51
|
Yuan S, Cai Z, Luan X, Wang H, Zhong Y, Deng L, Feng J. Gut microbiota: A new therapeutic target for diabetic cardiomyopathy. Front Pharmacol 2022; 13:963672. [PMID: 36091756 PMCID: PMC9461091 DOI: 10.3389/fphar.2022.963672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic cardiomyopathy seriously affects quality of life and even threatens life safety of patients. The pathogenesis of diabetic cardiomyopathy is complex and multifactorial, and it is widely accepted that its mechanisms include oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Some studies have shown that gut microbiota plays an important role in cardiovascular diseases. Gut microbiota and its metabolites can affect the development of diabetic cardiomyopathy by regulating oxidative stress, inflammation, insulin resistance, apoptosis, and autophagy. Here, the mechanisms of gut microbiota and its metabolites resulting in diabetic cardiomyopathy are reviewed. Gut microbiota may be a new therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Suxin Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhengyao Cai
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xingzhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haibo Wang
- Department of Cardiology, Gulin People’s Hospital, Luzhou, Sichuan, China
| | - Yi Zhong
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated, Hospital of Southwest Medical University, Luzhou, Sichaun, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Jian Feng,
| |
Collapse
|
52
|
Parmar UM, Jalgaonkar MP, Kulkarni YA, Oza MJ. Autophagy-nutrient sensing pathways in diabetic complications. Pharmacol Res 2022; 184:106408. [PMID: 35988870 DOI: 10.1016/j.phrs.2022.106408] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
The incidence of diabetes has been increasing in recent decades which is affecting the population of both, developed and developing countries. Diabetes is associated with micro and macrovascular complications which predominantly result from hyperglycemia and disrupted metabolic pathways. Persistent hyperglycemia leads to increased reactive oxygen species (ROS) generation, formation of misfolded and abnormal proteins, and disruption of normal cellular functioning. The inability to maintain metabolic homeostasis under excessive energy and nutrient input, which induces insulin resistance, is a crucial feature during the transition from obesity to diabetes. According to various study reports, redox alterations, intracellular stress and chronic inflammation responses have all been linked to dysregulated energy metabolism and insulin resistance. Autophagy has been considered a cleansing mechanism to prevent these anomalies and restore cellular homeostasis. However, disrupted autophagy has been linked to the pathogenesis of metabolic disorders such as obesity and diabetes. Recent studies have reported that the regulation of autophagy has a beneficial role against these conditions. When there is plenty of food, nutrient-sensing pathways activate anabolism and storage, but the shortage of food activates homeostatic mechanisms like autophagy, which mobilises internal stockpiles. These nutrient-sensing pathways are well conserved in eukaryotes and are involved in the regulation of autophagy which includes SIRT1, mTOR and AMPK. The current review focuses on the role of SIRT1, mTOR and AMPK in regulating autophagy and suggests autophagy along with these nutrient-sensing pathways as potential therapeutic targets in reducing the progression of various diabetic complications.
Collapse
Affiliation(s)
- Urvi M Parmar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Manjiri P Jalgaonkar
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai 400056, India
| | - Manisha J Oza
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
53
|
Moloce MA, Costache II, Nicolae A, Onofrei Aursulesei V. Pharmacological Targets in Chronic Heart Failure with Reduced Ejection Fraction. Life (Basel) 2022; 12:1112. [PMID: 35892914 PMCID: PMC9394280 DOI: 10.3390/life12081112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Heart failure management has been repeatedly reviewed over time. This strategy has resulted in improved quality of life, especially in patients with heart failure with reduced ejection fraction (HFrEF). It is for this reason that new mechanisms involved in the development and progression of heart failure, along with specific therapies, have been identified. This review focuses on the most recent guidelines of therapeutic interventions, trials that explore novel therapies, and also new molecules that could improve prognosis of different HFrEF phenotypes.
Collapse
Affiliation(s)
- Maria-Angela Moloce
- Iasi “Saint Spiridon” County Hospital, 700111 Iasi, Romania; (M.-A.M.); (I.-I.C.); (V.O.A.)
| | - Irina-Iuliana Costache
- Iasi “Saint Spiridon” County Hospital, 700111 Iasi, Romania; (M.-A.M.); (I.-I.C.); (V.O.A.)
- Department of Internal Medicine (Cardiology), Iasi “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| | - Ana Nicolae
- Department of Internal Medicine (Cardiology), Iasi “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| | - Viviana Onofrei Aursulesei
- Iasi “Saint Spiridon” County Hospital, 700111 Iasi, Romania; (M.-A.M.); (I.-I.C.); (V.O.A.)
- Department of Internal Medicine (Cardiology), Iasi “Grigore T. Popa” University of Medicine and Pharmacy, 700111 Iasi, Romania
| |
Collapse
|
54
|
Li Y, Liu J, Cui Y, Cao Y, Xu P, Kan X, Guo W, Fu S. Sodium butyrate attenuates bovine mammary epithelial cell injury by inhibiting the formation of neutrophil extracellular traps. Int Immunopharmacol 2022; 110:109009. [PMID: 35816944 DOI: 10.1016/j.intimp.2022.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022]
Abstract
Neutrophil extracellular traps (NETs) are an important means by which the body fights against exogenous bacteria. However, studies have shown that excessive NETs release can damage other cells. Accumulating evidence has shown that butyric acid can alleviate the inflammatory response of cells. However, the effect of butyric acid on Staphylococcus aureus-induced NETs formation and its underlying mechanism are still unclear. In this study, western blotting, immunofluorescence and CCK-8 assays were used to examine the effect of NETs formation by sodium butyrate (NaB). The results showed that NaB suppressed the release of S. aureus-induced NETs formation, as indicated by decreases in the levels of DNA, histones, myeloperoxidase, and neutrophil elastase. S. aureus can induce autophagy, and autophagy plays a key role in the formation of NETs. Our data showed that NaB activated mammalian target of rapamycin (mTOR) and the kinases protein kinase B (AKT) and unc-51 like kinase 1 (ULK1) at Ser757 and inhibited AMP-activated protein kinase (AMPK). To explore whether NaB inhibited the formation of NETs by inhibiting autophagy, we added 3-methyladenine (autophagy inhibitor) (3-MA, 5 mM) to bovine neutrophils, and the results showed that 3-MA significantly inhibited NETs release. Furthermore, we found that NETs and their component histones exhibited significantly increased the cytotoxic effects on bovine mammary epithelial cells (BMECs), indicating that NETs and their component histones play a key role in BMEC damage. In conclusion, NaB can reduce the excessive formation of NETs by inhibiting autophagy, thus reducing the damaging effect of NETs on BMECs.
Collapse
Affiliation(s)
- Yuhang Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Juxiong Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yueyao Cui
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yu Cao
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Ping Xu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xingchi Kan
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Wenjin Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
55
|
Aldehyde Dehydrogenase 2 (ALDH2) Elicits Protection against Pulmonary Hypertension via Inhibition of ERK1/2-Mediated Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2555476. [PMID: 35770049 PMCID: PMC9236760 DOI: 10.1155/2022/2555476] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/06/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
Abstract
Pulmonary hypertension (PH) is caused by chronic hypoxia that induces the migration and proliferation of pulmonary arterial smooth muscle cells (PASMCs), eventually resulting in right heart failure. PH has been related to aberrant autophagy; however, the hidden mechanisms are still unclear. Approximately 40% East Asians, equivalent to 8% of the universal population, carry a mutation in Aldehyde dehydrogenase 2 (ALDH2), which leads to the aggregation of noxious reactive aldehydes and increases the propensity of several diseases. Therefore, we explored the potential aspect of ALDH2 in autophagy associated with PH. In vitro mechanistic studies were conducted in human PASMCs (HPASMCs) after lentiviral ALDH2 knockdown and treatment with platelet-derived growth factor-BB (PDGF-BB). PH was induced in wild-type (WT) and ALDH2-knockout (ALDH2−/−) mice using vascular endothelial growth factor receptor inhibitor SU5416 under hypoxic conditions (HySU). Right ventricular function was assessed using echocardiography and invasive hemodynamic monitoring. Histological and immunohistochemical analyses were performed to evaluate pulmonary vascular remodeling. EdU, transwell, and wound healing assays were used to evaluate HPASMC migration and proliferation, and electron microscopy and immunohistochemical and immunoblot assays were performed to assess autophagy. The findings demonstrated that ALDH2 deficiency exacerbated right ventricular pressure, hypertrophy, fibrosis, and right heart failure resulting from HySU-induced PH. ALDH2−/− mice exhibited increased pulmonary artery muscularization and 4-hydroxynonenal (4-HNE) levels in lung tissues. ALDH2 knockdown increased PDGF-BB-induced PASMC migration and proliferation and 4-HNE accumulation in vitro. Additionally, ALDH2 deficiency increased the number of autophagosomes and autophagic lysosomes together with autophagic flux and ERK1/2-Beclin-1 activity in lung tissues and PASMCs, indicating enhanced autophagy. In conclusion, the study shows that ALDH2 has a protective role against the migration and proliferation of PASMCs and PH, possibly by regulating autophagy through the ERK1/2-Beclin-1 pathway.
Collapse
|
56
|
Zhao F, Satyanarayana G, Zhang Z, Zhao J, Ma XL, Wang Y. Endothelial Autophagy in Coronary Microvascular Dysfunction and Cardiovascular Disease. Cells 2022; 11:2081. [PMID: 35805165 PMCID: PMC9265562 DOI: 10.3390/cells11132081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or functional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note, the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Importantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD and CVDs.
Collapse
Affiliation(s)
- Fujie Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | | | - Zheng Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| |
Collapse
|
57
|
Lin J, Duan J, Wang Q, Xu S, Zhou S, Yao K. Mitochondrial Dynamics and Mitophagy in Cardiometabolic Disease. Front Cardiovasc Med 2022; 9:917135. [PMID: 35783853 PMCID: PMC9247260 DOI: 10.3389/fcvm.2022.917135] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a key role in cellular metabolism. Mitochondrial dynamics (fusion and fission) and mitophagy, are critical to mitochondrial function. Fusion allows organelles to share metabolites, proteins, and mitochondrial DNA, promoting complementarity between damaged mitochondria. Fission increases the number of mitochondria to ensure that they are passed on to their offspring during mitosis. Mitophagy is a process of selective removal of excess or damaged mitochondria that helps improve energy metabolism. Cardiometabolic disease is characterized by mitochondrial dysfunction, high production of reactive oxygen species, increased inflammatory response, and low levels of ATP. Cardiometabolic disease is closely related to mitochondrial dynamics and mitophagy. This paper reviewed the mechanisms of mitochondrial dynamics and mitophagy (focus on MFN1, MFN2, OPA1, DRP1, and PINK1 proteins) and their roles in diabetic cardiomyopathy, myocardial infarction, cardiac hypertrophy, heart failure, atherosclerosis, and obesity.
Collapse
Affiliation(s)
- Jianguo Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinlong Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqing Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyu Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Simin Zhou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Kuiwu Yao
| |
Collapse
|
58
|
Oliveira FRMB, Soares ES, Harms C, Cimarosti HI, Sordi R. SUMOylation in peripheral tissues under low perfusion-related pathological states. J Cell Biochem 2022; 123:1133-1147. [PMID: 35652521 DOI: 10.1002/jcb.30293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022]
Abstract
SUMOylation is described as a posttranslational protein modification (PTM) that is involved in the pathophysiological processes underlying several conditions related to ischemia- and reperfusion-induced damage. Increasing evidence suggests that, under low oxygen levels, SUMOylation might be part of an endogenous mechanism, which is triggered by injury to protect cells within the central nervous system. However, the role of ischemia-induced SUMOylation in the periphery is still unclear. This article summarizes the results of recent studies regarding SUMOylation profiles in several diseases characterized by impaired blood flow to the cardiorenal, gastrointestinal, and respiratory systems. Our review shows that although ischemic injury per se does not always increase SUMOylation levels, as seen in strokes, it seems that in most cases the positive modulation of protein SUMOylation after peripheral ischemia might be a protective mechanism. This complex relationship warrants further investigation, as the role of SUMOylation during hypoxic conditions differs from organ to organ and is still not fully elucidated.
