of the neurotrophin receptors with EC50 values of 1.9 and 3.2 or 0.38 and 0.30 µM, respectively, for TrkA or TrkB. ACD855 increased acetylcholine levels in the hippocampus by 40% and facilitated long term potentiation in rat brain slices. The compounds acted as cognitive enhancers in a TrkB-dependent manner in several different behavioral models. Finally, the age-induced cognitive dysfunction in 18-month-old mice could be restored to the same level as found in 2-month-old mice after a single treatment of ACD856. We have identified a novel mechanism to modulate the activity of the Trk-receptors. The identification of the positive allosteric modulators of the Trk-receptors might have implications for the treatment of Alzheimer's diseases and other diseases characterized by cognitive impairment.
Collapse
MESH Headings
- Age Factors
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/physiopathology
- Cell Line, Tumor
- Cognition/drug effects
- Cognitive Dysfunction/drug therapy
- Cognitive Dysfunction/enzymology
- Cognitive Dysfunction/physiopathology
- Cognitive Dysfunction/psychology
- Disease Models, Animal
- Humans
- Male
- Maze Learning/drug effects
- Membrane Glycoproteins
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Nootropic Agents/pharmacology
- Protein-Tyrosine Kinases
- Rats, Sprague-Dawley
- Receptor, trkA/agonists
- Receptor, trkA/metabolism
- Receptor, trkB/agonists
- Receptor, trkB/metabolism
- Receptors, Nerve Growth Factor/agonists
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Signal Transduction
- Small Molecule Libraries
- Triazines/pharmacology
- Mice
- Rats
Collapse
Affiliation(s)
- Märta Dahlström
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden;
- AlzeCure Foundation, 141 57 Huddinge, Sweden
| | - Nather Madjid
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
| | - Gunnar Nordvall
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| | - Magnus M. Halldin
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
| | - Erika Vazquez-Juarez
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| | - Maria Lindskog
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| | - Johan Sandin
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
- Theme Inflammation and Aging, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Maria Eriksdotter
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 141 83 Huddinge, Sweden;
- Theme Inflammation and Aging, Karolinska University Hospital, 141 86 Huddinge, Sweden
| | - Pontus Forsell
- AlzeCure Pharma AB, 141 57 Huddinge, Sweden; (M.D.); (N.M.); (G.N.); (M.M.H.); (J.S.)
- AlzeCure Foundation, 141 57 Huddinge, Sweden
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Solna, Sweden; (E.V.-J.); (M.L.); (B.W.)
| |
Collapse
|
58
|
Do Small Molecules Activate the TrkB Receptor in the Same Manner as BDNF? Limitations of Published TrkB Low Molecular Agonists and Screening for Novel TrkB Orthosteric Agonists. Pharmaceuticals (Basel) 2021; 14:ph14080704. [PMID: 34451801 PMCID: PMC8398766 DOI: 10.3390/ph14080704] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022] Open
Abstract
TrkB is a tyrosine kinase receptor that is activated upon binding to brain-derived neurotrophic factor (BDNF). To date, the search for low-molecular-weight molecules mimicking BDNF’s action has been unsuccessful. Several molecules exerting antidepressive effects in vivo, such as 7,8-DHF, have been suggested to be TrkB agonists. However, more recent publications question this hypothesis. In this study, we developed a set of experimental procedures including the evaluation of direct interactions, dimerization, downstream signaling, and cytoprotection in parallel with physicochemical and ADME methods to verify the pharmacology of 7,8-DHF and other potential reference compounds, and perform screening for novel TrkB agonists. 7,8 DHF bound to TrkB with Kd = 1.3 μM; however, we were not able to observe any other activity against the TrkB receptor in SN56 T48 and differentiated SH-SY5Y cell lines. Moreover, the pharmacokinetic and pharmacodynamic effects of 7,8-DHF at doses of 1 and 50 mg/kg were examined in mice after i.v and oral administration, respectively. The poor pharmacokinetic properties and lack of observed activation of TrkB-dependent signaling in the brain confirmed that 7,8-DHF is not a relevant tool for studying TrkB activation in vivo. The binding profile for 133 molecular targets revealed a significant lack of selectivity of 7,8-DHF, suggesting a distinct functional profile independent of interaction with TrkB. Additionally, a compound library was screened in search of novel low-molecular-weight orthosteric TrkB agonists; however, we were not able to identify reliable drug candidates. Our results suggest that published reference compounds including 7,8-DHF do not activate TrkB, consistent with canonical dogma, which indicates that the reported pharmacological activity of these compounds should be interpreted carefully in a broad functional context.
Collapse
|
59
|
Maugeri G, D’Agata V, Magrì B, Roggio F, Castorina A, Ravalli S, Di Rosa M, Musumeci G. Neuroprotective Effects of Physical Activity via the Adaptation of Astrocytes. Cells 2021; 10:cells10061542. [PMID: 34207393 PMCID: PMC8234474 DOI: 10.3390/cells10061542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
The multifold benefits of regular physical exercise have been largely demonstrated in human and animal models. Several studies have reported the beneficial effects of physical activity, both in peripheral tissues and in the central nervous system (CNS). Regular exercise improves cognition, brain plasticity, neurogenesis and reduces the symptoms of neurodegenerative diseases, making timeless the principle of “mens sana in corpore sano” (i.e., a healthy mind in a healthy body). Physical exercise promotes morphological and functional changes in the brain, acting not only in neurons but also in astrocytes, which represent the most numerous glial cells in the brain. The multiple effects of exercise on astrocytes comprise the increased number of new astrocytes, the maintenance of basal levels of catecholamine, the increase in glutamate uptake, the major release of trophic factors and better astrocytic coverage of cerebral blood vessels. The purpose of this review is to highlight the effects of exercise on brain function, emphasize the role of astrocytes in the healthy CNS, and provide an update for a better understanding of the effects of physical exercise in the modulation of astrocyte function.
Collapse
Affiliation(s)
- Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Benedetta Magrì
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Broadway, NSW 2007, Australia;
- Laboratory of Neural Structure and Function (LNSF), School of Medical Sciences, (Anatomy and Histology), Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Silvia Ravalli
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human, Histology and Movement Science Section, University of Catania, Via S. Sofia n°87, 95100 Catania, Italy; (G.M.); (V.D.); (B.M.); (F.R.); (S.R.); (M.D.R.)
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia n°97, 95100 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +39-095-378-2043
| |
Collapse
|
60
|
Huang-Pu-Tong-Qiao Formula Ameliorates the Hippocampus Apoptosis in Diabetic Cognitive Dysfunction Mice by Activating CREB/BDNF/TrkB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5514175. [PMID: 34211563 PMCID: PMC8211510 DOI: 10.1155/2021/5514175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
Background Huang-Pu-Tong-Qiao formula (HPTQ), a traditional Chinese medicine (TCM) formula used to improve cognitive impairment. However, the underlying neuroprotective mechanism of HPTQ treated for diabetic cognitive dysfunction (DCD) remains unclear. The purpose of this study was to investigate the neuroprotective mechanism of HPTQ in DCD mice based on molecular docking. Methods To investigate the neuroprotective effect of HPTQ in DCD, the Morris water maze (MWM), novel object recognition (NOR) test was used to detect the learning and memory changes of mice; hematoxylin-eosin (HE) staining was used to investigate the damage of hippocampal neurons; the western blot (WB) was used to examine the level of brain-derived neurotrophic factor (BDNF) of hippocampus. To investigate the neuroprotective mechanism of HPTQ in DCD, molecular docking was used to predict the possible target proteins of different active components in HPTQ and then the WB was used to verify the expression of key target proteins in the hippocampus of mice. Results HPTQ improved the learning and memory ability, hippocampal neuron damage, and the level of BDNF in the hippocampus of the DCD model treated with HFD/STZ for 12 weeks. Besides, the results of molecular docking showed that the main chemical components of HPTQ could be well combined with the targets of Bcl-2-associated X (Bax) and B-cell lymphoma2 (Bcl-2) and caspase-3. The levels of Bax/Bcl-2 protein ratio and caspase-3 increased in the DCD model while the HPTQ inhibited it. In addition, HPTQ restored DCD-induced decline of p-CREB, BDNF, TrkB, and p-Akt in the hippocampus. Conclusions These data indicated that HPTQ ameliorates the hippocampus apoptosis in diabetic cognitive dysfunction mice by activating CREB/BDNF/TrkB signaling pathway.
Collapse
|
61
|
Ding Y, Chow SH, Chen J, Brun APL, Wu CM, Duff AP, Wang Y, Song J, Wang JH, Wong VH, Zhao D, Nishimura T, Lee TH, Conn CE, Hsu HY, Bui BV, Liu GS, Shen HH. Targeted delivery of LM22A-4 by cubosomes protects retinal ganglion cells in an experimental glaucoma model. Acta Biomater 2021; 126:433-444. [PMID: 33774200 DOI: 10.1016/j.actbio.2021.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Glaucoma, a major cause of irreversible blindness worldwide, is associated with elevated intraocular pressure (IOP) and progressive loss of retinal ganglion cells (RGCs) that undergo apoptosis. A mechanism for RGCs injury involves impairment of neurotrophic support and exogenous supply of neurotrophic factors has been shown to be beneficial. However, neurotrophic factors can have widespread effects on neuronal tissues, thus targeting neurotrophic support to injured neurons may be a better neuroprotective strategy. In this study, we have encapsulated LM22A-4, a small neurotrophic factor mimetic, into Annexin V-conjugated cubosomes (L4-ACs) for targeted delivery to injured RGCs in a model of acute IOP elevation, which is induced by acute IOP elevation. We have tested cubosomes formulations that encapsulate from 9% to 33% LM22A-4. Our data indicated that cubosomes encapsulating 9% and 17% LM22A-4 exhibited a mixture of Pn3m/Im3m cubic phase, whereas 23% and 33% showed a pure Im3m cubic phase. We found that 17% L4-ACs with Pn3m/Im3m symmetries showed better in-situ and in-vitro lipid membrane interactions than the 23% and 33% L4-ACs with Im3m symmetry. In vivo experiments showed that 17% L4-ACs targeted the posterior retina and the optic nerve head, which prevented RGCs loss and improved functional outcomes in a mouse model of acute IOP elevation. These results provide evidence that Annexin V-conjugated cubosomes-based LM22A-4 delivery may be a useful targeted approach to prevent the progression of RGCs loss in glaucoma. STATEMENT OF SIGNIFICANCE: Recent studies suggest that the therapy of effectively delivering neurotrophic factors to the injured retinal ganglion cells (RGCs) could promote the survival of RGCs in glaucoma. Our present work has for the first time used cubosomes as an active targeted delivery system and have successfully delivered a neuroprotective drug to the damaged RGCs in vivo. Our new cubosomal formulation can protect apoptotic cell death in vitro and in vivo, showing that cubosomes are a promising drug carrier system for ocular drug delivery and glaucoma treatment. We have further found that by controlling cubosomes in Pn3m phase we can facilitate delivery of neuroprotective drug through apoptotic membranes. This data, we believe, has important implications for future design and formulation of cubosomes for therapeutic applications.
