51
|
Yang Y, Wang B. PTH1R-CaSR Cross Talk: New Treatment Options for Breast Cancer Osteolytic Bone Metastases. Int J Endocrinol 2018; 2018:7120979. [PMID: 30151009 PMCID: PMC6087585 DOI: 10.1155/2018/7120979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic breast cancer (BrCa) is currently incurable despite great improvements in treatment of primary BrCa. The incidence of skeletal metastases in advanced BrCa occurs up to 70%. Recent findings have established that the distribution of BrCa metastases to the skeleton is not a random process but due to the favorable microenvironment for tumor invasion and growth. The complex interplay among BrCa cells, stromal/osteoblastic cells, and osteoclasts in the osseous microenvironment creates a bone-tumor vicious cycle (a feed-forward loop) that results in excessive bone destruction and progressive tumor growth. Both the type 1 PTH receptor (PTH1R) and extracellular calcium-sensing receptor (CaSR) participate in the vicious cycle and influence the skeletal metastatic niche. Thus, this review focuses on how the PTH1R and CaSR signaling pathways interact and contribute to the pathogenesis of BrCa bone metastases. The effects of intermittent PTH and allosteric modulators of CaSR for the use of bone-anabolic agents and prevention of BrCa bone metastases constitute a proof of principle for therapeutic consideration. Understanding the interplay between PTH1R and CaSR signaling in the development of BrCa bone metastases could lead to a novel therapeutic approach to control both osteolysis and tumor burden in the bone.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bin Wang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
52
|
Haider MT, Taipaleenmäki H. Targeting the Metastatic Bone Microenvironment by MicroRNAs. Front Endocrinol (Lausanne) 2018; 9:202. [PMID: 29780354 PMCID: PMC5946017 DOI: 10.3389/fendo.2018.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/08/2023] Open
Abstract
Bone metastases are a common and devastating feature of late-stage breast cancer. Metastatic bone disease is a consequence of disturbed bone remodeling due to pathological interactions between cancer cells and the bone microenvironment (BME). In the BME, breast cancer cells severely alter the balanced bone formation and bone resorption driven by osteoblasts and osteoclasts. The complex cellular cross talk in the BME is governed by secreted molecules, signaling pathways and epigenetic cues including non-coding RNAs. MicroRNAs (miRNAs) are small non-coding RNAs that reduce protein abundance and regulate several biological processes, including bone remodeling. Under pathological conditions, abnormal miRNA signaling contributes to the progression of diseases, such as bone metastasis. Recently miRNAs have been demonstrated to regulate several key drivers of bone metastasis. Furthermore, miRNAs are implicated as important regulators of cellular interactions within the metastatic BME. As a consequence, targeting the BME by miRNA delivery or antagonism has been reported to limit disease progression in experimental and preclinical conditions positioning miRNAs as emerging novel therapeutic tools in metastatic bone disease. This review will summarize our current understanding on the composition and function of the metastatic BME and discuss the recent advances how miRNAs can modulate pathological interactions in the bone environment.
Collapse
|
53
|
Jolette J, Attalla B, Varela A, Long GG, Mellal N, Trimm S, Smith SY, Ominsky MS, Hattersley G. Comparing the incidence of bone tumors in rats chronically exposed to the selective PTH type 1 receptor agonist abaloparatide or PTH(1-34). Regul Toxicol Pharmacol 2017; 86:356-365. [PMID: 28389324 DOI: 10.1016/j.yrtph.2017.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/02/2017] [Indexed: 02/03/2023]
Abstract
Prolonged treatment with human parathyroid hormone (hPTH) in rats results in development of bone tumors, though this finding has not been supported by clinical experience. The PTH type 1 receptor agonist abaloparatide, selected for its bone anabolic activity, is under clinical development to treat postmenopausal women with osteoporosis. To determine the carcinogenic potential of abaloparatide, Fischer (F344) rats were administered SC daily abaloparatide at doses of 0, 10, 25, and 50 μg/kg or 30 μg/kg hPTH(1-34) as a positive control for up to 2 years. Robust increases in bone density were achieved at all abaloparatide doses and with hPTH(1-34). Comprehensive histopathological analysis reflected a comparable continuum of proliferative changes in bone, mostly osteosarcoma, in both abaloparatide and hPTH(1-34) treated rats. Comparing the effects of abaloparatide and hPTH(1-34) at the 25 and 30 μg/kg respective doses, representing similar exposure multiples to the human therapeutic doses, revealed similar osteosarcoma-associated mortality, tumor incidence, age at first occurrence, and metastatic potential. There were no increases in the incidence of non-bone tumors with abaloparatide compared to vehicle. Thus, near life-long treatment with abaloparatide in rats resulted in dose and time dependent formation of osteosarcomas, with a comparable response to hPTH(1-34) at similar exposure.
Collapse
Affiliation(s)
- Jacquelin Jolette
- Charles River Laboratories, Preclinical Services, Montreal, 22022 Transcanadienne, Senneville, Quebec H9X 3R3, Canada
| | - Bassem Attalla
- Charles River Laboratories, Preclinical Services, Montreal, 22022 Transcanadienne, Senneville, Quebec H9X 3R3, Canada
| | - Aurore Varela
- Charles River Laboratories, Preclinical Services, Montreal, 22022 Transcanadienne, Senneville, Quebec H9X 3R3, Canada
| | - Gerald G Long
- Experimental Pathology Laboratories Inc., Sterling, VA 20166, USA
| | - Nacera Mellal
- Charles River Laboratories, Preclinical Services, Montreal, 22022 Transcanadienne, Senneville, Quebec H9X 3R3, Canada
| | - Sabile Trimm
- Charles River Laboratories, Preclinical Services, Montreal, 22022 Transcanadienne, Senneville, Quebec H9X 3R3, Canada
| | - Susan Y Smith
- Charles River Laboratories, Preclinical Services, Montreal, 22022 Transcanadienne, Senneville, Quebec H9X 3R3, Canada
| | | | - Gary Hattersley
- Radius Health, Inc., 950 Winter Street, Waltham, MA 02451, USA.
| |
Collapse
|
54
|
Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis. Proc Natl Acad Sci U S A 2017; 114:580-585. [PMID: 28049847 DOI: 10.1073/pnas.1614035114] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Macrophages are prominent immune cells in the tumor microenvironment that exert potent effects on cancer metastasis. However, the signals and receivers for the tumor-macrophage communication remain enigmatic. Here, we show that G protein-coupled receptor 132 (Gpr132) functions as a key macrophage sensor of the rising lactate in the acidic tumor milieu to mediate the reciprocal interaction between cancer cells and macrophages during breast cancer metastasis. Lactate activates macrophage Gpr132 to promote the alternatively activated macrophage (M2)-like phenotype, which, in turn, facilitates cancer cell adhesion, migration, and invasion. Consequently, Gpr132 deletion reduces M2 macrophages and impedes breast cancer lung metastasis in mice. Clinically, Gpr132 expression positively correlates with M2 macrophages, metastasis, and poor prognosis in patients with breast cancer. These findings uncover the lactate-Gpr132 axis as a driver of breast cancer metastasis by stimulating tumor-macrophage interplay, and reveal potential new therapeutic targets for breast cancer treatment.
Collapse
|
55
|
Kim W, Wysolmerski JJ. Calcium-Sensing Receptor in Breast Physiology and Cancer. Front Physiol 2016; 7:440. [PMID: 27746743 PMCID: PMC5043011 DOI: 10.3389/fphys.2016.00440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is expressed in normal breast epithelial cells and in breast cancer cells. During lactation, activation of the CaSR in mammary epithelial cells increases calcium transport into milk and inhibits parathyroid hormone-related protein (PTHrP) secretion into milk and into the circulation. The ability to sense changes in extracellular calcium allows the lactating breast to actively participate in the regulation of systemic calcium and bone metabolism, and to coordinate calcium usage with calcium availability during milk production. Interestingly, as compared to normal breast cells, in breast cancer cells, the regulation of PTHrP secretion by the CaSR becomes rewired due to a switch in its G-protein usage such that activation of the CaSR increases instead of decreases PTHrP production. In normal cells the CaSR couples to Gαi to inhibit cAMP and PTHrP production, whereas in breast cancer cells, it couples to Gαs to stimulate cAMP and PTHrP production. Activation of the CaSR on breast cancer cells regulates breast cancer cell proliferation, death and migration, in part, by stimulating PTHrP production. In this article, we discuss the biology of the CaSR in the normal breast and in breast cancer, and review recent findings suggesting that the CaSR activates a nuclear pathway of PTHrP action that stimulates cellular proliferation and inhibits cell death, helping cancer cells adapt to elevated extracellular calcium levels. Understanding the diverse actions mediated by the CaSR may help us better understand lactation physiology, breast cancer progression and osteolytic bone metastases.
Collapse
Affiliation(s)
- Wonnam Kim
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| | - John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
56
|
Otieno BA, Krause CE, Jones AL, Kremer RB, Rusling JF. Cancer Diagnostics via Ultrasensitive Multiplexed Detection of Parathyroid Hormone-Related Peptides with a Microfluidic Immunoarray. Anal Chem 2016; 88:9269-75. [PMID: 27558535 PMCID: PMC5032051 DOI: 10.1021/acs.analchem.6b02637] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Parathyroid hormone-related
peptide (PTHrP) is recognized as the
major causative agent of humoral hypercalcemia of malignancy (HHM).
The paraneoplastic PTHrP has also been implicated in tumor progression
and metastasis of many human cancers. Conventional PTHrP detection
methods like immunoradiometric assay (IRMA) lack the sensitivity required
to measure target peptide levels prior to the development of hypercalcemia.
In general, sensitive, multiplexed peptide measurement by immunoassay
represents challenges that we address in this paper. We describe here
the first ultrasensitive multiplexed peptide assay to measure intact
PTHrP 1-173 as well as circulating N-terminal and C-terminal peptide
fragments. This versatile approach should apply to almost any collection
of peptides that are long enough to present binding sites for two
antibodies. To target PTHrP, we employed a microfluidic immunoarray
featuring a chamber for online capture of the peptides from serum
onto magnetic beads decorated with massive numbers of peptide-specific
antibodies and enzyme labels. Magnetic bead-peptide conjugates were
then washed and sent to a detection chamber housing an antibody-modified
8-electrode array fabricated by inkjet printing of gold nanoparticles.
Limits of detection (LODs) of 150 aM (∼1000-fold lower than
IRMA) in 5 μL of serum were achieved for simultaneous detection
of PTHrP isoforms and peptide fragments in 30 min. Good correlation
for patient samples was found with IRMA (n = 57); r2 = 0.99 assaying PTHrP 1-86 equiv fragments.
Analysis by a receiver operating characteristic (ROC) plot gave an
area under the curve of 0.96, 80–83% clinical sensitivity,
and 96–100% clinical specificity. Results suggest that PTHrP1-173
isoform and its short C-terminal fragments are the predominant circulating
forms of PTHrP. This new ultrasensitive, multiplexed assay for PTHrP
and fragments is promising for clinical diagnosis, prognosis, and
therapeutic monitoring from early to advanced stage cancer patients
and to examine underlying mechanisms of PTHrP overproduction.
