51
|
Špiranec Spes K, Chen W, Krebes L, Völker K, Abeßer M, Eder Negrin P, Cellini A, Nickel A, Nikolaev VO, Hofmann F, Schuh K, Schweda F, Kuhn M. Heart-Microcirculation Connection: Effects of ANP (Atrial Natriuretic Peptide) on Pericytes Participate in the Acute and Chronic Regulation of Arterial Blood Pressure. Hypertension 2020; 76:1637-1648. [PMID: 32951468 DOI: 10.1161/hypertensionaha.120.15772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac ANP (atrial natriuretic peptide) moderates arterial blood pressure. The mechanisms mediating its hypotensive effects are complex and involve inhibition of the renin-angiotensin-aldosterone system, increased natriuresis, endothelial permeability, and vasodilatation. The contribution of the direct vasodilating effects of ANP to blood pressure homeostasis is controversial because variable levels of the ANP receptor, GC-A (guanylyl cyclase-A), are expressed among vascular beds. Here, we show that ANP stimulates GC-A/cyclic GMP signaling in cultured microvascular pericytes and thereby the phosphorylation of the regulatory subunit of myosin phosphatase 1 by cGMP-dependent protein kinase I. Moreover, ANP prevents the calcium and contractile responses of pericytes to endothelin-1 as well as microvascular constrictions. In mice with conditional inactivation (knock-out) of GC-A in microcirculatory pericytes, such vasodilating effects of ANP on precapillary arterioles and capillaries were fully abolished. Concordantly, these mice have increased blood pressure despite preserved renal excretory function. Furthermore, acute intravascular volume expansion, which caused release of cardiac ANP, did not affect blood pressure of control mice but provoked hypertensive reactions in pericyte GC-A knock-out littermates. We conclude that GC-A/cGMP-dependent modulation of pericytes and microcirculatory tone contributes to the acute and chronic moderation of arterial blood pressure by ANP. Graphic Abstract A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Katarina Špiranec Spes
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Wen Chen
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany.,The Affiliated Haimen Hospital, Nantong University, Jiangsu, China (W.C.)
| | - Lisa Krebes
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Katharina Völker
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Marco Abeßer
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Petra Eder Negrin
- Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Antonella Cellini
- Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center (K.S.S., W.C., P.E.N., A.C., A.N., M.K.), University Hospital Würzburg, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| | - Franz Hofmann
- Institute of Pharmacology and Toxicology, TU Munich, Germany (F.H.)
| | - Kai Schuh
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Germany (F.S.)
| | - Michaela Kuhn
- From the Institute of Physiology, University of Würzburg (K.S.S., W.C., L.K., K.V., M.A., K.S., M.K.), University Hospital Würzburg, Germany
| |
Collapse
|
52
|
Defective development and microcirculation of intestine in Npr2 mutant mice. Sci Rep 2020; 10:14761. [PMID: 32901096 PMCID: PMC7479618 DOI: 10.1038/s41598-020-71812-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Intractable gastrointestinal (GI) diseases often develop during infancy. Our group previously reported that natriuretic peptide receptor B (NPR-B)-deficient Npr2slw/slw mice exhibit severe intestinal dysfunction, such as stenosis and distention, which resembles the dysfunction observed in Hirschsprung’s disease-allied disorders. However, the root cause of intestinal dysfunction and the detailed of pathophysiological condition in the intestine are not yet clear. Here, we report that the intestine of preweaning Npr2slw/slw mice showed bloodless blood vessels, and nodes were found in the lymphatic vessel. Additionally, the lacteals, smooth muscle, blood vessel, and nerves were barely observed in the villi of preweaning Npr2slw/slw mice. Moreover, intramuscular interstitial cells of Cajal (ICC-IM) were clearly reduced. In contrast, villi and ICC-IM were developed normally in surviving adult Npr2slw/slw mice. However, adult Npr2slw/slw mice exhibited partially hypoplastic blood vessels and an atrophied enteric nervous. Furthermore, adult Npr2slw/slw mice showed markedly reduced white adipose tissue. These findings suggest that the cause of GI dysfunction in preweaning Npr2slw/slw mice is attributed to defective intestinal development with microcirculation disorder. Thus, it is suggested that NPR-B signaling is involved in intestinal development and control of microcirculation and fat metabolism. This report provides new insights into intractable GI diseases, obesity, and NPR-B signaling.
Collapse
|
53
|
Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, Boshchenko AA, Goldberg VE, Jaggi AS, Erben RG, Maslov LN. The Role of Natriuretic Peptides in the Regulation of Cardiac Tolerance to Ischemia/Reperfusion and Postinfarction Heart Remodeling. J Cardiovasc Pharmacol Ther 2020; 26:131-148. [PMID: 32840121 DOI: 10.1177/1074248420952243] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past 10 years, mortality from acute myocardial infarction has not decreased despite the widespread introduction of percutaneous coronary intervention. The reason for this situation is the absence in clinical practice of drugs capable of preventing reperfusion injury of the heart with high efficiency. In this regard, noteworthy natriuretic peptides (NPs) which have the infarct-limiting effect, prevent reperfusion cardiac injury, prevent adverse post-infarction remodeling of the heart. Atrial natriuretic peptide does not have the infarct-reducing effect in rats with alloxan-induced diabetes mellitus. NPs have the anti-apoptotic and anti-inflammatory effects. There is indirect evidence that NPs inhibit pyroptosis and autophagy. Published data indicate that NPs inhibit reactive oxygen species production in cardiomyocytes, aorta, heart, kidney and the endothelial cells. NPs can suppress aldosterone, angiotensin II, endothelin-1 synthesize and secretion. NPs inhibit the effects aldosterone, angiotensin II on the post-receptor level through intracellular signaling events. NPs activate guanylyl cyclase, protein kinase G and protein kinase A, and reduce phosphodiesterase 3 activity. NO-synthase and soluble guanylyl cyclase are involved in the cardioprotective effect of NPs. The cardioprotective effect of natriuretic peptides is mediated via activation of kinases (AMPK, PKC, PI3 K, ERK1/2, p70s6 k, Akt) and inhibition of glycogen synthase kinase 3β. The cardioprotective effect of NPs is mediated via sarcolemmal KATP channel and mitochondrial KATP channel opening. The cardioprotective effect of brain natriuretic peptide is mediated via MPT pore closing. The anti-fibrotic effect of NPs may be mediated through inhibition TGF-β1 expression. Natriuretic peptides can inhibit NF-κB activity and activate GATA. Hemeoxygenase-1 and peroxisome proliferator-activated receptor γ may be involved in the infarct-reducing effect of NPs. NPs exhibit the infarct-limiting effect in patients with acute myocardial infarction. NPs prevent post-infarction remodeling of the heart. To finally resolve the question of the feasibility of using NPs in AMI, a multicenter, randomized, blind, placebo-controlled study is needed to assess the effect of NPs on the mortality of patients after AMI.
Collapse
Affiliation(s)
- Andrey V Krylatov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Sergey Y Tsibulnikov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | | | - Alla A Boshchenko
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Victor E Goldberg
- Cancer Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Amteshwar S Jaggi
- 429174Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Reinhold G Erben
- Department of Biomedical Research, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Leonid N Maslov
- Cardiology Research Institute, 164253Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
54
|
Emara M, Hafez MA, El-Bendary A, Razaky OE. Speckle tracking echocardiography for the evaluation of left ventricular function in children with systemic lupus erythematosus. Lupus 2020; 29:1449-1455. [PMID: 32723060 DOI: 10.1177/0961203320942296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Many studies in adult patients with systemic lupus erythematosus (SLE) have demonstrated that myocardial dysfunction was significantly associated with enhanced disease activity. However, similar studies in paediatric patients with SLE are limited. The aim of this study was to evaluate the role of speckle tracking echocardiography (STE) to detect left ventricular dysfunction in children with active and inactive SLE. METHODS This prospective case-control study was carried out on 50 children with SLE. Thirty healthy age- and sex-matched children comprised the control group. The patients were further subdivided into two subgroups: active SLE and inactive SLE. Laboratory investigations undertaken included complete blood count, renal function, C3, C4, ANA, anti-dsDNA and serum N-terminal pro-B type natriuretic peptide. Echocardiographic examinations were performed on all children and included conventional echocardiography, tissue Doppler imaging (TDI) and two- and three-dimensional STE. RESULTS There was no statistically significant difference in N-terminal pro B natriuretic peptide between the studied groups. The myocardial performance index by TDI was statistically significantly higher in SLE patients compared to controls. STE parameters were statistically significantly lower in SLE patients compared to controls. There was no correlation between STE parameters and disease activity. CONCLUSIONS STE could be a promising technique in the early detection of subclinical left ventricular dysfunction in children with SLE.
Collapse
Affiliation(s)
- Mai Emara
- Paediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Maher Abdel Hafez
- Paediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Aml El-Bendary
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Osama El Razaky
- Paediatric Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
55
|
Almoosavi SMMS, Ghoorchi T, Naserian AA, Ramezanpor SS, Ghaffari MH. Long-term impacts of late-gestation maternal heat stress on growth performance, blood hormones and metabolites of newborn calves independent of maternal reduced feed intake. Domest Anim Endocrinol 2020; 72:106433. [PMID: 32402999 DOI: 10.1016/j.domaniend.2019.106433] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 12/07/2019] [Accepted: 12/27/2019] [Indexed: 11/22/2022]
Abstract
The objective of this study was to evaluate the effects of heat stress in late gestation independent of maternal reduced feed intake on performance, blood hormones and metabolites, and immune responses of dairy calves from birth through weaning. A total of 30 multiparous Holstein cows at 45 d before expected calving were randomly assigned to one of 3 groups: (1) thermal neutral (CL, n = 10) conditions with ad libitum feed intake (10% of refusals on an as-fed basis); (2) pair-fed thermal neutral (CLPF, n = 10) conditions to reduce feed intake to levels similar to the heat stress (HS) group while reared under thermoneutral conditions (80% of the CL group); or (3) heat stress (HS, n = 10) conditions with ad libitum feed intake. Pair-feeding was conducted to quantify the confounding effects of dissimilar feed intake. Calves (10/group) born to cows that were exposed to cooling (IU-CL), pair-feeding (IU-CLPF), or heat stress (IU-HS) were used from birth through weaning. After birth, all the calves were managed under identical conditions. IU-HS calves had lower birth weight, and hip height at birth and 14 d of age. Compared with IU-CL and IU-CLPF calves, IU-HS calves had lower serum concentration of IgG and apparent efficiency of IgG absorption but higher serum insulin concentrations. Cortisol concentration in serum was higher in IU-HS and IU-CLPF calves compared to IU-CL calves. The neutrophil percentage was lower in IU-CL calves than in IU-HS and IU-CLPF calves. Neutrophil-lymphocyte ratio was higher in IU-HS calves compared to IU-CLPF and IU-CL calves. The mRNA expression of TNFα of IU-HS calves was downregulated compared with IU-CL and IU-CLPF calves. In summary, maternal HS during late gestation reduces calf birth weight and dramatically alters blood hormones and metabolites, but its effect on immune system function was not independent of maternal reduced feed intake.