Collapse
|
62
|
Kim TW, Ko YJ, Youn KH, Hwang BG, Bang HS, Lee SJ. Treadmill exercise improves spatial learning ability by increasing cell proliferation in offspring born to maternal rats receiving stress during pregnancy. J Exerc Rehabil 2021; 17:88-95. [PMID: 34012934 PMCID: PMC8103186 DOI: 10.12965/jer.2142196.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Prenatal stress causes learning deficits by inhibiting neurogenesis in the hippocampus. We studied the effects of maternal treadmill running or offspring treadmill running on the spatial learning ability of adolescent offspring rats or adult offspring rats born to maternal rats that received stress during pregnancy. For this study, spatial learning ability was measured by radial 8-arm maze task. Immunohistochemistry for 5-bromo-2′-deoxyuridine and Western blot for brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2) were also conducted. Stress was induced by exposing pregnant rats to hound in an enclosed room. Maternal treadmill running or treadmill running of offspring improved spatial learning ability of adolescent and adult offspring rats born to maternal rats receiving stress during pregnancy. Maternal treadmill running or treadmill running of offspring increased hippocampal cell proliferation of adolescent and adult offspring rats born to maternal rats receiving stress during pregnancy. Maternal treadmill running or treadmill running of offspring increased BDNF and TrkB expression in the hippocampus of adolescent and adult offspring rats born to maternal rats receiving stress during pregnancy. Maternal treadmill running or treadmill running of offspring inhibited Bax expression and increased Bcl-2 expression in the hippocampus of adolescent and adult offspring rats born to maternal rats receiving stress during pregnancy. Mother’s exercise during pregnancy or child’s exercise after childbirth can improve the spatial learning ability deteriorated due to stress during pregnancy.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju, Korea
| | - Young Jun Ko
- Major in Sport Service Practice, College of Welfare Convergence, Kangnam University, Yongin, Korea
| | - Ki-Hyok Youn
- Department of Social Welfare, College of Health, Welfare and Education, Tongmyong University, Busan, Korea
| | - Boo-Geun Hwang
- Department of Sport Rehabilitation, College of Health, Welfare and Education, Tongmyong University, Busan, Korea
| | - Hyun-Seok Bang
- Department of Sport Rehabilitation, College of Health, Welfare and Education, Tongmyong University, Busan, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabilitation, College of Health, Welfare and Education, Tongmyong University, Busan, Korea
| |
Collapse
|
63
|
Atiq Hassan, Nasir N, Muzammil K. Treatment Strategies to Promote Regeneration in Experimental Spinal Cord Injury Models. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
64
|
Zainullina LF, Vakhitova YV, Lusta AY, Gudasheva TA, Seredenin SB. Dimeric mimetic of BDNF loop 4 promotes survival of serum-deprived cell through TrkB-dependent apoptosis suppression. Sci Rep 2021; 11:7781. [PMID: 33833366 PMCID: PMC8032782 DOI: 10.1038/s41598-021-87435-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/30/2021] [Indexed: 01/09/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in the regulation of neuronal cell growth, differentiation, neuroprotection and synaptic plasticity. Although aberrant BDNF/TrkB signaling is implicated in several neurological, neurodegenerative and psychiatric disorders, neurotrophin-based therapy is challenging and is limited by improper pharmacokinetic properties of BDNF. Dimeric dipeptide compound GSB-106 (bis-(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide) has earlier been designed to mimic the TrkB-interaction 4 loop of BDNF. It displayed protective effect in various cell-damaging models in vitro. Animal studies uncovered antidepressive and neuroprotective properties upon GSB-106 per os administration. Current study shows that GSB-106 acts similarly to BDNF, promoting survival of serum-deprived neuronal-like SH-SY5Y cells. 100 nmol concentration of GSB-106 provided maximum neurotrophic effect, which corresponds to about 37% of the maximum effect provided by BDNF. Protective properties of GSB-106 arise from its ability to counteract cell apoptosis via activation of TrkB-dependent pro-survival mechanisms, including inactivation of pro-apoptotic BAD protein and suppression of caspases 9 and 3/7. Thus, our study has characterized neurotrophic activity of small dimeric compound GSB-106, which mimics certain biological functions of BDNF and neurotrophin-specific protective mechanisms. GSB-106 also displays similarities to some known low weight peptide and non-peptide TrkB ligands.
Collapse
Affiliation(s)
- L F Zainullina
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia
| | - Yu V Vakhitova
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia.
| | - A Yu Lusta
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia
| | - T A Gudasheva
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia
| | - S B Seredenin
- Federal State Budgetary Institution "Research Zakusov Institute of Pharmacology", 125315, Baltiyskaya str. 8, Moscow, Russia
| |
Collapse
|
65
|
Zhao S, Li X, Lu P, Li X, Sun M, Wang H. The Role of the Signaling Pathways Involved in the Effects of Hydrogen Sulfide on Endoplasmic Reticulum Stress. Front Cell Dev Biol 2021; 9:646723. [PMID: 33816495 PMCID: PMC8017186 DOI: 10.3389/fcell.2021.646723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endoplasmic reticulum (ER) is a kind of organelle with multiple functions including protein synthesis, modification and folding, calcium storage, and lipid synthesis. Under stress conditions, ER homeostasis is disrupted, which is defined as ER stress (ERS). The accumulation of unfolded proteins in the ER triggers a stable signaling network named unfolded protein response (UPR). Hydrogen sulfide is an important signal molecule regulating various physiological and pathological processes. Recent studies have shown that H2S plays an important role in many diseases by affecting ERS, but its mechanism, especially the signaling pathways, is not fully understood. Therefore, in this review, we summarize the recent studies about the signaling pathways involved in the effects of H2S on ERS in diseases to provide theoretical reference for the related in-depth researches.
Collapse
Affiliation(s)
- Shizhen Zhao
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xinping Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Ping Lu
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Xiaotian Li
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Mingfei Sun
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Honggang Wang
- Institute of Biomedical Informatics, Bioinformatics Center, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
66
|
Sisti FM, Dos Santos NAG, do Amaral L, Dos Santos AC. The Neurotrophic-Like Effect of Carvacrol: Perspective for Axonal and Synaptic Regeneration. Neurotox Res 2021; 39:886-896. [PMID: 33666886 DOI: 10.1007/s12640-021-00341-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
Carvacrol (CARV) is a phytochemical widely used as flavoring, preservative, and fragrance in food and cosmetic industries. CARV is able to cross the blood-brain barrier (BBB) and has demonstrated protective potential against neurodegenerative diseases by several mechanisms, including antioxidant, anti-inflammatory, anticholinesterase, and antiapoptotic effects. However, it is not known whether CARV is able to modulate axonal and synaptic plasticity, crucial events in cognition, memory, and learning. Abnormalities in axonal and synaptic plasticity, low levels of neurotrophins, and bioenergetic failure have been associated with the pathogenesis of neurodegenerative diseases, including Parkinson's (PD) and Alzheimer's diseases (ADs). Small lipophilic molecules with neurotrophic activity might be able to restore the axonal and synaptic networks that are lost in neurodegenerative processes. Therefore, this study investigated the neurotrophic potential of CARV in PC12 cell-based neuronal model. Carvacrol induced neurite outgrowth by activating the NGF high-affinity trkA receptor and the downstream PI3K-AKT and MAPK-ERK pathways, without depending on NGF. In addition, CARV increased the expression of proteins involved in neuronal plasticity (β-tubulin III, F-actin, 200-kDa neurofilament, GAP-43 and synapsin-I) and improved bioenergetics (AMPKα, p-AMPKα, and ATP). Our study showed, for the first time, a promising neurotrophic mechanism of CARV that could be beneficial in neurodegenerative and neurological diseases.