Collapse
Affiliation(s)
- Brunah A Otieno
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Colleen E Krause
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States.,Department of Chemistry, University of Hartford , West Hartford, Connecticut 06117, United States
| | - Abby L Jones
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Richard B Kremer
- Department of Medicine, McGill University , Montreal, Quebec H3A 1A1, Canada
| | - James F Rusling
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States.,Institute of Materials Science, University of Connecticut , Storrs, Connecticut 06269, United States.,Department of Surgery and Neag Cancer Center, University of Connecticut Health Center , Farmington, Connecticut 06232, United States.,School of Chemistry, National University of Ireland at Galway , Galway, Ireland
| |
Collapse
|
57
|
Kim W, Takyar FM, Swan K, Jeong J, VanHouten J, Sullivan C, Dann P, Yu H, Fiaschi-Taesch N, Chang W, Wysolmerski J. Calcium-Sensing Receptor Promotes Breast Cancer by Stimulating Intracrine Actions of Parathyroid Hormone-Related Protein. Cancer Res 2016; 76:5348-60. [PMID: 27450451 DOI: 10.1158/0008-5472.can-15-2614] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 06/17/2016] [Indexed: 12/21/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) contributes to the development and metastatic progression of breast cancer by promoting hypercalcemia, tumor growth, and osteolytic bone metastases, but it is not known how PTHrP is upregulated in breast tumors. Here we report a central role in this process for the calcium-sensing receptor, CaSR, which enables cellular responses to changes in extracellular calcium, through studies of CaSR-PTHrP interactions in the MMTV-PymT transgenic mouse model of breast cancer and in human breast cancer cells. CaSR activation stimulated PTHrP production by breast cancer cells in vitro and in vivo Tissue-specific disruption of the casr gene in mammary epithelial cells in MMTV-PymT mice reduced tumor PTHrP expression and inhibited tumor cell proliferation and tumor outgrowth. CaSR signaling promoted the proliferation of human breast cancer cell lines and tumor cells cultured from MMTV-PyMT mice. Further, CaSR activation inhibited cell death triggered by high extracellular concentrations of calcium. The actions of the CaSR appeared to be mediated by nuclear actions of PTHrP that decreased p27(kip1) levels and prevented nuclear accumulation of the proapoptotic factor apoptosis inducing factor. Taken together, our findings suggest that CaSR-PTHrP interactions might be a promising target for the development of therapeutic agents to limit tumor cell growth in bone metastases and in other microenvironments in which elevated calcium and/or PTHrP levels contribute to breast cancer progression. Cancer Res; 76(18); 5348-60. ©2016 AACR.
Collapse
Affiliation(s)
- Wonnam Kim
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Farzin M Takyar
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Karena Swan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Joshua VanHouten
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Catherine Sullivan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, University of Hawaii School of Medicine, Honolulu, Hawaii
| | - Nathalie Fiaschi-Taesch
- Section of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Wenhan Chang
- Endocrine Unit, San Francisco and Veteran Affairs Medical Center, University of California, San Francisco, California
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven Connecticut.
| |
Collapse
|
58
|
Martin TJ. Parathyroid Hormone-Related Protein, Its Regulation of Cartilage and Bone Development, and Role in Treating Bone Diseases. Physiol Rev 2016; 96:831-71. [DOI: 10.1152/physrev.00031.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although parathyroid hormone-related protein (PTHrP) was discovered as a cancer-derived hormone, it has been revealed as an important paracrine/autocrine regulator in many tissues, where its effects are context dependent. Thus its location and action in the vasculature explained decades-long observations that injection of PTH into animals rapidly lowered blood pressure by producing vasodilatation. Its roles have been specified in development and maturity in cartilage and bone as a crucial regulator of endochondral bone formation and bone remodeling, respectively. Although it shares actions with parathyroid hormone (PTH) through the use of their common receptor, PTHR1, PTHrP has other actions mediated by regions within the molecule beyond the amino-terminal sequence that resembles PTH, including the ability to promote placental transfer of calcium from mother to fetus. A striking feature of the physiology of PTHrP is that it possesses structural features that equip it to be transported in and out of the nucleus, and makes use of a specific nuclear import mechanism to do so. Evidence from mouse genetic experiments shows that PTHrP generated locally in bone is essential for normal bone remodeling. Whereas the main physiological function of PTH is the hormonal regulation of calcium metabolism, locally generated PTHrP is the important physiological mediator of bone remodeling postnatally. Thus the use of intermittent injection of PTH as an anabolic therapy for bone appears to be a pharmacological application of the physiological function of PTHrP. There is much current interest in the possibility of developing PTHrP analogs that might enhance the therapeutic anabolic effects.
Collapse
Affiliation(s)
- T. John Martin
- St Vincent's Institute of Medical Research, Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
59
|
Zeng C, Guo X, Long J, Kuchenbaecker KB, Droit A, Michailidou K, Ghoussaini M, Kar S, Freeman A, Hopper JL, Milne RL, Bolla MK, Wang Q, Dennis J, Agata S, Ahmed S, Aittomäki K, Andrulis IL, Anton-Culver H, Antonenkova NN, Arason A, Arndt V, Arun BK, Arver B, Bacot F, Barrowdale D, Baynes C, Beeghly-Fadiel A, Benitez J, Bermisheva M, Blomqvist C, Blot WJ, Bogdanova NV, Bojesen SE, Bonanni B, Borresen-Dale AL, Brand JS, Brauch H, Brennan P, Brenner H, Broeks A, Brüning T, Burwinkel B, Buys SS, Cai Q, Caldes T, Campbell I, Carpenter J, Chang-Claude J, Choi JY, Claes KBM, Clarke C, Cox A, Cross SS, Czene K, Daly MB, de la Hoya M, De Leeneer K, Devilee P, Diez O, Domchek SM, Doody M, Dorfling CM, Dörk T, Dos-Santos-Silva I, Dumont M, Dwek M, Dworniczak B, Egan K, Eilber U, Einbeigi Z, Ejlertsen B, Ellis S, Frost D, Lalloo F, Fasching PA, Figueroa J, Flyger H, Friedlander M, Friedman E, Gambino G, Gao YT, Garber J, García-Closas M, Gehrig A, Damiola F, Lesueur F, Mazoyer S, Stoppa-Lyonnet D, Giles GG, Godwin AK, Goldgar DE, González-Neira A, Greene MH, Guénel P, Haeberle L, Haiman CA, Hallberg E, Hamann U, Hansen TVO, Hart S, Hartikainen JM, Hartman M, Hassan N, Healey S, Hogervorst FBL, Verhoef S, Hendricks CB, Hillemanns P, Hollestelle A, Hulick PJ, Hunter DJ, Imyanitov EN, Isaacs C, Ito H, Jakubowska A, Janavicius R, Jaworska-Bieniek K, Jensen UB, John EM, Joly Beauparlant C, Jones M, Kabisch M, Kang D, Karlan BY, Kauppila S, Kerin MJ, Khan S, Khusnutdinova E, Knight JA, Konstantopoulou I, Kraft P, Kwong A, Laitman Y, Lambrechts D, Lazaro C, Le Marchand L, Lee CN, Lee MH, Lester J, Li J, Liljegren A, Lindblom A, Lophatananon A, Lubinski J, Mai PL, Mannermaa A, Manoukian S, Margolin S, Marme F, Matsuo K, McGuffog L, Meindl A, Menegaux F, Montagna M, Muir K, Mulligan AM, Nathanson KL, Neuhausen SL, Nevanlinna H, Newcomb PA, Nord S, Nussbaum RL, Offit K, Olah E, Olopade OI, Olswold C, Osorio A, Papi L, Park-Simon TW, Paulsson-Karlsson Y, Peeters S, Peissel B, Peterlongo P, Peto J, Pfeiler G, Phelan CM, Presneau N, Radice P, Rahman N, Ramus SJ, Rashid MU, Rennert G, Rhiem K, Rudolph A, Salani R, Sangrajrang S, Sawyer EJ, Schmidt MK, Schmutzler RK, Schoemaker MJ, Schürmann P, Seynaeve C, Shen CY, Shrubsole MJ, Shu XO, Sigurdson A, Singer CF, Slager S, Soucy P, Southey M, Steinemann D, Swerdlow A, Szabo CI, Tchatchou S, Teixeira MR, Teo SH, Terry MB, Tessier DC, Teulé A, Thomassen M, Tihomirova L, Tischkowitz M, Toland AE, Tung N, Turnbull C, van den Ouweland AMW, van Rensburg EJ, Ven den Berg D, Vijai J, Wang-Gohrke S, Weitzel JN, Whittemore AS, Winqvist R, Wong TY, Wu AH, Yannoukakos D, Yu JC, Pharoah PDP, Hall P, Chenevix-Trench G, Dunning AM, Simard J, Couch FJ, Antoniou AC, Easton DF, Zheng W. Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Res 2016; 18:64. [PMID: 27459855 PMCID: PMC4962376 DOI: 10.1186/s13058-016-0718-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/18/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.
Collapse
Grants
- U10 CA180868 NCI NIH HHS
- R01 CA140323 NCI NIH HHS
- R37 CA070867 NCI NIH HHS
- U10 CA027469 NCI NIH HHS
- U01 CA116167 NCI NIH HHS
- 16561 Cancer Research UK
- R03 CA173531 NCI NIH HHS
- G0700491 Medical Research Council
- N02CP11019 NCI NIH HHS
- 10124 Cancer Research UK
- UG1 CA189867 NCI NIH HHS
- N01 CN025403 NCI NIH HHS
- R01 CA176785 NCI NIH HHS
- RC4 CA153828 NCI NIH HHS
- U10 CA101165 NCI NIH HHS
- R01 CA142996 NCI NIH HHS
- P50 CA125183 NCI NIH HHS
- P01 CA087969 NCI NIH HHS
- UM1 CA164920 NCI NIH HHS
- P30 CA168524 NCI NIH HHS
- U01 CA161032 NCI NIH HHS
- R01 CA092447 NCI NIH HHS
- R01 CA058860 NCI NIH HHS
- 20861 Cancer Research UK
- K07 CA092044 NCI NIH HHS
- UL1 TR000124 NCATS NIH HHS
- 11174 Cancer Research UK
- R01 CA100374 NCI NIH HHS
- P30 CA008748 NCI NIH HHS
- R01 CA128978 NCI NIH HHS
- R01 CA064277 NCI NIH HHS
- R01 CA083855 NCI NIH HHS
- R01 CA047147 NCI NIH HHS
- P30 CA014089 NCI NIH HHS
- U19 CA148537 NCI NIH HHS
- P30 CA051008 NCI NIH HHS
- R01 CA116167 NCI NIH HHS
- R01 CA148667 NCI NIH HHS
- P50 CA116201 NCI NIH HHS
- 16565 Cancer Research UK
- 15106 Cancer Research UK
- U01 CA113916 NCI NIH HHS
- R01 CA063464 NCI NIH HHS
- U10 CA037517 NCI NIH HHS
- N02CP65504 NCI NIH HHS
- U01 CA063464 NCI NIH HHS
- R01 CA077398 NCI NIH HHS
- R01 CA054281 NCI NIH HHS
- R01 CA132839 NCI NIH HHS
- P30 CA068485 NCI NIH HHS
- R01 CA102776 NCI NIH HHS
- U01 CA058860 NCI NIH HHS
- 10118 Cancer Research UK
- U19 CA148112 NCI NIH HHS
- R01 CA149429 NCI NIH HHS
- U01 CA098758 NCI NIH HHS
- U19 CA148065 NCI NIH HHS
- R01 CA069664 NCI NIH HHS
- 001 World Health Organization
- UM1 CA182910 NCI NIH HHS
- U10 CA180822 NCI NIH HHS
- P30 CA006927 NCI NIH HHS
- R37 CA054281 NCI NIH HHS
- R01 CA047305 NCI NIH HHS
- 10119 Cancer Research UK
- National Institutes of Health
- Seventh Framework Programme
- National Cancer Institute
- U.S. Department of Defense
- Canadian Institutes of Health Research
- Susan G. Komen for the Cure
- Breast Cancer Research Foundation
- Ovarian Cancer Research Fund
- National Health and Medical Research Council
- New South Wales Cancer Council
- Victorian Health Promotion Foundation
- Victorian Breast Cancer Research Consortium
- Dutch Cancer Society
- Cancer Institute NSW
- National Breast Cancer Foundation
- Breast Cancer Research Trust
- Breakthrough Breast Cancer
- NIHR Comprehensive Biomedical Research Centre
- Guy's and St Thomas' NHS Foundation Trust
- Oxford Biomedical Research Centre
- Dietmar-Hopp Foundation
- Helmholtz Society
- Fondation de France
- Institut National Du Cancer
- Ligue Contre le Cancer
- Agence Nationale de la Recherche
- Danish Medical Research Council
- Instituto de Salud Carlos III
- Red Temática de Investigacióm Cooperativa en Cáncer
- Asociación Española Contra el Cáncer
- Fondo de Investigación Sanitario
- California Breast Cancer Research Fund
- Lon V Smith Foundation
- Baden-Württemberg Ministry of Science, Research and Arts
- Deutsche Krebshilfe
- Federal Ministry of Education and Research
- Deutsches Krebsforschungszentrum
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance
- Academy of Finland
- Finnish Cancer Society
- Ministry of Education, Culture, Sports, Science, and Technology
- Ministry of Health, Labour and Welfare
- Takeda Health Foundation
- German Federal Ministry of Research and Education
- Swedish Cancer Society
- Gustav V Jubilee Foundation
- Berth von Kantzows Stiftelse
- Cancer Fund of North Savo
- Finnish Cancer Organizations
- Queensland Cancer Fund
- Prostate Cancer Foundation of Australia (AU)
- Cancer Council of New South Wales
- Cancer Council of Victoria
- Cancer Council of Tasmania
- Cancer Council of South Australia
- U.S. Army Medical Research and Materiel Command
- National Health and Medical Research Council (AU)
- California Breast Cancer Research Program
- Stichting Tegen Kanker
- Hamburg Cancer Society
- Italian Associatin for Cancer Research
- David F and Margaret T Grohne Family Foundation
- Ting Tsung and Wei Fong Chao Foundation
- Robert and Kate Niehaus Clinical Cancer Genetics Initiative
- Quebec Breast Cancer Foundation
- Ministry of Economic Development, Innovation and Export Trade
- Malaysian Ministry of Science, Technology and Innovation
- Malaysian Ministry of Higher Education
- Cancer Resarch Initiatives Foundation
- Biomedical Research Council
- National Medical Research Council
- K G Jebsen Centre for Breast Cancer Research
- Research Council of Norway
- Researhc Council of Norway
- South Eastern Norway Health Authority
- Norwegian Cancer Socieety
- Finnish Cancer Foundation
- Sigrid Juselius Foundation
- Biobanking and Biomolecular Resources Research Infrastructure
- Marit and Hans Rausings Initiative Against Breast Cancer
- Yorkshire Cancer Research
- Sheffield Experimental Cancer Medicine Centre
- Ministry of Education, Science and Technology
- National Cancer Institute Thailand
- Stefanie Spielman Breast Cancer Fund
- Hellenic Cooperative Oncology Group
- Research Council of Lithuania
- Cancer Association of South Africa
- NEYE Foundation
- Spanish Association Against Cancer
- German Cancer Aid
- Ligue Nationale Contre le Cancer
- Jess and Mildred Fisher Center for Familial Cancer Research
- Swing Fore the Cure
- Netherlands Organization of Scientific Research
- Pink Ribbons Project
- Hungarian Research Grants
- Norwegian EEA Financial Mechanism
- Instituto de Salud Carlos III (ES)
- Canadian Breast Cancer Research Alliance
- Ministry for Health, Welfare and Family Affairs
- Andrew Sabin Research Fund
- Russian Federation for Basic Research
- Istituto Toscano Tumori
- Ministry of Higher Education
- Dr. Ralph and Marian Falk Medical Research Trust
- Entertainment Industry Fund National Women's Cancer Research Alliance
- Frieda G and Saul F Shapira BRCA-Associated Cancer Research Program
- American Cancer Society
- National Center for Advancing Translational Sciences
Collapse
Affiliation(s)
- Chenjie Zeng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Karoline B Kuchenbaecker
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Arnaud Droit