Collapse
Affiliation(s)
- S M M Seyed Almoosavi
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan 49138-15739, Iran.
| | - T Ghoorchi
- Department of Animal and Poultry Nutrition, Faculty of Animal Science, Gorgan University of Agriculture Science and Natural Resources, Gorgan 49138-15739, Iran
| | - A A Naserian
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad 91779-48978, Iran
| | - S S Ramezanpor
- Department of Biotechnology, Gorgan University of Agriculture Science and Natural Resources, Gorgan 49138-15739, Iran
| | - M H Ghaffari
- Institute of Animal Science, Physiology and Hygiene Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
56
|
Vinnakota S, Chen HH. The Importance of Natriuretic Peptides in Cardiometabolic Diseases. J Endocr Soc 2020; 4:bvaa052. [PMID: 32537542 PMCID: PMC7278279 DOI: 10.1210/jendso/bvaa052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
The natriuretic peptide (NP) system is composed of 3 distinct peptides (atrial natriuretic peptide or ANP, B-type natriuretic peptide or BNP, and C-type natriuretic peptide or CNP) and 3 receptors (natriuretic peptide receptor-A or NPR-A or particulate guanynyl cyclase-A natriuretic peptide receptor-B or NPR-B or particulate guanynyl cyclase-B, and natriuretic peptide receptor-C or NPR-C or clearance receptor). ANP and BNP function as defense mechanisms against ventricular stress and the deleterious effects of volume and pressure overload on the heart. Although the role of NPs in cardiovascular homeostasis has been extensively studied and well established, much remains uncertain about the signaling pathways in pathological states like heart failure, a state of impaired natriuretic peptide function. Elevated levels of ANP and BNP in heart failure correlate with disease severity and have a prognostic value. Synthetic ANP and BNP have been studied for their therapeutic role in hypertension and heart failure, and promising trials are under way. In recent years, the expression of ANP and BNP in human adipocytes has come to light. Through their role in promotion of adipocyte browning, lipolysis, lipid oxidation, and modulation of adipokine secretion, they have emerged as key regulators of energy consumption and metabolism. NPR-A signaling in skeletal muscles and adipocytes is emerging as pivotal to the maintenance of long-term insulin sensitivity, which is disrupted in obesity and reduced glucose-tolerance states. Genetic variants in the genes encoding for ANP and BNP have been associated with a favorable cardiometabolic profile. In this review, we discuss several pathways that have been proposed to explain the role of NPs as endocrine networkers. There is much to be explored about the therapeutic role of NPs in improving metabolic milieu.
Collapse
Affiliation(s)
- Shravya Vinnakota
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Horng H Chen
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
57
|
Effect of statin therapy on plasma C-type Natriuretic Peptides and Endothelin-1 in males with and without symptomatic coronary artery disease. Sci Rep 2020; 10:7927. [PMID: 32404888 PMCID: PMC7220949 DOI: 10.1038/s41598-020-64795-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
C-type Natriuretic Peptide (CNP) and Endothelin-1 (ET-1) have reciprocal roles in maintaining vascular homeostasis and are acutely modulated by statins in human cultured endothelial cells. Whether these actions of statins in vitro are reflected in studies in vivo is unknown. In a prospective study of 66 subjects with or without post- acute coronary syndrome (ACS), plasma concentrations of bioactive CNP and bio-inactive aminoterminal proCNP (NTproCNP), ET-1, B-type Natriuretic Peptide (BNP) and high sensitivity C Reactive Protein (hsCRP) were measured together with lipids before and at intervals of 1, 2 and 7 days after commencing atorvastatin 40 mg/day - and for a further period of 6months in those with ACS. Plasma lipids fell significantly in all subjects but plasma CNP, NTproCNP and ET-1 were unchanged by atorvastatin. In ACS, baseline hsCRP, BNP and CNP but not NTproCNP or ET-1 were significantly raised compared to values in age-matched controls. The ratio of NTproCNP to CNP was significantly lower in ACS throughout the study and was unaffected by statin therapy. We conclude that conventional doses of atorvastatin do not affect plasma CNP products or ET-1. Elevated CNP after cardiac injury likely results from regulated changes in clearance, not enhanced production.
Collapse
|
58
|
Korshunov VA, Smolock EM, Wines-Samuelson ME, Faiyaz A, Mickelsen DM, Quinn B, Pan C, Dugbartey GJ, Yan C, Doyley MM, Lusis AJ, Berk BC. Natriuretic Peptide Receptor 2 Locus Contributes to Carotid Remodeling. J Am Heart Assoc 2020; 9:e014257. [PMID: 32394795 PMCID: PMC7660849 DOI: 10.1161/jaha.119.014257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Carotid artery intima/media thickness (IMT) is a hallmark trait associated with future cardiovascular events. The goal of this study was to map new genes that regulate carotid IMT by genome-wide association. Methods and Results We induced IMT by ligation procedure of the left carotid artery in 30 inbred mouse strains. Histologic reconstruction revealed significant variation in left carotid artery intima, media, adventitia, external elastic lamina volumes, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio in inbred mice. The carotid remodeling trait was regulated by distinct genomic signatures with a dozen common single-nucleotide polymorphisms associated with left carotid artery intima volume, intima-to-media ratio, and (intima+media)/external elastic lamina percent ratio. Among genetic loci on mouse chromosomes 1, 4, and 12, there was natriuretic peptide receptor 2 (Npr2), a strong candidate gene. We observed that only male, not female, mice heterozygous for a targeted Npr2 deletion (Npr2+/-) exhibited defective carotid artery remodeling compared with Npr2 wild-type (Npr2+/+) littermates. Fibrosis in carotid IMT was significantly increased in Npr2+/- males compared with Npr2+/- females or Npr2+/+ mice. We also detected decreased Npr2 expression in human atherosclerotic plaques, similar to that seen in studies in Npr2+/- mice. Conclusions We found that components of carotid IMT were regulated by distinct genetic factors. We also showed a critical role for Npr2 in genetic regulation of vascular fibrosis associated with defective carotid remodeling.
Collapse
Affiliation(s)
| | - Elaine M Smolock
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | | | - Abrar Faiyaz
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Deanne M Mickelsen
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Breandan Quinn
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Calvin Pan
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - George J Dugbartey
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Chen Yan
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY
| | - Marvin M Doyley
- Department of Electrical & Computer Engineering University of Rochester and Hajim School of Engineering & Applied Sciences Rochester NY
| | - Aldons J Lusis
- Department of Medicine David Geffen School of Medicine University of California Los Angeles Los Angeles CA
| | - Bradford C Berk
- Department of Medicine Aab Cardiovascular Research Institute Rochester NY.,University of Rochester Neurorestoration Institute University of Rochester School of Medicine and Dentistry Rochester NY
| |
Collapse
|
59
|
Moyes AJ, Chu SM, Aubdool AA, Dukinfield MS, Margulies KB, Bedi KC, Hodivala-Dilke K, Baliga RS, Hobbs AJ. C-type natriuretic peptide co-ordinates cardiac structure and function. Eur Heart J 2020; 41:1006-1020. [PMID: 30903134 PMCID: PMC7068173 DOI: 10.1093/eurheartj/ehz093] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS C-type natriuretic peptide (CNP) is an essential endothelium-derived signalling species that governs vascular homoeostasis; CNP is also expressed in the heart but an intrinsic role for the peptide in cardiac function is not established. Herein, we employ unique transgenic strains with cell-specific deletion of CNP to define a central (patho)physiological capacity of CNP in maintaining heart morphology and contractility. METHODS AND RESULTS Cardiac structure and function were explored in wild type (WT), cardiomyocyte (cmCNP-/-), endothelium (ecCNP-/-), and fibroblast (fbCNP-/-)-specific CNP knockout mice, and global natriuretic peptide receptor (NPR)-B-/-, and NPR-C-/- animals at baseline and in experimental models of myocardial infarction and heart failure (HF). Endothelium-specific deletion of CNP resulted in impaired coronary responsiveness to endothelium-dependent- and flow-mediated-dilatation; changes mirrored in NPR-C-/- mice. Ex vivo, global ischaemia resulted in larger infarcts and diminished functional recovery in cmCNP-/- and NPR-C-/-, but not ecCNP-/-, vs. WT. The cardiac phenotype of cmCNP-/-, fbCNP-/-, and NPR-C-/- (but not ecCNP-/- or NPR-B-/-) mice was more severe in pressure overload- and sympathetic hyperactivation-induced HF compared with WT; these adverse effects were rescued by pharmacological CNP administration in WT, but not NPR-C-/-, mice. At a molecular level, CNP/NPR-C signalling is impaired in human HF but attenuates activation of well-validated pro-hypertrophic and pro-fibrotic pathways. CONCLUSION C-type natriuretic peptide of cardiomyocyte, endothelial and fibroblast origins co-ordinates and preserves cardiac structure, function, and coronary vasoreactivity via activation of NPR-C. Targeting NPR-C may prove an innovative approach to treating HF and ischaemic cardiovascular disorders.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sandy M Chu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthew S Dukinfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kenneth B Margulies
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth C Bedi
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
60
|
Zhang L, Liu L, Li X. MiR-526b-3p mediates doxorubicin-induced cardiotoxicity by targeting STAT3 to inactivate VEGFA. Biomed Pharmacother 2020; 123:109751. [DOI: 10.1016/j.biopha.2019.109751] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
|
61
|
Chen W, Werner F, Illerhaus A, Knopp T, Völker K, Potapenko T, Hofmann U, Frantz S, Baba HA, Rösch M, Zernecke A, Karbach S, Wenzel P, Kuhn M. Stabilization of Perivascular Mast Cells by Endothelial CNP (C-Type Natriuretic Peptide). Arterioscler Thromb Vasc Biol 2020; 40:682-696. [PMID: 31893950 DOI: 10.1161/atvbaha.119.313702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Activated perivascular mast cells (MCs) participate in different cardiovascular diseases. Many factors provoking MC degranulation have been described, while physiological counterregulators are barely known. Endothelial CNP (C-type natriuretic peptide) participates in the maintenance of vascular barrier integrity, but the target cells and mechanisms are unclear. Here, we studied whether MCs are regulated by CNP. Approach and Results: In cultured human and murine MCs, CNP activated its specific GC (guanylyl cyclase)-B receptor and cyclic GMP signaling. This enhanced cyclic GMP-dependent phosphorylation of the cytoskeleton-associated VASP (vasodilator-stimulated phosphoprotein) and inhibited ATP-evoked degranulation. To elucidate the relevance in vivo, mice with a floxed GC-B (Npr2) gene were interbred with a Mcpt5-CreTG line to generate mice lacking GC-B in connective tissue MCs (MC GC-B knockout). In anesthetized mice, acute ischemia-reperfusion of the cremaster muscle microcirculation provoked extensive MC degranulation and macromolecule extravasation. Superfusion of CNP markedly prevented MC activation and endothelial barrier disruption in control but not in MC GC-B knockout mice. Notably, already under resting conditions, such knockout mice had increased numbers of degranulated MCs in different tissues, together with elevated plasma chymase levels. After transient coronary occlusion, their myocardial areas at risk and with infarction were enlarged. Moreover, MC GC-B knockout mice showed augmented perivascular neutrophil infiltration and deep vein thrombosis in a model of inferior vena cava ligation. CONCLUSIONS CNP, via GC-B/cyclic GMP signaling, stabilizes resident perivascular MCs at baseline and prevents their excessive activation under pathological conditions. Thereby CNP contributes to the maintenance of vascular integrity in physiology and disease.