Collapse
Affiliation(s)
- Filipe R M B Oliveira
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Ericks S Soares
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Centre for Stroke Research, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Einstein Centre for Neuroscience, Berlin, Germany
| | - Helena I Cimarosti
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil.,Postgraduate Program in Neuroscience, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Regina Sordi
- Department of Pharmacology, School of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianopolis, Santa Catarina, Brazil.,Postgraduate Program in Pharmacology, Federal University of Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
59
|
Mechanisms underlying the effects of caloric restriction on hypertension. Biochem Pharmacol 2022; 200:115035. [DOI: 10.1016/j.bcp.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
|
60
|
Ma Q, Zhang N, You Y, Zhu J, Yu Z, Chen H, Xie X, Yu H. CXCR4 blockade in macrophage promotes angiogenesis in ischemic hindlimb by modulating autophagy. J Mol Cell Cardiol 2022; 169:57-70. [PMID: 35597127 DOI: 10.1016/j.yjmcc.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Chemokine receptor CXCR4 plays a crucial role in leukocyte recruitment and inflammation regulation to influence tissue repair in ischemic diseases. Here we assessed the effect of CXCR4 expression in macrophages on angiogenesis in the ischemic hindlimb of a mouse. Inflammatory cells were increased in the ischemic muscles of hindlimb, and CXCR4 was highly expressed in the infiltrated macrophages but not in neutrophils. Myeloid-specific CXCR4 knockout attenuated macrophage infiltration and subsequent reduced inflammatory response in the ischemic hindlimb, accompanied with better blood reperfusion and higher capillary density as compared with that in LysM Cre+/- (Cre) mice. Similar outcomes were also observed in CRE mice whose bone marrow cells were replaced with those from CXCR4-deficient mice. Gene ontology cluster analysis reviewed that Decorin, a negative regulator of angiogenesis, was reduced in CXCR4-deficient macrophages. CXCR4-deficient macrophages were less inducible into M1 phase by lipopolysaccharide and more favorable for M2 polarization under oxygen/glucose deprivation condition. Enhanced autophagy was detected in CXCR4-deficient macrophages, which was associated with less expression of both Decorin and the inflammatory cytokines. In summary, myeloid-specific CXCR4 deficiency reduced monocyte infiltration and the secretion of inflammatory cytokines and Decorin from macrophages, thus blunting inflammation response and promoting angiogenesis in the ischemic hindlimb.
Collapse
Affiliation(s)
- Qunchao Ma
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Ning Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Yayu You
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Zhaosheng Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Haibo Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China
| | - Xiaojie Xie
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China.
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, Zhejiang Province 310009, PR China.
| |
Collapse
|
61
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Wu H, Gong G. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis 2022; 13:444. [PMID: 35534453 PMCID: PMC9085840 DOI: 10.1038/s41419-022-04906-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic organelles that participate in ATP generation and involve calcium homeostasis, oxidative stress response, and apoptosis. Dysfunctional or damaged mitochondria could cause serious consequences even lead to cell death. Therefore, maintaining the homeostasis of mitochondria is critical for cellular functions. Mitophagy is a process of selectively degrading damaged mitochondria under mitochondrial toxicity conditions, which plays an essential role in mitochondrial quality control. The abnormal mitophagy that aggravates mitochondrial dysfunction is closely related to the pathogenesis of many diseases. As the myocardium is a highly oxidative metabolic tissue, mitochondria play a central role in maintaining optimal performance of the heart. Dysfunctional mitochondria accumulation is involved in the pathophysiology of cardiovascular diseases, such as myocardial infarction, cardiomyopathy and heart failure. This review discusses the most recent progress on mitophagy and its role in cardiovascular disease.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Huayan Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
62
|
Wang D, Niu Z, Wang X. The Regulatory Role of Non-coding RNA in Autophagy in Myocardial Ischemia-Reperfusion Injury. Front Pharmacol 2022; 13:822669. [PMID: 35370737 PMCID: PMC8970621 DOI: 10.3389/fphar.2022.822669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Following an acute myocardial infarction (AMI), thrombolysis, coronary artery bypass grafting and primary percutaneous coronary intervention (PPCI) are the best interventions to restore reperfusion and relieve the ischemic myocardium, however, the myocardial ischemia-reperfusion injury (MIRI) largely offsets the benefits of revascularization in patients. Studies have demonstrated that autophagy is one of the important mechanisms mediating the occurrence of the MIRI, while non-coding RNAs are the main regulatory factors of autophagy, which plays an important role in the autophagy-related mTOR signaling pathways and the process of autophagosome formation Therefore, non-coding RNAs may be used as novel clinical diagnostic markers and therapeutic targets in the diagnosis and treatment of the MIRI. In this review, we not only describe the effect of non-coding RNA regulation of autophagy on MIRI outcome, but also zero in on the regulation of non-coding RNA on autophagy-related mTOR signaling pathways and mitophagy. Besides, we focus on how non-coding RNAs affect the outcome of MIRI by regulating autophagy induction, formation and extension of autophagic vesicles, and the fusion of autophagosome and lysosome. In addition, we summarize all non-coding RNAs reported in MIRI that can be served as possible druggable targets, hoping to provide a new idea for the prediction and treatment of MIRI.
Collapse
Affiliation(s)
- Dan Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Zhenchao Niu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| | - Xiaolong Wang
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shanghai, China
| |
Collapse
|
63
|
Gatica D, Chiong M, Lavandero S, Klionsky DJ. The role of autophagy in cardiovascular pathology. Cardiovasc Res 2022; 118:934-950. [PMID: 33956077 PMCID: PMC8930074 DOI: 10.1093/cvr/cvab158] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy/autophagy is a conserved catabolic recycling pathway in which cytoplasmic components are sequestered, degraded, and recycled to survive various stress conditions. Autophagy dysregulation has been observed and linked with the development and progression of several pathologies, including cardiovascular diseases, the leading cause of death in the developed world. In this review, we aim to provide a broad understanding of the different molecular factors that govern autophagy regulation and how these mechanisms are involved in the development of specific cardiovascular pathologies, including ischemic and reperfusion injury, myocardial infarction, cardiac hypertrophy, cardiac remodelling, and heart failure.
Collapse
Affiliation(s)
- Damián Gatica
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| | - Mario Chiong
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
| | - Sergio Lavandero
- Department of Biochemistry and Molecular Biology, Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Olivos 1007, Independencia, Santiago 8380492, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), 926 JF Gonzalez, Santiago 7860201, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-8573, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Ave, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
64
|
Bu W, Zhang Z, Ocansey DKW, Yu Z, Yang X, Liu Z, Wang X, Ke Y. Research on natural products from traditional Chinese medicine in the treatment of myocardial ischemia-reperfusion injury. Am J Transl Res 2022; 14:1952-1968. [PMID: 35422902 PMCID: PMC8991172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a complicated pathologic process that involves multiple factors including oxidative stress (free radical damage), inflammatory response, calcium overloading, and apoptosis in cardiomyocytes. According to Traditional Chinese Medicine (TCM), MIRI belongs to the categories of "chest numbness", "palpitations" and "angina pectoris". Present data indicate that the application of TCM in myocardial ischemia-reperfusion injury is promising and continues to attract research attention. While the efficacy of Chinese herbal medicine has been well-proven, the underlying molecular mechanisms remain elusive. The common proven mechanisms of Chinese herbal medicine in the treatment of MIRI include regulating lipid metabolism, protecting mitochondria, and improving energy metabolism, attenuating calcium (Ca2+) overload, scavenging oxygen free radicals, inhibiting apoptosis, and reducing autophagy. Others are the regulation of inflammatory cytokine expressions and healing of inflammatory lesions, modulation of cell signaling pathways, improvement of endothelial cell function, and protection of myocardial cells. In this review, we highlight recent studies that focus on elucidating these molecular mechanisms and the therapeutic effects of natural compounds deriving from TCM in MIRI, to ascertain the research progress made and the prospects in this field.
Collapse
Affiliation(s)
- Wenyu Bu
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
| | - Zhaoyang Zhang
- Taicang Hospital of Traditional Chinese MedicineSuzhou 215400, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, PMBCape Coast, Ghana
| | - Zhihua Yu
- Department of Cardiology, Wuhan Hospital of Traditional Chinese and Western MedicineWuhan 430022, Hubei, China
| | - Xiao Yang
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
| | - Zhitong Liu
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
| | - Xinyu Wang
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
| | - Yuhe Ke
- The First Clinical Medical Institute, Hubei University of Chinese MedicineWuhan 430060, Hubei, China
- Department of Cardiology, Wuhan Hospital of Traditional Chinese and Western MedicineWuhan 430022, Hubei, China
| |
Collapse
|
65
|
Xu H, Cheng J, He F. Cordycepin alleviates myocardial ischemia/reperfusion injury by enhancing autophagy via AMPK-mTOR pathway. J Physiol Biochem 2022; 78:401-413. [PMID: 35230668 DOI: 10.1007/s13105-021-00816-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/12/2021] [Indexed: 11/25/2022]
Abstract
To estimate the cardioprotective mechanism of cordycepin on myocardial ischemia/reperfusion (I/R) injury. The left anterior descending artery of mice was ligated transiently to establish the myocardial I/R model. TTC/Evans Blue staining and TUNEL assay were performed to quantify the infarct size and apoptosis index. The cardiac function was evaluated by echocardiography. Neonatal rat ventricular cardiomyocytes (NRVCs) underwent hypoxia and reoxygenation (H/R). MTS and LDH were detected to measured cell viability and necrosis respectively. The results suggested that cordycepin could markedly decrease apoptosis, reduce infarct size, and improve cardiac function in mice subjected to I/R injury, alongside with enhanced autophagy. In NRVCs, cordycepin treatment obviously reduced ROS production. In addition, cordycepin partly promoted autophagy in the context of H/R injury by regulating AMPK/mTOR pathway. Our data demonstrated that cordycepin exerts cardio-protective effect and promotes cardiac functional recovery following myocardial I/R by enhancing autophagy via AMPK-mTOR signaling pathway.
Collapse
Affiliation(s)
- Han Xu
- Department of Cardiology, second affiliated hospital of Anhui medical University, Hefei, Anhui, China.,Department of Geriatrics, Affiliated Huadong Hospital of Fudan University, Shanghai, China
| | - Jing Cheng
- School of Nursing, Anhui University of Traditional Chinese Medicine, No.103 of middle Meishan Road, Hefei, Anhui, China
| | - Fei He
- Department of Cardiology, second affiliated hospital of Anhui medical University, Hefei, Anhui, China.
| |
Collapse
|
66
|
A novel therapeutic strategy for atherosclerosis: autophagy-dependent cholesterol efflux. J Physiol Biochem 2022; 78:557-572. [DOI: 10.1007/s13105-021-00870-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/25/2021] [Indexed: 10/19/2022]
|
67
|
Muñoz-Córdova F, Hernández-Fuentes C, Lopez-Crisosto C, Troncoso MF, Calle X, Guerrero-Moncayo A, Gabrielli L, Chiong M, Castro PF, Lavandero S. Novel Insights Into the Pathogenesis of Diabetic Cardiomyopathy and Pharmacological Strategies. Front Cardiovasc Med 2022; 8:707336. [PMID: 35004869 PMCID: PMC8734937 DOI: 10.3389/fcvm.2021.707336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/29/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a severe complication of diabetes developed mainly in poorly controlled patients. In DCM, several clinical manifestations as well as cellular and molecular mechanisms contribute to its phenotype. The production of reactive oxygen species (ROS), chronic low-grade inflammation, mitochondrial dysfunction, autophagic flux inhibition, altered metabolism, dysfunctional insulin signaling, cardiomyocyte hypertrophy, cardiac fibrosis, and increased myocardial cell death are described as the cardinal features involved in the genesis and development of DCM. However, many of these features can be associated with broader cellular processes such as inflammatory signaling, mitochondrial alterations, and autophagic flux inhibition. In this review, these mechanisms are critically discussed, highlighting the latest evidence and their contribution to the pathogenesis of DCM and their potential as pharmacological targets.