- Proteomics Center, CHU de Québec Research Center and Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Maya Ghoussaini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Siddhartha Kar
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Adam Freeman
- Department of Surgery, St Vincent's Hospital, Melbourne, VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
| | - Roger L Milne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Simona Agata
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico), Padua, Italy
| | - Shahana Ahmed
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Natalia N Antonenkova
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Adalgeir Arason
- Department of Pathology, Landspitali University Hospital and BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Banu K Arun
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brita Arver
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Francois Bacot
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras, Valencia, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Anne-Lise Borresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Judith S Brand
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum, Bochum, Germany
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Trinidad Caldes
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (El Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Ian Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jane Carpenter
- Australian Breast Cancer Tissue Bank, Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ji-Yeob Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | | | - Christine Clarke
- Westmead Millenium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (El Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Kim De Leeneer
- Center for Medical Genetics, Ghent University, Ghent, Belgium
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Orland Diez
- Oncogenetics Group, University Hospital Vall d'Hebron, Vall d'Hebron Institute of Oncology (VHIO) and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susan M Domchek
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michele Doody
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Martine Dumont
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada
| | - Miriam Dwek
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | | | - Kathleen Egan
- Division of Population Sciences, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ursula Eilber
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zakaria Einbeigi
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bent Ejlertsen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steve Ellis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Fiona Lalloo
- Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Peter A Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Henrik Flyger
- Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Michael Friedlander
- ANZ GOTG Coordinating Centre, Australia New Zealand GOG, Camperdown, NSW, Australia
| | - Eitan Friedman
- Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gaetana Gambino
- Section of Genetic Oncology, Deparment of Laboratory Medicine, University and University Hospital of Pisa, Pisa, Italy
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Judy Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Andrea Gehrig
- Institute of Human Genetics, University Würzburg, Wurzburg, Germany
| | - Francesca Damiola
- INSERM U1052, CNRS UMR5286, Université Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm, U900, Institut Curie, Mines ParisTech, 75248, Paris, France
| | - Sylvie Mazoyer
- INSERM U1052, CNRS UMR5286, Université Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Dominique Stoppa-Lyonnet
- Department of Tumour Biology, Institut Curie, Paris, France
- Institut Curie, INSERM U830, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global health, The University of Melbourne, Melbourne, Australia
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Pascal Guénel
- Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, Villejuif, France
- University Paris-Sud, Villejuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas V O Hansen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steven Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jaana M Hartikainen
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Surgery, National University Health System, Singapore, Singapore
| | - Norhashimah Hassan
- Cancer Research Initiatives Foundation, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Sue Healey
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Senno Verhoef
- Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carolyn B Hendricks
- Suburban Hospital, Bethesda, MD, USA
- Care of City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA
| | - Peter Hillemanns
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Antoinette Hollestelle
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Ramunas Janavicius
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, N, Denmark
| | - Esther M John
- Department of Epidemiology, Cancer Prevention Institute of California, Fremont, CA, USA
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles Joly Beauparlant
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, QC, Canada
| | - Michael Jones
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Michael J Kerin
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Sofia Khan
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia
| | - Julia A Knight
- Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, IRRP, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
| | - Ava Kwong
- The Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Yael Laitman
- Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Center, Tel-Hashomer, Israel
| | - Diether Lambrechts
- Vesalius Research Center, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | - Conxi Lazaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
| | | | - Chuen Neng Lee
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Min Hyuk Lee
- Department of Surgery, Soonchunhyang University and Hospital, Seoul, South Korea
| | - Jenny Lester
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jingmei Li
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Liljegren
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Artitaya Lophatananon
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Phuong L Mai
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Arto Mannermaa
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Milan, Italy
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Keitaro Matsuo
- Department of Preventive Medicine, Kyushu University Faculty of Medical Sciences, Fukuoka, Japan
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alfons Meindl
- Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany
| | - Florence Menegaux
- Environmental Epidemiology of Cancer, Center for Research in Epidemiology and Population Health, INSERM, Villejuif, France
- University Paris-Sud, Villejuif, France
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico), Padua, Italy
| | - Kenneth Muir
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, UK
- Institute of Population Health, University of Manchester, Manchester, UK
| | - Anna Marie Mulligan
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Katherine L Nathanson
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Polly A Newcomb
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Silje Nord
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Robert L Nussbaum
- Department of Medicine and Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, University of Chicago Medical Center, Chicago, IL, USA
| | - Curtis Olswold
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ana Osorio
- Human Genetics Group, Human Cancer Genetics Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Laura Papi
- Unit of Medical Genetics, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | | | | | | | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Milan, Italy
| | - Paolo Peterlongo
- IFOM, Fondazione Istituto FIRC (Italian Foundation of Cancer Research) di Oncologia Molecolare, Milan, Italy
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Georg Pfeiler
- Department of Obstetrics and Gynecology, and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Catherine M Phelan
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Nadege Presneau
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Milan, Italy
| | - Nazneen Rahman
- Section of Cancer Genetics, The Institute of Cancer Research, London, UK
| | - Susan J Ramus
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Muhammad Usman Rashid
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH & RC), Lahore, Pakistan
| | - Gad Rennert
- Clalit National Israeli Cancer Control Center and Department of Community Medicine and Epidemiology, Carmel Medical Center and B. Rappaport Faculty of Medicine, Haifa, Israel
| | - Kerstin Rhiem
- Centre of Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and Centre for Integrated Oncology (CIO), Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ritu Salani
- Obstetrics and Gynecology, Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Elinor J Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Marjanka K Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Rita K Schmutzler
- Division of Molecular Gyneco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany
- Center of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
- Center for Integrated Oncology, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine, University Hospital of Cologne, Cologne, Germany
| | - Minouk J Schoemaker
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Peter Schürmann
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Caroline Seynaeve
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Chen-Yang Shen
- School of Public Health, China Medical University, Taichung, Taiwan
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA
| | - Alice Sigurdson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Christian F Singer
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Susan Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Penny Soucy
- Centre Hospitalier Universitaire de Québec Research Center and Laval University, Quebec City, QC, Canada
| | - Melissa Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | | | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Csilla I Szabo
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sandrine Tchatchou
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
| | - Soo H Teo
- Cancer Research Initiatives Foundation, Subang Jaya, Selangor, Malaysia
- Breast Cancer Research Unit, Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Daniel C Tessier
- McGill University and Génome Québec Innovation Centre, Montréal, Canada
| | - Alex Teulé
- Genetic Counseling Unit, Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, C, Denmark
| | | | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montreal, QC, Canada
- Currently at Medical School Cambridge University, Cambridge, UK
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Nadine Tung
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Clare Turnbull
- Section of Cancer Genetics, The Institute of Cancer Research, London, UK
| | | | | | - David Ven den Berg
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph Vijai
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shan Wang-Gohrke
- Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany
| | - Jeffrey N Weitzel
- Clinical Cancer Genetics, for the City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA
| | - Alice S Whittemore
- Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland
| | - Tien Y Wong
- Singapore Eye Research Institute, National University of Singapore, Singapore, Singapore
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Drakoulis Yannoukakos
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Jyh-Cherng Yu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Chenevix-Trench
- Department of Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Peter MacCallum Cancer Center, The University of Melbourne, Melbourne, Australia
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, Canada
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN, 37203-1738, USA.
| |
Collapse
|
60
|
Li J, Luco AL, Ochietti B, Fadhil I, Camirand A, Reinhardt TA, St-Arnaud R, Muller W, Kremer R. Tumoral Vitamin D Synthesis by CYP27B1 1-α-Hydroxylase Delays Mammary Tumor Progression in the PyMT-MMTV Mouse Model and Its Action Involves NF-κB Modulation. Endocrinology 2016; 157:2204-16. [PMID: 27119753 DOI: 10.1210/en.2015-1824] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biologically active vitamin D (1,25-dihydroxycholecalciferol or 1,25(OH)2D) is synthetized from inactive prohormone 25-hydroxycholecalciferol (25(OH)D) by the enzyme CYP27B1 1-α-hydroxylase in kidney and several extrarenal tissues including breast. Although the development of breast cancer has been linked to inadequate vitamin D status, the importance of bioactive vitamin D production within tumors themselves is not fully understood. To investigate the role of tumoral vitamin D production in mammary epithelial cell progression to breast cancer, we conducted a Cre-loxP-mediated Cyp27b1 gene ablation in the mammary epithelium of the polyoma middle T antigen-mouse mammary tumor virus (PyMT-MMTV) mouse breast cancer model. Targeted ablation of Cyp27b1 was accompanied by significant acceleration in initiation of spontaneous mammary tumorigenesis. In vivo, cell proliferation, angiogenesis, cell cycle progression, and survival markers were up-regulated in tumors by Cyp27b1 ablation, and apoptosis was decreased. AK thymoma (AKT) phosphorylation and expression of several components of nuclear factor κB (NF-κB), integrin, and signal transducer and activator of transcription 3 (STAT3) signaling pathways were increased in Cyp27b1-ablated tumors compared with nonablated controls. In vitro, 1,25(OH)2D treatment induced a strong antiproliferative action on tumor cells from both ablated and nonablated mice, accompanied by rapid disappearance of NF-κB p65 from the nucleus and segregation in the cytoplasm. In contrast, treatment with the metabolic precursor 25(OH)D was only effective against cells from nonablated mice. 25(OH)D did not inhibit growth of Cyp27b1-ablated cells, and their nuclear NF-κB p65 remained abundant. Our findings demonstrate that in-tumor CYP27B1 1-α-hydroxylase activity plays a crucial role in controlling early oncogene-mediated mammary carcinogenesis events, at least in part by modulating tumoral cell NF-κB p65 nuclear translocation.