Collapse
Affiliation(s)
- Wen Chen
- From the Institute of Physiology, University of Würzburg, Germany (W.C., F.W., K.V., T.P., M.K.).,Comprehensive Heart Failure Center (W.C., U.H., S.F., M.K.), University Hospital Würzburg, Germany
| | - Franziska Werner
- From the Institute of Physiology, University of Würzburg, Germany (W.C., F.W., K.V., T.P., M.K.)
| | - Anja Illerhaus
- Institute of Experimental Biomedicine (M.R., A.Z.), University Hospital Würzburg, Germany
| | - Tanja Knopp
- Department of Dermatology, University of Cologne, Germany (A.I.)
| | - Katharina Völker
- From the Institute of Physiology, University of Würzburg, Germany (W.C., F.W., K.V., T.P., M.K.)
| | - Tamara Potapenko
- From the Institute of Physiology, University of Würzburg, Germany (W.C., F.W., K.V., T.P., M.K.)
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center (W.C., U.H., S.F., M.K.), University Hospital Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center (W.C., U.H., S.F., M.K.), University Hospital Würzburg, Germany
| | - Hideo A Baba
- Center of Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Germany (T.K., S.K., P.W.)
| | - Melanie Rösch
- Institute of Experimental Biomedicine (M.R., A.Z.), University Hospital Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine (M.R., A.Z.), University Hospital Würzburg, Germany
| | - Susanne Karbach
- Department of Dermatology, University of Cologne, Germany (A.I.).,Institute of Pathology, University Hospital Essen, University Duisburg-Essen (H.A.B.)
| | - Philip Wenzel
- Department of Dermatology, University of Cologne, Germany (A.I.).,Institute of Pathology, University Hospital Essen, University Duisburg-Essen (H.A.B.)
| | - Michaela Kuhn
- From the Institute of Physiology, University of Würzburg, Germany (W.C., F.W., K.V., T.P., M.K.).,Comprehensive Heart Failure Center (W.C., U.H., S.F., M.K.), University Hospital Würzburg, Germany
| |
Collapse
|
62
|
Bubb KJ, Aubdool AA, Moyes AJ, Lewis S, Drayton JP, Tang O, Mehta V, Zachary IC, Abraham DJ, Tsui J, Hobbs AJ. Endothelial C-Type Natriuretic Peptide Is a Critical Regulator of Angiogenesis and Vascular Remodeling. Circulation 2019; 139:1612-1628. [PMID: 30586761 DOI: 10.1161/circulationaha.118.036344] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Angiogenesis and vascular remodeling are complementary, innate responses to ischemic cardiovascular events, including peripheral artery disease and myocardial infarction, which restore tissue blood supply and oxygenation; the endothelium plays a critical function in these intrinsic protective processes. C-type natriuretic peptide (CNP) is a fundamental endothelial signaling species that coordinates vascular homeostasis. Herein, we sought to delineate a central role for CNP in angiogenesis and vascular remodeling in response to ischemia. METHODS The in vitro angiogenic capacity of CNP was examined in pulmonary microvascular endothelial cells and aortic rings isolated from wild-type, endothelium-specific CNP-/-, global natriuretic peptide receptor (NPR)-B-/- and NPR-C-/- animals, and human umbilical vein endothelial cells. These studies were complemented by in vivo investigation of neovascularization and vascular remodeling after ischemia or vessel injury, and CNP/NPR-C expression and localization in tissue from patients with peripheral artery disease. RESULTS Clinical vascular ischemia is associated with reduced levels of CNP and its cognate NPR-C. Moreover, genetic or pharmacological inhibition of CNP and NPR-C, but not NPR-B, reduces the angiogenic potential of pulmonary microvascular endothelial cells, human umbilical vein endothelial cells, and isolated vessels ex vivo. Angiogenesis and remodeling are impaired in vivo in endothelium-specific CNP-/- and NPR-C-/-, but not NPR-B-/-, mice; the detrimental phenotype caused by genetic deletion of endothelial CNP, but not NPR-C, can be rescued by pharmacological administration of CNP. The proangiogenic effect of CNP/NPR-C is dependent on activation of Gi, ERK1/2, and phosphoinositide 3-kinase γ/Akt at a molecular level. CONCLUSIONS These data define a central (patho)physiological role for CNP in angiogenesis and vascular remodeling in response to ischemia and provide the rationale for pharmacological activation of NPR-C as an innovative approach to treating peripheral artery disease and ischemic cardiovascular disorders.
Collapse
Affiliation(s)
- Kristen J Bubb
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.).,University of Sydney, Kolling Institute of Medical Research, St Leonards, Australia (K.J.B., O.T.)
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.)
| | - Amie J Moyes
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.)
| | - Sarah Lewis
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, Royal Free Campus, UK (S.L., D.J.A., J.T.)
| | - Jonathan P Drayton
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.)
| | - Owen Tang
- University of Sydney, Kolling Institute of Medical Research, St Leonards, Australia (K.J.B., O.T.)
| | - Vedanta Mehta
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, UK (V.M., I.C.Z.)
| | - Ian C Zachary
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, UK (V.M., I.C.Z.)
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, Royal Free Campus, UK (S.L., D.J.A., J.T.)
| | - Janice Tsui
- Centre for Rheumatology and Connective Tissue Diseases, University College London Medical School, Royal Free Campus, UK (S.L., D.J.A., J.T.)
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, UK (K.J.B., A.A.A., A.J.M., J.P.D., A.J.H.)
| |
Collapse
|
63
|
Kongpol K, Nernpermpisooth N, Prompunt E, Kumphune S. Endothelial-Cell-Derived Human Secretory Leukocyte Protease Inhibitor (SLPI) Protects Cardiomyocytes against Ischemia/Reperfusion Injury. Biomolecules 2019; 9:biom9110678. [PMID: 31683729 PMCID: PMC6920779 DOI: 10.3390/biom9110678] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Vascular endothelial cell (EC)-derived factors play an important role in endothelial-cardiomyocyte crosstalk and could save cardiomyocytes (CMs) from injury. The manipulation of endothelial cells to secrete protective factors could enhance cardioprotection. Secretory leukocyte protease inhibitor (SLPI) has been known to protect the heart. The goal of this study was to evaluate the in vitro paracrine protective effect and mechanisms of EC-derived human SLPI on cardiomyocytes subjected to hypoxia/reoxygenation (H/R) injury. Stable endothelial cells overexpressing human SLPI were generated from an endothelial cell line (EA.hy926). The cytoprotective effect was determined by cell survival assay. The results showed that endothelial-derived recombinant human SLPI (rhSLPI) reduced simulated ischemia/reperfusion (I/R)-(81.75% ± 1.42% vs. 60.27% ± 2.52%, p < 0.05) and hypoxia/reoxygenation (H/R)-induced EC injury (83.57% ± 1.78% vs. 63.07% ± 1.93%, p < 0.05). Moreover, co-culture of ECs overexpressing rhSLPI with CMs at ratios 1:1 and 1:3 or treatment with conditioned medium enhanced cell viability by 10.51-16.7% (co-culture) and 15.25-20.45% (conditioned medium) by reducing intracellular reactive oxygen species (ROS) production, the Bax/Bcl-2 expression ratio, caspase-3, and caspase-8, and in preconditioned CMs by activation of p38 MAPK and Akt survival kinase. In conclusion, this study showed for the first time that EC-derived rhSLPI provided cardio-vasculoprotective effects against I/R injury as a possible alternative therapeutic strategy for cardioprotection.
Collapse
Affiliation(s)
- Kantapich Kongpol
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Nitirut Nernpermpisooth
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| | - Eakkapote Prompunt
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand.
| | - Sarawut Kumphune
- Biomedical Research Unit in Cardiovascular Sciences (BRUCS), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
64
|
Oatmen KE, Zile MR, Burnett JC, Spinale FG. Bioactive Signaling in Next-Generation Pharmacotherapies for Heart Failure: A Review. JAMA Cardiol 2019; 3:1232-1243. [PMID: 30484834 DOI: 10.1001/jamacardio.2018.3789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Importance The standard pharmacotherapy for heart failure (HF), particularly HF with reduced ejection fraction (HFrEF), is primarily through the use of receptor antagonists, notably inhibition of the renin-angiotensin system by either angiotensin-converting enzyme inhibition or angiotensin II receptor blockade (ARB). However, the completed Prospective Comparison of ARNI With an ACE-Inhibitor to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial identified that the use of a single molecule (sacubitril/valsartan), which is an ARB and the neutral endopeptidase inhibitor (NEPi) neprilysin, yielded improved clinical outcomes in HFrEF compared with angiotensin-converting enzyme inhibition alone. Observations This review examined specific bioactive signaling pathways that would be potentiated by NEPi and how these would affect key cardiovascular processes relevant to HFrEF. It also addressed potential additive/synergistic effects of ARB. A number of biological signaling pathways that may be potentiated by sacubitril/valsartan were identified, including some novel candidate molecules, which will act in a synergistic manner to favorably alter the natural history of HFrEF. Conclusions and Relevance This review identified that activation rather than inhibition of specific receptor pathways provided favorable cardiovascular effects that cannot be achieved by renin-angiotensin system inhibition alone. Thus, an entirely new avenue of translational and clinical research lies ahead in which HF pharmacotherapies will move beyond receptor antagonist strategies.