Collapse
Affiliation(s)
- Flávia Malvestio Sisti
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Lilian do Amaral
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Antonio Cardozo Dos Santos
- Departamento de Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
67
|
Fletcher JL, Dill LK, Wood RJ, Wang S, Robertson K, Murray SS, Zamani A, Semple BD. Acute treatment with TrkB agonist LM22A-4 confers neuroprotection and preserves myelin integrity in a mouse model of pediatric traumatic brain injury. Exp Neurol 2021; 339:113652. [PMID: 33609501 DOI: 10.1016/j.expneurol.2021.113652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Young children have a high risk of sustaining a traumatic brain injury (TBI), which can have debilitating life-long consequences. Importantly, the young brain shows particular vulnerability to injury, likely attributed to ongoing maturation of the myelinating nervous system at the time of insult. Here, we examined the effect of acute treatment with the partial tropomyosin receptor kinase B (TrkB) agonist, LM22A-4, on pathological and neurobehavioral outcomes after pediatric TBI, with the hypothesis that targeting TrkB would minimize tissue damage and support functional recovery. We focused on myelinated tracts-the corpus callosum and external capsules-based on recent evidence that TrkB activation potentiates oligodendrocyte remyelination. Male mice at postnatal day 21 received an experimental TBI or sham surgery. Acutely post-injury, extensive cell death, a robust glial response and disruption of compact myelin were evident in the injured brain. TBI or sham mice then received intranasal saline vehicle or LM22A-4 for 14 days. Behavior testing was performed from 4 weeks post-injury, and brains were collected at 5 weeks for histology. TBI mice showed hyperactivity, reduced anxiety-like behavior, and social memory impairments. LM22A-4 ameliorated the abnormal anxiolytic phenotype but had no effect on social memory deficits. Use of spectral confocal reflectance microscopy detected persistent myelin fragmentation in the external capsule of TBI mice at 5 weeks post-injury, which was accompanied by regionally distinct deficits in oligodendrocyte progenitor cells and post-mitotic oligodendrocytes, as well as chronic reactive gliosis and atrophy of the corpus callosum and injured external capsule. LM22A-4 treatment ameliorated myelin deficits in the perilesional external capsule, as well as tissue volume loss and the extent of reactive gliosis. However, there was no effect of this TrkB agonist on oligodendroglial populations detected at 5 weeks post-injury. Collectively, our results demonstrate that targeting TrkB immediately after TBI during early life confers neuroprotection and preserves myelin integrity, and this was associated with some improved neurobehavioral outcomes as the pediatric injured brain matures.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhiannon J Wood
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Sharon Wang
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kate Robertson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Simon S Murray
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
68
|
Abramov D, Guiberson NGL, Daab A, Na Y, Petsko GA, Sharma M, Burré J. Targeted stabilization of Munc18-1 function via pharmacological chaperones. EMBO Mol Med 2021; 13:e12354. [PMID: 33332765 PMCID: PMC7799358 DOI: 10.15252/emmm.202012354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/01/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Heterozygous de novo mutations in the neuronal protein Munc18-1 cause syndromic neurological symptoms, including severe epilepsy, intellectual disability, developmental delay, ataxia, and tremor. No disease-modifying therapy exists to treat these disorders, and while chemical chaperones have been shown to alleviate neuronal dysfunction caused by missense mutations in Munc18-1, their required high concentrations and potential toxicity necessitate a Munc18-1-targeted therapy. Munc18-1 is essential for neurotransmitter release, and mutations in Munc18-1 have been shown to cause neuronal dysfunction via aggregation and co-aggregation of the wild-type protein, reducing functional Munc18-1 levels well below hemizygous levels. Here, we identify two pharmacological chaperones via structure-based drug design, that bind to wild-type and mutant Munc18-1, and revert Munc18-1 aggregation and neuronal dysfunction in vitro and in vivo, providing the first targeted treatment strategy for these severe pediatric encephalopathies.
Collapse
Affiliation(s)
- Debra Abramov
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Noah Guy Lewis Guiberson
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Andrew Daab
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
University of BathBathUK
| | - Yoonmi Na
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Gregory A Petsko
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
- Present address:
Ann Romney Center for Neurologic DiseasesDepartment of NeurologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonMA, USA
| | - Manu Sharma
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | - Jacqueline Burré
- Appel Institute for Alzheimer’s Disease ResearchBrain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
69
|
Li WY, Zhu QB, Jin LY, Yang Y, Xu XY, Hu XY. Exosomes derived from human induced pluripotent stem cell-derived neural progenitor cells protect neuronal function under ischemic conditions. Neural Regen Res 2021; 16:2064-2070. [PMID: 33642395 PMCID: PMC8343330 DOI: 10.4103/1673-5374.308665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Compared with other stem cells, human induced pluripotent stem cells-derived neural progenitor cells (iPSC-NPCs) are more similar to cortical neurons in morphology and immunohistochemistry. Thus, they have greater potential for promoting the survival and growth of neurons and alleviating the proliferation of astrocytes. Transplantation of stem cell exosomes and stem cells themselves have both been shown to effectively repair nerve injury. However, there is no study on the protective effects of exosomes derived from iPSC-NPCs on oxygen and glucose deprived neurons. In this study, we established an oxygen-glucose deprivation model in embryonic cortical neurons of the rat by culturing the neurons in an atmosphere of 95% N2 and 5% CO2 for 1 hour and then treated them with iPSC-NPC-derived exosomes for 30 minutes. Our results showed that iPSC-NPC-derived exosomes increased the survival of oxygen- and glucose-deprived neurons and the level of brain-derived neurotrophic factor in the culture medium. Additionally, it attenuated oxygen and glucose deprivation-induced changes in the expression of the PTEN/AKT signaling pathway as well as synaptic plasticity-related proteins in the neurons. Further, it increased the length of the longest neurite in the oxygen- and glucose-deprived neurons. These findings validate the hypothesis that exosomes from iPSC-NPCs exhibit a neuroprotective effect on oxygen- and glucose-deprived neurons by regulating the PTEN/AKT signaling pathway and neurite outgrowth. This study was approved by the Animal Ethics Committee of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China (approval No. SRRSH20191010) on October 10, 2019.
Collapse
Affiliation(s)
- Wen-Yu Li
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qiong-Bin Zhu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lu-Ya Jin
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yi Yang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiao-Yan Xu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xing-Yue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine; Brain Research Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
70
|
Kang YJ, Diep YN, Tran M, Cho H. Therapeutic Targeting Strategies for Early- to Late-Staged Alzheimer's Disease. Int J Mol Sci 2020; 21:E9591. [PMID: 33339351 PMCID: PMC7766709 DOI: 10.3390/ijms21249591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, typically showing progressive neurodegeneration in aging brains. The key signatures of the AD progression are the deposition of amyloid-beta (Aβ) peptides, the formation of tau tangles, and the induction of detrimental neuroinflammation leading to neuronal loss. However, conventional pharmacotherapeutic options are merely relying on the alleviation of symptoms that are limited to mild to moderate AD patients. Moreover, some of these medicines discontinued to use due to either the insignificant effectiveness in improving the cognitive impairment or the adverse side effects worsening essential bodily functions. One of the reasons for the failure is the lack of knowledge on the underlying mechanisms that can accurately explain the major causes of the AD progression correlating to the severity of AD. Therefore, there is an urgent need for the better understanding of AD pathogenesis and the development of the disease-modifying treatments, particularly for severe and late-onset AD, which have not been covered thoroughly. Here, we review the underlying mechanisms of AD progression, which have been employed for the currently established therapeutic strategies. We believe this will further spur the discovery of a novel disease-modifying treatment for mild to severe, as well as early- to late-onset, AD.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA;
- Department of Biological Sciences, Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Yen N. Diep
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Minh Tran
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea; (Y.N.D.); (M.T.)
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
| |
Collapse
|
71
|
Adams I, Yang T, Longo FM, Katz DM. Restoration of motor learning in a mouse model of Rett syndrome following long-term treatment with a novel small-molecule activator of TrkB. Dis Model Mech 2020; 13:13/11/dmm044685. [PMID: 33361117 PMCID: PMC7710018 DOI: 10.1242/dmm.044685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Reduced expression of brain-derived neurotrophic factor (BDNF) and impaired activation of the BDNF receptor, tropomyosin receptor kinase B (TrkB; also known as Ntrk2), are thought to contribute significantly to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Previous studies from this and other laboratories have shown that enhancing BDNF expression and/or TrkB activation in Mecp2-deficient mouse models of RTT can ameliorate or reverse abnormal neurological phenotypes that mimic human RTT symptoms. The present study reports on the preclinical efficacy of a novel, small-molecule, non-peptide TrkB partial agonist, PTX-BD4-3, in heterozygous female Mecp2 mutant mice, a well-established RTT model that recapitulates the genetic mosaicism of the human disease. PTX-BD4-3 exhibited specificity for TrkB in cell-based assays of neurotrophin receptor activation and neuronal cell survival and in in vitro receptor binding assays. PTX-BD4-3 also activated TrkB following systemic administration to wild-type and Mecp2 mutant mice and was rapidly cleared from the brain and plasma with a half-life of ∼2 h. Chronic intermittent treatment of Mecp2 mutants with a low dose of PTX-BD4-3 (5 mg/kg, intraperitoneally, once every 3 days for 8 weeks) reversed deficits in two core RTT symptom domains – respiration and motor control – and symptom rescue was maintained for at least 24 h after the last dose. Together, these data indicate that significant clinically relevant benefit can be achieved in a mouse model of RTT with a chronic intermittent, low-dose treatment paradigm targeting the neurotrophin receptor TrkB. Editor's choice: Long-term intermittent treatment with a newly developed partial agonist of the TrkB neurotrophin receptor reverses deficits in motor learning and respiration in a mouse model of Rett syndrome.
Collapse
Affiliation(s)
- Ian Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| |
Collapse
|
72
|
Yang T, Tran KC, Zeng AY, Massa SM, Longo FM. Small molecule modulation of the p75 neurotrophin receptor inhibits multiple amyloid beta-induced tau pathologies. Sci Rep 2020; 10:20322. [PMID: 33230162 PMCID: PMC7683564 DOI: 10.1038/s41598-020-77210-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Longitudinal preclinical and clinical studies suggest that Aβ drives neurite and synapse degeneration through an array of tau-dependent and independent mechanisms. The intracellular signaling networks regulated by the p75 neurotrophin receptor (p75NTR) substantially overlap with those linked to Aβ and to tau. Here we examine the hypothesis that modulation of p75NTR will suppress the generation of multiple potentially pathogenic tau species and related signaling to protect dendritic spines and processes from Aβ-induced injury. In neurons exposed to oligomeric Aβ in vitro and APP mutant mouse models, modulation of p75NTR signaling using the small-molecule LM11A-31 was found to inhibit Aβ-associated degeneration of neurites and spines; and tau phosphorylation, cleavage, oligomerization and missorting. In line with these effects on tau, LM11A-31 inhibited excess activation of Fyn kinase and its targets, tau and NMDA-NR2B, and decreased Rho kinase signaling changes and downstream aberrant cofilin phosphorylation. In vitro studies with pseudohyperphosphorylated tau and constitutively active RhoA revealed that LM11A-31 likely acts principally upstream of tau phosphorylation, and has effects preventing spine loss both up and downstream of RhoA activation. These findings support the hypothesis that modulation of p75NTR signaling inhibits a broad spectrum of Aβ-triggered, tau-related molecular pathology thereby contributing to synaptic resilience.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Kevin C Tran
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Anne Y Zeng
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Stephen M Massa
- Department of Neurology, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, 4150 Clement St., San Francisco, CA, 94121, USA.