Collapse
Affiliation(s)
- Jiarong Li
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Aimée-Lee Luco
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Benoît Ochietti
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Ibtihal Fadhil
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Anne Camirand
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Timothy A Reinhardt
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - René St-Arnaud
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - William Muller
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| | - Richard Kremer
- Department of Medicine (J.L., A.-L.L., B.O., I.F., A.C., R.K.), McGill University Health Centre and Goodman Cancer Research Centre (W.M.), McGill University, Montréal, Québec, Canada H3A 1A1; United States Department of Agriculture (Agricultural Research Service) National Animal Disease Center (T.A.R.), Ames, Iowa 50010; and Genetics Unit (R.S.-A.), Shriners Hospital for Children, Montréal, Québec, Canada H3G 1A6
| |
Collapse
|
61
|
Li H, Yao X, Li L, Zheng H. The Role of ΔFosB on the Pro-survival Effect of PTHrP in Goat Mammary Epithelial Cells. Appl Biochem Biotechnol 2016; 180:707-716. [DOI: 10.1007/s12010-016-2126-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022]
|
62
|
Induction of thermal and mechanical hypersensitivity by parathyroid hormone-related peptide through upregulation of TRPV1 function and trafficking. Pain 2016; 156:1620-1636. [PMID: 25970319 DOI: 10.1097/j.pain.0000000000000224] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neurobiological mechanisms underlying chronic pain associated with cancers are not well understood. It has been hypothesized that factors specifically elevated in the tumor microenvironment sensitize adjacent nociceptive afferents. We show that parathyroid hormone-related peptide (PTHrP), which is found at elevated levels in the tumor microenvironment of advanced breast and prostate cancers, is a critical modulator of sensory neurons. Intraplantar injection of PTHrP led to the development of thermal and mechanical hypersensitivity in both male and female mice, which were absent in mice lacking functional transient receptor potential vanilloid-1 (TRPV1). The PTHrP treatment of cultured mouse sensory neurons enhanced action potential firing, and increased TRPV1 activation, which was dependent on protein kinase C (PKC) activity. Parathyroid hormone-related peptide induced robust potentiation of TRPV1 activation and enhancement of neuronal firing at mild acidic pH that is relevant to acidic tumor microenvironment. We also observed an increase in plasma membrane TRPV1 protein levels after exposure to PTHrP, leading to upregulation in the proportion of TRPV1-responsive neurons, which was dependent on the activity of PKC and Src kinases. Furthermore, co-injection of PKC or Src inhibitors attenuated PTHrP-induced thermal but not mechanical hypersensitivity. Altogether, our results suggest that PTHrP and mild acidic conditions could induce constitutive pathological activation of sensory neurons through upregulation of TRPV1 function and trafficking, which could serve as a mechanism for peripheral sensitization of nociceptive afferents in the tumor microenvironment.
Collapse
|
63
|
Chukkapalli S, Levi E, Rishi AK, Datta NS. PTHrP attenuates osteoblast cell death and apoptosis induced by a novel class of anti-cancer agents. Endocrine 2016; 51:534-44. [PMID: 26260694 DOI: 10.1007/s12020-015-0699-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/18/2015] [Indexed: 11/30/2022]
Abstract
The effectiveness of chemotherapeutic agents often limits their use due to their negative effects on normal cells. Apoptosis regulatory protein (CARP)-1 functional mimetics (CFMs) belong to a novel class of compounds that possess anti-cancer properties with potential utility in breast and other cancers. In this study, we investigated the growth inhibitory action of CFM-4 and -5 in bone-forming osteoblasts and role of a skeletal regulator, parathyroid hormone (PTH)-related peptide (PTHrP), which is frequently associated with oncologic pathologies. MC3T3E1-clone4 (MC-4) or primary osteoblasts were treated with CFMs. Western blots were performed to determine specific protein expressions. MTT, TUNEL assay, ethidium bromide/acridine orange staining, and ApoAlert caspase profiling were used to investigate cell viability and apoptosis of osteoblasts. Immunofluorescence staining was performed to observe intracellular localization of CARP-1. Our studies revealed that CFM-4 and -5 suppressed growths of mature differentiated, but not proliferating, MC-4 cells and PTHrP attenuated this effect. Mechanistically, induction of CARP-1 protein by CFM-4 and -5 was partially decreased by PTHrP. While CARP-1 increased by CFM-4 or -5 correlated with activated caspase-3, PTHrP remarkably blocked caspase-3 activation. PTHrP also influenced translocation of CFM-induced CARP-1 from the nucleus to the cytoplasm. Our data identify a new function of PTHrP in maintaining osteoblast homeostasis in chemotherapy and define a role of CARP-1 in this process. The crosstalk of PTHrP and CFM-4 and -5 signaling highlights the importance of CFMs as potential anti-cancer therapeutics in breast and other cancers which adversely affect bone.
Collapse
Affiliation(s)
- Sahiti Chukkapalli
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Edi Levi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- VA Medical Center, Detroit, MI, 48201, USA
| | - Arun K Rishi
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- VA Medical Center, Detroit, MI, 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Nabanita S Datta
- Division of Endocrinology, Department of Internal Medicine, Wayne State University School of Medicine, 1107 Elliman Clinical Research Building, 421 East Canfield Avenue, Detroit, MI, 48201, USA.
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
64
|
Parathyroid Hormone-Related Protein Interacts With the Transforming Growth Factor-β/Bone Morphogenetic Protein-2/Gremlin Signaling Pathway to Regulate Proinflammatory and Profibrotic Mediators in Pancreatic Acinar and Stellate Cells. Pancreas 2016; 45:659-70. [PMID: 26495794 PMCID: PMC4833530 DOI: 10.1097/mpa.0000000000000522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Transforming growth factor β (TGF-β) regulates immune and fibrotic responses of chronic pancreatitis. The bone morphogenetic protein 2 (BMP-2) antagonist gremlin is regulated by TGF-β. Parathyroid hormone-related protein (PTHrP) levels are elevated in chronic pancreatitis. Here, we investigated the cross-talk between TGF-β/BMP-2/gremlin and PTHrP signaling. METHODS Reverse transcription/real-time polymerase chain reaction, chromatin immunoprecipitation, Western blotting, and transient transfection were used to investigate PTHrP regulation by TGF-β and BMP-2 and gremlin regulation by PTHrP. The PTHrP antagonist PTHrP (7-34) and acinar cells with conditional Pthrp gene deletion (PTHrP) were used to assess PTHrP's role in the proinflammatory and profibrotic effects of TGF-β and gremlin. RESULTS Transforming growth factor β increased PTHrP levels in acinar cells and pancreatic stellate cells (PSCs) through a Smad3-dependent pathway. Transforming growth factor β's effects on levels of IL-6 and intercellular adhesion molecule 1 (ICAM-1) (acinar cells) and procollagen I and fibronectin (PSCs) were inhibited by PTHrP (7-34). PTHrP suppressed TGF-β's effects on IL-6 and ICAM-1. Parathyroid hormone-related hormone increased gremlin in acinar cells, and inhibiting gremlin action suppressed TGF-β's and PTHrP's effects on IL-6 and ICAM-1. Transforming growth factor β-mediated gremlin up-regulation was suppressed in PTHrP cells. Bone morphogenetic protein 2 suppressed PTHrP levels in PSCs. CONCLUSIONS Parathyroid hormone-related hormone functions as a novel mediator of the proinflammatory and profibrotic effects of TGF-β. Transforming growth factor β and BMP-2 regulate PTHrP expression, and PTHrP regulates gremlin levels.
Collapse
|
65
|
Xu C, Wang Z, Cui R, He H, Lin X, Sheng Y, Zhang H. Co-expression of parathyroid hormone related protein and TGF-beta in breast cancer predicts poor survival outcome. BMC Cancer 2015; 15:925. [PMID: 26597083 PMCID: PMC4655491 DOI: 10.1186/s12885-015-1873-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/30/2015] [Indexed: 02/06/2023] Open
Abstract
Background Better methods to predict prognosis can play a supplementary role in administering individualized treatment for breast cancer patients. Altered expressions of PTHrP and TGF-β have been observed in various types of human cancers. The objective of the current study was to evaluate the association of PTHrP and TGF-β level with the clinicopathological features of the breast cancer patients. Methods Immunohistochemistry was used to examine PTHrP and TGF-β protein expression in 497 cases of early breast cancer, and Kaplan-Meier method and COX’s Proportional Hazard Model were applied to the prognostic value of PTHrP and TGF-β expression. Results Both over-expressed TGF-β and PTHrP were correlated with the tumor in larger size, higher proportion of axillary lymph node metastasis and later clinical stage. Additionally, the tumors with a high TGF-β level developed poor differentiation, and only TGF-β expression was associated with disease-free survival (DFS) of the breast cancer patients. Followed up for a median of 48 months, it was found that only the patients with negative TGF-β expression had longer DFS (P < 0.05, log-rank test). Nevertheless, those with higher PTHrP expression tended to show a higher rate of bone metastasis (67.6 % vs. 45.8 %, P = 0.019). In ER negative subgroup, those who developed PTHrP positive expression presented poor prognosis (P < 0.05, log-rank test). The patients with both positive TGF-β and PTHrP expression were significantly associated with the high risk of metastases. As indicated by Cox’s regression analysis, TGF-β expression and the high proportion of axillary lymph node metastasis served as significant independent predictors for breast cancer recurrence. Conclusions TGF-β and PTHrP were confirmed to be involved in regulating the malignant progression in breast cancer, and PTHrP expression, to be associated with bone metastasis as a potential prognostic marker in ER negative breast cancer.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Zhengyuan Wang
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Rongrong Cui
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Hongyu He
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Yuan Sheng
- Department of Thyroid and Breast Surgery, Changhai Hospital, Shanghai, 200433, China.
| | - Hongwei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
66
|
Chamorro-Garcia A, de la Escosura-Muñiz A, Espinosa-Castañeda M, Rodriguez-Hernandez CJ, de Torres C, Merkoçi A. Detection of parathyroid hormone-like hormone in cancer cell cultures by gold nanoparticle-based lateral flow immunoassays. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:53-61. [PMID: 26492976 DOI: 10.1016/j.nano.2015.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/28/2015] [Accepted: 09/28/2015] [Indexed: 10/22/2022]
Abstract
Parathyroid hormone-like hormone (PTHLH) exerts relevant roles in progression and dissemination of several tumors. However, factors influencing its production and secretion have not been fully characterized. The main limitation is the lack of specific, sensitive and widely available techniques to detect and quantify PTHLH. We have developed a lateral flow immunoassay using gold nanoparticles label for the fast and easy detection of PTHLH in lysates and culture media of three human cell lines (HaCaT, LA-N-1, SK-N-AS). Levels in culture media and lysates ranged from 11 to 20 ng/mL and 0.66 to 0.87 μg/mL respectively. Results for HaCaT are in agreement to the previously reported, whereas LA-N-1 and SK-N-AS have been evaluated for the first time. The system also exhibits good performance in human serum samples. This methodology represents a helpful tool for future in vitro and in vivo studies of mechanisms involved in PTHLH production as well as for diagnostics. From the Clinical Editor: Parathyroid Hormone-like Hormone (PTHLH) is known to be secreted by some tumors. However, the detection of this peptide remains difficult. The authors here described their technique of using gold nanoparticles as label for the detection of PTHLH by Lateral-flow immunoassays (LFIAs). The positive results may also point a way to using the same technique for the rapid determination of other relevant cancer proteins.