Collapse
Affiliation(s)
- Kelsie E Oatmen
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia
| | - Michael R Zile
- Medical University of South Carolina, Charleston.,Ralph H. Johnson Department of VA Medical Center, Charleston, South Carolina
| | - John C Burnett
- Cardiorenal Research Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Francis G Spinale
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine, Columbia.,William Jennings Bryan Dorn VA Medical Center, Columbia, South Carolina
| |
Collapse
|
65
|
Špiranec K, Chen W, Werner F, Nikolaev VO, Naruke T, Koch F, Werner A, Eder-Negrin P, Diéguez-Hurtado R, Adams RH, Baba HA, Schmidt H, Schuh K, Skryabin BV, Movahedi K, Schweda F, Kuhn M. Endothelial C-Type Natriuretic Peptide Acts on Pericytes to Regulate Microcirculatory Flow and Blood Pressure. Circulation 2019; 138:494-508. [PMID: 29626067 DOI: 10.1161/circulationaha.117.033383] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Peripheral vascular resistance has a major impact on arterial blood pressure levels. Endothelial C-type natriuretic peptide (CNP) participates in the local regulation of vascular tone, but the target cells remain controversial. The cGMP-producing guanylyl cyclase-B (GC-B) receptor for CNP is expressed in vascular smooth muscle cells (SMCs). However, whereas endothelial cell-specific CNP knockout mice are hypertensive, mice with deletion of GC-B in vascular SMCs have unaltered blood pressure. METHODS We analyzed whether the vasodilating response to CNP changes along the vascular tree, ie, whether the GC-B receptor is expressed in microvascular types of cells. Mice with a floxed GC-B ( Npr2) gene were interbred with Tie2-Cre or PDGF-Rβ-Cre ERT2 lines to develop mice lacking GC-B in endothelial cells or in precapillary arteriolar SMCs and capillary pericytes. Intravital microscopy, invasive and noninvasive hemodynamics, fluorescence energy transfer studies of pericyte cAMP levels in situ, and renal physiology were combined to dissect whether and how CNP/GC-B/cGMP signaling modulates microcirculatory tone and blood pressure. RESULTS Intravital microscopy studies revealed that the vasodilatatory effect of CNP increases toward small-diameter arterioles and capillaries. CNP consistently did not prevent endothelin-1-induced acute constrictions of proximal arterioles, but fully reversed endothelin effects in precapillary arterioles and capillaries. Here, the GC-B receptor is expressed both in endothelial and mural cells, ie, in pericytes. It is notable that the vasodilatatory effects of CNP were preserved in mice with endothelial GC-B deletion, but abolished in mice lacking GC-B in microcirculatory SMCs and pericytes. CNP, via GC-B/cGMP signaling, modulates 2 signaling cascades in pericytes: it activates cGMP-dependent protein kinase I to phosphorylate downstream targets such as the cytoskeleton-associated vasodilator-activated phosphoprotein, and it inhibits phosphodiesterase 3A, thereby enhancing pericyte cAMP levels. These pathways ultimately prevent endothelin-induced increases of pericyte calcium levels and pericyte contraction. Mice with deletion of GC-B in microcirculatory SMCs and pericytes have elevated peripheral resistance and chronic arterial hypertension without a change in renal function. CONCLUSIONS Our studies indicate that endothelial CNP regulates distal arteriolar and capillary blood flow. CNP-induced GC-B/cGMP signaling in microvascular SMCs and pericytes is essential for the maintenance of normal microvascular resistance and blood pressure.
Collapse
Affiliation(s)
- Katarina Špiranec
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Wen Chen
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Franziska Werner
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Germany (V.O.N.)
| | - Takashi Naruke
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Franziska Koch
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Andrea Werner
- Institute of Physiology, University of Regensburg, Germany (A.W., F.S.)
| | - Petra Eder-Negrin
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Rodrigo Diéguez-Hurtado
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis (R.D.-H., R.H.A.)
| | - Ralf H Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis (R.D.-H., R.H.A.)
| | - Hideo A Baba
- Faculty of Medicine, University of Münster, Germany. Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Germany (H.A.B.)
| | - Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Germany (H.S.)
| | - Kai Schuh
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| | - Boris V Skryabin
- Core Facility Transgenic Animal and genetic engineering Models (B.V.S.)
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab, Vesalius Research Center, Center for Inflammation Research, and Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium (K.M.)
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Germany (A.W., F.S.)
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg and Comprehensive Heart Failure Center, University Hospital Würzburg, Germany (K. Špiranec, W.C., S.C., F.W., T.N., F.K., P.E.-N., K. Schuh, M.K.)
| |
Collapse
|
66
|
Sangaralingham SJ, Burnett JC. Relaxing With C-Type Natriuretic Peptide, the Guanylyl Cyclase B Receptor, and Pericytes. Circulation 2019; 138:509-512. [PMID: 30571536 DOI: 10.1161/circulationaha.118.035132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
67
|
Dugbartey GJ, Quinn B, Luo L, Mickelsen DM, Ture SK, Morrell CN, Czyzyk J, Doyley MM, Yan C, Berk BC, Korshunov VA. The Protective Role of Natriuretic Peptide Receptor 2 against High Salt Injury in the Renal Papilla. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1721-1731. [PMID: 31220449 PMCID: PMC6724224 DOI: 10.1016/j.ajpath.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/11/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
Mutations in natriuretic peptide receptor 2 (Npr2) gene cause a rare form of short-limbed dwarfism, but its physiological effects have not been well studied. Human and mouse genetic data suggest that Npr2 in the kidney plays a role in salt homeostasis. Herein, we described anatomic changes within renal papilla of Npr2 knockout (Npr2-/-) mice. Dramatic reduction was found in diuresis, and albuminuria was evident after administration of 1% NaCl in drinking water in Npr2-/- and heterozygous (Npr2+/-) mice compared with their wild-type (Npr2+/+) littermates. There was indication of renal epithelial damage accompanied by high numbers of red blood cells and inflammatory cells (macrophage surface glycoproteins binding to galectin-3) and an increase of renal epithelial damage marker (T-cell Ig and mucin domain 1) in Npr2-/- mice. Addition of 1% NaCl tended to increase apoptotic cells (cleaved caspase 3) in the renal papilla of Npr2-/- mice. In vitro, genetic silencing of the Npr2 abolished protective effects of C-type natriuretic peptide, a ligand for Npr2, against death of M-1 kidney epithelial cells exposed to 360 mmol/L NaCl. Finally, significantly lower levels of expression of the NPR2 protein were detected in renal samples of hypertensive compared with normotensive human subjects. Taken together, these findings suggest that Npr2 is essential to protect renal epithelial cells from high concentrations of salt and prevent kidney injury.
Collapse
Affiliation(s)
- George J Dugbartey
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Breandan Quinn
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Lingfeng Luo
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Sara K Ture
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Jan Czyzyk
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Chen Yan
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York; Department of Medicine, Neurorestoration Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York.
| | - Vyacheslav A Korshunov
- Aab Cardiovascular Research Institute, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, New York.
| |
Collapse
|
68
|
Forte M, Madonna M, Schiavon S, Valenti V, Versaci F, Zoccai GB, Frati G, Sciarretta S. Cardiovascular Pleiotropic Effects of Natriuretic Peptides. Int J Mol Sci 2019; 20:ijms20163874. [PMID: 31398927 PMCID: PMC6719167 DOI: 10.3390/ijms20163874] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone belonging to the family of natriuretic peptides (NPs). ANP exerts diuretic, natriuretic, and vasodilatory effects that contribute to maintain water–salt balance and regulate blood pressure. Besides these systemic properties, ANP displays important pleiotropic effects in the heart and in the vascular system that are independent of blood pressure regulation. These functions occur through autocrine and paracrine mechanisms. Previous works examining the cardiac phenotype of loss-of-function mouse models of ANP signaling showed that both mice with gene deletion of ANP or its receptor natriuretic peptide receptor A (NPR-A) developed cardiac hypertrophy and dysfunction in response to pressure overload and chronic ischemic remodeling. Conversely, ANP administration has been shown to improve cardiac function in response to remodeling and reduces ischemia-reperfusion (I/R) injury. ANP also acts as a pro-angiogenetic, anti-inflammatory, and anti-atherosclerotic factor in the vascular system. Pleiotropic effects regarding brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were also reported. In this review, we discuss the current evidence underlying the pleiotropic effects of NPs, underlying their importance in cardiovascular homeostasis.
Collapse
Affiliation(s)
| | | | - Sonia Schiavon
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Francesco Versaci
- Department of Cardiology, Santa Maria Goretti Hospital, 04100 Latina, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Giacomo Frati
- IRCCS NEUROMED, 86077 Pozzilli, Italy
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Sebastiano Sciarretta
- IRCCS NEUROMED, 86077 Pozzilli, Italy.
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
| |
Collapse
|
69
|
Caniffi C, Cerniello FM, Bouchet G, Sueiro ML, Tomat A, Maglio DG, Toblli JE, Arranz C. Chronic treatment with C-type natriuretic peptide impacts differently in the aorta of normotensive and hypertensive rats. Pflugers Arch 2019; 471:1103-1115. [DOI: 10.1007/s00424-019-02287-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/24/2022]
|
70
|
Hansen LH, Madsen TD, Goth CK, Clausen H, Chen Y, Dzhoyashvili N, Iyer SR, Sangaralingham SJ, Burnett JC, Rehfeld JF, Vakhrushev SY, Schjoldager KT, Goetze JP. Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. J Biol Chem 2019; 294:12567-12578. [PMID: 31186350 DOI: 10.1074/jbc.ra119.008102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a peptide hormone that in response to atrial stretch is secreted from atrial myocytes into the circulation, where it stimulates vasodilatation and natriuresis. ANP is an important biomarker of heart failure where low plasma concentrations exclude cardiac dysfunction. ANP is a member of the natriuretic peptide (NP) family, which also includes the B-type natriuretic peptide (BNP) and the C-type natriuretic peptide. The proforms of these hormones undergo processing to mature peptides, and for proBNP, this process has previously been demonstrated to be regulated by O-glycosylation. It has been suggested that proANP also may undergo post-translational modifications. Here, we conducted a targeted O-glycoproteomics approach to characterize O-glycans on NPs and demonstrate that all NP members can carry O-glycans. We identified four O-glycosites in proANP in the porcine heart, and surprisingly, two of these were located on the mature bioactive ANP itself. We found that one of these glycans is located within a conserved sequence motif of the receptor-binding region, suggesting that O-glycans may serve a function beyond intracellular processing and maturation. We also identified an O-glycoform of proANP naturally occurring in human circulation. We demonstrated that site-specific O-glycosylation shields bioactive ANP from proteolytic degradation and modifies potency at its cognate receptor in vitro Furthermore, we showed that ANP O-glycosylation attenuates acute renal and cardiovascular ANP actions in vivo The discovery of novel glycosylated ANP proteoforms reported here significantly improves our understanding of cardiac endocrinology and provides important insight into the etiology of heart failure.