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA.
| |
Collapse
|
73
|
BDNF Outperforms TrkB Agonist 7,8,3'-THF in Preserving the Auditory Nerve in Deafened Guinea Pigs. Brain Sci 2020; 10:brainsci10110787. [PMID: 33126525 PMCID: PMC7692073 DOI: 10.3390/brainsci10110787] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
In deaf subjects using a cochlear implant (CI) for hearing restoration, the auditory nerve is subject to degeneration, which may negatively impact CI effectiveness. This nerve degeneration can be reduced by neurotrophic treatment. Here, we compare the preservative effects of the naturally occurring tyrosine receptor kinase B (TrkB) agonist brain-derived neurotrophic factor (BDNF) and the small-molecule TrkB agonist 7,8,3′-trihydroxyflavone (THF) on the auditory nerve in deafened guinea pigs. THF may be more effective than BDNF throughout the cochlea because of better pharmacokinetic properties. The neurotrophic compounds were delivered by placement of a gelatin sponge on the perforated round window membrane. To complement the histology of spiral ganglion cells (SGCs), electrically evoked compound action potential (eCAP) recordings were performed four weeks after treatment initiation. We analyzed the eCAP inter-phase gap (IPG) effect and measures derived from pulse-train evoked eCAPs, both indicative of SGC healthiness. BDNF but not THF yielded a significantly higher survival of SGCs in the basal cochlear turn than untreated controls. Regarding IPG effect and pulse-train responses, the BDNF-treated animals exhibited more normal responses than both untreated and THF-treated animals. We have thus confirmed the protective effect of BDNF, but we have not confirmed previously reported protective effects of THF with our clinically applicable delivery method.
Collapse
|
74
|
Ji ES, Kim YM, Ko YJ, Baek SS. Treadmill exercise in obese maternal rats during pregnancy improves short-term memory through neurogenesis in the hippocampus of rat pups. J Exerc Rehabil 2020; 16:392-397. [PMID: 33178640 PMCID: PMC7609846 DOI: 10.12965/jer.2040618.309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 01/30/2023] Open
Abstract
Maternal obesity is known to increase the likelihood of offspring becoming obese, high blood pressure, and other metabolic disorders. After inducing obesity, the effect of treadmill exercise in maternal rats during pregnancy on short-term memory was investigated in relation to neurogenesis in rat pups. Short-term memory was declined in rat pups born to obese maternal rats, and treadmill running during pregnancy alleviated short-term memory impairment in rat pups born to obese maternal rats. The number of doublecortin (DCX)-positive and 5-bro-mo-2′-deoxyuridine (BrdU)-positive cells in the hippocampal dentate gyrus was decreased in rat pups born to obese maternal rats. Treadmill running during pregnancy increased the number of DCX-positive and BrdU-positive cells in rat pups born to obese maternal rats. Expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) in the hippocampus was decreased in the rat pups born to obese maternal rats. Treadmill running during pregnancy increased the expressions of BDNF and TrkB in rat pups born to obese maternal rats. Enhancing effect of short-term memory by treadmill exercise may be due to increased neurogenesis through activation of the BDNF-TrkB signaling pathway by treadmill exercise.
Collapse
Affiliation(s)
- Eun-Sang Ji
- Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - You-Mi Kim
- Sports Science Research Institution, Korea National Sport University, Seoul, Korea
| | - Young Jun Ko
- Major in Sport Service Practice, College of Welfare Convergence, Kangnam University, Yongin, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea
| |
Collapse
|
75
|
Islam T, Majumder M, Kalita B, Bhattacharjee A, Mukhopadhyay R, Mukherjee AK. Transcriptomic, proteomic, and biochemical analyses reveal a novel neuritogenesis mechanism of
Naja naja
venom α‐elapitoxin post binding to TrkA receptor of rat pheochromocytoma cells. J Neurochem 2020; 155:612-637. [DOI: 10.1111/jnc.15153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Taufikul Islam
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Munmi Majumder
- Cellular, Molecular, and Environmental Biotechnology Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Atanu Bhattacharjee
- Department of Biotechnology and Bioinformatics North Eastern Hill University Shillong Meghalaya India
| | - Rupak Mukhopadhyay
- Cellular, Molecular, and Environmental Biotechnology Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Tezpur Assam India
| |
Collapse
|
76
|
Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry 2020; 25:2251-2274. [PMID: 31900428 DOI: 10.1038/s41380-019-0639-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is widely accepted for its involvement in resilience and antidepressant drug action, is a common genetic locus of risk for mental illnesses, and remains one of the most prominently studied molecules within psychiatry. Stress, which arguably remains the "lowest common denominator" risk factor for several mental illnesses, targets BDNF in disease-implicated brain regions and circuits. Altered stress-related responses have also been observed in animal models of BDNF deficiency in vivo, and BDNF is a common downstream intermediary for environmental factors that potentiate anxiety- and depressive-like behavior. However, BDNF's broad functionality has manifested a heterogeneous literature; likely reflecting that BDNF plays a hitherto under-recognized multifactorial role as both a regulator and target of stress hormone signaling within the brain. The role of BDNF in vulnerability to stress and stress-related disorders, such as posttraumatic stress disorder (PTSD), is a prominent example where inconsistent effects have emerged across numerous models, labs, and disciplines. In the current review we provide a contemporary update on the neurobiology of BDNF including new data from the behavioral neuroscience and neuropsychiatry literature on fear memory consolidation and extinction, stress, and PTSD. First we present an overview of recent advances in knowledge on the role of BDNF within the fear circuitry, as well as address mounting evidence whereby stress hormones interact with endogenous BDNF-TrkB signaling to alter brain homeostasis. Glucocorticoid signaling also acutely recruits BDNF to enhance the expression of fear memory. We then include observations that the functional common BDNF Val66Met polymorphism modulates stress susceptibility as well as stress-related and stress-inducible neuropsychiatric endophenotypes in both man and mouse. We conclude by proposing a BDNF stress-sensitivity hypothesis, which posits that disruption of endogenous BDNF activity by common factors (such as the BDNF Val66Met variant) potentiates sensitivity to stress and, by extension, vulnerability to stress-inducible illnesses. Thus, BDNF may induce plasticity to deleteriously promote the encoding of fear and trauma but, conversely, also enable adaptive plasticity during extinction learning to suppress PTSD-like fear responses. Ergo regulators of BDNF availability, such as the Val66Met polymorphism, may orchestrate sensitivity to stress, trauma, and risk of stress-induced disorders such as PTSD. Given an increasing interest in personalized psychiatry and clinically complex cases, this model provides a framework from which to experimentally disentangle the causal actions of BDNF in stress responses, which likely interact to potentiate, produce, and impair treatment of, stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia. .,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia. .,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
77
|
Zagrebelsky M, Tacke C, Korte M. BDNF signaling during the lifetime of dendritic spines. Cell Tissue Res 2020; 382:185-199. [PMID: 32537724 PMCID: PMC7529616 DOI: 10.1007/s00441-020-03226-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Dendritic spines are tiny membrane specialization forming the postsynaptic part of most excitatory synapses. They have been suggested to play a crucial role in regulating synaptic transmission during development and in adult learning processes. Changes in their number, size, and shape are correlated with processes of structural synaptic plasticity and learning and memory and also with neurodegenerative diseases, when spines are lost. Thus, their alterations can correlate with neuronal homeostasis, but also with dysfunction in several neurological disorders characterized by cognitive impairment. Therefore, it is important to understand how different stages in the life of a dendritic spine, including formation, maturation, and plasticity, are strictly regulated. In this context, brain-derived neurotrophic factor (BDNF), belonging to the NGF-neurotrophin family, is among the most intensively investigated molecule. This review would like to report the current knowledge regarding the role of BDNF in regulating dendritic spine number, structure, and plasticity concentrating especially on its signaling via its two often functionally antagonistic receptors, TrkB and p75NTR. In addition, we point out a series of open points in which, while the role of BDNF signaling is extremely likely conclusive, evidence is still missing.
Collapse
Affiliation(s)
- Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr 7, 38106, Braunschweig, Germany.
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124, Braunschweig, Germany.
| | - Charlotte Tacke
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr 7, 38106, Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr 7, 38106, Braunschweig, Germany.
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124, Braunschweig, Germany.
| |
Collapse
|
78
|
Fan CH, Lin CW, Huang HJ, Lee-Chen GJ, Sun YC, Lin W, Chen CM, Chang KH, Su MT, Hsieh-Li HM. LMDS-1, a potential TrkB receptor agonist provides a safe and neurotrophic effect for early-phase Alzheimer's disease. Psychopharmacology (Berl) 2020; 237:3173-3190. [PMID: 32748031 DOI: 10.1007/s00213-020-05602-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
RATIONALE The signaling pathways of tropomyosin-related kinase B (TrkB) receptor play a pivotal role in axonal sprouting, proliferation of dendritic arbor, synaptic plasticity, and neuronal differentiation. The levels of BDNF and TrkB receptor were reduced in patients with Alzheimer's disease (AD). OBJECTIVES The activation of TrkB signaling pathways is a potential strategy for AD therapies. We intended to identify potential TrkB agonists to activate the neuroprotective signaling to alleviate the pathological features of AD mice. RESULTS Both of the Aβ-deteriorated hippocampal primary neurons and mouse models were generated and showed AD characteristics. We first investigated 12 potential TrkB agonists with primary hippocampal neurons of mice. Both 7,8-DHF and LMDS-1 were identified to have better effect than the other compounds on dendritic arborization of the neurons and were further applied to the Aβ-injected mouse model. The short-term cognitive behavior and pathology in the mice were improved by LMDS-1. Further investigation indicated that LMDS-1 activated the TrkB through phosphorylation at Y516 rather than Y816. In addition, the ERK but not CaMKII or Akt was activated in the mouse hippocampus with LMDS-1 administration. LMDS-1 treatment also upregulated CREB and BDNF while downregulated the GSK3β active form and tau phosphorylation. CONCLUSIONS This study suggests that LMDS-1 upregulates the expression of BDNF and ameliorates the early-phase phenotypes of the AD-like mice through the pTrkB (Y516)-ERK-CREB pathway. In addition, LMDS-1 has better effect than 7,8-DHF in ameliorating the behavioral and pathological features of AD-like mice.