Collapse
Affiliation(s)
- Alejandro Chamorro-Garcia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, 08950 Barcelona, Spain
| | - Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Marisol Espinosa-Castañeda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | | | - Carmen de Torres
- Hospital Sant Joan de Déu and Fundació Sant Joan de Déu, 08950 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain; ICREA-Institucio Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain.
| |
Collapse
|
67
|
Li J, Sun H, Feltri ML, Mercurio AM. Integrin β4 regulation of PTHrP underlies its contribution to mammary gland development. Dev Biol 2015; 407:313-20. [PMID: 26432258 DOI: 10.1016/j.ydbio.2015.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 11/15/2022]
Abstract
The integrin α6β4 (referred to as β4) is expressed in epithelial cells where it functions as a laminin receptor. Although in vitro studies have implicated β4 in the biology of mammary epithelial cells, its contribution to mammary gland development has not been settled. To address this problem, we generated and analyzed itgb4(flox/flox)MMTV-Cre(-) and itgb4(flox/flox)MMTV-Cre(+) mice. The salient features of embryonic mammary tissue from itgb4(flox/flox)MMTV-Cre(+) mice were significantly smaller mammary buds and increased apoptosis in the surrounding mesenchyme. Also, compared to control glands, the itgb4-deleted mammary buds lacked expression of the progenitor cell marker CK14 and they were unable to generate mammary glands upon transplantation into cleared fat pads of recipient mice. Analysis of mammary glands at puberty and during pregnancy revealed that itgb4-diminished mammary tissue was unable to elongate and undergo branching morphogenesis. Micro-dissection of epithelial cells in the mammary bud and of the surrounding mesenchyme revealed that loss of β4 resulted in a significant decrease in the expression of parathyroid hormone related protein (PTHrP) in epithelial cells and of target genes of the PTHrP receptor in mesenchymal cells. Given that the phenotype of the itgb4-deleted mammary tissue mimicked that of the PTHrP knockout, we hypothesized that β4 contributes to mammary gland development by sustaining PTHrP expression and enabling PTHrP signaling. Indeed, the inability of itgb4-deleted mammary buds to elongate was rescued by exogenous PTHrP. These data implicate a critical role for the β4 integrin in mammary gland development and provide a mechanism for this role.
Collapse
Affiliation(s)
- Jiarong Li
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Huayan Sun
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - M Laura Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry and Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Arthur M Mercurio
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, United States
| |
Collapse
|
68
|
The Wnt inhibitor dickkopf-1: a link between breast cancer and bone metastases. Clin Exp Metastasis 2015; 32:857-66. [DOI: 10.1007/s10585-015-9750-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
|
69
|
Falzon M, Bhatia V. Role of Parathyroid Hormone-Related Protein Signaling in Chronic Pancreatitis. Cancers (Basel) 2015; 7:1091-108. [PMID: 26095761 PMCID: PMC4491701 DOI: 10.3390/cancers7020826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Chronic pancreatitis (CP), a progressive inflammatory disease where acini are destroyed and replaced by fibrous tissue, increases the risk for pancreatic cancer. Risk factors include alcohol, smoking, and obesity. The effects of these risk factors are exacerbated in patients with mutations in genes that predispose to CP. The different environmental and genetic factors produce the same clinical phenotype; once CP develops, disease course is the same regardless of etiology. Critical questions still need to be answered to understand what modifies predisposition to develop CP in persons exposed to risk factors. We postulate that risk factors modulate endogenous pathways, with parathyroid hormone-related protein (PTHrP) signaling being one such pathway. In support, PTHrP levels are elevated in mice treated with alcohol, and in mouse models of cerulein- and pancreatic duct ligation-induced CP. Disrupting the Pthrp gene in acinar cells exerts protective effects (decreased edema, histological damage, amylase and cytokine release, and fibrosis) in these CP models. PTHrP levels are elevated in human CP. Currently, CP care lacks specific pharmacological interventions. Targeting PTHrP signaling may present a novel therapeutic strategy that inhibits pancreatic inflammation and fibrosis, especially since the risk of developing pancreatic cancer is strongly associated with duration of chronic inflammation.
Collapse
Affiliation(s)
- Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Vandanajay Bhatia
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
70
|
Johnstone CN, Smith YE, Cao Y, Burrows AD, Cross RSN, Ling X, Redvers RP, Doherty JP, Eckhardt BL, Natoli AL, Restall CM, Lucas E, Pearson HB, Deb S, Britt KL, Rizzitelli A, Li J, Harmey JH, Pouliot N, Anderson RL. Functional and molecular characterisation of EO771.LMB tumours, a new C57BL/6-mouse-derived model of spontaneously metastatic mammary cancer. Dis Model Mech 2015; 8:237-51. [PMID: 25633981 PMCID: PMC4348562 DOI: 10.1242/dmm.017830] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The translation of basic research into improved therapies for breast cancer patients requires relevant preclinical models that incorporate spontaneous metastasis. We have completed a functional and molecular characterisation of a new isogenic C57BL/6 mouse model of breast cancer metastasis, comparing and contrasting it with the established BALB/c 4T1 model. Metastatic EO771.LMB tumours were derived from poorly metastatic parental EO771 mammary tumours. Functional differences were evaluated using both in vitro assays and spontaneous metastasis assays in mice. Results were compared to non-metastatic 67NR and metastatic 4T1.2 tumours of the 4T1 model. Protein and transcript levels of markers of human breast cancer molecular subtypes were measured in the four tumour lines, as well as p53 (Tp53) tumour-suppressor gene status and responses to tamoxifen in vivo and in vitro. Array-based expression profiling of whole tumours identified genes and pathways that were deregulated in metastatic tumours. EO771.LMB cells metastasised spontaneously to lung in C57BL/6 mice and displayed increased invasive capacity compared with parental EO771. By immunohistochemical assessment, EO771 and EO771.LMB were basal-like, as was the 4T1.2 tumour, whereas 67NR had a luminal phenotype. Primary tumours from all lines were negative for progesterone receptor, Erb-b2/Neu and cytokeratin 5/6, but positive for epidermal growth factor receptor (EGFR). Only 67NR displayed nuclear estrogen receptor alpha (ERα) positivity. EO771 and EO771.LMB expressed mutant p53, whereas 67NR and 4T1.2 were p53-null. Integrated molecular analysis of both the EO771/EO771.LMB and 67NR/4T1.2 pairs indicated that upregulation of matrix metalloproteinase-3 (MMP-3), parathyroid hormone-like hormone (Pthlh) and S100 calcium binding protein A8 (S100a8) and downregulation of the thrombospondin receptor (Cd36) might be causally involved in metastatic dissemination of breast cancer.
Collapse
Affiliation(s)
- Cameron N Johnstone
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia Department of Pharmacology & Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yvonne E Smith
- Angiogenesis and Metastasis Research, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Yuan Cao
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Allan D Burrows
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Ryan S N Cross
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Xiawei Ling
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Richard P Redvers
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Judy P Doherty
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Bedrich L Eckhardt
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Morgan Welch Inflammatory Breast Cancer Research and Clinic, Department of Breast Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anthony L Natoli
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Christina M Restall
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Erin Lucas
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Helen B Pearson
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Siddhartha Deb
- Department of Anatomical Pathology, Royal Melbourne Hospital, Parkville, VIC 2010, Australia
| | - Kara L Britt
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexandra Rizzitelli
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Jason Li
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia
| | - Judith H Harmey
- Angiogenesis and Metastasis Research, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin 2, Ireland
| | - Normand Pouliot
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robin L Anderson
- Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, East Melbourne, VIC 3002, Australia Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia Department of Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
71
|
Rossdeutscher L, Li J, Luco AL, Fadhil I, Ochietti B, Camirand A, Huang DC, Reinhardt TA, Muller W, Kremer R. Chemoprevention activity of 25-hydroxyvitamin D in the MMTV-PyMT mouse model of breast cancer. Cancer Prev Res (Phila) 2014; 8:120-8. [PMID: 25468832 DOI: 10.1158/1940-6207.capr-14-0110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Development of oncologic conditions is often accompanied by inadequate vitamin D status. The chemoprevention ability of this molecule is of high interest for breast cancer, the most common malignancy in women worldwide. Because current effective vitamin D analogues, including the naturally occurring active metabolite 1,25-dihydroxycholecalciferol (1,25(OH)2D), frequently cause hypercalcemia at pharmacologic doses, the development of safer molecules for clinical chemopreventive use is essential. This study examines whether exogenously supplied prohormone 25-hydroxycholecalciferol (25(OH)D) can delay tumor progression in vivo without hypercalcemic effects. A low vitamin D diet (25 IU/kg) in the non-immunodeficient MMTV-PyMT mouse model of metastatic breast cancer revealed a significant acceleration of mammary neoplasia compared with normal diet (1,000 IU/kg). Systemic perfusion of MMTV-PyMT mice with 25(OH)D or 1,25(OH)2D delayed tumor appearance and significantly decreased lung metastasis, and both metabolites reduced Ki-67, cyclin D1, and ErbB2 levels in tumors. Perfusion with 25(OH)D caused a 50% raise in tumor 1,25(OH)2D levels, indicating good tumor penetration and effective activation. Importantly, in contrast with 1,25(OH)2D, perfusion with 25(OH)D did not cause hypercalcemia. In vitro treatment of cultured MMTV-PyMT mammary tumor cells with 25(OH)D inhibited proliferation, confirming local activation of the prohormone in this system. This study provides an in vivo demonstration in a non-immunodeficient model of spontaneous breast cancer that exogenous 25(OH)D delays neoplasia, tumor growth, and metastasis, and that its chemoprevention efficacy is not accompanied by hypercalcemia.
Collapse
Affiliation(s)
- Lionel Rossdeutscher
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Jiarong Li
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Aimée-Lee Luco
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Ibtihal Fadhil
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Benoit Ochietti
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Anne Camirand
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Dao Chao Huang
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada
| | - Timothy A Reinhardt
- United States Dept of Agriculture (ARS), National Animal Disease Center, Ames, Iowa
| | - William Muller
- Goodman Cancer Research Centre, McGill University, Montréal, Quebec, Canada
| | - Richard Kremer
- Department of Medicine, McGill University Health Centre, Montréal, Quebec, Canada.
| |
Collapse
|
72
|
Huang DC, Yang XF, Ochietti B, Fadhil I, Camirand A, Kremer R. Parathyroid hormone-related protein: potential therapeutic target for melanoma invasion and metastasis. Endocrinology 2014; 155:3739-49. [PMID: 25051432 DOI: 10.1210/en.2013-1803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The role of PTHrP in the highly metastatic human melanoma disease is not known. This study investigates the mechanisms of action of this secreted factor through homozygous inactivation of the Pthrp gene in A375 human melanoma cells. In vitro, Pthrp-ablated cells (knockout [KO]-A375, -/-) showed decreased motility and anchorage-independent growth, rounder morphology, and a significant reduction in invasion capacity compared with nonablated A375 cells (wild-type [WT]-A375, +/+). PTHrP peptide 1-34 and conditioned medium from WT-A375 cells partially restored the invasive phenotype in KO-A375. Pthrp ablation substantially decreased actin polymerization, matrix metallopeptidase 9 expression and focal adhesion kinase phosphorylation. In vivo, green fluorescent protein-transduced ablated and nonablated A375 cells were injected intracardially or sc into nude mice to study proliferation and multiorgan metastasis. Dissemination of injected Pthrp-ablated cells to lung and liver was reduced by 85% and 50%, respectively, compared with nonablated controls (120 hours after injection). The number of metastatic lesions and the percentage of animals with metastasis were markedly lower in mice injected with Pthrp-ablated A375, and 45% of these animals survived a 7-week period compared with 15% of mice injected with nonablated WT-A375. When mice injected with WT-A375 were treated with our blocking anti-PTHrP monoclonal antibody raised against the first 33 amino acids of human PTHrP, tumor size was decreased by more than 80% over 4 weeks and survival was significantly improved over 8 months. This study provides direct evidence of the major role for PTHrP in melanoma invasion and metastasis and suggests that agents that suppress PTHrP may be beneficial against melanoma progression.