Collapse
Affiliation(s)
- Lasse H Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Daugbjerg Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Nina Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark .,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen, Denmark
| |
Collapse
|
71
|
Conole D, Myers SH, Mota F, Hobbs AJ, Selwood DL. Biophysical screening methods for extracellular domain peptide receptors, application to natriuretic peptide receptor C ligands. Chem Biol Drug Des 2019; 93:1011-1020. [PMID: 30218492 PMCID: PMC6879014 DOI: 10.1111/cbdd.13395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
Endothelium-derived C-type natriuretic peptide possesses cytoprotective and anti-atherogenic functions that regulate vascular homeostasis. The vasoprotective effects of C-type natriuretic peptide are somewhat mediated by the natriuretic peptide receptor C, suggesting that this receptor represents a novel therapeutic target for the treatment of cardiovascular diseases. In order to facilitate our drug discovery efforts, we have optimized an array of biophysical methods including surface plasmon resonance, fluorescence polarization and thermal shift assays to aid in the design, assessment and characterization of small molecule agonist interactions with natriuretic peptide receptors. Assay conditions are investigated to explore the feasibility and dynamic range of each method, and peptide-based agonists and antagonists are used as controls to validate these conditions. Once established, each technique was compared and contrasted with respect to their drug discovery utility. We foresee that such techniques will facilitate the discovery and development of potential therapeutic agents for NPR-C and other large extracellular domain membrane receptors.
Collapse
Affiliation(s)
- Daniel Conole
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Samuel H. Myers
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Filipa Mota
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Adrian J. Hobbs
- William Harvey Research InstituteHeart Centre, Barts & The London School of MedicineQueen Mary University of LondonLondonUK
| | - David L. Selwood
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| |
Collapse
|
72
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
73
|
Chen Y, Zheng Y, Iyer SR, Harders GE, Pan S, Chen HH, Ichiki T, Burnett JC, Sangaralingham SJ. C53: A novel particulate guanylyl cyclase B receptor activator that has sustained activity in vivo with anti-fibrotic actions in human cardiac and renal fibroblasts. J Mol Cell Cardiol 2019; 130:140-150. [PMID: 30954448 DOI: 10.1016/j.yjmcc.2019.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
Abstract
The native particulate guanylyl cyclase B receptor (pGC-B) activator, C-type natriuretic peptide (CNP), induces anti-remodeling actions in the heart and kidney through the generation of the second messenger 3', 5' cyclic guanosine monophosphate (cGMP). Indeed fibrotic remodeling, particularly in cardiorenal disease states, contributes to disease progression and thus, has been a key target for drug discovery and development. Although the pGC-B/cGMP system has been perceived as a promising anti-fibrotic pathway, its therapeutic potential is limited due to the rapid degradation and catabolism of CNP by neprilysin (NEP) and natriuretic peptide clearance receptor (NPRC). The goal of this study was to bioengineer and test in vitro and in vivo a novel pGC-B activator, C53. Here we established that C53 selectively generates cGMP via the pGC-B receptor and is highly resistant to NEP and has less interaction with NPRC in vitro. Furthermore in vivo, C53 had enhanced cGMP-generating actions that paralleled elevated plasma CNP-like levels, thus indicating a longer circulating half-life compared to CNP. Importantly in human cardiac fibroblasts (HCFs) and renal fibroblasts (HRFs), C53 exerted robust cGMP-generating actions, inhibited TGFβ-1 stimulated HCFs and HRFs proliferation chronically and suppressed the differentiation of HCFs and HRFs to myofibroblasts. The current findings advance innovation in drug discovery and highlight C53 as a novel pGC-B activator with sustained in vivo activity and anti-fibrotic actions in vitro. Future studies are warranted to explore the efficacy and therapeutic opportunity of C53 targeting fibrosis in cardiorenal disease states and beyond.
Collapse
Affiliation(s)
- Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States.
| | - Ye Zheng
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Gerald E Harders
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Shuchong Pan
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Horng H Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States; Department of Physiology and Biomedical Engineering, United States
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, United States; Department of Physiology and Biomedical Engineering, United States.
| |
Collapse
|
74
|
Morozumi N, Yotsumoto T, Yamaki A, Yoshikiyo K, Yoshida S, Nakamura R, Jindo T, Furuya M, Maeda H, Minamitake Y, Kangawa K. ASB20123: A novel C-type natriuretic peptide derivative for treatment of growth failure and dwarfism. PLoS One 2019; 14:e0212680. [PMID: 30794654 PMCID: PMC6386482 DOI: 10.1371/journal.pone.0212680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/07/2019] [Indexed: 12/17/2022] Open
Abstract
C-type natriuretic peptide (CNP) and its receptor natriuretic peptide receptor B (NPR-B) are physiological potent positive regulators of endochondral bone growth; therefore, the CNP/NPR-B signaling pathway is one of the most promising therapeutic targets for treating growth failure and dwarfism. In this article, we summarized the pharmacological properties of a novel CNP analog peptide ASB20123 as a therapeutic agent for short stature. ASB20123, one of the CNP/ghrelin chimeric peptides, is composed of CNP(1-22) and human ghrelin(12-28, E17D). Compared to CNP(1-22), ASB20123 showed similar agonist activity for NPR-B and improved biokinetics with a longer plasma half-life in rats. In addition, the distribution of ASB20123 to the cartilage was higher than that of CNP(1-22) after single subcutaneous (sc) injection to mice. These results suggested that the C-terminal part of ghrelin, which has clusters of basic amino acid residues and a BX7B motif, might contribute to the retention of ASB20123 in the extracellular matrix of the growth plate. Multiple sc doses of ASB20123 potently stimulated skeletal growth in rats in a dose-dependent manner, and sc infusion was more effective than bolus injection at the same dose. Our data indicated that high plasma levels of ASB20123 would not necessarily be required for bone growth acceleration. Thus, pharmaceutical formulation approaches for sustained-release dosage forms to allow chronic exposure to ASB20123 might be suitable to ensure drug effectiveness and safety.
Collapse
Affiliation(s)
| | - Takafumi Yotsumoto
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
- * E-mail:
| | - Akira Yamaki
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kazunori Yoshikiyo
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Sayaka Yoshida
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Ryuichi Nakamura
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Toshimasa Jindo
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | - Hiroaki Maeda
- Asubio Pharma Co., Ltd., Kobe, Japan
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| |
Collapse
|
75
|
Edmund AB, Walseth TF, Levinson NM, Potter LR. The pseudokinase domains of guanylyl cyclase-A and -B allosterically increase the affinity of their catalytic domains for substrate. Sci Signal 2019; 12:12/566/eaau5378. [PMID: 30696704 DOI: 10.1126/scisignal.aau5378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natriuretic peptides regulate multiple physiologic systems by activating transmembrane receptors containing intracellular guanylyl cyclase domains, such as GC-A and GC-B, also known as Npr1 and Npr2, respectively. Both enzymes contain an intracellular, phosphorylated pseudokinase domain (PKD) critical for activation of the C-terminal cGMP-synthesizing guanylyl cyclase domain. Because ATP allosterically activates GC-A and GC-B, we investigated how ATP binding to the PKD influenced guanylyl cyclase activity. Molecular modeling indicated that all the residues of the ATP-binding site of the prototypical kinase PKA, except the catalytic aspartate, are conserved in the PKDs of GC-A and GC-B. Kinase-inactivating alanine substitutions for the invariant lysine in subdomain II or the aspartate in the DYG-loop of GC-A and GC-B failed to decrease enzyme phosphate content, consistent with the PKDs lacking kinase activity. In contrast, both mutations reduced enzyme activation by blocking the ability of ATP to decrease the Michaelis constant without affecting peptide-dependent activation. The analogous lysine-to-alanine substitution in a glutamate-substituted phosphomimetic mutant form of GC-B also reduced enzyme activity, consistent with ATP stimulating guanylyl cyclase activity through an allosteric, phosphorylation-independent mechanism. Mutations designed to rigidify the conserved regulatory or catalytic spines within the PKDs increased guanylyl cyclase activity, increased sensitivity to natriuretic peptide, or reduced the Michaelis constant in the absence of ATP, consistent with ATP binding stabilizing the PKD in a conformation analogous to that of catalytically active kinases. We conclude that allosteric mechanisms evolutionarily conserved in the PKDs promote the catalytic activation of transmembrane guanylyl cyclases.
Collapse
Affiliation(s)
- Aaron B Edmund
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Timothy F Walseth
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Nicholas M Levinson
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | - Lincoln R Potter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA. .,Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
76
|
Keng BMH, Gao F, Tan RS, Ewe SH, Teo LLY, Xie BQ, Goh GBB, Koh WP, Koh AS. N-Terminal pro C-Type Natriuretic Peptide (NTproCNP) and myocardial function in ageing. PLoS One 2018; 13:e0209517. [PMID: 30566484 PMCID: PMC6300279 DOI: 10.1371/journal.pone.0209517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022] Open
Abstract
Ageing-related alterations in cardiovascular structure and function are commonly associated with chronic inflammation. A potential blood-based biomarker indicative of a chronic inflammatory state is N-Terminal Pro C-Type Natriuretic Peptide (NTproCNP). We aim to investigate associations between NTproCNP and ageing-related impairments in cardiovascular function. Community-based participants underwent same-day assessment of cardiovascular function and circulating profiles of plasma NTproCNP. Associations between cardiovascular and biomarker profiles were studied in adjusted models including standard covariates. We studied 93 participants (mean age 73 ± 5.3 years, 36 women), of whom 55 (59%) had impaired myocardial relaxation (ratio of peak velocity flow in early diastole E (m/s) to peak velocity flow in late diastole by atrial contraction A (m/s) <0.84). Participants with impaired myocardial relaxation were also found to have lower peak early phase filling velocity (0.6 ± 0.1 vs 0.7 ± 0.1, p < 0.0001) and higher peak atrial phase filling velocity (0.9 ± 0.1 vs 0.7 ± 0.1, p < 0.0001). NTproCNP levelswere significantly lower among participants with impaired myocardial relaxation (16.4% vs 39.5% with NTproCNP ≥ 19, p = 0.012). After multivariable adjustments, NTproCNP was independently associated with impaired myocardial relaxation (OR 2.99, 95%CI 1.12–8.01, p = 0.029). Community elderly adults with myocardial ageing have lower NTproCNP levels compared to those with preserved myocardial function. Given that impaired myocardial relaxation probably represents early changes within the myocardium with ageing, NTproCNP may be useful as an ‘upstream’ biomarker useful for charting myocardial ageing.