Collapse
Affiliation(s)
- Felipe Muñoz-Córdova
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Carolina Hernández-Fuentes
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.,Division of Cardiovascular Diseases, Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Pontifical Catholic University of Chile, Santiago, Chile
| | - Mayarling F Troncoso
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.,Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ximena Calle
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division of Cardiovascular Diseases, Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Pontifical Catholic University of Chile, Santiago, Chile
| | - Mario Chiong
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile
| | - Pablo F Castro
- Division of Cardiovascular Diseases, Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), Pontifical Catholic University of Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS), University of Chile, Santiago, Chile.,Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), University of Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
68
|
Jiang K, Tu Z, Chen K, Xu Y, Chen F, Xu S, Shi T, Qian J, Shen L, Hwa J, Wang D, Xiang Y. Gasdermin D inhibition confers antineutrophil-mediated cardioprotection in acute myocardial infarction. J Clin Invest 2022; 132:e151268. [PMID: 34752417 PMCID: PMC8718151 DOI: 10.1172/jci151268] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Acute myocardial infarction (AMI) induces blood leukocytosis, which correlates inversely with patient survival. The molecular mechanisms leading to leukocytosis in the infarcted heart remain poorly understood. Using an AMI mouse model, we identified gasdermin D (GSDMD) in activated leukocytes early in AMI. We demonstrated that GSDMD is required for enhanced early mobilization of neutrophils to the infarcted heart. Loss of GSDMD resulted in attenuated IL-1β release from neutrophils and subsequent decreased neutrophils and monocytes in the infarcted heart. Knockout of GSDMD in mice significantly reduced infarct size, improved cardiac function, and increased post-AMI survival. Through a series of bone marrow transplantation studies and leukocyte depletion experiments, we further clarified that excessive bone marrow-derived and GSDMD-dependent early neutrophil production and mobilization (24 hours after AMI) contributed to the detrimental immunopathology after AMI. Pharmacological inhibition of GSDMD also conferred cardioprotection after AMI through a reduction in scar size and enhancement of heart function. Our study provides mechanistic insights into molecular regulation of neutrophil generation and mobilization after AMI, and supports GSDMD as a new target for improved ventricular remodeling and reduced heart failure after AMI.
Collapse
Affiliation(s)
- Kai Jiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zizhuo Tu
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kun Chen
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yue Xu
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Feng Chen
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sheng Xu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Shi
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Qian
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lan Shen
- Department of Cardiology, Clinical Research Unit, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - John Hwa
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dandan Wang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, Key Laboratory of Arrhythmias of the Ministry of Education of China, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
69
|
Chang JC, Yang KT, Chao TH, Wang IC, Luo YP, Ting PC, Lin JH. Berberine protects cardiac cells against ferroptosis. Tzu Chi Med J 2022; 34:310-317. [PMID: 35912047 PMCID: PMC9333108 DOI: 10.4103/tcmj.tcmj_236_21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022] Open
Abstract
Objectives: Cardiovascular diseases are one of the primary causes of death. Cardiomyocyte loss is a significant feature of cardiac injury. Ferroptosis is iron-dependent cell death, which occurs due to excess iron and reactive oxygen species (ROS) accumulation causing lipid peroxidation, and subsequent cell death. Ferroptosis has been confirmed to mediate ischemia/reperfusion-induced cardiomyopathy and chemotherapy-induced cardiotoxicity. Berberine (BBR) has been proven to protect the heart from cardiomyopathies, including cardiac hypertrophy, heart failure, myocardial infarction, and arrhythmias. It protects cardiomyocytes from apoptosis and autophagy. However, the relation between BBR and ferroptosis is still unknown. This study aimed to confirm if BBR reduces cardiac cell loss via inhibiting ferroptosis. Materials and Methods: We used erastin and Ras-selective lethal small molecule 3 (RSL3) to establish a ferroptosis model in an H9c2 cardiomyoblast cell line and rat neonatal cardiomyocytes to prove that BBR has a protective effect on cardiac cells via inhibiting ferroptosis. Results: In H9c2 cardiomyoblasts, the results showed that BBR reduced erastin and RSL3-induced cell viability loss. Moreover, BBR decreased ROS accumulation and lipid peroxidation in cells induced with ferroptosis. Furthermore, quantitative polymerase chain reaction results showed that Ptgs2 mRNA was reduced in BBR-treated cells. In rat neonatal cardiomyocytes, BBR reduced RSL3-induced loss of cell viability. Conclusion: These results indicated that BBR inhibited ferroptosis via reducing ROS generation and reducing lipid peroxidation in erastin and RSL3-treated cardiac cells.
Collapse
|
70
|
Martano M, Altamura G, Power K, Liguori P, Restucci B, Borzacchiello G, Maiolino P. Beclin 1, LC3 and P62 Expression in Equine Sarcoids. Animals (Basel) 2021; 12:ani12010020. [PMID: 35011126 PMCID: PMC8749869 DOI: 10.3390/ani12010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Equine sarcoids, caused by bovine papillomaviruses, are equine skin tumors of fibroblastic origin. It is well known that bovine papillomaviruses are able to interfere with the survival and proliferation of cells by regulating autophagy, a mechanism implicated in the breakdown and reuse of old and damaged cellular material. The present study focused on the evaluation in equine sarcoids and normal skins of the expression level of some of the main proteins involved in the autophagic pathway, such as Beclin 1, LC3 and P62, by immunohistochemical and biochemical techniques. Results obtained in equine sarcoids suggested an alteration of the autophagic process which could lead to a predominance of a particular population of fibroblast. Those fibroblasts could survive longer in a hypoxic microenvironment and produce more and/or altered collagen, giving an origin to the equine sarcoid. Abstract Background: It is well known that δ-bovine papillomaviruses (BPV-1, BPV-2 and BPV-13) are one of the major causative agents of equine sarcoids, the most common equine skin tumors. Different viruses, including papillomaviruses, evolved ingenious strategies to modulate autophagy, a complex process involved in degradation and recycling of old and damaged material. Methods: The aim of this study was to evaluate, by immunohistochemistry (IHC) and Western blot (WB) analysis, the expression of the main related autophagy proteins (Beclin 1, protein light chain 3 (LC3) and P62), in 35 BPV1/2 positive equine sarcoids and 5 BPV negative normal skin samples. Results: Sarcoid samples showed from strong-to-moderate cytoplasmic immunostaining, respectively, for Beclin 1 and P62 in >60% of neoplastic fibroblasts, while LC3 immunostaining was weak to moderate in ≤60% of neoplastic fibroblasts. Western blot analysis confirmed the specificity of the antibodies and revealed no activation of autophagic flux despite Beclin 1 overexpression in sarcoid samples. Conclusion: Results could suggest the activation of the initial phase of autophagy in equine sarcoids, and its impairment during the following steps. The impairment of autophagy could lead to a selection of a quiescent population of fibroblasts, which survive longer in a hypoxic microenvironment and produced more and/or altered collagen.
Collapse
Affiliation(s)
- Manuela Martano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
- Correspondence: ; Tel.: +39-081-2536465; Fax: +39-081-2536186
| | - Gennaro Altamura
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| | - Karen Power
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| | | | - Brunella Restucci
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| | - Giuseppe Borzacchiello
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy; (G.A.); (K.P.); (B.R.); (G.B.); (P.M.)
| |
Collapse
|
71
|
Zhang K, Wang S, Gou H, Zhang J, Li C. Crosstalk Between Autophagy and the cGAS-STING Signaling Pathway in Type I Interferon Production. Front Cell Dev Biol 2021; 9:748485. [PMID: 34926445 PMCID: PMC8678597 DOI: 10.3389/fcell.2021.748485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Innate immunity is the front-line defense against infectious microorganisms, including viruses and bacteria. Type I interferons are pleiotropic cytokines that perform antiviral, antiproliferative, and immunomodulatory functions in cells. The cGAS–STING pathway, comprising the main DNA sensor cyclic guanosine monophosphate/adenosine monophosphate synthase (cGAS) and stimulator of IFN genes (STING), is a major pathway that mediates immune reactions and is involved in the strong induction of type I IFN production, which can fight against microbial infections. Autophagy is an evolutionarily conserved degradation process that is required to maintain host health and facilitate capture and elimination of invading pathogens by the immune system. Mounting evidence indicates that autophagy plays an important role in cGAS–STING signaling pathway-mediated type I IFN production. This review briefly summarizes the research progress on how autophagy regulates the cGAS–STING pathway, regulating type I IFN production, with a particular focus on the crosstalk between autophagy and cGAS–STING signaling during infection by pathogenic microorganisms.
Collapse
Affiliation(s)
- Kunli Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China.,Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, China
| | - Chunling Li
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
72
|
Qin J, Zheng Y, Ding Y, Huang C, Hou M, Li M, Qian G, Lv H. Co-culture of peripheral blood mononuclear cell (PBMC) and human coronary artery endothelial cell (HCAEC) reveals the important role of autophagy implicated in Kawasaki disease. Transl Pediatr 2021; 10:3140-3150. [PMID: 35070827 PMCID: PMC8753476 DOI: 10.21037/tp-21-344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Kawasaki disease (KD) is a systemic vasculitis syndrome that commonly occurs in children. Autophagy has been increasingly shown to be involved in various cardiovascular diseases, including endothelial dysfunction and vascular endothelial injury. However, whether autophagy is implicated in the pathogenesis of KD remains poorly understood, and particularly, how the dysfunction of human coronary artery endothelial cells (HCAECs) is associated with autophagy in peripheral blood mononuclear cells (PBMCs) from KD patients awaits further investigation. METHODS Peripheral blood samples were collected from KD patients, common fever patients, and healthy controls. The PBMC samples were isolated from KD blood samples collected at three different phases: the acute phase before therapy (acute-KD), 1 week (subacute-KD), and 4 weeks (convalescent-KD) after drug administration. RESULTS The autophagy flux was significantly increased in the PBMCs of KD patients at acute phase. The PBMCs of acute KD patients could induce autophagy in HCAECs and promote the secretion of chemokines and pro-inflammatory factors after cocultured with HCAECs whereas 3-methyladenine (3-MA) drug could partly reverse this process. CONCLUSIONS Autophagy is involved in the inflammatory injury of vascular endothelial cells associated with PBMCs in KD patients, and may play a crucial role in regulating inflammation. Hence, we identify a novel regulatory mechanism of vascular injury in this disease.
Collapse
Affiliation(s)
- Jie Qin
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, The First People's Hospital of Yan Cheng, Yancheng, China
| | - Yiming Zheng
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Yueyue Ding
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Chengcheng Huang
- Department of Pediatrics, Yi Ji Shan Hospital, Wan Nan Medical College, Wuhu, China
| | - Miao Hou
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Guanghui Qian
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
73
|
Molecular Signaling to Preserve Mitochondrial Integrity against Ischemic Stress in the Heart: Rescue or Remove Mitochondria in Danger. Cells 2021; 10:cells10123330. [PMID: 34943839 PMCID: PMC8699551 DOI: 10.3390/cells10123330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death and global health problems worldwide, and ischemic heart disease is the most common cause of heart failure (HF). The heart is a high-energy demanding organ, and myocardial energy reserves are limited. Mitochondria are the powerhouses of the cell, but under stress conditions, they become damaged, release necrotic and apoptotic factors, and contribute to cell death. Loss of cardiomyocytes plays a significant role in ischemic heart disease. In response to stress, protective signaling pathways are activated to limit mitochondrial deterioration and protect the heart. To prevent mitochondrial death pathways, damaged mitochondria are removed by mitochondrial autophagy (mitophagy). Mitochondrial quality control mediated by mitophagy is functionally linked to mitochondrial dynamics. This review provides a current understanding of the signaling mechanisms by which the integrity of mitochondria is preserved in the heart against ischemic stress.