Collapse
Affiliation(s)
- Chia-Hao Fan
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, 11260, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Ying-Chieh Sun
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33305, Taiwan
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
79
|
Yang T, Liu H, Tran KC, Leng A, Massa SM, Longo FM. Small-molecule modulation of the p75 neurotrophin receptor inhibits a wide range of tau molecular pathologies and their sequelae in P301S tauopathy mice. Acta Neuropathol Commun 2020; 8:156. [PMID: 32891185 PMCID: PMC7487850 DOI: 10.1186/s40478-020-01034-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
In tauopathies, phosphorylation, acetylation, cleavage and other modifications of tau drive intracellular generation of diverse forms of toxic tau aggregates and associated seeding activity, which have been implicated in subsequent synaptic failure and neurodegeneration. Suppression of this wide range of pathogenic species, seeding and toxicity mechanisms, while preserving the physiological roles of tau, presents a key therapeutic goal. Identification and targeting of signaling networks that influence a broad spectrum of tau pathogenic mechanisms might prevent or reverse synaptic degeneration and modify disease outcomes. The p75 neurotrophin receptor (p75NTR) modulates such networks, including activation of multiple tau kinases, calpain and rhoA-cofilin activity. The orally bioavailable small-molecule p75NTR modulator, LM11A-31, was administered to tauP301S mice for 3 months starting at 6 months of age, when tau pathology was well established. LM11A-31 was found to reduce: excess activation of hippocampal cdk5 and JNK kinases and calpain; excess cofilin phosphorylation, tau phosphorylation, acetylation and cleavage; accumulation of multiple forms of insoluble tau aggregates and filaments; and, microglial activation. Hippocampal extracts from treated mice had substantially reduced tau seeding activity. LM11A-31 treatment also led to a reversal of pyramidal neuron dendritic spine loss, decreased loss of dendritic complexity and improvement in performance of hippocampal behaviors. These studies identify a therapeutically tractable upstream signaling module regulating a wide spectrum of basic mechanisms underlying tauopathies.
Collapse
Affiliation(s)
- Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Harry Liu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Kevin C Tran
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Albert Leng
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA
| | - Stephen M Massa
- Department of Neurology, San Francisco Veterans Affairs Health Care System and University of California, San Francisco, 4150 Clement St., San Francisco, CA, 94121, USA.
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Room H3160, Stanford, CA, 94305, USA.
| |
Collapse
|
80
|
Frick C, Fink S, Schmidbauer D, Rousset F, Eickhoff H, Tropitzsch A, Kramer B, Senn P, Glueckert R, Rask-Andersen H, Wiesmüller KH, Löwenheim H, Müller M. Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants. Brain Sci 2020; 10:E580. [PMID: 32839381 PMCID: PMC7564056 DOI: 10.3390/brainsci10090580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The spatial gap between cochlear implants (CIs) and the auditory nerve limits frequency selectivity as large populations of spiral ganglion neurons (SGNs) are electrically stimulated synchronously. To improve CI performance, a possible strategy is to promote neurite outgrowth toward the CI, thereby allowing a discrete stimulation of small SGN subpopulations. Brain-derived neurotrophic factor (BDNF) is effective to stimulate neurite outgrowth from SGNs. METHOD TrkB (tropomyosin receptor kinase B) agonists, BDNF, and five known small-molecule BDNF mimetics were tested for their efficacy in stimulating neurite outgrowth in postnatal SGN explants. To modulate Trk receptor-mediated effects, TrkB and TrkC ligands were scavenged by an excess of recombinant receptor proteins. The pan-Trk inhibitor K252a was used to block Trk receptor actions. RESULTS THF (7,8,3'-trihydroxyflavone) partly reproduced the BDNF effect in postnatal day 7 (P7) mouse cochlear spiral ganglion explants (SGEs), but failed to show effectiveness in P4 SGEs. During the same postnatal period, spontaneous and BDNF-stimulated neurite outgrowth increased. The increased neurite outgrowth in P7 SGEs was not caused by the TrkB/TrkC ligands, BDNF and neurotrophin-3 (NT-3). CONCLUSIONS The age-dependency of induction of neurite outgrowth in SGEs was very likely dependent on presently unidentified factors and/or molecular mechanisms which may also be decisive for the age-dependent efficacy of the small-molecule TrkB receptor agonist THF.
Collapse
Affiliation(s)
- Claudia Frick
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Stefan Fink
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| | - Dominik Schmidbauer
- Inner Ear Laboratory Innsbruck, Medical University Innsbruck, 6020 Innsbruck, Austria; (D.S.); (R.G.)
| | - Francis Rousset
- The Inner Ear & Olfaction Lab, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.R.); (P.S.)
| | - Holger Eickhoff
- EMC Microcollections GmbH, 72070 Tübingen, Germany; (H.E.); (K.-H.W.)
| | - Anke Tropitzsch
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| | - Benedikt Kramer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Mannheim, 68167 Mannheim, Germany
| | - Pascal Senn
- The Inner Ear & Olfaction Lab, Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; (F.R.); (P.S.)
| | - Rudolf Glueckert
- Inner Ear Laboratory Innsbruck, Medical University Innsbruck, 6020 Innsbruck, Austria; (D.S.); (R.G.)
- Tirol Kliniken Innsbruck, University Clinic of Otolaryngology, 6020 Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, University of Uppsala, 751 85 Uppsala, Sweden;
| | | | - Hubert Löwenheim
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| | - Marcus Müller
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen Medical Center, 72076 Tübingen, Germany; (C.F.); (A.T.); (B.K.); (H.L.); (M.M.)
| |
Collapse
|
81
|
Gudasheva TA, Povarnina PY, Tarasiuk AV, Seredenin SB. Low-molecular mimetics of nerve growth factor and brain-derived neurotrophic factor: Design and pharmacological properties. Med Res Rev 2020; 41:2746-2774. [PMID: 32808322 DOI: 10.1002/med.21721] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
To overcome the limitations of the clinical use of neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), scientists have been trying to create their low-molecular-weight mimetics having improved pharmacokinetic properties and lacking side effects of full-sized proteins since the 90s of the last century. The efforts of various research groups have led to the production of peptide and nonpeptide mimetics, being agonists or modulators of the corresponding Trk or p75 receptors that reproduced the therapeutic effects of full-sized proteins. This review discusses different strategies and approaches to the design of such compounds. The relationship between the structure of the mimetics obtained and their action mechanisms and pharmacological properties are analyzed. Special attention is paid to the dipeptide mimetics of individual NGF and BDNF loops having different patterns of activation of Trk receptors signal transduction pathways, phosphoinositide 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase, which allowed to evaluate the contribution of each pathway to different pharmacological effects. In conclusion, data on therapeutically promising compounds being at different stages of preclinical and clinical studies are summarized.
Collapse
Affiliation(s)
- Tatiana A Gudasheva
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Polina Y Povarnina
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Aleksey V Tarasiuk
- Medicinal Chemistry Department, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V. V. Zakusov Research Institute of Pharmacology, Moscow, Russian Federation
| |
Collapse
|
82
|
Kipnis PA, Sullivan BJ, Carter BM, Kadam SD. TrkB agonists prevent postischemic emergence of refractory neonatal seizures in mice. JCI Insight 2020; 5:136007. [PMID: 32427585 DOI: 10.1172/jci.insight.136007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Refractory neonatal seizures do not respond to first-line antiseizure medications like phenobarbital (PB), a positive allosteric modulator for GABAA receptors. GABAA receptor-mediated inhibition is dependent upon electroneutral cation-chloride transporter KCC2, which mediates neuronal chloride extrusion and its age-dependent increase and postnatally shifts GABAergic signaling from depolarizing to hyperpolarizing. Brain-derived neurotropic factor-tyrosine receptor kinase B activation (BDNF-TrkB activation) after excitotoxic injury recruits downstream targets like PLCγ1, leading to KCC2 hypofunction. Here, the antiseizure efficacy of TrkB agonists LM22A-4, HIOC, and deoxygedunin (DG) on PB-refractory seizures and postischemic TrkB pathway activation was investigated in a mouse model (CD-1, P7) of refractory neonatal seizures. LM, a BDNF loop II mimetic, rescued PB-refractory seizures in a sexually dimorphic manner. Efficacy was associated with a substantial reduction in the postischemic phosphorylation of TrkB at Y816, a site known to mediate postischemic KCC2 hypofunction via PLCγ1 activation. LM rescued ischemia-induced phospho-KCC2-S940 dephosphorylation, preserving its membrane stability. Full TrkB agonists HIOC and DG similarly rescued PB refractoriness. Chemogenetic inactivation of TrkB substantially reduced postischemic neonatal seizure burdens at P7. Sex differences identified in developmental expression profiles of TrkB and KCC2 may underlie the sexually dimorphic efficacy of LM. These results support a potentially novel role for the TrkB receptor in the emergence of age-dependent refractory neonatal seizures.
Collapse
Affiliation(s)
- Pavel A Kipnis
- Neuroscience Laboratory, Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Brennan J Sullivan
- Neuroscience Laboratory, Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Brandon M Carter
- Neuroscience Laboratory, Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
83
|
Gu F, Parada I, Yang T, Longo FM, Prince DA. Partial Activation of TrkB Receptors Corrects Interneuronal Calcium Channel Dysfunction and Reduces Epileptogenic Activity in Neocortex following Injury. Cereb Cortex 2020; 30:5180-5189. [PMID: 32488246 PMCID: PMC7391412 DOI: 10.1093/cercor/bhz254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
Decreased GABAergic inhibition due to dysfunction of inhibitory interneurons plays an important role in post-traumatic epileptogenesis. Reduced N-current Ca2+ channel function in GABAergic terminals contributes to interneuronal abnormalities and neural circuit hyperexcitability in the partial neocortical isolation (undercut, UC) model of post-traumatic epileptogenesis. Because brain-derived neurotrophic factor (BDNF) supports the development and maintenance of interneurons, we hypothesized that the activation of BDNF tropomyosin kinase B (TrkB) receptors by a small molecule, TrkB partial agonist, PTX BD4-3 (BD), would correct N channel abnormalities and enhance inhibitory synaptic transmission in UC cortex. Immunocytochemistry (ICC) and western blots were used to quantify N- and P/Q-type channels. We recorded evoked (e)IPSCs and responses to N and P/Q channel blockers to determine the effects of BD on channel function. Field potential recordings were used to determine the effects of BD on circuit hyperexcitability. Chronic BD treatment 1) upregulated N and P/Q channel immunoreactivity in GABAergic terminals; 2) increased the effects of N or P/Q channel blockade on evoked inhibitory postsynaptic currents (eIPSCs); 3) increased GABA release probability and the frequency of sIPSCs; and 4) reduced the incidence of epileptiform discharges in UC cortex. The results suggest that chronic TrkB activation is a promising approach for rescuing injury-induced calcium channel abnormalities in inhibitory terminals, thereby improving interneuronal function and suppressing circuit hyperexcitability.