Collapse
Affiliation(s)
| | - Fei Gao
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ru San Tan
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - See Hooi Ewe
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Bei Qi Xie
- National Heart Centre Singapore, Singapore, Singapore
| | - George B. B. Goh
- Duke-NUS Medical School, Singapore, Singapore
- Singapore General Hospital, Singapore, Singapore
| | - Woon-Puay Koh
- Duke-NUS Medical School, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Angela S. Koh
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
77
|
Day A, Jameson Z, Hyde C, Simbi B, Fowkes R, Lawson C. C-Type Natriuretic Peptide (CNP) Inhibition of Interferon-γ-Mediated Gene Expression in Human Endothelial Cells In Vitro. BIOSENSORS-BASEL 2018; 8:bios8030086. [PMID: 30223437 PMCID: PMC6164118 DOI: 10.3390/bios8030086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/24/2018] [Accepted: 09/11/2018] [Indexed: 01/14/2023]
Abstract
Cardiovascular diseases, including atherosclerosis, now account for more deaths in the Western world than from any other cause. Atherosclerosis has a chronic inflammatory component involving Th1 pro-inflammatory cytokines such as IFN-γ, which is known to induce endothelial cell inflammatory responses. On the other hand CNP, which acts via its receptors to elevate intracellular cGMP, is produced by endothelium and endocardium and is upregulated in atherosclerosis. It is believed to be protective, however its role in vascular inflammation is not well understood. The aim of this study was to investigate the effects of CNP on human endothelial cell inflammatory responses following IFN-γ stimulation. Human umbilical vein endothelial cells were treated with either IFN-γ (10 ng/mL) or CNP (100 nm), or both in combination, followed by analysis by flow cytometry for expression of MHC class I and ICAM-1. IFN-γ significantly increased expression of both molecules, which was significantly inhibited by CNP or the cGMP donor 8-Bromoguanosine 3',5'-cyclic monophosphate (1 µm). CNP also reduced IFN-γ mediated kynurenine generation by the IFN-γ regulated enzyme indoleamine-2,3-deoxygenase (IDO). We conclude that CNP downmodulates IFN-γ induced pro-inflammatory gene expression in human endothelial cells via a cGMP-mediated pathway. Thus, CNP may have a protective role in vascular inflammation and novel therapeutic strategies for CVD based on upregulation of endothelial CNP expression could reduce chronic EC inflammation.
Collapse
Affiliation(s)
- Amy Day
- Cardiovascular and Inflammation Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street London, NW1 0TU, UK.
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Zoe Jameson
- Cardiovascular and Inflammation Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street London, NW1 0TU, UK.
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Carolyn Hyde
- Bio-Analysis Centre, London Bioscience Innovation Centre, Royal College Street, London NW1 0NH, UK.
| | - Bigboy Simbi
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Robert Fowkes
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK.
| | - Charlotte Lawson
- Cardiovascular and Inflammation Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street London, NW1 0TU, UK.
| |
Collapse
|
78
|
Phosphodiesterase 2 inhibition preferentially promotes NO/guanylyl cyclase/cGMP signaling to reverse the development of heart failure. Proc Natl Acad Sci U S A 2018; 115:E7428-E7437. [PMID: 30012589 PMCID: PMC6077693 DOI: 10.1073/pnas.1800996115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is a shared manifestation of several cardiovascular pathologies, including hypertension and myocardial infarction, and a limited repertoire of treatment modalities entails that the associated morbidity and mortality remain high. Impaired nitric oxide (NO)/guanylyl cyclase (GC)/cyclic guanosine-3',5'-monophosphate (cGMP) signaling, underpinned, in part, by up-regulation of cyclic nucleotide-hydrolyzing phosphodiesterase (PDE) isozymes, contributes to the pathogenesis of HF, and interventions targeted to enhancing cGMP have proven effective in preclinical models and patients. Numerous PDE isozymes coordinate the regulation of cardiac cGMP in the context of HF; PDE2 expression and activity are up-regulated in experimental and human HF, but a well-defined role for this isoform in pathogenesis has yet to be established, certainly in terms of cGMP signaling. Herein, using a selective pharmacological inhibitor of PDE2, BAY 60-7550, and transgenic mice lacking either NO-sensitive GC-1α (GC-1α-/-) or natriuretic peptide-responsive GC-A (GC-A-/-), we demonstrate that the blockade of PDE2 promotes cGMP signaling to offset the pathogenesis of experimental HF (induced by pressure overload or sympathetic hyperactivation), reversing the development of left ventricular hypertrophy, compromised contractility, and cardiac fibrosis. Moreover, we show that this beneficial pharmacodynamic profile is maintained in GC-A-/- mice but is absent in animals null for GC-1α or treated with a NO synthase inhibitor, revealing that PDE2 inhibition preferentially enhances NO/GC/cGMP signaling in the setting of HF to exert wide-ranging protection to preserve cardiac structure and function. These data substantiate the targeting of PDE2 in HF as a tangible approach to maximize myocardial cGMP signaling and enhancing therapy.
Collapse
|
79
|
Ved N, Da Vitoria Lobo ME, Bestall SM, L Vidueira C, Beazley-Long N, Ballmer-Hofer K, Hirashima M, Bates DO, Donaldson LF, Hulse RP. Diabetes-induced microvascular complications at the level of the spinal cord: a contributing factor in diabetic neuropathic pain. J Physiol 2018; 596:3675-3693. [PMID: 29774557 PMCID: PMC6092307 DOI: 10.1113/jp275067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Diabetes is thought to induce neuropathic pain through activation of dorsal horn sensory neurons in the spinal cord. Here we explore the impact of hyperglycaemia on the blood supply supporting the spinal cord and chronic pain development. In streptozotocin-induced diabetic rats, neuropathic pain is accompanied by a decline in microvascular integrity in the dorsal horn. Hyperglycaemia-induced degeneration of the endothelium in the dorsal horn was associated with a loss in vascular endothelial growth factor (VEGF)-A165 b expression. VEGF-A165 b treatment prevented diabetic neuropathic pain and degeneration of the endothelium in the spinal cord. Using an endothelial-specific VEGFR2 knockout transgenic mouse model, the loss of endothelial VEGFR2 signalling led to a decline in vascular integrity in the dorsal horn and the development of hyperalgesia in VEGFR2 knockout mice. This highlights that vascular degeneration in the spinal cord could be a previously unidentified factor in the development of diabetic neuropathic pain. ABSTRACT Abnormalities of neurovascular interactions within the CNS of diabetic patients is associated with the onset of many neurological disease states. However, to date, the link between the neurovascular network within the spinal cord and regulation of nociception has not been investigated despite neuropathic pain being common in diabetes. We hypothesised that hyperglycaemia-induced endothelial degeneration in the spinal cord, due to suppression of vascular endothelial growth factor (VEGF)-A/VEGFR2 signalling, induces diabetic neuropathic pain. Nociceptive pain behaviour was investigated in a chemically induced model of type 1 diabetes (streptozotocin induced, insulin supplemented; either vehicle or VEGF-A165 b treated) and an inducible endothelial knockdown of VEGFR2 (tamoxifen induced). Diabetic animals developed mechanical allodynia and heat hyperalgesia. This was associated with a reduction in the number of blood vessels and reduction in Evans blue extravasation in the lumbar spinal cord of diabetic animals versus age-matched controls. Endothelial markers occludin, CD31 and VE-cadherin were downregulated in the spinal cord of the diabetic group versus controls, and there was a concurrent reduction of VEGF-A165 b expression. In diabetic animals, VEGF-A165 b treatment (biweekly i.p., 20 ng g-1 ) restored normal Evans blue extravasation and prevented vascular degeneration, diabetes-induced central neuron activation and neuropathic pain. Inducible knockdown of VEGFR2 (tamoxifen treated Tie2CreERT2 -vegfr2flfl mice) led to a reduction in blood vessel network volume in the lumbar spinal cord and development of heat hyperalgesia. These findings indicate that hyperglycaemia leads to a reduction in the VEGF-A/VEGFR2 signalling cascade, resulting in endothelial dysfunction in the spinal cord, which could be an undiscovered contributing factor to diabetic neuropathic pain.
Collapse
Affiliation(s)
- N Ved
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - M E Da Vitoria Lobo
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK
| | - S M Bestall
- Arthritis Research UK Pain Centre and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | - C L Vidueira
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK
| | - N Beazley-Long
- Arthritis Research UK Pain Centre and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | - M Hirashima
- Division of Vascular Biology, Kobe University, Japan
| | - D O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham, Birmingham and University of Nottingham, Nottingham, UK
| | - L F Donaldson
- Institute of Ophthalmology, 11-43 Bath St, London, EC1V 9EL, UK
| | - R P Hulse
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine University of Nottingham, Nottingham, NG7 2UH, UK.,School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
80
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
81
|
Ichiki T, Dzhoyashvili N, Burnett JC. Natriuretic peptide based therapeutics for heart failure: Cenderitide: A novel first-in-class designer natriuretic peptide. Int J Cardiol 2018; 281:166-171. [PMID: 29941213 DOI: 10.1016/j.ijcard.2018.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
Abstract
Cenderitide is a novel designer natriuretic peptide (NP) composed of C-type natriuretic peptide (CNP) fused to the C-terminus of Dendroaspis natriuretic peptide (DNP). Cenderitide was engineered to co-activate the two NP receptors, particulate guanylyl cyclase (pGC)-A and pGC-B. The rationale for its design was to achieve the renal-enhancing and anti-fibrotic properties of dual receptor activation, but without clinically significant hypotension. Here, we review the biology of the NPs and the rationale for their use in heart failure. Most importantly, we present the key studies related to the discovery of Cenderitide. Finally, we review the key clinical studies that have advanced this first-in-class dual NP receptor activator for heart failure.