Collapse
|
74
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. An Updated Insight Into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury Under Diabetes. Front Pharmacol 2021; 12:651884. [PMID: 34764865 PMCID: PMC8576408 DOI: 10.3389/fphar.2021.651884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the most common complications of diabetes, and diabetic cardiomyopathy is a major cause of people death in diabetes. Molecular, transcriptional, animal, and clinical studies have discovered numerous therapeutic targets or drugs for diabetic cardiomyopathy. Within this, hydrogen sulfide (H2S), an endogenous gasotransmitter alongside with nitric oxide (NO) and carbon monoxide (CO), is found to play a critical role in diabetic cardiomyopathy. Recently, the protective roles of H2S in diabetic cardiomyopathy have attracted enormous attention. In addition, H2S donors confer favorable effects in myocardial infarction, ischaemia-reperfusion injury, and heart failure under diabetic conditions. Further studies have disclosed that multiplex molecular mechanisms are responsible for the protective effects of H2S against diabetes-elicited cardiac injury, such as anti-oxidative, anti-apoptotic, anti-inflammatory, and anti-necrotic properties. In this review, we will summarize the current findings on H2S biology and pharmacology, especially focusing on the novel mechanisms of H2S-based protection against diabetic cardiomyopathy. Also, the potential roles of H2S in diabetes-aggravated ischaemia-reperfusion injury are discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
75
|
Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Front Cell Infect Microbiol 2021; 11:766590. [PMID: 34746034 PMCID: PMC8570305 DOI: 10.3389/fcimb.2021.766590] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogenic infections have badly affected public health and the development of the breeding industry. Billions of dollars are spent every year fighting against these pathogens. The immune cells of a host produce reactive oxygen species and reactive nitrogen species which promote the clearance of these microbes. In addition, autophagy, which is considered an effective method to promote the destruction of pathogens, is involved in pathological processes. As research continues, the interplay between autophagy and nitroxidative stress has become apparent. Autophagy is always intertwined with nitroxidative stress. Autophagy regulates nitroxidative stress to maintain homeostasis within an appropriate range. Intracellular oxidation, in turn, is a strong inducer of autophagy. Toll-like receptor 4 (TLR4) is a pattern recognition receptor mainly involved in the regulation of inflammation during infectious diseases. Several studies have suggested that TLR4 is also a key regulator of autophagy and nitroxidative stress. In this review, we describe the role of TLR4 in autophagy and oxidation, and focus on its function in influencing autophagy-nitroxidative stress interactions.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yecheng Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Provincial Research Center of Gene Editing Engineering Technology, Foshan University, Foshan, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
76
|
Kang J, Chen J, Dong Z, Chen G, Liu D. The negative effect of the PI3K inhibitor 3-methyladenine on planarian regeneration via the autophagy signalling pathway. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1941-1948. [PMID: 34403000 DOI: 10.1007/s10646-021-02439-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
As an important PI3K (VPS34) inhibitor, 3-methyladenine (3-MA) can block the formation of autophagic vesicles in animals. Most toxicological studies using 3-MA have shown that 3-MA leads to serious disorders via autophagy suppression in mammals. However, no toxicological research on 3-MA has been performed on individuals undergoing regeneration. The freshwater planarian has powerful regenerative capability, and it can regenerate a new brain in 5 days and undergo complete adult individual remodelling in approximately 14 days. Moreover, it is also an excellent model organism for studies on environmental toxicology due to its high chemical sensitivity and extensive distribution. Here, Dugesia japonica planarians were treated with 3-MA, and the results showed that autophagy was inhibited and Djvps34 expression levels were down-regulated. After exposure to 10 mM 3-MA for 18 h, all the controls showed normal phenotypes, while one-half of the planarians treated with 3-MA showed morphological defects. In most cases, an ulcer appeared in the middle of the body, and a normal phenotype was restored 7 days following 3-MA exposure. During regeneration, disproportionate blastemas with tissue regression were observed. Furthermore, 3-MA treatment suppressed stem cell proliferation in intact and regenerating worms. These findings demonstrate that autophagy is indispensable for tissue homeostasis and regeneration in planarians and that 3-MA treatment is detrimental to planarian regeneration via its effect on the autophagy pathway.
Collapse
Affiliation(s)
- Jing Kang
- College of Life Science, Henan Normal University, Xinxiang, China
- College of Life Science, Xingxiang Medical University, Xinxiang, China
| | - Jinzi Chen
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, China.
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
77
|
Chaklader M, Rothermel BA. Calcineurin in the heart: New horizons for an old friend. Cell Signal 2021; 87:110134. [PMID: 34454008 PMCID: PMC8908812 DOI: 10.1016/j.cellsig.2021.110134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023]
Abstract
Calcineurin, also known as PP2B or PPP3, is a member of the PPP family of protein phosphatases that also includes PP1 and PP2A. Together these three phosphatases carryout the majority of dephosphorylation events in the heart. Calcineurin is distinct in that it is activated by the binding of calcium/calmodulin (Ca2+/CaM) and therefore acts as a node for integrating Ca2+ signals with changes in phosphorylation, two fundamental intracellular signaling cascades. In the heart, calcineurin is primarily thought of in the context of pathological cardiac remodeling, acting through the Nuclear Factor of Activated T-cell (NFAT) family of transcription factors. However, calcineurin activity is also essential for normal heart development and homeostasis in the adult heart. Furthermore, it is clear that NFAT-driven changes in transcription are not the only relevant processes initiated by calcineurin in the setting of pathological remodeling. There is a growing appreciation for the diversity of calcineurin substrates that can impact cardiac function as well as the diversity of mechanisms for targeting calcineurin to specific sub-cellular domains in cardiomyocytes and other cardiac cell types. Here, we will review the basics of calcineurin structure, regulation, and function in the context of cardiac biology. Particular attention will be given to: the development of improved tools to identify and validate new calcineurin substrates; recent studies identifying new calcineurin isoforms with unique properties and targeting mechanisms; and the role of calcineurin in cardiac development and regeneration.
Collapse
Affiliation(s)
- Malay Chaklader
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Departments of Internal Medicine (Division of Cardiology) and Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
78
|
Koutouroushis C, Sarkar O. Role of Autophagy in Cardiovascular Disease and Aging. Cureus 2021; 13:e20042. [PMID: 34873555 PMCID: PMC8631374 DOI: 10.7759/cureus.20042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is expected to further increase as people continue to live even longer. Although the life span of the general population is increasing, the con of such a prolonged life span is that aging has certain detrimental effects on the molecular, structural, and functional elements of the cardiovascular system. This review will discuss various molecular pathways linked to longevity, most notably autophagy and its associated mechanisms, and how these pathways can be targeted to promote cardiovascular health through the process of aging. It is to be noted that the process of autophagy decreases with aging; hence, this review concludes that the promotion of autophagy, through implementation of caloric restriction, intermittent fasting, and pharmacologic agents, has proven to be an efficacious means of stimulating cardiovascular health. Therefore, autophagy is an important target for prevention and procrastination of cardiovascular pathologies in the geriatric population.
Collapse
Affiliation(s)
| | - Oiendrila Sarkar
- General Internal Medicine, St. Mary's Hospital, Isle of Wight NHS Trust, Newport, GBR
| |
Collapse
|
79
|
Ma C, Wu H, Yang G, Xiang J, Feng K, Zhang J, Hua Y, Kang L, Fan G, Yang S. Calycosin ameliorates atherosclerosis by enhancing autophagy via regulating the interaction between KLF2 and MLKL in apoE -/- mice. Br J Pharmacol 2021; 179:252-269. [PMID: 34713437 DOI: 10.1111/bph.15720] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/23/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is one of the underlying causes of cardiovascular disease. Formation of foam cells and necrotic core in the plaque is a hallmark of atherosclerosis, which results from lipid deposition, apoptosis, and inflammation in macrophage. Macrophage autophagy is a critical anti-atherogenic process and defective autophagy aggravates atherosclerosis by enhancing foam cell formation, apoptosis, and inflammation. Hence, enhancing autophagy can be a strategy for atherosclerosis treatment. Calycosin, a flavonoid from Astragali Radix, displays antioxidant and anti-inflammatory activities, and therefore is potential to reduce the risk of cardiovascular disease. However, the antiatherogenic effect of calycosin and the involved mechanism remains unclear. In this study, we assessed the potential benefits of calycosin on autophagy and atherosclerosis, and revealed the underlying mechanism. EXPERIMENTAL APPROACH In this study, apoE-/- mice were fed high-fat diet for 16 weeks in presence of calycosin and/or autophagy inhibitor chloroquine, which was followed by determination of atherosclerosis development, autophagy activity, and the involved mechanisms. KEY RESULTS Calycosin protected against atherosclerosis and enhanced plaque stability via promoting autophagy. Calycosin inhibited foam cells formation, inflammation, and apoptosis by enhancing autophagy. MLKL was demonstrated as a new autophagy regulator, which can be negatively regulated by KLF2. Mechanistically, inhibitory effects of calycosin on atherogenesis were via improving autophagy through modulating KLF2-MLKL signaling pathway. CONCLUSIONS AND IMPLICATIONS This study demonstrated the atheroprotective effect of calycosin was through upregulating KLF2-MLKL-mediated autophagy, which not only proposed novel mechanistic insights into the atherogenesis but also identified calycosin as a potential drug candidate for atherosclerosis treatment.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Han Wu
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangyan Yang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiaqing Xiang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ke Feng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Lin Kang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.,The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion
| | - Shu Yang
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University & The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| |
Collapse
|
80
|
Wang Y, Lu X, Wang X, Qiu Q, Zhu P, Ma L, Ma X, Herrmann J, Lin X, Wang W, Xu X. atg7-Based Autophagy Activation Reverses Doxorubicin-Induced Cardiotoxicity. Circ Res 2021; 129:e166-e182. [PMID: 34384247 PMCID: PMC8484060 DOI: 10.1161/circresaha.121.319104] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yong Wang
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoguang Lu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Qiu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Clinical Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lin Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Ma
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolei Xu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
81
|
Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo‐San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo M, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen E, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jäättelä M, Johansen T, Juhász G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez‐Otin C, Macleod KF, Madeo F, Martinez J, Meléndez A, Mizushima N, Münz C, Penninger JM, Perera R, Piacentini M, Reggiori F, Rubinsztein DC, Ryan K, Sadoshima J, Santambrogio L, Scorrano L, Simon H, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F. Autophagy in major human diseases. EMBO J 2021; 40:e108863. [PMID: 34459017 PMCID: PMC8488577 DOI: 10.15252/embj.2021108863] [Citation(s) in RCA: 797] [Impact Index Per Article: 199.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.