Collapse
Affiliation(s)
- Dao Chao Huang
- Department of Medicine, Calcium Research Laboratory, Royal Victoria Hospital, Montréal, Québec, Canada, H3A 1A1
| | | | | | | | | | | |
Collapse
|
73
|
Bhatia V, Rastellini C, Han S, Aronson JF, Greeley GH, Falzon M. Acinar cell-specific knockout of the PTHrP gene decreases the proinflammatory and profibrotic responses in pancreatitis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G533-49. [PMID: 25035110 PMCID: PMC4154118 DOI: 10.1152/ajpgi.00428.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pancreatitis is a necroinflammatory disease with acute and chronic manifestations. Accumulated damage incurred during repeated bouts of acute pancreatitis (AP) can lead to chronic pancreatitis (CP). Pancreatic parathyroid hormone-related protein (PTHrP) levels are elevated in a mouse model of cerulein-induced AP. Here, we show elevated PTHrP levels in mouse models of pancreatitis induced by chronic cerulein administration and pancreatic duct ligation. Because acinar cells play a major role in the pathophysiology of pancreatitis, mice with acinar cell-specific targeted disruption of the Pthrp gene (PTHrP(Δacinar)) were generated to assess the role of acinar cell-secreted PTHrP in pancreatitis. These mice were generated using Cre-LoxP technology and the acinar cell-specific elastase promoter. PTHrP(Δacinar) exerted protective effects in cerulein and pancreatic duct ligation models, evident as decreased edema, histological damage, amylase secretion, pancreatic stellate cell (PSC) activation, and extracellular matrix deposition. Treating acinar cells in vitro with cerulein increased IL-6 expression and NF-κB activity; these effects were attenuated in PTHrP(Δacinar) cells, as were the cerulein- and carbachol-induced elevations in amylase secretion. The cerulein-induced upregulation of procollagen I expression was lost in PSCs from PTHrP(Δacinar) mice. PTHrP immunostaining was elevated in human CP sections. The cerulein-induced upregulation of IL-6 and ICAM-1 (human acinar cells) and procollagen I (human PSCs) was suppressed by pretreatment with the PTH1R antagonist, PTHrP (7-34). These findings establish PTHrP as a novel mediator of inflammation and fibrosis associated with CP. Acinar cell-secreted PTHrP modulates acinar cell function via its effects on proinflammatory cytokine release and functions via a paracrine pathway to activate PSCs.
Collapse
Affiliation(s)
- Vandanajay Bhatia
- 1Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas;
| | | | - Song Han
- 2Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Judith F. Aronson
- 3Department of Pathology, University of Texas Medical Branch, Galveston, Texas; and
| | - George H. Greeley
- 2Department of Surgery, University of Texas Medical Branch, Galveston, Texas;
| | - Miriam Falzon
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas; Sealy Center for Cancer Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
74
|
Zhang X, Akech J, Browne G, Russell S, Wixted JJ, Stein JL, Stein GS, Lian JB. Runx2-Smad signaling impacts the progression of tumor-induced bone disease. Int J Cancer 2014; 136:1321-32. [PMID: 25053011 DOI: 10.1002/ijc.29094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/26/2014] [Accepted: 07/09/2014] [Indexed: 12/30/2022]
Abstract
Runx2, a master regulator of osteogenesis, is abnormally expressed in advanced prostate cancer. Here, we addressed Runx2 contribution to formation of prostate cancer-related osteolytic and osteoblastic bone lesions by mediating TGFβ/BMP signaling through direct interaction with Smads. Further, we examined involvement of the Runx2-Smad complex in mediating tumor growth and distal metastasis. To identify Runx2-Smad-specific mechanisms of prostate tumor activity in bone, we generated PC3 prostate cancer cell lines expressing Runx2-WT or one of two mutant proteins (Runx2-HTY and Runx2-ΔC) that each disrupt the Runx2-Smad interaction, either directly through a point mutation or by deletion of the functional C-terminus, respectively. Intratibial tumors generated from these cells revealed that Runx2-WT-expressing cells resulted in predominantly osteolytic disease, whereas cells expressing mutant proteins exhibited tumors with mixed osteolytic/osteoblastic lesions. Extent of bone loss and woven bone formation was assessed by radiography and micro-computed tomography. Bioluminescent imaging showed the presence of labeled prostate cancer cells in the lung at the latest time point examined, with Runx2-WT group exhibiting increased incidence of tumor cells in lung. Notably, disruption of the Runx2-Smad interaction significantly reduced incidence and size of lung tumors. Altered expression of Runx2 target genes involved in invasion, growth, adhesion and metastasis supported our findings. Thus, our studies demonstrate that Runx2 in prostate cancer cells plays a significant role in intratibial prostate cancer-related tumor growth and bone loss through mechanisms mediated by the Runx2-Smad signaling pathway. This work expands upon the potential importance of Runx2 as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Xuhui Zhang
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT; Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Calvo N, Martín MJ, de Boland AR, Gentili C. Involvement of ERK1/2, p38 MAPK, and PI3K/Akt signaling pathways in the regulation of cell cycle progression by PTHrP in colon adenocarcinoma cells. Biochem Cell Biol 2014; 92:305-15. [DOI: 10.1139/bcb-2013-0106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parathyroid hormone-related peptide (PTHrP) is distributed in most fetal and adult tissues, and its expression correlates with the severity of colon carcinoma. Recently we obtained evidence that in Caco-2 cells, a cell line from human colorectal adenocarcinoma, exogenous PTHrP increases the number of live cells, via ERK1/2, p38 MAPK, and PI3-kinase and induces the expression of cyclin D1, a cell cycle regulatory protein. In this study, we further investigated the role of PTHrP in the regulation of the cell cycle progression in these intestinal cells. Flow cytometry analysis revealed that PTHrP treatment diminishes the number of cells in the G0/G1 phase and increases the number in both S and G2/M phases. The hormone increases the expression of CDK6 and diminishes the amount of negative cell cycle regulators p27Kip1, p15INK4B, and p53. However, PTHrP does not modify the expression of cyclin D3, CDK4, and p16INK4A. In addition, inhibitors of ERK1/2 (PD98059), p38 MAPK (SB203580), and PI3Kinase (LY294002) reversed PTHrP response in Caco-2 cells. Taken together, our results suggest that PTHrP positively modulates cell cycle progression and changes the expression of proteins involved in cell cycle regulation via ERK1/2, p38 MAPK, and PI3K signaling pathways in Caco-2 cells.
Collapse
Affiliation(s)
- Natalia Calvo
- Dept. Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| | - María Julia Martín
- Dept. Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| | - Ana Russo de Boland
- Dept. Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| | - Claudia Gentili
- Dept. Biología, Bioquímica y Farmacia. Universidad Nacional del Sur, San Juan 670, (8000) Bahía Blanca, Argentina
| |
Collapse
|
76
|
|
77
|
Wright LE, Guise TA. The Role of PTHrP in Skeletal Metastases and Hypercalcemia of Malignancy. Clin Rev Bone Miner Metab 2014. [DOI: 10.1007/s12018-014-9160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
78
|
Horseman ND, Hernandez LL. New concepts of breast cell communication to bone. Trends Endocrinol Metab 2014; 25:34-41. [PMID: 24055165 DOI: 10.1016/j.tem.2013.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 11/27/2022]
Abstract
Lactation is the most extreme case of normal physiological bone loss during a lifetime, and breast cancers have a strong tendency to metastasize to bone. In both the physiological and pathological circumstances, parathyroid hormone-related peptide (PTHrP) plays a central role. Until recently there were no regulatory mechanisms to explain the induction of endocrine PTHrP secretion from breast cells during lactation. The mammary epithelium possesses a local serotonin signaling system which drives PTHrP expression during lactation and in breast cancer cells. The mammary gland serotonin system is highly induced in response to alveolar dilation due to milk secretion. Discovery of serotonergic control of PTHrP suggests that it may be possible to manipulate the breast-to-bone axis by targeting serotonin signaling.
Collapse
Affiliation(s)
- Nelson D Horseman
- Department of Molecular and Cellular Physiology, Program in Systems Biology and Physiology, University of Cincinnati, Cincinnati, OH 45267-0576, USA.
| | - Laura L Hernandez
- Department of Dairy Science, University of Wisconsin, Madison, Madison, WI 53706-1205, USA
| |
Collapse
|
79
|
Cafforio P, Savonarola A, Stucci S, De Matteo M, Tucci M, Brunetti AE, Vecchio VM, Silvestris F. PTHrP produced by myeloma plasma cells regulates their survival and pro-osteoclast activity for bone disease progression. J Bone Miner Res 2014; 29:55-66. [PMID: 23787729 DOI: 10.1002/jbmr.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 11/07/2022]
Abstract
To promote their survival and progression in the skeleton, osteotropic malignancies of breast, lung, and prostate produce parathyroid hormone-related protein (PTHrP), which induces hypercalcemia. PTHrP serum elevations have also been described in multiple myeloma (MM), although their role is not well defined. When we investigated MM cells from patients and cell lines, we found that PTHrP and its receptor (PTH-R1) are highly expressed, and that PTHrP is secreted both as a full-length molecule and as small subunits. Among these subunits, the mid-region, including the nuclear localization sequence (NLS), exerted a proliferative effect because it was accumulated in nuclei of MM cells surviving in starvation conditions. This was confirmed by increased transcription of several genes enrolled in proliferation and apoptosis control. PTHrP was also found to stimulate PTH-R1 in MM cells. PTH-R1's selective activation by the full-length PTHrP molecule or the NH2 -terminal fragment resulted in a significant increase of intracellular Ca(2+) influx, cyclic adenosine monophosphate (cAMP) content, and expression of receptor activator of NF-κB ligand (RANKL) and monocyte chemoattractant protein-1 (MCP-1). Our data definitely clarify the role of PTHrP in MM. The PTHrP peptide is functionally secreted by malignant plasma cells and contributes to MM tumor biology and progression, both by intracrine maintenance of cell proliferation in stress conditions and by autocrine or paracrine stimulation of PTH-R1, which in turn reinforces the production of osteoclastogenic factors. © 2014 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Paola Cafforio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Oncology, University of Bari "Aldo Moro,", Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Köstler WJ, Zeisel A, Körner C, Tsai JM, Jacob-Hirsch J, Ben-Chetrit N, Sharma K, Cohen-Dvashi H, Yitzhaky A, Lader E, Tschulena U, Rechavi G, Domany E, Wiemann S, Yarden Y. Epidermal growth-factor-induced transcript isoform variation drives mammary cell migration. PLoS One 2013; 8:e80566. [PMID: 24324612 PMCID: PMC3855657 DOI: 10.1371/journal.pone.0080566] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022] Open
Abstract
Signal-induced transcript isoform variation (TIV) includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF). We show that EGF rapidly – within one hour – induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.
Collapse
Affiliation(s)
- Wolfgang J. Köstler
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Amit Zeisel
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Cindy Körner
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Jonathan M. Tsai
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Jasmine Jacob-Hirsch
- Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Ben-Chetrit
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Kirti Sharma
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Hadas Cohen-Dvashi
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Assif Yitzhaky
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Eric Lader
- Qiagen, Frederick, Maryland, United States of America
| | - Ulrich Tschulena
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Gideon Rechavi
- Sheba Cancer Research Center, The Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Domany
- Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (YY); (ED)
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Yosef Yarden
- Departments of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (YY); (ED)
| |
Collapse
|
81
|
Camirand A, Fadhil I, Luco AL, Ochietti B, Kremer RB. Enhancement of taxol, doxorubicin and zoledronate anti-proliferation action on triple-negative breast cancer cells by a PTHrP blocking monoclonal antibody. Am J Cancer Res 2013; 3:500-508. [PMID: 24224127 PMCID: PMC3816969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are heterogeneous cancers that present tumors without the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Because of the absence of these receptors, there are currently no known specific molecular targets for treatment, and although TNBC tumors are chemosensitive, prognosis is poor because this type of cancer relapses more frequently and more aggressively than hormone receptor-positive cancers. The mechanisms by which TNBCs escape control by chemotherapy are not clear, and it is crucial to identify novel molecular drivers that can be targeted in order to develop more efficient therapeutic approaches. We recently highlighted a pleiotropic role for parathyroid hormone-related protein (PTHrP) in all stages of breast cancer, and used our neutralizing anti-PTHrP monoclonal antibody (mAb M158) to efficiently inhibit progression and metastasis of human breast cancer xenografts in athymic mice. In the present study, we present evidence for a strong in vitro anti-proliferative effect of our blocking anti-PTHrP mAb M158 as a single agent on TNBC lines of various subtypes that are known to express PTHrP (MDA-MB-231, BT-549, MDA-MB-435). The same mAb is inactive in a TNBC line without detectable PTHrP expression (MDA-MB-468). In in vitro combination studies, the mAb enhances the effect of the chemotherapeutic drugs taxol and doxorubicin in PTHrP-positive TNBC cells in an additive manner. When combined with the bisphosphonate zoledronate, M158 can act in additive or antagonistic fashion in vitro depending on the cell line. Our observations identify PTHrP as a novel target against TNBC cell proliferation, and suggest that combination therapies that include an anti-PTHrP approach might increase treatment efficacy in patients with PTHrP-positive TNBC.