Collapse
Affiliation(s)
- Feng Gu
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - Isabel Parada
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - Tao Yang
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - Frank M Longo
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| | - David A Prince
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5122, USA
| |
Collapse
|
84
|
Characterising lipoteichoic acid as an in vitro model of acute neuroinflammation. Int Immunopharmacol 2020; 85:106619. [PMID: 32485352 DOI: 10.1016/j.intimp.2020.106619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 05/17/2020] [Indexed: 01/12/2023]
Abstract
Toll-like receptor 2 (TLR2) is a primary sensor for pathogens, including those derived from gram-positive bacteria. It can also mediate the effects of endogenous inflammatory signals such as β-amyloid peptide (Aβ), thus promoting the microglial activation and subsequent neuronal dysfunction, characteristic of chronic neuroinflammatory conditions. More recently, a role for TLR2 has been proposed in the pathogenesis of disorders associated with acute inflammation, including anxiety and depression. The current study aims to characterise the acute effects of the TLR2 agonist lipoteichoic acid (LTA) on microglial activation and neuronal integrity, and to evaluate the influence of LTA exposure on sensitivity to the inflammation and neuronal dysfunction associated with Aβ. Using BV2 and N2a cells as an in vitro model, we highlight that acute exposure to LTA robustly promotes inflammatory cytokine and nitric oxide (NO) production in microglia but also in neurons, similar to that reported under longer-term and chronic inflammatory conditions. Moreover, we find that exposure to LTA can enhance sensitivity to subthreshold Aβ, promoting an 'M1'-like phenotype in microglia and provoking dysregulation of neuronal activity in acute hippocampal slices. Anti-inflammatory agents, including mimetics of brain-derived neurotrophic factor (BDNF), have proven effective at alleviating chronic neuroinflammatory complications. We further examined the effects of 7,8,3-trihydroxyflavone (7,8,3-THF), a small-molecule TrkB agonist, on LTA-induced microglial activation. We report that 7,8,3-THF can significantly ameliorate interleukin (IL)-6 and NO production in LTA-stimulated BV2 cells. Taken together, our findings offer support for exploration of TLR2 as a potential target for therapeutic intervention into acute neuroinflammatory conditions. Moreover we propose that exposure to gram-positive bacterial pathogens may promote sensitivity to the inflammatory changes characteristic of the aged brain.
Collapse
|
85
|
Ovarian BDNF promotes survival, migration, and attachment of tumor precursors originated from p53 mutant fallopian tube epithelial cells. Oncogenesis 2020; 9:55. [PMID: 32471985 PMCID: PMC7260207 DOI: 10.1038/s41389-020-0243-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecological malignancy. New evidence supports a hypothesis that HGSOC can originate from fallopian tube epithelium (FTE). It is unclear how genetic alterations and pathophysiological processes drive the progression of FTE tumor precursors into widespread HGSOCs. In this study, we uncovered that brain-derived neurotrophic factor (BDNF) in the follicular fluid stimulates the tropomyosin receptor kinase B (TrkB)-expressing FTE cells to promote their survival, migration, and attachment. Using in vitro and in vivo models, we further identified that the acquisition of common TP53 gain-of-function (GOF) mutations in FTE cells led to enhanced BDNF/TrkB signaling compared to that of FTE cells with TP53 loss-of-function (LOF) mutations. Different mutant p53 proteins can either increase TrkB transcription or enhance TrkB endocytic recycling. Our findings have demonstrated possible interplays between genetic alterations in FTE tumor precursors (i.e., p53 GOF mutations) and pathophysiological processes (i.e., the release of follicular fluid upon ovulation) during the initiation of HGSOC from the fallopian tube. Our data revealed molecular events underlying the link between HGSOC tumorigenesis and ovulation, a physiological process that has been associated with risk factors of HGSOC.
Collapse
|
86
|
Wang S, Yao H, Xu Y, Hao R, Zhang W, Liu H, Huang Y, Guo W, Lu B. Therapeutic potential of a TrkB agonistic antibody for Alzheimer's disease. Theranostics 2020; 10:6854-6874. [PMID: 32550908 PMCID: PMC7295064 DOI: 10.7150/thno.44165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Repeated failures of "Aβ-lowering" therapies call for new targets and therapeutic approaches for Alzheimer's disease (AD). We propose to treat AD by halting neuronal death and repairing synapses using a BDNF-based therapy. To overcome the poor druggability of BDNF, we have developed an agonistic antibody AS86 to mimic the function of BDNF, and evaluate its therapeutic potential for AD. Method: Biochemical, electrophysiological and behavioral techniques were used to investigate the effects of AS86 in vitro and in vivo. Results: AS86 specifically activated the BDNF receptor TrkB and its downstream signaling, without affecting its other receptor p75NTR. It promoted neurite outgrowth, enhanced spine growth and prevented Aβ-induced cell death in cultured neurons, and facilitated Long-Term Potentiation (LTP) in hippocampal slices. A single-dose tail-vein injection of AS86 activated TrkB signaling in the brain, with a half-life of 6 days in the blood and brain. Bi-weekly peripheral administration of AS86 rescued the deficits in object-recognition memory in the APP/PS1 mouse model. AS86 also reversed spatial memory deficits in the 11-month, but not 14-month old AD mouse model. Conclusion: These results demonstrate the potential of AS86 in AD therapy, suggesting that neuronal and/or synaptic repair as an alternative therapeutic strategy for AD.
Collapse
Affiliation(s)
- Shudan Wang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Hongyang Yao
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Yihua Xu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Rui Hao
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wen Zhang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
| | - Hang Liu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Ying Huang
- Center of Translational Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China, 200065
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China, 100084
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China, 100070
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China, 518057
| |
Collapse
|
87
|
Huang P, Liu A, Song Y, Hope JM, Cui B, Duan L. Optical Activation of TrkB Signaling. J Mol Biol 2020; 432:3761-3770. [PMID: 32422149 DOI: 10.1016/j.jmb.2020.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/04/2023]
Abstract
Brain-derived neurotrophic factor, via activation of tropomyosin receptor kinase B (TrkB), plays a critical role in neuronal proliferation, differentiation, survival, and death. Dysregulation of TrkB signaling is implicated in neurodegenerative disorders and cancers. Precise activation of TrkB signaling with spatial and temporal resolution is greatly desired to study the dynamic nature of TrkB signaling and its role in related diseases. Here we develop different optogenetic approaches that use light to activate TrkB signaling. Utilizing the photosensitive protein Arabidopsis thaliana cryptochrome 2, the light-inducible homo-interaction of the intracellular domain of TrkB in the cytosol or on the plasma membrane is able to induce the activation of downstream MAPK/ERK and PI3K/Akt signaling as well as the neurite outgrowth of PC12 cells. Moreover, we prove that such strategies are generalizable to other optical homo-dimerizers by demonstrating the optical TrkB activation based on the light-oxygen-voltage domain of aureochrome 1 from Vaucheria frigida. The results open up new possibilities of many other optical platforms to activate TrkB signaling to fulfill customized needs. By comparing all the different strategies, we find that the cryptochrome 2-integrated approach to achieve light-induced cell membrane recruitment and homo-interaction of intracellular domain of TrkB is most efficient in activating TrkB signaling. The optogenetic strategies presented are promising tools to investigate brain-derived neurotrophic factor/TrkB signaling with tight spatial and temporal control.
Collapse
Affiliation(s)
- Peiyuan Huang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Yutong Song
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China
| | - Jen M Hope
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Liting Duan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, China.
| |
Collapse
|
88
|
Xu F, Lv C, Deng Y, Liu Y, Gong Q, Shi J, Gao J. Icariside II, a PDE5 Inhibitor, Suppresses Oxygen-Glucose Deprivation/Reperfusion-Induced Primary Hippocampal Neuronal Death Through Activating the PKG/CREB/BDNF/TrkB Signaling Pathway. Front Pharmacol 2020; 11:523. [PMID: 32390851 PMCID: PMC7194126 DOI: 10.3389/fphar.2020.00523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ischemic stroke remains the leading cause of death and adult disability. Cerebral ischemic/reperfusion (I/R) injury is caused by ischemic stroke thereafter aggravates overwhelming neuronal apoptosis and even the death of neurons. Of note, hippocampus is more susceptive to cerebral I/R injury than the other brain region. This study was designed to explore the effects and mechanism of icariside II (ICS II), a pharmacologically active compound exists in herbal Epimedii with previous study-proved as a phosphodiesterase 5 (PDE5) inhibitor, on the oxygen glucose deprivation/reoxygenation (OGD/R)-induced primary hippocampal neurons injury. Methods Effects of ICS II on primary hippocampal neuronal impairment and apoptosis induced by OGD/R were examined by MTT, lactate dehydrogenase (LDH) release, TUNEL staining, and flow cytometry, respectively. Activation of memory-related signaling pathways was measured using Western blot analysis. The direct interaction between ICS II and PDE5 was further evaluated by molecular docking. Results ICS II (12.5, 25, 50 μM) markedly abrogated OGD/R-induced hippocampal neuronal death as suggested by the increase in neurons viability and the decrease in cellular LDH release. Furthermore, ICS II not only effectively decreased the protein expression and activity of PDE5, restored the 3′5′-cyclic guanosine monophosphate (cGMP) level and its downstream target protein kinase G (PKG) activity but also increased the phosphorylation of cAMP response element binding protein (CREB) level, expressions of brain derived neurotrophic factor (BDNF), and tyrosine protein kinase B (TrkB). Mechanistically, the inhibitory effects of ICS II were abrogated by Rp-8-Br-cGMP (a PKG inhibitor) or ANA-12 (a TrkB inhibitor), which further confirmed that the favorable effects of ICS II were attributed to its activation of the PKG/CREB/BDNF signaling pathways. Intriguingly, ICS II might effectively bind and inhibited PDE5 activity as demonstrated by relatively high binding scores (−6.52 kcal/mol). Conclusions ICS II significantly rescues OGD/R-induced hippocampal neuronal injury. The mechanism is, at least partly, due to inhibition of PDE5 and activation of PKG/CREB/BDNF/TrkB signaling pathway. Hence it is thought that ICS II might be a potential naturally PDE5 inhibitor to combat cerebral I/R injury.