Collapse
Affiliation(s)
| | - Giulia Petroni
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ravi K Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- Abramson Cancer CenterUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Andrea Ballabio
- Telethon Institute of Genetics and MedicinePozzuoliItaly
- Department of Translational Medical SciencesSection of PediatricsFederico II UniversityNaplesItaly
- Department of Molecular and Human GeneticsBaylor College of Medicine, and Jan and Dan Duncan Neurological Research InstituteTexas Children HospitalHoustonTXUSA
| | - Patricia Boya
- Margarita Salas Center for Biological ResearchSpanish National Research CouncilMadridSpain
| | - José Manuel Bravo‐San Pedro
- Faculty of MedicineDepartment Section of PhysiologyComplutense University of MadridMadridSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ken Cadwell
- Kimmel Center for Biology and Medicine at the Skirball InstituteNew York University Grossman School of MedicineNew YorkNYUSA
- Department of MicrobiologyNew York University Grossman School of MedicineNew YorkNYUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineNew York University Langone HealthNew YorkNYUSA
| | - Francesco Cecconi
- Cell Stress and Survival UnitCenter for Autophagy, Recycling and Disease (CARD)Danish Cancer Society Research CenterCopenhagenDenmark
- Department of Pediatric Onco‐Hematology and Cell and Gene TherapyIRCCS Bambino Gesù Children's HospitalRomeItaly
- Department of BiologyUniversity of Rome ‘Tor Vergata’RomeItaly
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care MedicineJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
| | - Mary E Choi
- New York‐Presbyterian HospitalWeill Cornell MedicineNew YorkNYUSA
- Division of Nephrology and HypertensionJoan and Sanford I. Weill Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Charleen T Chu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Patrice Codogno
- Institut Necker‐Enfants MaladesINSERM U1151‐CNRS UMR 8253ParisFrance
- Université de ParisParisFrance
| | - Maria Isabel Colombo
- Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia‐Instituto de Histología y Embriología (IHEM)‐Universidad Nacional de CuyoCONICET‐ Facultad de Ciencias MédicasMendozaArgentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA
- Institute for Aging StudiesAlbert Einstein College of MedicineBronxNYUSA
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism (AIMCenter of Biomedical Research ExcellenceUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
- Department of Molecular Genetics and MicrobiologyUniversity of New Mexico Health Sciences CenterAlbuquerqueNMUSA
| | - Ivan Dikic
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Zvulun Elazar
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | | | - Gian Maria Fimia
- Department of Molecular MedicineSapienza University of RomeRomeItaly
- Department of EpidemiologyPreclinical Research, and Advanced DiagnosticsNational Institute for Infectious Diseases ‘L. Spallanzani’ IRCCSRomeItaly
| | - David A Gewirtz
- Department of Pharmacology and ToxicologySchool of MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Douglas R Green
- Department of ImmunologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery InstituteProgram of DevelopmentAging, and RegenerationLa JollaCAUSA
| | - Marja Jäättelä
- Cell Death and MetabolismCenter for Autophagy, Recycling & DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
- Department of Cellular and Molecular MedicineFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Terje Johansen
- Department of Medical BiologyMolecular Cancer Research GroupUniversity of Tromsø—The Arctic University of NorwayTromsøNorway
| | - Gábor Juhász
- Institute of GeneticsBiological Research CenterSzegedHungary
- Department of Anatomy, Cell and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Claudine Kraft
- Institute of Biochemistry and Molecular BiologyZBMZFaculty of MedicineUniversity of FreiburgFreiburgGermany
- CIBSS ‐ Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Guido Kroemer
- Centre de Recherche des CordeliersEquipe Labellisée par la Ligue Contre le CancerUniversité de ParisSorbonne UniversitéInserm U1138Institut Universitaire de FranceParisFrance
- Metabolomics and Cell Biology PlatformsInstitut Gustave RoussyVillejuifFrance
- Pôle de BiologieHôpital Européen Georges PompidouAP‐HPParisFrance
- Suzhou Institute for Systems MedicineChinese Academy of Medical SciencesSuzhouChina
- Karolinska InstituteDepartment of Women's and Children's HealthKarolinska University HospitalStockholmSweden
| | | | - Sharad Kumar
- Centre for Cancer BiologyUniversity of South AustraliaAdelaideSAAustralia
- Faculty of Health and Medical SciencesUniversity of AdelaideAdelaideSAAustralia
| | - Carlos Lopez‐Otin
- Departamento de Bioquímica y Biología MolecularFacultad de MedicinaInstituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSpain
| | - Kay F Macleod
- The Ben May Department for Cancer ResearchThe Gordon Center for Integrative SciencesW‐338The University of ChicagoChicagoILUSA
- The University of ChicagoChicagoILUSA
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth – University of GrazGrazAustria
| | - Jennifer Martinez
- Immunity, Inflammation and Disease LaboratoryNational Institute of Environmental Health SciencesNIHResearch Triangle ParkNCUSA
| | - Alicia Meléndez
- Biology Department, Queens CollegeCity University of New YorkFlushingNYUSA
- The Graduate Center Biology and Biochemistry PhD Programs of the City University of New YorkNew YorkNYUSA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular BiologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Christian Münz
- Viral ImmunobiologyInstitute of Experimental ImmunologyUniversity of ZurichZurichSwitzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA)Vienna BioCenter (VBC)ViennaAustria
- Department of Medical GeneticsLife Sciences InstituteUniversity of British ColumbiaVancouverBCCanada
| | - Rushika M Perera
- Department of AnatomyUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of PathologyUniversity of California, San FranciscoSan FranciscoCAUSA
- Helen Diller Family Comprehensive Cancer CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Mauro Piacentini
- Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
- Laboratory of Molecular MedicineInstitute of Cytology Russian Academy of ScienceSaint PetersburgRussia
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & SystemsMolecular Cell Biology SectionUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - David C Rubinsztein
- Department of Medical GeneticsCambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
- UK Dementia Research InstituteUniversity of CambridgeCambridgeUK
| | - Kevin M Ryan
- Cancer Research UK Beatson InstituteGlasgowUK
- Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular MedicineCardiovascular Research InstituteRutgers New Jersey Medical SchoolNewarkNJUSA
| | - Laura Santambrogio
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
| | - Luca Scorrano
- Istituto Veneto di Medicina MolecolarePadovaItaly
- Department of BiologyUniversity of PadovaPadovaItaly
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
- Department of Clinical Immunology and AllergologySechenov UniversityMoscowRussia
- Laboratory of Molecular ImmunologyInstitute of Fundamental Medicine and BiologyKazan Federal UniversityKazanRussia
| | | | - Anne Simonsen
- Department of Molecular MedicineInstitute of Basic Medical SciencesUniversity of OsloOsloNorway
- Centre for Cancer Cell ReprogrammingInstitute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Molecular Cell BiologyInstitute for Cancer ResearchOslo University Hospital MontebelloOsloNorway
| | - Alexandra Stolz
- Institute of Biochemistry IISchool of MedicineGoethe UniversityFrankfurt, Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe UniversityFrankfurt, Frankfurt am MainGermany
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklion, CreteGreece
- Department of Basic SciencesSchool of MedicineUniversity of CreteHeraklion, CreteGreece
| | - Sharon A Tooze
- Molecular Cell Biology of AutophagyThe Francis Crick InstituteLondonUK
| | - Tamotsu Yoshimori
- Department of GeneticsGraduate School of MedicineOsaka UniversitySuitaJapan
- Department of Intracellular Membrane DynamicsGraduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Integrated Frontier Research for Medical Science DivisionInstitute for Open and Transdisciplinary Research Initiatives (OTRI)Osaka UniversitySuitaJapan
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- Department of Cell BiologyHarvard Medical SchoolBostonMAUSA
| | - Zhenyu Yue
- Department of NeurologyFriedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationDepartment of PathophysiologyShanghai Jiao Tong University School of Medicine (SJTU‐SM)ShanghaiChina
| | - Lorenzo Galluzzi
- Department of Radiation OncologyWeill Cornell Medical CollegeNew YorkNYUSA
- Sandra and Edward Meyer Cancer CenterNew YorkNYUSA
- Caryl and Israel Englander Institute for Precision MedicineNew YorkNYUSA
- Department of DermatologyYale School of MedicineNew HavenCTUSA
- Université de ParisParisFrance
| | | |
Collapse
|
82
|
Tuttolomondo A, Simonetta I, Riolo R, Todaro F, Di Chiara T, Miceli S, Pinto A. Pathogenesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies. Int J Mol Sci 2021; 22:10088. [PMID: 34576250 PMCID: PMC8465525 DOI: 10.3390/ijms221810088] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Anderson-Fabry disease (AFD) is a rare disease with an incidenceof approximately 1:117,000 male births. Lysosomal accumulation of globotriaosylceramide (Gb3) is the element characterizing Fabry disease due to a hereditary deficiency α-galactosidase A (GLA) enzyme. The accumulation of Gb3 causes lysosomal dysfunction that compromises cell signaling pathways. Deposition of sphingolipids occurs in the autonomic nervous system, dorsal root ganglia, kidney epithelial cells, vascular system cells, and myocardial cells, resulting in organ failure. This manuscript will review the molecular pathogenetic pathways involved in Anderson-Fabry disease and in its organ damage. Some studies reported that inhibition of mitochondrial function and energy metabolism plays a significant role in AFD cardiomyopathy and in kidney disease of AFD patients. Furthermore, mitochondrial dysfunction has been reported as linked to the dysregulation of the autophagy-lysosomal pathway which inhibits the mechanistic target of rapamycin kinase (mTOR) mediated control of mitochondrial metabolism in AFD cells. Cerebrovascular complications due to AFD are caused by cerebral micro vessel stenosis. These are caused by wall thickening resulting from the intramural accumulation of glycolipids, luminal occlusion or thrombosis. Other pathogenetic mechanisms involved in organ damage linked to Gb3 accumulation are endocytosis and lysosomal degradation of endothelial calcium-activated intermediate-conductance potassium ion channel 3.1 (KCa3.1) via a clathrin-dependent process. This process represents a crucial event in endothelial dysfunction. Several studies have identified the deacylated form of Gb3, globotriaosylsphingosine (Lyso-Gb3), as the main catabolite that increases in plasma and urine in patients with AFD. The mean concentrations of Gb3 in all organs and plasma of Galactosidase A knockout mice were significantly higher than those of wild-type mice. The distributions of Gb3 isoforms vary from organ to organ. Various Gb3 isoforms were observed mainly in the kidneys, and kidney-specific Gb3 isoforms were hydroxylated. Furthermore, the action of Gb3 on the KCa3.1 channel suggests a possible contribution of this interaction to the Fabry disease process, as this channel is expressed in various cells, including endothelial cells, fibroblasts, smooth muscle cells in proliferation, microglia, and lymphocytes. These molecular pathways could be considered a potential therapeutic target to correct the enzyme in addition to the traditional enzyme replacement therapies (ERT) or drug chaperone therapy.
Collapse
Affiliation(s)
- Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Irene Simonetta
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Renata Riolo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Federica Todaro
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Tiziana Di Chiara
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
| | - Salvatore Miceli
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| | - Antonio Pinto
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant Excellence and Internal and Specialized Medicine (ProMISE) G. D’Alessandro, University of Palermo (Italy), Piazza delle Cliniche n.2, 90127 Palermo, Italy; (I.S.); (R.R.); (F.T.); (T.D.C.); (S.M.); (A.P.)