Collapse
Affiliation(s)
- Anne Camirand
- Department of Medicine, McGill University Health Centre Montréal, QC Canada, H3A 1A1
| | | | | | | | | |
Collapse
|
82
|
Park SI, Lee C, Sadler WD, Koh AJ, Jones J, Seo JW, Soki FN, Cho SW, Daignault SD, McCauley LK. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res 2013; 73:6574-83. [PMID: 24072746 DOI: 10.1158/0008-5472.can-12-4692] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the tumor microenvironment, CD11b(+)Gr1(+) bone marrow-derived cells are a predominant source of protumorigenic factors such as matrix metalloproteinases (MMP), but how distal tumors regulate these cells in the bone marrow is unclear. Here we addressed the hypothesis that the parathyroid hormone-related protein (PTHrP) potentiates CD11b(+)Gr1(+) cells in the bone marrow of prostate tumor hosts. In two xenograft models of prostate cancer, levels of tumor-derived PTHrP correlated with CD11b(+)Gr1(+) cell recruitment and microvessel density in the tumor tissue, with evidence for mediation of CD11b(+)Gr1(+) cell-derived MMP-9 but not tumor-derived VEGF-A. CD11b(+)Gr1(+) cells isolated from mice with PTHrP-overexpressing tumors exhibited relatively increased proangiogenic potential, suggesting that prostate tumor-derived PTHrP potentiates this activity of CD11b(+)Gr1(+) cells. Administration of neutralizing PTHrP monoclonal antibody reduced CD11b(+)Gr1(+) cells and MMP-9 in the tumors. Mechanistic investigations in vivo revealed that PTHrP elevated Y418 phosphorylation levels in Src family kinases in CD11b(+)Gr1(+) cells via osteoblast-derived interleukin-6 and VEGF-A, thereby upregulating MMP-9. Taken together, our results showed that prostate cancer-derived PTHrP acts in the bone marrow to potentiate CD11b(+)Gr1(+) cells, which are recruited to tumor tissue where they contribute to tumor angiogenesis and growth.
Collapse
Affiliation(s)
- Serk In Park
- Authors' Affiliations: Departments of Medicine and Cancer Biology; Center for Bone Biology; Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry; Comprehensive Cancer Center Biostatistics Core; and Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Zheng L, Zhu K, Jiao H, Zhao Z, Zhang L, Liu M, Deng W, Chen D, Yao Z, Xiao G. PTHrP expression in human MDA-MB-231 breast cancer cells is critical for tumor growth and survival and osteoblast inhibition. Int J Biol Sci 2013; 9:830-41. [PMID: 23983616 PMCID: PMC3753447 DOI: 10.7150/ijbs.7039] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/06/2013] [Indexed: 12/29/2022] Open
Abstract
This study examined the effects of parathyroid hormone-related protein (PTHrP) derived from human MDA-MB-231 breast cancer cells on the tumor growth and osteoblast inhibition. Results revealed that knocking down PTHrP expression in the breast cancer cells strikingly inhibited the formation of subcutaneous tumors in nude mice. PTHrP knockdown dramatically decreased the levels of cyclins D1 and A1 proteins and arrested the cell cycle progression at the G1 stage. PTHrP knockdown led to the cleavage of Caspase 8 and induced apoptosis of the tumor cells. Interestingly, knocking down PTHrP increased the levels of Beclin1 and LC3-II and promoted the formation of autophagosomes. Knocking down PTHrP expression significantly reduced the abilities of the breast cancer cells to inhibit osteoblast differentiation and bone formation in vitro and in vivo. Finally, we found that PTHrP activated its own expression through an autocrine mechanism in MDA-MB-231 cells. Collectively, these studies suggest that targeting PTHrP expression in the tumor cells could be a potential therapeutic strategy for breast cancers, especially those with skeletal metastases.
Collapse
Affiliation(s)
- Lu Zheng
- Department of Immunology, Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Marino N, Woditschka S, Reed LT, Nakayama J, Mayer M, Wetzel M, Steeg PS. Breast cancer metastasis: issues for the personalization of its prevention and treatment. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1084-1095. [PMID: 23895915 DOI: 10.1016/j.ajpath.2013.06.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/18/2013] [Accepted: 06/24/2013] [Indexed: 01/06/2023]
Abstract
Despite important progress in adjuvant and neoadjuvant therapies, metastatic disease often develops in breast cancer patients and remains the leading cause of their deaths. For patients with established metastatic disease, therapy is palliative, with few breaks and with mounting adverse effects. Many have hypothesized that a personalized or precision approach (the terms are used interchangeably) to cancer therapy, in which treatment is based on the individual characteristics of each patient, will provide better outcomes. Here, we discuss the molecular basis of breast cancer metastasis and the challenges in personalization of treatment. The instability of metastatic tumors remains a leading obstacle to personalization, because information from a patient's primary tumor may not accurately reflect the metastasis, and one metastasis may vary from another. Furthermore, the variable presence of tumor subpopulations, such as stem cells and dormant cells, may increase the complexity of the targeted treatments needed. Although molecular signatures and circulating biomarkers have been identified in breast cancer, there is lack of validated predictive molecular markers to optimize treatment choices for either prevention or treatment of metastatic disease. Finally, to maximize the information that can be obtained, increased attention to clinical trial design in the metastasis preventive setting is needed.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Stephan Woditschka
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - L Tiffany Reed
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joji Nakayama
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Maria Wetzel
- Michigan Breast Cancer Coalition, Baldwin, Michigan
| | - Patricia S Steeg
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
85
|
Sato T, Tran TH, Peck AR, Liu C, Ertel A, Lin J, Neilson LM, Rui H. Global profiling of prolactin-modulated transcripts in breast cancer in vivo. Mol Cancer 2013; 12:59. [PMID: 23758962 PMCID: PMC3691730 DOI: 10.1186/1476-4598-12-59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/15/2013] [Indexed: 12/02/2022] Open
Abstract
Background Prolactin (PRL) is essential for normal mammary gland development. PRL promotes mammary tumor formation in rodents and elevated serum prolactin is associated with increased risk of estrogen-receptor positive breast cancer in women. On the other hand, PRL may also exert pro-differentiation effects and act to suppress invasive features of established breast cancer. Previously published limited global transcript profiling analyses of prolactin-regulated gene expression in human breast cancer cells have exclusively been performed in vitro. The present study aimed to shed new light on how PRL modulates estrogen receptor (ER)-positive breast cancer through global transcript profiling of a human breast cancer xenograft model in vivo. Methods The prolactin-responsive human T47D breast cancer cell line was xenotransplanted into nude mice and global transcript profiling was carried out following treatment with or without human PRL for 48 h. A subset of PRL-modulated transcripts was further validated using qRT-PCR and immunohistochemistry. Results The in vivo analyses identified 130 PRL-modulated transcripts, 75 upregulated and 55 downregulated, based on fold change >1.6 and P-value <0.05. From this initial panel of transcripts, a subset of 18 transcripts with established breast cancer-relevance were selected and validated by qRT-PCR. Some but not all of the transcripts were also PRL-modulated in vitro. The selected PRL-modulated transcripts were tested for dependence on Stat5, Jak1 or Jak2 activation, and for co-regulation by 17β-estradiol (E2). The protein encoded by one of the PRL-regulated transcripts, PTHrP, was examined in a panel of 92 human breast cancers and found by in situ quantitative immunofluorescence analysis to be highly positively correlated with nuclear localized and tyrosine phosphorylated Stat5. Gene Ontology analysis revealed that PRL-upregulated genes were enriched in pathways involved in differentiation. Finally, a gene signature based on PRL-upregulated genes was associated with prolonged relapse-free and metastasis-free survival in breast cancer patients. Conclusions This global analysis identified and validated a panel of PRL-modulated transcripts in an ER-positive human breast cancer xenotransplant model, which may have value as markers of relapse-free and metastasis-free survival. Gene products identified in the present study may facilitate ongoing deciphering of the pleiotropic effects of PRL on human breast cancer.
Collapse
|
86
|
Epithelial-mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. J Hum Genet 2013; 58:508-16. [PMID: 23635949 DOI: 10.1038/jhg.2013.31] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/14/2022]
Abstract
Our recent studies of microRNA (miRNA) expression signatures demonstrated that the epithelial-mesenchymal transition (EMT)-related microRNA-200 family (miR-200s: miR-200a/b/c, miR-141 and miR-429) were significantly downregulated in renal cell carcinoma (RCC) and putative tumor-suppressive miRNAs in RCC. In this study, our aim was to investigate the functional significance of the miR-200s in cancer cells and to identify novel miR-200s-regulated molecular targets and pathways in RCC. Expression levels of all the miR-200s members were significantly downregulated in human RCC tissues compared with normal renal tissues. Restoration of mature miR-200s in RCC cell line resulted in significant inhibition of cell proliferation and migration, suggesting that miR-200s function as tumor suppressors in RCC. Furthermore, we utilized gene expression analysis and in silico database analysis to identify miR-200s-regulated molecular targets and pathways in RCC. The miR-200s was categorized into two groups, according to their seed sequences, miR-200b/c/429 and miR-200a/141. Our data demonstrated that the 'Focal adhesion' and 'ErbB signaling' pathways were significantly regulated by miR-200b/c/429 and miR-200a/141, respectively. The identification of novel tumor-suppressive miR-200s-regulated molecular targets and pathways has provided new insights into RCC oncogenesis and metastasis.
Collapse
|
87
|
|
88
|
Abstract
The urothelium, which lines the inner surface of the renal pelvis, the ureters, and the urinary bladder, not only forms a high-resistance barrier to ion, solute and water flux, and pathogens, but also functions as an integral part of a sensory web which receives, amplifies, and transmits information about its external milieu. Urothelial cells have the ability to sense changes in their extracellular environment, and respond to chemical, mechanical and thermal stimuli by releasing various factors such as ATP, nitric oxide, and acetylcholine. They express a variety of receptors and ion channels, including P2X3 purinergic receptors, nicotinic and muscarinic receptors, and TRP channels, which all have been implicated in urothelial-neuronal interactions, and involved in signals that via components in the underlying lamina propria, such as interstitial cells, can be amplified and conveyed to nerves, detrusor muscle cells, and ultimately the central nervous system. The specialized anatomy of the urothelium and underlying structures, and the possible communication mechanisms from urothelial cells to various cell types within the bladder wall are described. Changes in the urothelium/lamina propria ("mucosa") produced by different bladder disorders are discussed, as well as the mucosa as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Lori Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.
| | | |
Collapse
|
89
|
Wright LE, Frye JB, Lukefahr AL, Timmermann BN, Mohammad KS, Guise TA, Funk JL. Curcuminoids block TGF-β signaling in human breast cancer cells and limit osteolysis in a murine model of breast cancer bone metastasis. JOURNAL OF NATURAL PRODUCTS 2013; 76:316-21. [PMID: 23145932 PMCID: PMC3596492 DOI: 10.1021/np300663v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Effects of curcuminoids on breast cancer cell secretion of the bone-resorptive peptide parathyroid hormone-related protein (PTHrP) and on lytic breast cancer bone metastasis were evaluated. In vitro, transforming growth factor (TGF)-β-stimulated PTHrP secretion was inhibited by curcuminoids (IC50 = 24 μM) in MDA-MB-231 human breast cancer cells independent of effects on cell growth inhibition. Effects on TGF-β signaling revealed decreases in phospho-Smad2/3 and Ets-1 protein levels with no effect on p-38 MAPK-mediated TGF-β signaling. In vivo, mice were inoculated with MDA-MB-231 cells into the left cardiac ventricle and treated ip every other day with curcuminoids (25 or 50 mg/kg) for 21 days. Osteolytic bone lesion area was reduced up to 51% (p < 0.01). Consistent with specific effects on bone osteolysis, osteoclast number at the bone-tumor interface was reduced up to 53% (p < 0.05), while tumor area within bone was unaltered. In a separate study, tumor mass in orthotopic mammary xenografts was also unaltered by treatment. These data suggest that curcuminoids prevent TGF-β induction of PTHrP and reduce osteolytic bone destruction by blockade of Smad signaling in breast cancer cells.