Collapse
Affiliation(s)
- Fan Xu
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Chun Lv
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yan Deng
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuangui Liu
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jingshan Shi
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
89
|
Stathakos P, Jiménez-Moreno N, Crompton LA, Nistor PA, Badger JL, Barbuti PA, Kerrigan TL, Randall AD, Caldwell MA, Lane JD. A monolayer hiPSC culture system for autophagy/mitophagy studies in human dopaminergic neurons. Autophagy 2020; 17:855-871. [PMID: 32286126 PMCID: PMC8078667 DOI: 10.1080/15548627.2020.1739441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) – the predominant neuronal sub-type afflicted in PD – have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells. Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4ʹ,6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco’s modified eagle’s medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.
Collapse
Affiliation(s)
- Petros Stathakos
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK.,Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
| | | | - Lucy A Crompton
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Paul A Nistor
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Jennifer L Badger
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peter A Barbuti
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Talitha L Kerrigan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK.,Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Andrew D Randall
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, UK
| | - Maeve A Caldwell
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK.,Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| |
Collapse
|
90
|
Turovskaya MV, Gaidin SG, Vedunova MV, Babaev AA, Turovsky EA. BDNF Overexpression Enhances the Preconditioning Effect of Brief Episodes of Hypoxia, Promoting Survival of GABAergic Neurons. Neurosci Bull 2020; 36:733-760. [PMID: 32219700 PMCID: PMC7340710 DOI: 10.1007/s12264-020-00480-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia causes depression of synaptic plasticity, hyperexcitation of neuronal networks, and the death of specific populations of neurons. However, brief episodes of hypoxia can promote the adaptation of cells. Hypoxic preconditioning is well manifested in glutamatergic neurons, while this adaptive mechanism is virtually suppressed in GABAergic neurons. Here, we show that brain-derived neurotrophic factor (BDNF) overexpression in neurons enhances the preconditioning effect of brief episodes of hypoxia. The amplitudes of the NMDAR- and AMPAR-mediated Ca2+ responses of glutamatergic and GABAergic neurons gradually decreased after repetitive brief hypoxia/reoxygenation cycles in cell cultures transduced with the (AAV)-Syn-BDNF-EGFP virus construct. In contrast, the amplitudes of the responses of GABAergic neurons increased in non-transduced cultures after preconditioning. The decrease of the amplitudes in GABAergic neurons indicated the activation of mechanisms of hypoxic preconditioning. Preconditioning suppressed apoptotic or necrotic cell death. This effect was most pronounced in cultures with BDNF overexpression. Knockdown of BDNF abolished the effect of preconditioning and promoted the death of GABAergic neurons. Moreover, the expression of the anti-apoptotic genes Stat3, Socs3, and Bcl-xl substantially increased 24 h after hypoxic episodes in the transduced cultures compared to controls. The expression of genes encoding the pro-inflammatory cytokines IL-10 and IL-6 also increased. In turn, the expression of pro-apoptotic (Bax, Casp-3, and Fas) and pro-inflammatory (IL-1β and TNFα) genes decreased after hypoxic episodes in cultures with BDNF overexpression. Inhibition of vesicular BDNF release abolished its protective action targeting inhibition of the oxygen-glucose deprivation (OGD)-induced [Ca2+]i increase in GABAergic and glutamatergic neurons, thus promoting their death. Bafilomycin A1, Brefeldin A, and tetanus toxin suppressed vesicular release (including BDNF) and shifted the gene expression profile towards excitotoxicity, inflammation, and apoptosis. These inhibitors of vesicular release abolished the protective effects of hypoxic preconditioning in glutamatergic neurons 24 h after hypoxia/reoxygenation cycles. This finding indicates a significant contribution of vesicular BDNF release to the development of the mechanisms of hypoxic preconditioning. Thus, our results demonstrate that BDNF plays a pivotal role in the activation and enhancement of the preconditioning effect of brief episodes of hypoxia and promotes tolerance of the most vulnerable populations of GABAergic neurons to hypoxia/ischemia.
Collapse
Affiliation(s)
- M V Turovskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - S G Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - M V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - E A Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| |
Collapse
|
91
|
Singh T, Robles D, Vazquez M. Neuronal substrates alter the migratory responses of nonmyelinating Schwann cells to controlled brain‐derived neurotrophic factor gradients. J Tissue Eng Regen Med 2020; 14:609-621. [DOI: 10.1002/term.3025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/16/2020] [Accepted: 02/02/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Tanya Singh
- Department of Biomedical EngineeringCity College of New York New York NY USA
| | - Denise Robles
- Department of Biomedical EngineeringRutgers University, The State University of New Jersey New Brunswick NJ USA
| | - Maribel Vazquez
- Department of Biomedical EngineeringRutgers University, The State University of New Jersey New Brunswick NJ USA
| |
Collapse
|
92
|
Spencer AP, Torrado M, Custódio B, Silva-Reis SC, Santos SD, Leiro V, Pêgo AP. Breaking Barriers: Bioinspired Strategies for Targeted Neuronal Delivery to the Central Nervous System. Pharmaceutics 2020; 12:E192. [PMID: 32102252 PMCID: PMC7076453 DOI: 10.3390/pharmaceutics12020192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
Central nervous system (CNS) disorders encompass a vast spectrum of pathological conditions and represent a growing concern worldwide. Despite the high social and clinical interest in trying to solve these pathologies, there are many challenges to bridge in order to achieve an effective therapy. One of the main obstacles to advancements in this field that has hampered many of the therapeutic strategies proposed to date is the presence of the CNS barriers that restrict the access to the brain. However, adequate brain biodistribution and neuronal cells specific accumulation in the targeted site also represent major hurdles to the attainment of a successful CNS treatment. Over the last few years, nanotechnology has taken a step forward towards the development of therapeutics in neurologic diseases and different approaches have been developed to surpass these obstacles. The versatility of the designed nanocarriers in terms of physical and chemical properties, and the possibility to functionalize them with specific moieties, have resulted in improved neurotargeted delivery profiles. With the concomitant progress in biology research, many of these strategies have been inspired by nature and have taken advantage of physiological processes to achieve brain delivery. Here, the different nanosystems and targeting moieties used to achieve a neuronal delivery reported in the open literature are comprehensively reviewed and critically discussed, with emphasis on the most recent bioinspired advances in the field. Finally, we express our view on the paramount challenges in targeted neuronal delivery that need to be overcome for these promising therapeutics to move from the bench to the bedside.
Collapse
Affiliation(s)
- Ana P. Spencer
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Marília Torrado
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Sara C. Silva-Reis
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (A.P.S.); (M.T.); (B.C.); (S.C.S.-R.); (S.D.S.); (V.L.)
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
93
|
Padmakumar S, Taha MS, Kadakia E, Bleier BS, Amiji MM. Delivery of neurotrophic factors in the treatment of age-related chronic neurodegenerative diseases. Expert Opin Drug Deliv 2020; 17:323-340. [DOI: 10.1080/17425247.2020.1727443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| | - Maie S. Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ekta Kadakia
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
- Drug Metabolism and Pharmacokinetics (DMPK), Biogen Inc, Cambridge, MA, USA
| | - Benjamin S. Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, USA
| |
Collapse
|
94
|
Gudasheva TA, Povarnina P, Tarasiuk AV, Seredenin SB. The Low Molecular Weight Brain-derived Neurotrophic Factor Mimetics with Antidepressant-like Activity. Curr Pharm Des 2020; 25:729-737. [PMID: 30931847 DOI: 10.2174/1381612825666190329122852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
Abstract
The search for new highly-effective, fast-acting antidepressant drugs is extremely relevant. Brain derived neurotrophic factor (BDNF) and signaling through its tropomyosin-related tyrosine kinase B (TrkB) receptor, represents one of the most promising therapeutic targets for treating depression. BDNF is a key regulator of neuroplasticity in the hippocampus and the prefrontal cortex, the dysfunction of which is considered to be the main pathophysiological hallmark of this disorder. BDNF itself has no favorable drug-like properties due to poor pharmacokinetics and possible adverse effects. The design of small, proteolytically stable BDNF mimetics might provide a useful approach for the development of therapeutic agents. Two small molecule BDNF mimetics with antidepressant-like activity have been reported, 7,8-dihydroxyflavone and the dimeric dipeptide mimetic of BDNF loop 4, GSB-106. The article reflects on the current literature on the role of BDNF as a promising therapeutic target in the treatment of depression and on the current advances in the development of small molecules on the base of this neurotrophin as potential antidepressants.
Collapse
Affiliation(s)
- Tatiana A Gudasheva
- Medicinal Chemistry Department, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| | - Polina Povarnina
- Medicinal Chemistry Department, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| | - Alexey V Tarasiuk
- Medicinal Chemistry Department, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| | - Sergey B Seredenin
- Department of Pharmacogenetics, V.V. Zakusov Research Institute of Pharmacology, ul. Baltijskaya, 8, 124315 Moscow, Russian Federation
| |
Collapse
|
95
|
Brain-Derived Neurotrophic Factor and Its Potential Therapeutic Role in Stroke Comorbidities. Neural Plast 2020; 2020:1969482. [PMID: 32399020 PMCID: PMC7204205 DOI: 10.1155/2020/1969482] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
With the rise in the aging global population, stroke comorbidities have become a serious health threat and a tremendous economic burden on human society. Current therapeutic strategies mainly focus on protecting neurons from cytotoxic damage at the acute phase upon stroke onset, which not only is a difficult way to ameliorate stroke symptoms but also presents a challenge for the patients to receive effective treatment in time. The brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain, which possesses a remarkable capability to repair brain damage. Recent promising preclinical outcomes have made BDNF a popular late-stage target in the development of novel stroke treatments. In this review, we aim to summarize the latest progress in the understanding of the cellular/molecular mechanisms underlying stroke pathogenesis, current strategies and difficulties in drug development, the mechanism of BDNF action in poststroke neurorehabilitation and neuroplasticity, and recent updates in novel therapeutic methods.