Collapse
Affiliation(s)
- Tomoko Ichiki
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Department of Physiology and Bioengineering, College of Medicine Mayo Clinic, Rochester, MN, USA
| | - Nina Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Department of Physiology and Bioengineering, College of Medicine Mayo Clinic, Rochester, MN, USA
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Diseases, Department of Physiology and Bioengineering, College of Medicine Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
82
|
Ma Q, Zhang L. C-type natriuretic peptide functions as an innate neuroprotectant in neonatal hypoxic-ischemic brain injury in mouse via natriuretic peptide receptor 2. Exp Neurol 2018; 304:58-66. [PMID: 29501420 DOI: 10.1016/j.expneurol.2018.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
Neonatal hypoxia-ischemia (HI) is the most common cause of brain injury in neonates, which leads to high neonatal mortality and severe neurological morbidity in later life (Vannucci, 2000; Volpe, 2001). Yet the molecular mechanisms of neuronal death and brain damage induced by neonatal HI remain largely elusive. Herein, using both in vivo and in vitro models, we determine an endogenous neuroprotectant role of c-type natriuretic peptide (CNP) in preserving neuronal survival after HI brain injury in mouse pups. Postnatal day 7 (P7) mouse pups with CNP deficiency (Nppclbab/lbab) exhibit increased brain infarct size and worsened long-term locomotor function after neonatal HI compared with wildtype control (Nppc+/+). In isolated primary cortical neurons, recombinant CNP dose-dependently protects primary neurons from oxygen-glucose deprivation (OGD) insult. This neuroprotective effect appears to be mediated through its cognate natriuretic peptide receptor 2 (NPR2), in that antagonization of NPR2, but not NPR3, exacerbates neuronal death and counteracts the protective effect of CNP on primary neurons exposed to OGD insult. Immunoblot and confocal microscopy demonstrate the abundant expression of NPR2 in neurons of the neonatal brain and in isolated primary cortical neurons as well. Moreover, similar to CNP deficiency, administration of NPR2 antagonist P19 via intracerebroventricular injection prior to HI results in exacerbated neuronal death and brain injury after HI. Altogether, the present study indicates that CNP and its cognate receptor NPR2 mainly expressed in neurons represent an innate neuroprotective mechanism in neonatal HI brain injury.
Collapse
Affiliation(s)
- Qingyi Ma
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
83
|
Wang L, Liu W, Yu Y, Jiang L, Yang J. Increased circulating bioactive C-type natriuretic peptide is associated with reduced heart rate variability in patients with chronic kidney disease. BMC Nephrol 2018; 19:50. [PMID: 29506482 PMCID: PMC5839007 DOI: 10.1186/s12882-018-0843-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND C-type natriuretic peptide (CNP) is a member of the natriuretic peptide family and have been implicated to be involved in maintaining vascular homeostasis and acting as a cardiac chronotropic agent in experimental studies. However, clinical evidence of its participation in cardiovascular regulation is lacking, especially in patients with chronic kidney disease (CKD). We aimed to explore the association of circulating CNP with cardiovascular alterations in CKD. METHODS Seventy-six subjects with CKD were recruited. Plasma CNP-22, the bioactive form of CNP in the circulation, was measured by an enzyme immunoassay. The patients also underwent several cardiovascular evaluations including measurement of blood pressure, endothelial function, heart rate variability (HRV) and pulse wave velocity. RESULTS Mean (±standard deviation) age of the patients were 59.9 (±14.9) years and 56.6% were male. Average plasma CNP level was 790.8 ± 309.1 pg/ml. Plasma CNP level was not increased as estimated glomerular filtration rate declined. There was no significant difference of CNP between patients with or without endothelial dysfunction (with vs. without endothelial dysfunction: 844.6 ± 365.5 pg/ml vs. 738.3 ± 231.8 pg/ml, p = 0.14). Plasma CNP showed no association with blood pressure or pulse wave velocity, but was negatively associated with time-domain HRV parameters (SDNN, RMSSD, Triangular Index). The association of CNP with HRV persisted after adjustment for potential covariates. CONCLUSIONS Our data highlights a possible link between circulating CNP and autonomic dysfunction in CKD patients. Further studies are warranted to explore the mechanisms underlying this association, as well as evaluate the ability of circulating CNP in predicting adverse cardiovascular event in CKD patients.
Collapse
Affiliation(s)
- Lulu Wang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China
| | - Wenjin Liu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China
| | - Yanting Yu
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China.,Departments of nephrology, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China.
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital of Nanjing Medical University, 262# North Zhongshan Road, Nanjing, 210003, China.
| |
Collapse
|
84
|
McLaughlin K, Audette MC, Parker JD, Kingdom JC. Mechanisms and Clinical Significance of Endothelial Dysfunction in High-Risk Pregnancies. Can J Cardiol 2018; 34:371-380. [PMID: 29571421 DOI: 10.1016/j.cjca.2018.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/05/2018] [Accepted: 01/07/2018] [Indexed: 10/18/2022] Open
Abstract
The maternal cardiovascular system undergoes critical anatomic and functional adaptations to achieve a successful pregnancy outcome which, if disrupted, can result in complications that significantly affect maternal and fetal health. Complications that involve the maternal cardiovascular system are among the most common disorders of pregnancy, including gestational hypertension, preeclampsia, gestational diabetes, and impaired fetal growth. As a central feature, maternal endothelial dysfunction is hypothesized to play a predominant role in mediating the pathogenesis of these high-risk pregnancies, and as such, might proceed and precipitate the clinical presentation of these pregnancy disorders. Improving or normalizing maternal endothelial function in high-risk pregnancies might be an effective therapeutic strategy to ameliorate maternal and fetal clinical outcomes.
Collapse
Affiliation(s)
- Kelsey McLaughlin
- Department of Medicine, Division of Cardiology, Sinai Health System, University of Toronto, Toronto, Ontario, Canada; The Centre for Women's and Infant's Health at the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Melanie C Audette
- The Centre for Women's and Infant's Health at the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - John D Parker
- Department of Medicine, Division of Cardiology, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - John C Kingdom
- The Centre for Women's and Infant's Health at the Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, Division of Maternal-Fetal Medicine, Sinai Health System, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
85
|
Ren M, Ng FL, Warren HR, Witkowska K, Baron M, Jia Z, Cabrera C, Zhang R, Mifsud B, Munroe PB, Xiao Q, Townsend-Nicholson A, Hobbs AJ, Ye S, Caulfield MJ. The biological impact of blood pressure-associated genetic variants in the natriuretic peptide receptor C gene on human vascular smooth muscle. Hum Mol Genet 2018; 27:199-210. [PMID: 29040610 PMCID: PMC5886068 DOI: 10.1093/hmg/ddx375] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 02/05/2023] Open
Abstract
Elevated blood pressure (BP) is a major global risk factor for cardiovascular disease. Genome-wide association studies have identified several genetic variants at the NPR3 locus associated with BP, but the functional impact of these variants remains to be determined. Here we confirmed, by a genome-wide association study within UK Biobank, the existence of two independent BP-related signals within NPR3 locus. Using human primary vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) from different individuals, we found that the BP-elevating alleles within one linkage disequilibrium block identified by the sentinel variant rs1173771 was associated with lower endogenous NPR3 mRNA and protein levels in VSMCs, together with reduced levels in open chromatin and nuclear protein binding. The BP-elevating alleles also increased VSMC proliferation, angiotensin II-induced calcium flux and cell contraction. However, an analogous genotype-dependent association was not observed in vascular ECs. Our study identifies novel, putative mechanisms for BP-associated variants at the NPR3 locus to elevate BP, further strengthening the case for targeting NPR-C as a therapeutic approach for hypertension and cardiovascular disease prevention.
Collapse
MESH Headings
- Blood Pressure/genetics
- Databases, Nucleic Acid
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Endothelial Cells/physiology
- Gene Frequency
- Genetic Variation
- Genome-Wide Association Study
- Genotype
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Linkage Disequilibrium
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Polymorphism, Single Nucleotide
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Meixia Ren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
- Fujian Key Laboratory of Geriatrics, Department of Geriatric Medicine, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China
| | - Fu Liang Ng
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Kate Witkowska
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Michael Baron
- Structural & Molecular Biology, University College London, London, UK
| | - Zhilong Jia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Core Laboratory of Translational Medicine, Chinese PLA General Hospital, Beijing, China
| | - Claudia Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Ruoxin Zhang
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Qingzhong Xiao
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
- Shantou University Medical College, Shantou, China
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Cardiovascular Biomedical Research Unit at Barts, Barts Heart Centre, Queen Mary University of London, London, UK
| |
Collapse
|
86
|
Blaser MC, Wei K, Adams RLE, Zhou YQ, Caruso LL, Mirzaei Z, Lam AYL, Tam RKK, Zhang H, Heximer SP, Henkelman RM, Simmons CA. Deficiency of Natriuretic Peptide Receptor 2 Promotes Bicuspid Aortic Valves, Aortic Valve Disease, Left Ventricular Dysfunction, and Ascending Aortic Dilatations in Mice. Circ Res 2017; 122:405-416. [PMID: 29273600 DOI: 10.1161/circresaha.117.311194] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 01/25/2023]
Abstract
RATIONALE Aortic valve disease is a cell-mediated process without effective pharmacotherapy. CNP (C-type natriuretic peptide) inhibits myofibrogenesis and osteogenesis of cultured valve interstitial cells and is downregulated in stenotic aortic valves. However, it is unknown whether CNP signaling regulates aortic valve health in vivo. OBJECTIVE The aim of this study is to determine whether a deficient CNP signaling axis in mice causes accelerated progression of aortic valve disease. METHODS AND RESULTS In cultured porcine valve interstitial cells, CNP inhibited pathological differentiation via the guanylate cyclase NPR2 (natriuretic peptide receptor 2) and not the G-protein-coupled clearance receptor NPR3 (natriuretic peptide receptor 3). We used Npr2+/- and Npr2+/-;Ldlr-/- mice and wild-type littermate controls to examine the valvular effects of deficient CNP/NPR2 signaling in vivo, in the context of both moderate and advanced aortic valve disease. Myofibrogenesis in cultured Npr2+/- fibroblasts was insensitive to CNP treatment, whereas aged Npr2+/- and Npr2+/-;Ldlr-/- mice developed cardiac dysfunction and ventricular fibrosis. Aortic valve function was significantly impaired in Npr2+/- and Npr2+/-;Ldlr-/- mice versus wild-type littermates, with increased valve thickening, myofibrogenesis, osteogenesis, proteoglycan synthesis, collagen accumulation, and calcification. 9.4% of mice heterozygous for Npr2 had congenital bicuspid aortic valves, with worse aortic valve function, fibrosis, and calcification than those Npr2+/- with typical tricuspid aortic valves or all wild-type littermate controls. Moreover, cGK (cGMP-dependent protein kinase) activity was downregulated in Npr2+/- valves, and CNP triggered synthesis of cGMP and activation of cGK1 (cGMP-dependent protein kinase 1) in cultured porcine valve interstitial cells. Finally, aged Npr2+/-;Ldlr-/- mice developed dilatation of the ascending aortic, with greater aneurysmal progression in Npr2+/- mice with bicuspid aortic valves than those with tricuspid valves. CONCLUSIONS Our data establish CNP/NPR2 signaling as a novel regulator of aortic valve development and disease and elucidate the therapeutic potential of targeting this pathway to arrest disease progression.