Collapse
Affiliation(s)
- Laura E. Wright
- Endocrinology Section, Department of Medicine, The University of Arizona, Tucson, AZ 85724
| | - Jennifer B. Frye
- Endocrinology Section, Department of Medicine, The University of Arizona, Tucson, AZ 85724
| | - Ashley L. Lukefahr
- Endocrinology Section, Department of Medicine, The University of Arizona, Tucson, AZ 85724
| | - Barbara N. Timmermann
- Department of Medicinal Chemistry, School of Pharmacy, The University of Kansas, KS 66045
| | - Khalid S. Mohammad
- Division of Endocrinology, Department of Medicine, Indiana University, Indianapolis, IN 46202
| | - Theresa A. Guise
- Division of Endocrinology, Department of Medicine, Indiana University, Indianapolis, IN 46202
| | - Janet L. Funk
- Endocrinology Section, Department of Medicine, The University of Arizona, Tucson, AZ 85724
- Corresponding Author: Tel/Fax: +1 520 626 3242.
| |
Collapse
|
90
|
Soki FN, Park SI, McCauley LK. The multifaceted actions of PTHrP in skeletal metastasis. Future Oncol 2013; 8:803-17. [PMID: 22830401 DOI: 10.2217/fon.12.76] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PTHrP, identified during the elucidation of mediators of malignancy-induced hypercalcemia, plays numerous roles in normal physiology as well as pathological conditions. Recent data support direct functions of PTHrP in metastasis, particularly from tumors with strong bone tropism. Bone provides a unique metastatic environment because of mineralization and the diverse cell populations in the bone marrow. PTHrP is a key regulator of tumor-bone interactions and regulates cells in the bone microenvironment through proliferative and prosurvival activities that prime the 'seed' and the 'soil' of the metastatic lesion. This review highlights recent findings regarding the role of PTHrP in skeletal metastasis, including direct actions in tumor cells, as well as alterations in the bone microenvironment and future perspectives involving the potential roles of PTHrP in the premetastatic niche, and tumor dormancy.
Collapse
Affiliation(s)
- Fabiana N Soki
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, 1011 North University Avenue, Ann Arbor, MI, USA
| | | | | |
Collapse
|
91
|
Valkenburg KC, Steensma MR, Williams BO, Zhong Z. Skeletal metastasis: treatments, mouse models, and the Wnt signaling. CHINESE JOURNAL OF CANCER 2013; 32:380-96. [PMID: 23327798 PMCID: PMC3845601 DOI: 10.5732/cjc.012.10218] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Skeletal metastases result in significant morbidity and mortality. This is particularly true of cancers with a strong predilection for the bone, such as breast, prostate, and lung cancers. There is currently no reliable cure for skeletal metastasis, and palliative therapy options are limited. The Wnt signaling pathway has been found to play an integral role in the process of skeletal metastasis and may be an important clinical target. Several experimental models of skeletal metastasis have been used to find new biomarkers and test new treatments. In this review, we discuss pathologic process of bone metastasis, the roles of the Wnt signaling, and the available experimental models and treatments.
Collapse
Affiliation(s)
- Kenneth C Valkenburg
- Center for Skeletal Disease Research, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | | | | | | |
Collapse
|
92
|
Cyclic AMP enhances TGFβ responses of breast cancer cells by upregulating TGFβ receptor I expression. PLoS One 2013; 8:e54261. [PMID: 23349840 PMCID: PMC3548810 DOI: 10.1371/journal.pone.0054261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/10/2012] [Indexed: 01/22/2023] Open
Abstract
Cellular functions are regulated by complex networks of many different signaling pathways. The TGFβ and cAMP pathways are of particular importance in tumor progression. We analyzed the cross-talk between these pathways in breast cancer cells in 2D and 3D cultures. We found that cAMP potentiated TGFβ-dependent gene expression by enhancing Smad3 phosphorylation. Higher levels of total Smad3, as observed in 3D-cultured cells, blocked this effect. Two Smad3 regulating proteins, YAP (Yes-associated protein) and TβRI (TGFβ receptor 1), were responsive to cAMP. While YAP had little effect on TGFβ-dependent expression and Smad3 phosphorylation, a constitutively active form of TβRI mimicked the cAMP effect on TGFβ signaling. In 3D-cultured cells, which show much higher levels of TβRI and cAMP, TβRI was unresponsive to cAMP. Upregulation of TβRI expression by cAMP was dependent on transcription. A proximal TβRI promoter fragment was moderately, but significantly activated by cAMP suggesting that cAMP increases TβRI expression at least partially by activating TβRI transcription. Neither the cAMP-responsive element binding protein (CREB) nor the TβRI-regulating transcription factor Six1 was required for the cAMP effect. An inhibitor of histone deacetylases alone or together with cAMP increased TβRI expression by a similar extent as cAMP alone suggesting that cAMP may exert its effect by interfering with histone acetylation. Along with an additive stimulatory effect of cAMP and TGFβ on p21 expression an additive inhibitory effect of these agents on proliferation was observed. Finally, we show that mesenchymal stem cells that interact with breast cancer cells can simultaneously activate the cAMP and TGFβ pathways. In summary, these data suggest that combined effects of cAMP and TGFβ, as e.g. induced by mesenchymal stem cells, involve the upregulation of TβRI expression on the transcriptional level, likely due to changes in histone acetylation. As a consequence, cancer cell functions such as proliferation are affected.
Collapse
|
93
|
Zheng Y, Zhou H, Dunstan CR, Sutherland RL, Seibel MJ. The role of the bone microenvironment in skeletal metastasis. J Bone Oncol 2012; 2:47-57. [PMID: 26909265 PMCID: PMC4723345 DOI: 10.1016/j.jbo.2012.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/22/2012] [Accepted: 11/22/2012] [Indexed: 01/27/2023] Open
Abstract
The bone microenvironment provides a fertile soil for cancer cells. It is therefore not surprising that the skeleton is a frequent site of cancer metastasis. It is believed that reciprocal interactions between tumour and bone cells, known as the “vicious cycle of bone metastasis” support the establishment and orchestrate the expansion of malignant cancers in bone. While the full range of molecular mechanisms of cancer metastasis to bone remain to be elucidated, recent research has deepened our understanding of the cell-mediated processes that may be involved in cancer cell survival and growth in bone. This review aims to address the importance of the bone microenvironment in skeletal cancer metastasis and discusses potential therapeutic implications of novel insights.
Collapse
Affiliation(s)
- Yu Zheng
- Bone Research Program, ANZAC Research Institute, University of Sydney, NSW 2139, Australia; The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Hong Zhou
- Bone Research Program, ANZAC Research Institute, University of Sydney, NSW 2139, Australia
| | - Colin R Dunstan
- Bone Research Program, ANZAC Research Institute, University of Sydney, NSW 2139, Australia; Department of Biomedical Engineering, University of Sydney, NSW 2006, Australia
| | - Robert L Sutherland
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Markus J Seibel
- Bone Research Program, ANZAC Research Institute, University of Sydney, NSW 2139, Australia; Department of Endocrinology & Metabolism, Concord Hospital, Concord, Sydney, NSW 2139, Australia
| |
Collapse
|
94
|
Kuchuk I, Simos D, Addison C, Clemons M. A national portfolio of bone oncology trials-The Canadian experience in 2012. J Bone Oncol 2012; 1:95-100. [PMID: 26909263 PMCID: PMC4723348 DOI: 10.1016/j.jbo.2012.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/14/2012] [Accepted: 09/20/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The impact of both cancer and its treatment on bone is an essential component of oncological practice. Bone oncology not only affects patients with both early stage and metastatic disease but also covers the entire spectrum of tumour types. We therefore decided to review and summarise bone oncology-related trials that are currently being conducted in Canada. METHOD We assessed ongoing and recently completed trials in Canada. We used available North American and Canadian cancer trial websites and also contacted known investigators in this field for their input. RESULTS Twenty seven clinical trials were identified. Seven pertained to local treatment of bone metastasis from any solid tumour type. Seven were systemic treatment trials, five focused on bone biology and predictive factors, three evaluated safety of bone-targeted agents, three were adjuvant trials and two trials investigated impact of cancer therapy on bone health. The majority of trials were related to systemic treatment and bone biology in breast cancer. Most were small, single centre, grant-funded studies. Not surprisingly the larger safety and adjuvant studies were pharmaceutical company driven. DISCUSSION Despite the widespread interest in bone-targeted therapies our survey would suggest that most studies are single centre and breast cancer focused. If major advances in bone oncology are to be made then collaborative strategies are needed to not only increase current sample sizes but to also expand these studies into non-breast cancer populations.
Collapse
Affiliation(s)
- I. Kuchuk
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre & Department of Medicine, University of Ottawa, Ottawa, Canada
| | - D. Simos
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre & Department of Medicine, University of Ottawa, Ottawa, Canada
| | - C.L. Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - M. Clemons
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre & Department of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
95
|
Li J, Dong S, Townsend SD, Dean T, Gardella TJ, Danishefsky SJ. Chemistry as an Expanding Resource in Protein Science: Fully Synthetic and Fully Active Human Parathyroid Hormone-Related Protein (1-141). Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
96
|
Li J, Dong S, Townsend SD, Dean T, Gardella TJ, Danishefsky SJ. Chemistry as an expanding resource in protein science: fully synthetic and fully active human parathyroid hormone-related protein (1-141). Angew Chem Int Ed Engl 2012; 51:12263-7. [PMID: 23124999 DOI: 10.1002/anie.201207603] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Jianfeng Li
- Laboratory for Bioorganic Chemistry, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
PTHrP was identified as a cause of hypercalcemia in cancer patients 25 yr ago. In the intervening years, we have learned that PTHrP and PTH are encoded by related genes that are part of a larger "PTH gene family." This evolutionary relationship permits them to bind to the same type 1 PTH/PTHrP receptor, which explains why humoral hypercalcemia of malignancy resembles hyperparathyroidism. This review will outline basic facts about PTHrP biology and its normal physiological functions, with an emphasis on new findings of the past 5-10 yr. The medical and research communities first became aware of PTHrP because of its involvement in a common paraneoplastic syndrome. Now, research into the basic biology of PTHrP has suggested previously unrecognized connections to a variety of disease states such as osteoporosis, osteoarthritis, and breast cancer and has highlighted how PTHrP itself might be used in therapy for osteoporosis and diabetes. Therefore, the story of this remarkable protein is a paradigm for translational research, having gone from bedside to bench and now back to bedside.
Collapse
Affiliation(s)
- John J Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, TAC S131, Box 208020, New Haven, Connecticut 06520-8020, USA.
| |
Collapse
|
98
|
McCauley LK, Martin TJ. Twenty-five years of PTHrP progress: from cancer hormone to multifunctional cytokine. J Bone Miner Res 2012; 27:1231-9. [PMID: 22549910 PMCID: PMC4871126 DOI: 10.1002/jbmr.1617] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/04/2012] [Accepted: 03/20/2012] [Indexed: 01/30/2023]
Abstract
Twenty-five years ago a "new" protein was identified from cancers that caused hypercalcemia. It was credited for its ability to mimic parathyroid hormone (PTH), and hence was termed parathyroid hormone-related protein (PTHrP). Today it is recognized for its widespread distribution, its endocrine, paracrine, and intracrine modes of action driving numerous physiologic and pathologic conditions, and its central role in organogenesis. The multiple biological activities within a complex molecule with paracrine modulation of adjacent target cells present boundless possibilities. The protein structure of PTHrP has been traced, dissected, and deleted comprehensively and conditionally, yet numerous questions lurk in its past that will carry into the future. Issues of the variable segments of the protein, including the enigmatic nuclear localization sequence, are only recently being clarified. Aspects of PTHrP production and action in the menacing condition of cancer are emerging as dichotomies that may represent intended temporal actions of PTHrP. Relative to PTH, the hormone regulating calcium homeostasis, PTHrP "controls the show" locally at the PTH/PTHrP receptor throughout the body. Great strides have been made in our understanding of PTHrP actions, yet years of exciting investigation and discovery are imminent. © 2012 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Laurie K McCauley
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, 1011 N. University Ave., Ann Arbor, MI 48105, USA.
| | | |
Collapse
|
99
|
Abstract
Parathyroid hormone-related protein (PTHrP) causes hypercalcemia in cancer patients. PTHrP is required for normal breast development and has been shown to promote bone metastases from breast cancers. However, whether the protein also contributes to the formation of primary tumors has been unclear. Two recent papers suggest it may. First, a report in Nature Genetics identified the PTHrP locus as a new breast cancer susceptibility gene. Second, a paper in Journal of Clinical Investigation demonstrated that PTHrP promotes tumor growth and metastases in MMTV-PyMT mice. These studies implicate PTHrP in the development and growth of primary breast tumors and underscore the need for further research.
Collapse
|