Collapse
|
96
|
Ghosh S, Durgvanshi S, Agarwal S, Raghunath M, Sinha JK. Current Status of Drug Targets and Emerging Therapeutic Strategies in the Management of Alzheimer's Disease. Curr Neuropharmacol 2020; 18:883-903. [PMID: 32348223 PMCID: PMC7569315 DOI: 10.2174/1570159x18666200429011823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease affecting the elderly. AD is associated with a progressive decline in memory and cognitive abilities, drastic changes in behavioural patterns and other psychiatric manifestations. It leads to a significant decline in the quality of life at personal, household as well as national level. Although AD was described about hundred years back and multiple theories have been proposed, its exact pathophysiology is unknown. There is no cure for AD and the life expectancy of AD patients remains low at 3-9 years. An accurate understanding of the molecular mechanism(s) involved in the pathogenesis of AD is imperative to devise a successful treatment strategy. This review explains and summarises the current understanding of different therapeutic strategies based on various molecular pathways known to date. Different strategies based on anti-amyloid pathology, glutamatergic pathway, anti-tau, neuroprotection through neurotrophic factors and cholinergic neurotransmission have been discussed. Further, the use of anti-inflammatory drugs, nutraceuticals, and dietary interventions has also been explained in the management of AD. It further describes different pharmacological and dietary interventions being used in treating and/or managing AD. Additionally, this article provides a thorough review of the literature for improving the therapeutic paradigm of AD.
Collapse
Affiliation(s)
| | | | | | | | - Jitendra Kumar Sinha
- Address correspondence to this author at the Amity Institute of Neuropsychology and Neurosciences (AINN), Amity University UP, Sector-125, Noida 201303, India; Tel: +91-120-4392971, +91-8919679822; Emails: ,
| |
Collapse
|
97
|
Jeon MT, Moon GJ, Kim S, Choi M, Oh YS, Kim DW, Kim HJ, Lee KJ, Choe Y, Ha CM, Jang IS, Nakamura M, McLean C, Chung WS, Shin WH, Lee SG, Kim SR. Neurotrophic interactions between neurons and astrocytes following AAV1-Rheb(S16H) transduction in the hippocampus in vivo. Br J Pharmacol 2019; 177:668-686. [PMID: 31658360 PMCID: PMC7012949 DOI: 10.1111/bph.14882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/28/2022] Open
Abstract
Background and Purpose We recently reported that AAV1‐Rheb(S16H) transduction could protect hippocampal neurons through the induction of brain‐derived neurotrophic factor (BDNF) in the rat hippocampus in vivo. It is still unclear how neuronal BDNF produced by AAV1‐Rheb(S16H) transduction induces neuroprotective effects in the hippocampus and whether its up‐regulation contributes to the enhance of a neuroprotective system in the adult brain. Experimental Approach To determine the presence of a neuroprotective system in the hippocampus of patients with Alzheimer's disease (AD), we examined the levels of glial fibrillary acidic protein, BDNF and ciliary neurotrophic factor (CNTF) and their receptors, tropomyocin receptor kinase B (TrkB) and CNTF receptor α(CNTFRα), in the hippocampus of AD patients. We also determined whether AAV1‐Rheb(S16H) transduction stimulates astroglial activation and whether reactive astrocytes contribute to neuroprotection in models of hippocampal neurotoxicity in vivo and in vitro. Key Results AD patients may have a potential neuroprotective system, demonstrated by increased levels of full‐length TrkB and CNTFRα in the hippocampus. Further AAV1‐Rheb(S16H) transduction induced sustained increases in the levels of full‐length TrkB and CNTFRα in reactive astrocytes and hippocampal neurons. Moreover, neuronal BDNF produced by Rheb(S16H) transduction of hippocampal neurons induced reactive astrocytes, resulting in CNTF production through the activation of astrocytic TrkB and the up‐regulation of neuronal BDNF and astrocytic CNTF which had synergistic effects on the survival of hippocampal neurons in vivo. Conclusions and Implications The results demonstrated that Rheb(S16H) transduction of hippocampal neurons could strengthen the neuroprotective system and this intensified system may have a therapeutic value against neurodegeneration in the adult brain.
Collapse
Affiliation(s)
- Min-Tae Jeon
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Gyeong Joon Moon
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Minji Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong-Seok Oh
- Department of Brain-Cognitive Science, Daegu-Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hyung-Jun Kim
- Department of Neural Development and Disease, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Kea Joo Lee
- Department of Neural Development and Disease, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Youngshik Choe
- Department of Neural Development and Disease, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Chang Man Ha
- Department of Neural Development and Disease, Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, Korea
| | - Il-Sung Jang
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Michiko Nakamura
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Catriona McLean
- Victorian Brain Bank Network, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia.,Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Won-Suk Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Won-Ho Shin
- Predictive Model Research Center, Korea Institute of Toxicology, Daejeon, Korea
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.,KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu, Korea.,BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea.,Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| |
Collapse
|
98
|
Chan CB, Ahuja P, Ye K. Developing Insulin and BDNF Mimetics for Diabetes Therapy. Curr Top Med Chem 2019; 19:2188-2204. [PMID: 31660832 DOI: 10.2174/1568026619666191010160643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Abstract
Diabetes is a global public health concern nowadays. The majority of diabetes mellitus (DM) patients belong to type 2 diabetes mellitus (T2DM), which is highly associated with obesity. The general principle of current therapeutic strategies for patients with T2DM mainly focuses on restoring cellular insulin response by potentiating the insulin-induced signaling pathway. In late-stage T2DM, impaired insulin production requires the patients to receive insulin replacement therapy for maintaining their glucose homeostasis. T2DM patients also demonstrate a drop of brain-derived neurotrophic factor (BDNF) in their circulation, which suggests that replenishing BDNF or enhancing its downstream signaling pathway may be beneficial. Because of their protein nature, recombinant insulin or BDNF possess several limitations that hinder their clinical application in T2DM treatment. Thus, developing orally active "insulin pill" or "BDNF pill" is essential to provide a more convenient and effective therapy. This article reviews the current development of non-peptidyl chemicals that mimic insulin or BDNF and their potential as anti-diabetic agents.
Collapse
Affiliation(s)
- Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Palak Ahuja
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University of School of Medicine, Atlanta, GA, United States
| |
Collapse
|
99
|
3β, 6β-dichloro-5-hydroxy-5α-cholestane facilitates neuronal development through modulating TrkA signaling regulated proteins in primary hippocampal neuron. Sci Rep 2019; 9:18919. [PMID: 31831796 PMCID: PMC6908615 DOI: 10.1038/s41598-019-55364-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Potentiating neuritogenesis through pharmacological intervention might hold therapeutic promise in neurodegenerative disorders and acute brain injury. Here, we investigated the novel neuritogenic potentials of a steroidal chlorohydrin, 3β, 6β-dichloro-5-hydroxy-5α-cholestane (hereafter, SCH) and the change in cellular proteome to gain insight into the underlying mechanism of its neurotrophic activity in hippocampal neurons. Morphometric analysis showed that SCH promoted early neuronal differentiation, dendritic arborization and axonal maturation. Proteomic and bioinformatic analysis revealed that SCH induced upregulation of several proteins, including those associated with neuronal differentiation and development. Immunocytochemical data further indicates that SCH-treated neurons showed upregulation of Hnrnpa2b1 and Map1b, validating their proteomic profiles. In addition, a protein-protein interaction network analysis identified TrkA as a potential target connecting most of the upregulated proteins. The neurite outgrowth effect of SCH was suppressed by TrkA inhibitor, GW441756, verifying TrkA-dependent activity of SCH, which further supports the connection of TrkA with the upregulated proteins. Also, the computational analysis revealed that SCH interacts with the NGF-binding domain of TrkA through Phe327 and Asn355. Collectively, our findings provide evidence that SCH promotes neuronal development via upregulating TrkA-signaling proteins and suggest that SCH could be a promising therapeutic agent in the prevention and treatment of neurodegenerative disorders.
Collapse
|
100
|
Gaidin SG, Turovskaya MV, Gavrish MS, Babaev AA, Mal'tseva VN, Blinova EV, Turovsky EA. The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity. Int J Neurosci 2019; 130:363-383. [PMID: 31694441 DOI: 10.1080/00207454.2019.1691205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: Cerebral ischemia is accompanied by damage and death of a significant number of neurons due to glutamate excitotoxicity with subsequent a global increase of cytosolic Ca2+ concentration ([Ca2+]i). This study aimed to investigate the neuroprotective action of BDNF overexpression in hippocampal neurons against injury under ischemia-like conditions (oxygen and glucose deprivation) and glutamate-induced excitotoxicity (GluTox).Methods: The overexpression of BDNF was reached by the transduction of cell cultures with the adeno-associated (AAV)-Syn-BDNF-EGFP virus construct. Neuroprotective effects were mediated by Ca2+-dependent BDNF release followed by activation of the neuroprotective signaling cascades and changes of the gene expression. Thus, BDNF overexpression modulates Ca2+ homeostasis in cells, preventing Ca2+ overload and initiation of apoptotic and necrotic processes.Results:Antiapoptotic effect of BDNF overexpression is mediated via activation of phosphoinositide-3-kinase (PI3K) pathway and changing the expression of PI3K, HIF-1, Src and an anti-inflammatory cytokine IL-10. On the contrary, the decrease of expression of proapoptotic proteins such as Jun, Mapk8, caspase-3 and an inflammatory cytokine IL-1β was observed. These changes of expression were accompanied by the decrease of quantity of IL-1β receptors and the level of TNFα in cells in control, as well as 24 h after OGD. Besides, BDNF overexpression changes the expression of GABA(B) receptors. Also, the expression of NMDA and AMPA receptor subunits was altered towards a change in the conductivity of the receptors for Ca2+.Conclusion: Thus, our results demonstrate that neuronal BDNF overexpression reveals complex neuroprotective effects on the neurons and astrocytes under OGD and GluTox via inhibition of Ca2+ responses and regulation of gene expression.
Collapse
Affiliation(s)
- S G Gaidin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M V Turovskaya
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M S Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V N Mal'tseva
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - E V Blinova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,N. P. Ogarev Mordovia State University, Saransk, Russia
| | - E A Turovsky
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|