- Centro di Riferimento Regionale per la Cura e Diagnosi della Malattia di Anderson–Fabry, 90127 Palermo, Italy
- Molecular and Clinical Medicine PhD Programme, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
83
|
Alcalai R, Arad M, Wakimoto H, Yadin D, Gorham J, Wang L, Burns E, Maron BJ, Roberts WC, Konno T, Conner DA, Perez-Atayde AR, Seidman JG, Seidman CE. LAMP2 Cardiomyopathy: Consequences of Impaired Autophagy in the Heart. J Am Heart Assoc 2021; 10:e018829. [PMID: 34459252 PMCID: PMC8649277 DOI: 10.1161/jaha.120.018829] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Human mutations in the X‐linked lysosome‐associated membrane protein‐2 (LAMP2) gene can cause a multisystem Danon disease or a primary cardiomyopathy characterized by massive hypertrophy, conduction system abnormalities, and malignant ventricular arrhythmias. We introduced an in‐frame LAMP2 gene exon 6 deletion mutation (denoted L2Δ6) causing human cardiomyopathy, into mouse LAMP2 gene, to elucidate its consequences on cardiomyocyte biology. This mutation results in in‐frame deletion of 41 amino acids, compatible with presence of some defective LAMP2 protein. Methods and Results Left ventricular tissues from L2Δ6 and wild‐type mice had equivalent amounts of LAMP2 RNA, but a significantly lower level of LAMP2 protein. By 20 weeks of age male mutant mice developed left ventricular hypertrophy which was followed by left ventricular dilatation and reduced systolic function. Cardiac electrophysiology and isolated cardiomyocyte studies demonstrated ventricular arrhythmia, conduction disturbances, abnormal calcium transients and increased sensitivity to catecholamines. Myocardial fibrosis was strikingly increased in 40‐week‐old L2Δ6 mice, recapitulating findings of human LAMP2 cardiomyopathy. Immunofluorescence and transmission electron microscopy identified mislocalization of lysosomes and accumulation of autophagosomes between sarcomeres, causing profound morphological changes disrupting the cellular ultrastructure. Transcription profile and protein expression analyses of L2Δ6 hearts showed significantly increased expression of genes encoding activators and protein components of autophagy, hypertrophy, and apoptosis. Conclusions We suggest that impaired autophagy results in cardiac hypertrophy and profound transcriptional reactions that impacted metabolism, calcium homeostasis, and cell survival. These responses define the molecular pathways that underlie the pathology and aberrant electrophysiology in cardiomyopathy of Danon disease.
Collapse
Affiliation(s)
- Ronny Alcalai
- Heart InstituteHadassah Hebrew University Medical Center Jerusalem Israel.,Department of Genetics Harvard Medical School Boston MA
| | - Michael Arad
- Division of Cardiology Sheba Medical Centre and Tel Aviv University Ramat Gan Israel
| | | | - Dor Yadin
- Division of Cardiology Sheba Medical Centre and Tel Aviv University Ramat Gan Israel
| | - Joshua Gorham
- Department of Genetics Harvard Medical School Boston MA
| | - Libin Wang
- Department of Genetics Harvard Medical School Boston MA
| | - Elia Burns
- Heart InstituteHadassah Hebrew University Medical Center Jerusalem Israel
| | - Barry J Maron
- Minneapolis Heart Institute Foundation Minneapolis MN
| | - William C Roberts
- Baylor Heart & Vascular InstituteBaylor University Medical Center Dallas TX
| | - Tetsuo Konno
- Department of Genetics Harvard Medical School Boston MA
| | | | | | - Jon G Seidman
- Department of Genetics Harvard Medical School Boston MA
| | - Christine E Seidman
- Department of Genetics Harvard Medical School Boston MA.,Howard Hughes Medical Institute and Cardiovascular DivisionBrigham and Women's Hospital Boston MA
| |
Collapse
|
84
|
Xu Z, Jin Y, Gao Z, Zeng Y, Du J, Yan H, Chen X, Ping L, Lin N, Yang B, He Q, Luo P. Autophagic degradation of CCN2 (cellular communication network factor 2) causes cardiotoxicity of sunitinib. Autophagy 2021; 18:1152-1173. [PMID: 34432562 DOI: 10.1080/15548627.2021.1965712] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Excessive macroautophagy/autophagy is one of the causes of cardiomyocyte death induced by cardiovascular diseases or cancer therapy, yet the underlying mechanism remains unknown. We and other groups previously reported that autophagy might contribute to cardiomyocyte death caused by sunitinib, a tumor angiogenesis inhibitor that is widely used in clinic, which may help to understand the mechanism of autophagy-induced cardiomyocyte death. Here, we found that sunitinib-induced autophagy leads to apoptosis of cardiomyocyte and cardiac dysfunction as the cardiomyocyte-specific Atg7-/+ heterozygous mice are resistant to sunitinib. Sunitinib-induced maladaptive autophagy selectively degrades the cardiomyocyte survival mediator CCN2 (cellular communication network factor 2) through the TOLLIP (toll interacting protein)-mediated endosome-related pathway and cardiomyocyte-specific knockdown of Ccn2 through adeno-associated virus serotype 9 (AAV9) mimics sunitinib-induced cardiac dysfunction in vivo, suggesting that the autophagic degradation of CCN2 is one of the causes of sunitinib-induced cardiotoxicity and death of cardiomyocytes. Remarkably, deletion of Hmgb1 (high mobility group box 1) inhibited sunitinib-induced cardiomyocyte autophagy and apoptosis, and the HMGB1-specific inhibitor glycyrrhizic acid (GA) significantly mitigated sunitinib-induced autophagy, cardiomyocyte death and cardiotoxicity. Our study reveals a novel target protein of autophagic degradation in the regulation of cardiomyocyte death and highlights the pharmacological inhibitor of HMGB1 as an attractive approach for improving the safety of sunitinib-based cancer therapy.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Yan Zeng
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Jiangxia Du
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xueqin Chen
- Department of Oncology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Li Ping
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
85
|
Angiotensin Receptor Blocker and Neprilysin Inhibitor Suppresses Cardiac Dysfunction by Accelerating Myocardial Angiogenesis in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet. J Renin Angiotensin Aldosterone Syst 2021; 2021:9916789. [PMID: 34394711 PMCID: PMC8357528 DOI: 10.1155/2021/9916789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Materials and Methods Male apolipoprotein E-knockout mice fed a high-fat diet were divided into control (CTL), valsartan (30 mg/kg) (VAL), sacubitril (30 mg/kg) (SAC), and valsartan plus sacubitril (30 mg/kg each) (VAL/SAC) groups after 4 weeks of prefeeding and were subsequently treated for 12 weeks. Results The VAL/SAC group exhibited significantly higher serum brain natriuretic peptide levels; more subtle changes in left ventricular systolic diameter, fractional shortening, and ejection fraction, and significantly higher expression levels of natriuretic peptide precursor B and markers of angiogenesis, including clusters of differentiation 34, vascular endothelial growth factor A, and monocyte chemotactic protein 1, than the CTL group. Conclusions Valsartan plus sacubitril preserved left ventricular systolic function in apolipoprotein E-knockout mice fed a high-fat diet. This result suggests that myocardial angiogenic factors induced by ARNI might provide cardioprotective effects.
Collapse
|
86
|
He W, Chen Z, Li H, Wu W, He P, Zhong D, Jiang Y, Cheng W, Xu Z, Li J. Decreased phosphorylation facilitates the degradation of the endogenous protective molecule c-Ski in vascular smooth muscle cells. Cell Signal 2021; 87:110116. [PMID: 34390788 DOI: 10.1016/j.cellsig.2021.110116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023]
Abstract
The dysfunction of vascular smooth muscle cells (VSMCs) is critical for atherosclerosis (AS) progression. Autophagy is indispensable during phenotypic switching and proliferation of VSMCs, contribute to AS development. Cellular Sloan-Kettering Institute (c-Ski), the repressor of TGF-β signaling, is involved in diverse physiological and pathological processes. We previously defined c-Ski also as an endogenous protective molecule against AS via inhibiting abnormal proliferation and autophagy of VSMCs. However, the endogenous level of c-Ski in VSMCs is markedly decreased during the progression of AS, so that the protective effect is drastically weakened. Elucidating the molecular mechanisms is key to the understanding of AS development and treatment. We determined that oxidized low-density lipoprotein (ox-LDL) and platelet-derived growth factor (PDGF) directly induced the degradation of c-Ski protein, closely associated with reducing its phosphorylation. Serine383 (S383) was identified as the crucial phosphorylation site for stabilizing protein expression and nuclear location of c-Ski, which was responsible for its transcriptional suppression of autophagy-related genes. Decreased S383 phosphorylation facilitated nuclear export and degradation of c-Ski, thereby lessened its inhibitory effect on induction of autophagy genes. These findings provide a novel view of c-Ski modification and function modulation under some vascular injury factors, which point to a new potential therapeutic strategy by targeting c-Ski.
Collapse
Affiliation(s)
- Wenhui He
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zongtao Chen
- Health Management Centre, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Haoyang Li
- Brigade 5 of Medical Undergraduate, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | | | - Ping He
- Department of Cardiac Surgery, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dan Zhong
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yu Jiang
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Cheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Jun Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
87
|
Diverse mitochondrial abnormalities in a new cellular model of TAFFAZZIN deficiency are remediated by cardiolipin-interacting small molecules. J Biol Chem 2021; 297:101005. [PMID: 34314685 PMCID: PMC8384898 DOI: 10.1016/j.jbc.2021.101005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/11/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022] Open
Abstract
Barth syndrome (BTHS) is an X-linked disorder of mitochondrial phospholipid metabolism caused by pathogenic variants in TAFFAZIN, which results in abnormal cardiolipin (CL) content in the inner mitochondrial membrane. To identify unappreciated pathways of mitochondrial dysfunction in BTHS, we utilized an unbiased proteomics strategy and identified that complex I (CI) of the mitochondrial respiratory chain and the mitochondrial quality control protease presenilin-associated rhomboid-like protein (PARL) are altered in a new HEK293–based tafazzin-deficiency model. Follow-up studies confirmed decreased steady state levels of specific CI subunits and an assembly factor in the absence of tafazzin; this decrease is in part based on decreased transcription and results in reduced CI assembly and function. PARL, a rhomboid protease associated with the inner mitochondrial membrane with a role in the mitochondrial response to stress, such as mitochondrial membrane depolarization, is increased in tafazzin-deficient cells. The increased abundance of PARL correlates with augmented processing of a downstream target, phosphoglycerate mutase 5, at baseline and in response to mitochondrial depolarization. To clarify the relationship between abnormal CL content, CI levels, and increased PARL expression that occurs when tafazzin is missing, we used blue-native PAGE and gene expression analysis to determine that these defects are remediated by SS-31 and bromoenol lactone, pharmacologic agents that bind CL or inhibit CL deacylation, respectively. These findings have the potential to enhance our understanding of the cardiac pathology of BTHS, where defective mitochondrial quality control and CI dysfunction have well-recognized roles in the pathology of diverse forms of cardiac dysfunction.
Collapse
|
88
|
Xie M, Cho GW, Kong Y, Li DL, Altamirano F, Luo X, Morales CR, Jiang N, Schiattarella GG, May HI, Medina J, Shelton J, Ferdous A, Gillette TG, Hill JA. Activation of Autophagic Flux Blunts Cardiac Ischemia/Reperfusion Injury. Circ Res 2021; 129:435-450. [PMID: 34111934 PMCID: PMC8317428 DOI: 10.1161/circresaha.120.318601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Min Xie
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Geoffrey W. Cho
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Yongli Kong
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Dan L. Li
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Xiang Luo
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Cyndi R. Morales
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Nan Jiang
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Gabriele G. Schiattarella
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Herman I. May
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Jessica Medina
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - John Shelton
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Anwarul Ferdous
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Thomas G. Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| |
Collapse
|
89
|
Abdelsalam SS, Pasha M, El-Gamal H, Hasan M, Elrayess MA, Zeidan A, Korashy HM, Agouni A. Protein tyrosine phosphatase 1B inhibition improves endoplasmic reticulum stress‑impaired endothelial cell angiogenic response: A critical role for cell survival. Mol Med Rep 2021; 24:665. [PMID: 34296297 DOI: 10.3892/mmr.2021.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/28/2021] [Indexed: 11/05/2022] Open
Abstract
Endoplasmic reticulum (ER) stress contributes to endothelial dysfunction, which is the initial step in atherogenesis. Blockade of protein tyrosine phosphatase (PTP)1B, a negative regulator of insulin receptors that is critically located on the surface of ER membrane, has been found to improve endothelial dysfunction. However, the role of ER stress and its related apoptotic sub‑pathways in PTP1B‑mediated endothelial dysfunction, particularly its angiogenic capacity, have not yet been fully elucidated. Thus, the present study aimed to investigate the impact of PTP1B suppression on ER stress‑mediated impaired angiogenesis and examined the contribution of apoptotic signals in this process. Endothelial cells were exposed to pharmacological ER stressors, including thapsigargin (TG) or 1,4‑dithiothreitol (DTT), in the presence or absence of a PTP1B inhibitor or small interfering (si)RNA duplexes. Then, ER stress, angiogenic capacity, cell cycle, apoptosis and the activation of key apoptotic signals were assessed. It was identified that the inhibition of PTP1B prevented ER stress caused by DTT and TG. Moreover, ER stress induction impaired the activation of endothelial nitric oxide synthase (eNOS) and the angiogenic capacity of endothelial cells, while PTP1B inhibition exerted a protective effect. The results demonstrated that blockade or knockdown of PTP1B prevented ER stress‑induced apoptosis and cell cycle arrest. This effect was associated with reduced expression levels of caspase‑12 and poly (ADP‑Ribose) polymerase 1. PTP1B blockade also suppressed autophagy activated by TG. The current data support the critical role of PTP1B in ER stress‑mediated endothelial dysfunction, characterized by reduced angiogenic capacity, with an underlying mechanism involving reduced eNOS activation and cell survival. These findings provide evidence of the therapeutic potential of targeting PTP1B in cardiovascular ischemic conditions.
Collapse
Affiliation(s)
- Shahenda S Abdelsalam
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Mazhar Pasha
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Heba El-Gamal
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Maram Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | | | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| |
Collapse
|
90
|
Shen GY, Shin JH, Song YS, Joo HW, Park IH, Seong JH, Shin NK, Lee AH, Cho YJ, Lee Y, Lim YH, Kim H, Kim KS. Role of Autophagy in Granulocyte-Colony Stimulating Factor Induced Anti-Apoptotic Effects in Diabetic Cardiomyopathy. Diabetes Metab J 2021; 45:594-605. [PMID: 33631916 PMCID: PMC8369213 DOI: 10.4093/dmj.2020.0049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/27/2020] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND We previously, reported that granulocyte-colony stimulating factor (G-CSF) reduces cardiomyocyte apoptosis in diabetic cardiomyopathy. However, the underlying mechanisms are not yet fully understood. Therefore, we investigated whether the mechanisms underlying of the anti-apoptotic effects of G-CSF were associated with autophagy using a rat model of diabetic cardiomyopathy. METHODS Diabetic cardiomyopathy was induced in rats through a high-fat diet combined with low-dose streptozotocin and the rats were then treated with G-CSF for 5 days. Rat H9c2 cardiac cells were cultured under high glucose conditions as an in vitro model of diabetic cardiomyopathy. The extent of apoptosis and protein levels related to autophagy (Beclin-1, microtubule-binding protein light chain 3 [LC3]-II/LC3-I ratio, and P62) were determined for both models. Autophagy determination was performed using an Autophagy Detection kit. RESULTS G-CSF significantly reduced cardiomyocyte apoptosis in the diabetic myocardium in vivo and led to an increase in Beclin-1 level and the LC3-II/LC3-I ratio, and decreased P62 level. Similarly, G-CSF suppressed apoptosis, increased Beclin-1 level and LC3-II/LC3-I ratio, and decreased P62 level in high glucose-induced H9c2 cardiac cells in vitro. These effects of G-CSF were abrogated by 3-methyladenine, an autophagy inhibitor. In addition, G-CSF significantly increased autophagic flux in vitro. CONCLUSION Our results suggest that the anti-apoptotic effect of G-CSF might be significantly associated with the up-regulation of autophagy in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Guang-Yin Shen
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Department of Cardiology, Jilin University Jilin Central Hospital, Jilin, China
| | - Jeong-Hun Shin
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Yi-Sun Song
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Hyun-Woo Joo
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - In-Hwa Park
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jin-Hee Seong
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Na-Kyoung Shin
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - A-Hyeon Lee
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Young Jong Cho
- Laboratory Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yonggu Lee
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Young-Hyo Lim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Hyuck Kim
- Department of Thoracic Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Kyung-Soo Kim
- Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
- Graguate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
- Corresponding author: Kyung-Soo Kim https://orcid.org/0000-0002-0891-1023 Division of Cardiology, Department of Internal Medicine, Hanyang University College of Medicine, 222-1 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea E-mail:
| |
Collapse
|
91
|
Dewanjee S, Vallamkondu J, Kalra RS, John A, Reddy PH, Kandimalla R. Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy. Ageing Res Rev 2021; 68:101338. [PMID: 33838320 DOI: 10.1016/j.arr.2021.101338] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 12/20/2022]
Abstract
Association of diabetes with an elevated risk of cardiac failure has been clinically evident. Diabetes potentiates diastolic and systolic cardiac failure following the myocardial infarction that produces the cardiac muscle-specific microvascular complication, clinically termed as diabetic cardiomyopathy. Elevated susceptibility of diabetic cardiomyopathy is primarily caused by the generation of free radicals in the hyperglycemic milieu, compromising the myocardial contractility and normal cardiac functions with increasing redox insult, impaired mitochondria, damaged organelles, apoptosis, and cardiomyocytes fibrosis. Autophagy is essentially involved in the recycling/clearing the damaged organelles, cytoplasmic contents, and aggregates, which are frequently produced in cardiomyocytes. Although autophagy plays a vital role in maintaining the cellular homeostasis in diligent cardiac tissues, this process is frequently impaired in the diabetic heart. Given its clinical significance, accumulating evidence largely showed the functional aspects of autophagy in diabetic cardiomyopathy, elucidating its intricate protective and pathogenic outcomes. However, etiology and molecular readouts of these contrary autophagy activities in diabetic cardiomyopathy are not yet comprehensively assessed and translated. In this review, we attempted to assess the role of autophagy and its adaptations in the diabetic heart. To delineate the molecular consequences of these events, we provided detailed insights into the autophagy regulation pieces of machinery including the mTOR/AMPK, TFEB/ZNSCAN3, FOXOs, SIRTs, PINK1/Parkin, Nrf2, miRNAs, and others in the diabetic cardiomyopathy. Given the clinical significance of autophagy in the diabetic heart, we further discussed the potential pharmacotherapeutic strategies towards targeting autophagy. Taken together, the present report meticulously assessed autophagy, its adaptations, and molecular regulations in diabetic cardiomyopathy and reviewed the current autophagy-targeting strategies.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba, 305 8565, Japan.
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, 506007, Telangana, India; Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad, 50000, Telangana, India.
| |
Collapse
|
92
|
Lee B, Shin H, Oh JE, Park J, Park M, Yang SC, Jun JH, Hong SH, Song H, Lim HJ. An autophagic deficit in the uterine vessel microenvironment provokes hyperpermeability through deregulated VEGFA, NOS1, and CTNNB1. Autophagy 2021; 17:1649-1666. [PMID: 32579471 PMCID: PMC8354601 DOI: 10.1080/15548627.2020.1778292] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/22/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023] Open
Abstract
The uterus undergoes vascular changes during the reproductive cycle and pregnancy. Steroid hormone deprivation induces macroautophagy/autophagy in major uterine cell types. Herein, we explored the functions of uterine autophagy using the Amhr2-Cre-driven atg7 deletion model. Deletion of Atg7 was confirmed by functional deficit of autophagy in uterine stromal, myometrial, and vascular smooth muscle cells, but not in endothelial cells. atg7d/d uteri exhibited enhanced stromal edema accompanied by dilation of blood vessels. Ovariectomized atg7d/d uteri showed decreased expression of endothelial junction-related proteins, such as CTNNB1/beta-catenin, with increased vascular permeability, and increased expression of VEGFA and NOS1. Nitric oxide (NO) was shown to mediate VEGFA-induced vascular permeability by targeting CTNNB1. NO involvement in maintaining endothelial junctional stability in atg7d/d uteri was confirmed by the reduction in extravasation following treatment with a NOS inhibitor. We also showed that atg7d/d uterine phenotype improved the fetal weight:placental weight ratio, which is one of the indicators of assessing the status of preeclampsia. We showed that autophagic deficit in the uterine vessel microenvironment provokes hyperpermeability through the deregulation of VEGFA, NOS1, and CTNNB1.Abbreviations: ACTA2: actin, alpha 2, smooth muscle, aortic; Amhr2: anti-Mullerian hormone type 2 receptor; ANGPT1: angiopoietin 1; ATG: autophagy-related; CDH5: cadherin 5; CLDN5: claudin 5; COL1A1: collagen, type I, alpha 1; CSPG4/NG2: chondroitin sulfate proteoglycan 4; CTNNB1: catenin (cadherin associated protein), beta 1; DES: desmin; EDN1: endothelin 1; EDNRB: endothelin receptor type B; F3: coagulation factor III; KDR/FLK1/VEGFR2: kinase insert domain protein receptor; LYVE1: lymphatic vessel endothelial hyaluronan receptor 1; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCAM/CD146: melanoma cell adhesion molecule; MYL2: myosin, light polypeptide 2, regulatory, cardiac, slow; MYLK: myosin, light polypeptide kinase; NOS1/nNOS: nitric oxide synthase 1, neuronal; NOS2/iNOS: nitric oxide synthase 2, inducible; NOS3/eNOS: nitric oxide synthase 3, endothelial cell; OVX: ovariectomy; PECAM1/CD31: platelet/endothelial cell adhesion molecule 1; POSTN: periostin, osteoblast specific factor; SQSTM1: sequestosome 1; TEK/Tie2: TEK receptor tyrosine kinase; TJP1/ZO-1: tight junction protein 1; TUBB1, tubulin, beta 1 class VI; USC: uterine stromal cell; VEGFA: vascular endothelial growth factor A; VSMC: vascular smooth muscle cell.
Collapse
Affiliation(s)
- Bora Lee
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Hyejin Shin
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Ji-Eun Oh
- Department of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jaekyoung Park
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
| | - Mira Park
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Seung Chel Yang
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Jin-Hyun Jun
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Gyeonggi-do, Korea
- Department of Senior Healthcare, BK21 Plus Program, Eulji Medi-Bio Research Institute, Graduate School, Eulji University, Daejeon, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Kangwon-do, Chuncheon, Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Gyeonggi-do, Korea
| | - Hyunjung Jade Lim
- Department of Biomedical Science & Technology, Konkuk University, Seoul, Korea
- Department of Veterinary Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
93
|
Bu S, Singh KK. Epigenetic Regulation of Autophagy in Cardiovascular Pathobiology. Int J Mol Sci 2021; 22:ijms22126544. [PMID: 34207151 PMCID: PMC8235464 DOI: 10.3390/ijms22126544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the number one cause of debilitation and mortality worldwide, with a need for cost-effective therapeutics. Autophagy is a highly conserved catabolic recycling pathway triggered by various intra- or extracellular stimuli to play an essential role in development and pathologies, including CVDs. Accordingly, there is great interest in identifying mechanisms that govern autophagic regulation. Autophagic regulation is very complex and multifactorial that includes epigenetic pathways, such as histone modifications to regulate autophagy-related gene expression, decapping-associated mRNA degradation, microRNAs, and long non-coding RNAs; pathways are also known to play roles in CVDs. Molecular understanding of epigenetic-based pathways involved in autophagy and CVDs not only will enhance the understanding of CVDs, but may also provide novel therapeutic targets and biomarkers for CVDs.
Collapse
Affiliation(s)
| | - Krishna K. Singh
- Correspondence: ; Tel.: +1-519-661-2111 (ext. 80542) (Office) or (ext. 85683) (Lab)
| |
Collapse
|
94
|
Zhang XY, Wang L, Yan WJ, Lu XT, Li XY, Sun YY. Period 2-Induced Activation of Autophagy Improves Cardiac Remodeling After Myocardial Infarction. Hum Gene Ther 2021; 31:119-128. [PMID: 31822134 DOI: 10.1089/hum.2019.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence indicates that the onset of myocardial infarction (MI) shows obvious circadian rhythmicity. Clinical studies have shown that MIs that occur in the early morning have a poor prognosis, but the mechanisms involved are still unknown. In this study, we showed that the expression level of Period 2 (per2) in the heart of mice is lower in the early morning than at noon and that increasing the expression of per2 in H9C2 cells and rat cardiomyocytes increases autophagy levels. Further studies indicated that overexpression of per2 after an MI improved cardiac function by increasing autophagy. In summary, this study has shown that the circadian clock protein, per2, may be a regulator of MI.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.,Grade 2016, School of Basic Medical Sciences, Clinical Medicine (5 + 3), Shandong University, Jinan, China
| | - Lin Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.,Department of Gerontology, The Second Hospital of Shandong University, Jinan, China
| | - Wen-Jiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao-Ting Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin-Yun Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan-Yuan Sun
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
95
|
Neill T, Kapoor A, Xie C, Buraschi S, Iozzo RV. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy. Matrix Biol 2021; 100-101:118-149. [PMID: 33838253 PMCID: PMC8355044 DOI: 10.1016/j.matbio.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Proteoglycans and selected extracellular matrix constituents are emerging as intrinsic and critical regulators of evolutionarily conversed, intracellular catabolic pathways. Often, these secreted molecules evoke sustained autophagy in a variety of cell types, tissues, and model systems. The unique properties of proteoglycans have ushered in a paradigmatic shift to broaden our understanding of matrix-mediated signaling cascades. The dynamic cellular pathway controlling autophagy is now linked to an equally dynamic and fluid signaling network embedded in a complex meshwork of matrix molecules. A rapidly emerging field of research encompasses multiple matrix-derived candidates, representing a menagerie of soluble matrix constituents including decorin, biglycan, endorepellin, endostatin, collagen VI and plasminogen kringle 5. These matrix constituents are pro-autophagic and simultaneously anti-angiogenic. In contrast, perlecan, laminin α2 chain, and lumican have anti-autophagic functions. Mechanistically, each matrix constituent linked to intracellular catabolic events engages a specific cell surface receptor that often converges on a common core of the autophagic machinery including AMPK, Peg3 and Beclin 1. We consider this matrix-evoked autophagy as non-canonical given that it occurs in an allosteric manner and is independent of nutrient availability or prevailing bioenergetics control. We propose that matrix-regulated autophagy is an important outside-in signaling mechanism for proper tissue homeostasis that could be therapeutically leveraged to combat a variety of diseases.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
96
|
Dai J, Zhang Q, Wan C, Liu J, Zhang Q, Yu Y, Wang J. Significances of viable synergistic autophagy-associated cathepsin B and cathepsin D (CTSB/CTSD) as potential biomarkers for sudden cardiac death. BMC Cardiovasc Disord 2021; 21:233. [PMID: 33964876 PMCID: PMC8106142 DOI: 10.1186/s12872-021-02040-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
Background The Cathepsins family, including cathepsin B and cathepsin D, potentially affects the entire processes involved in atherosclerosis. Although coronary heart disease (CHD) has been widely studied as the basis of Sudden Cardiac Death (SCD), the relationship between CHD and CTSB/D remains unclear. Methods We screened for differentially expressed proteins (DEPs) associated with autophagy by limma package in R. For the genes corresponding to the DEPs after screening, we used various databases to carry out functional enrichment of related DEGs to explore their possible influence on a specific aspect of the disease. Functional enrichment analysis of DEGs was performed by DAVID, Metascape and GSEA. STRING and Cytoscape were obtained the hub genes, the analysis of interaction networks through the GENMANIA and Networkanalyst. Western Blot was used to validate the protein expression level of target genes. TF and miRNA prediction were performed using Networkanalyst and visualized using Cytoscape. Results The expression levels of members of the cathepsin family were up regulated in CHD tissues compared with the control. GO and KEGG revealed that cathepsin was markedly enriched in endopeptidase activities, immune responses, lysosome pathways, et al. The correlation analysis showed that in patients with CHD, the CTSB/CTSD expression were negatively correlated with ATG4D and BNIP3, but positively with BCL2L1, CAPNS1, and TP53. In the TF-mRNA-miRNA network, has-miR-24-3p and has-miR-128-3p had higher degrees, CTSB/CTSD could be targeted by them. Conclusions Our findings elucidated the expression and regulatory role of cathepsins in coronary heart disease induced SCD and might further explore the potential mechanisms of autophagy in CHD.
Collapse
Affiliation(s)
- Jialin Dai
- School of Forensic Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang, 550001, Guizhou, China
| | - Qiong Zhang
- School of Forensic Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang, 550001, Guizhou, China
| | - Changwu Wan
- School of Forensic Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang, 550001, Guizhou, China
| | - Jiangjin Liu
- School of Forensic Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang, 550001, Guizhou, China
| | - Qiaojun Zhang
- School of Forensic Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang, 550001, Guizhou, China
| | - Yanni Yu
- School of Forensic Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang, 550001, Guizhou, China.
| | - Jie Wang
- School of Forensic Medicine, Guizhou Medical University, 4 Beijing Road, Guiyang, 550001, Guizhou, China.
| |
Collapse
|
97
|
Xu J, Kitada M, Ogura Y, Koya D. Relationship Between Autophagy and Metabolic Syndrome Characteristics in the Pathogenesis of Atherosclerosis. Front Cell Dev Biol 2021; 9:641852. [PMID: 33937238 PMCID: PMC8083902 DOI: 10.3389/fcell.2021.641852] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is the main cause of mortality in metabolic-related diseases, including cardiovascular disease and type 2 diabetes (T2DM). Atherosclerosis is characterized by lipid accumulation and increased inflammatory cytokines in the vascular wall, endothelial cell and vascular smooth muscle cell dysfunction and foam cell formation initiated by monocytes/macrophages. The characteristics of metabolic syndrome (MetS), including obesity, glucose intolerance, dyslipidemia and hypertension, may activate multiple mechanisms, such as insulin resistance, oxidative stress and inflammatory pathways, thereby contributing to increased risks of developing atherosclerosis and T2DM. Autophagy is a lysosomal degradation process that plays an important role in maintaining cellular metabolic homeostasis. Increasing evidence indicates that impaired autophagy induced by MetS is related to oxidative stress, inflammation, and foam cell formation, further promoting atherosclerosis. Basal and mild adaptive autophagy protect against the progression of atherosclerotic plaques, while excessive autophagy activation leads to cell death, plaque instability or even plaque rupture. Therefore, autophagic homeostasis is essential for the development and outcome of atherosclerosis. Here, we discuss the potential role of autophagy and metabolic syndrome in the pathophysiologic mechanisms of atherosclerosis and potential therapeutic drugs that target these molecular mechanisms.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Department of Endocrinology and Metabolism, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
98
|
Carresi C, Mollace R, Macrì R, Scicchitano M, Bosco F, Scarano F, Coppoletta AR, Guarnieri L, Ruga S, Zito MC, Nucera S, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. Oxidative Stress Triggers Defective Autophagy in Endothelial Cells: Role in Atherothrombosis Development. Antioxidants (Basel) 2021; 10:antiox10030387. [PMID: 33807637 PMCID: PMC8001288 DOI: 10.3390/antiox10030387] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Atherothrombosis, a multifactorial and multistep artery disorder, represents one of the main causes of morbidity and mortality worldwide. The development and progression of atherothrombosis is closely associated with age, gender and a complex relationship between unhealthy lifestyle habits and several genetic risk factors. The imbalance between oxidative stress and antioxidant defenses is the main biological event leading to the development of a pro-oxidant phenotype, triggering cellular and molecular mechanisms associated with the atherothrombotic process. The pathogenesis of atherosclerosis and its late thrombotic complications involve multiple cellular events such as inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells (SMCs), extracellular matrix (ECM) alterations, and platelet activation, contributing to chronic pathological remodeling of the vascular wall, atheromatous plague formation, vascular stenosis, and eventually, thrombus growth and propagation. Emerging studies suggest that clotting activation and endothelial cell (EC) dysfunction play key roles in the pathogenesis of atherothrombosis. Furthermore, a growing body of evidence indicates that defective autophagy is closely linked to the overproduction of reactive oxygen species (ROS) which, in turn, are involved in the development and progression of atherosclerotic disease. This topic represents a large field of study aimed at identifying new potential therapeutic targets. In this review, we focus on the major role played by the autophagic pathway induced by oxidative stress in the modulation of EC dysfunction as a background to understand its potential role in the development of atherothrombosis.
Collapse
Affiliation(s)
- Cristina Carresi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Correspondence: ; Tel.: +39-09613694128; Fax: +39-09613695737
| | - Rocco Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
99
|
Zhang J, Zhang Y, He X, Wang S, Pang S, Yan B. TFEB Gene Promoter Variants Effect on Gene Expression in Acute Myocardial Infarction. Front Cell Dev Biol 2021; 9:630279. [PMID: 33732699 PMCID: PMC7959723 DOI: 10.3389/fcell.2021.630279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
Autophagy is involved in many physiological processes. Transcription factor EB (TFEB) is a master regulator of autophagy and coordinates the expression of autophagic proteins, lysosomal hydrolases, and lysosomal membrane proteins. Though autophagy has been implicated in several human diseases, little is known regarding TFEB gene expression and regulation in the process. Since dysfunctional autophagy plays critical roles in acute myocardial infarction (AMI), dysregulated TFEB gene expression may be associated with AMI by regulating autophagy. In this study, the TFEB gene promoter was genetically and functionally analyzed in AMI patients (n = 352) and ethnic-matched controls (n = 337). A total of fifteen regulatory variants of the TFEB gene, including eight single-nucleotide polymorphisms (SNPs), were identified in this population. Among these, six regulatory variants [g.41737274T>C (rs533895008), g.41737144A>G, g.41736987C > T (rs760293138), g.41736806C > T (rs748537297), g.41736635T > C (rs975050638), and g.41736544C > T] were only identified in AMI patients. These regulatory variants significantly altered the transcriptional activity of the TFEB gene promoter. Further electrophoretic mobility shift assay revealed that three of the variants evidently affected the binding of transcription factors. Therefore, this study identified novel TFEB gene regulatory variants which affect the gene expression. These TFEB gene regulatory variants may contribute to AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, China
| | - Yexin Zhang
- Department of Medicine, Shandong University School of Medicine, Jinan, China
| | - Xiaohui He
- Department of Medicine, Shandong University School of Medicine, Jinan, China
| | - Shuai Wang
- Department of Medicine, Shandong University School of Medicine, Jinan, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,The Center for Molecular Genetics of Cardiovascular Diseases, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China.,Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
100
|
Autophagy and Mitophagy as Essential Components of Atherosclerosis. Cells 2021; 10:cells10020443. [PMID: 33669743 PMCID: PMC7922388 DOI: 10.3390/cells10020443] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the greatest health problems affecting people worldwide. Atherosclerosis, in turn, is one of the most common causes of cardiovascular disease. Due to the high mortality rate from cardiovascular diseases, prevention and treatment at the earliest stages become especially important. This requires developing a deep understanding of the mechanisms underlying the development of atherosclerosis. It is well-known that atherogenesis is a complex multi-component process that includes lipid metabolism disorders, inflammation, oxidative stress, autophagy disorders and mitochondrial dysfunction. Autophagy is a cellular control mechanism that is critical to maintaining health and survival. One of the specific forms of autophagy is mitophagy, which aims to control and remove defective mitochondria from the cell. Particularly defective mitophagy has been shown to be associated with atherogenesis. In this review, we consider the role of autophagy, focusing on a special type of it—mitophagy—in the context of its role in the development of atherosclerosis.
Collapse
|