Collapse
Affiliation(s)
- Mark C Blaser
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Kuiru Wei
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Rachel L E Adams
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Yu-Qing Zhou
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Laura-Lee Caruso
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Zahra Mirzaei
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Alan Y-L Lam
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Richard K K Tam
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Hangjun Zhang
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Scott P Heximer
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - R Mark Henkelman
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.)
| | - Craig A Simmons
- From the Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada (M.C.B., R.L.E.A., Y.-Q.Z., L.-l.C., Z.M., A.Y.-L.L., R.K.K.T., H.Z., S.P.H., C.A.S.); Institute of Biomaterials and Biomedical Engineering (M.C.B., K.W., R.L.E.A., A.Y.-L.L., R.K.K.T., C.A.S.), Department of Physiology (H.Z., S.P.H.), and Department of Mechanical and Industrial Engineering (L.-l.C., Z.M., C.A.S.), University of Toronto, Ontario, Canada; and Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada (Y.-Q.Z., R.M.H.).
| |
Collapse
|
87
|
Friebe A, Sandner P, Schmidtko A. Meeting report of the 8 th International Conference on cGMP "cGMP: generators, effectors, and therapeutic implications" at Bamberg, Germany, from June 23 to 25, 2017. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2017; 390:1177-1188. [PMID: 29018913 PMCID: PMC5783999 DOI: 10.1007/s00210-017-1429-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/12/2022]
Abstract
Although the Nobel Prize for the discovery of nitric oxide (NO) dates back almost 20 years now, the knowledge about cGMP signaling is still constantly increasing. It looks even so that our understanding of the role of the soluble guanylyl cyclase (sGC) and particulate guanylyl cyclase (pGC) in health and disease is in many aspects at the beginning and far from being understood. This holds even true for the therapeutic impact of innovative drugs acting on both the NO/sGC and the pGC pathways. Since cGMP, as second messenger, is involved in the pathogenesis of numerous diseases within the cardiovascular, pulmonary, renal, and endocrine systems and also plays a role in neuronal, sensory, and tumor processes, drug applications might be quite broad. On the 8th International Conference on cGMP, held in Bamberg, Germany, world leading experts came together to discuss these topics. All aspects of cGMP research from the basic understanding of cGMP signaling to clinical applicability were discussed in depth. In addition, present and future therapeutic applications of cGMP-modulating pharmacotherapy were presented ( http://www.cyclicgmp.net/index.html ).
Collapse
Affiliation(s)
- Andreas Friebe
- Institute of Physiology, University of Würzburg, Röntgenring 9, 97070 Würzburg, Germany
| | - Peter Sandner
- Drug Discovery, Bayer AG, Aprather Weg 18a, 42096 Wuppertal, Germany
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Achim Schmidtko
- Institute of Pharmacology, College of Pharmacy, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
88
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
89
|
Bae CR, Hino J, Hosoda H, Arai Y, Son C, Makino H, Tokudome T, Tomita T, Kimura T, Nojiri T, Hosoda K, Miyazato M, Kangawa K. Overexpression of C-type Natriuretic Peptide in Endothelial Cells Protects against Insulin Resistance and Inflammation during Diet-induced Obesity. Sci Rep 2017; 7:9807. [PMID: 28852070 PMCID: PMC5574992 DOI: 10.1038/s41598-017-10240-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/02/2017] [Indexed: 02/08/2023] Open
Abstract
The endogenous peptide C-type natriuretic peptide (CNP) binds its receptor, guanylyl cyclase B (GCB), and is expressed by endothelial cells in diverse tissues. Because the endothelial cells of visceral adipose tissue have recently been reported to play a role in lipid metabolism and inflammation, we investigated the effects of CNP on features of obesity by using transgenic (Tg) mice in which CNP was placed under the control of the Tie2 promoter and was thus overexpressed in endothelial cells (E-CNP). Here we show that increased brown adipose tissue thermogenesis in E-CNP Tg mice increased energy expenditure, decreased mesenteric white adipose tissue (MesWAT) fat weight and adipocyte hypertrophy, and prevented the development of fatty liver. Furthermore, CNP overexpression improved glucose tolerance, decreased insulin resistance, and inhibited macrophage infiltration in MesWAT, thus suppressing pro-inflammation during high-fat diet–induced obesity. Our findings indicate an important role for the CNP produced by the endothelial cells in the regulation of MesWAT hypertrophy, insulin resistance, and inflammation during high-fat diet–induced obesity.
Collapse
Affiliation(s)
- Cho-Rong Bae
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Yuji Arai
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Cheol Son
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hisashi Makino
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takeshi Tokudome
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Tsutomu Tomita
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Biobank, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Toru Kimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kiminori Hosoda
- Division of Endocrinology and Metabolism, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| |
Collapse
|
90
|
Kuang DB, Zhou JP, Li MP, Tang J, Chen XP. Association of NPR3 polymorphism with risk of essential hypertension in a Chinese population. J Clin Pharm Ther 2017; 42:554-560. [PMID: 28497617 DOI: 10.1111/jcpt.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/05/2017] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Essential hypertension (EH) is a common disease exhibiting large individual difference in occurrence, development and treatment response. Genetic factors are implicated in the development and progression of EH. This study aimed to explore the association between NPR3 single nucleotide polymorphism rs2270915 (A/G, Asn521Asp) and the risk of EH in a Chinese Han population by a case-control study. METHODS The study was a single-centre, case-control trial, in which a total of 287 EH patients and 289 age- and sex-matched healthy controls were enrolled. The inclusion criteria were as follows: Han Chinese origin, male or female patients, systolic blood pressure (SBP) ≥140 mm Hg and/or diastolic blood pressure (DBP) ≥90 mm Hg. The healthy controls were subjects without histories of cardiovascular or cerebrovascular diseases. NPR3 rs2270915 polymorphism was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In addition, primary human umbilical vein endothelial cells (HUVECs) were isolated from 19 fresh human umbilical cords and cultured. Atrial natriuretic peptide (ANP) concentration in cell medium was determined by enzyme-linked immunosorbent assay (ELISA). NPR3 mRNA expression was determined by real-time semi-quantitative PCR. RESULTS AND DISCUSSION No significant difference in genotype distribution of NPR3 rs2270915 polymorphism was observed between cases and controls (P>.05). Patients carrying the rs2270915 G allele showed decreased SBP, and the difference was marginal. As compared with cells carrying the rs2270915 AA genotype, those with the AG genotype showed significantly lower NPR3 mRNA expression levels (P<.05) and lower medium ANP concentration (P<.001). WHAT IS NEW AND CONCLUSION This study suggested that NPR3 rs2270915 polymorphism was associated with decreased SBP level marginally in EH patients in a Chinese Han population, and the polymorphism may function through decreasing NPR3 mRNA expression and ANP level.
Collapse
Affiliation(s)
- D-B Kuang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - J-P Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - M-P Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - J Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| | - X-P Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
| |
Collapse
|
91
|
Forge A, Taylor RR, Dawson SJ, Lovett M, Jagger DJ. Disruption of SorCS2 reveals differences in the regulation of stereociliary bundle formation between hair cell types in the inner ear. PLoS Genet 2017; 13:e1006692. [PMID: 28346477 PMCID: PMC5386298 DOI: 10.1371/journal.pgen.1006692] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/10/2017] [Accepted: 03/14/2017] [Indexed: 12/24/2022] Open
Abstract
Behavioural anomalies suggesting an inner ear disorder were observed in a colony of transgenic mice. Affected animals were profoundly deaf. Severe hair bundle defects were identified in all outer and inner hair cells (OHC, IHC) in the cochlea and in hair cells of vestibular macular organs, but hair cells in cristae were essentially unaffected. Evidence suggested the disorder was likely due to gene disruption by a randomly inserted transgene construct. Whole-genome sequencing identified interruption of the SorCS2 (Sortilin-related VPS-10 domain containing protein) locus. Real-time-qPCR demonstrated disrupted expression of SorCS2 RNA in cochlear tissue from affected mice and this was confirmed by SorCS2 immuno-labelling. In all affected hair cells, stereocilia were shorter than normal, but abnormalities of bundle morphology and organisation differed between hair cell types. Bundles on OHC were grossly misshapen with significantly fewer stereocilia than normal. However, stereocilia were organised in rows of increasing height. Bundles on IHC contained significantly more stereocilia than normal with some longer stereocilia towards the centre, or with minimal height differentials. In early postnatal mice, kinocilia (primary cilia) of IHC and of OHC were initially located towards the lateral edge of the hair cell surface but often became surrounded by stereocilia as bundle shape and apical surface contour changed. In macular organs the kinocilium was positioned in the centre of the cell surface throughout maturation. There was disruption of the signalling pathway controlling intrinsic hair cell apical asymmetry. LGN and Gαi3 were largely absent, and atypical Protein Kinase C (aPKC) lost its asymmetric distribution. The results suggest that SorCS2 plays a role upstream of the intrinsic polarity pathway and that there are differences between hair cell types in the deployment of the machinery that generates a precisely organised hair bundle.
Collapse
MESH Headings
- Age Factors
- Animals
- Gene Expression Regulation
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hearing Loss/genetics
- Hearing Loss/metabolism
- Hearing Loss/physiopathology
- Immunohistochemistry
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal
- Microscopy, Electron, Scanning
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Organ of Corti/metabolism
- Organ of Corti/physiopathology
- Organ of Corti/ultrastructure
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Stereocilia/genetics
- Stereocilia/metabolism
- Stereocilia/pathology
Collapse
Affiliation(s)
- Andrew Forge
- UCL Ear Institute, University College London, London, United Kingdom
- * E-mail:
| | - Ruth R. Taylor
- UCL Ear Institute, University College London, London, United Kingdom
| | - Sally J. Dawson
- UCL Ear Institute, University College London, London, United Kingdom
| | - Michael Lovett
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Daniel J. Jagger
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
92
|
D'Elia E, Iacovoni A, Vaduganathan M, Lorini FL, Perlini S, Senni M. Neprilysin inhibition in heart failure: mechanisms and substrates beyond modulating natriuretic peptides. Eur J Heart Fail 2017; 19:710-717. [PMID: 28326642 DOI: 10.1002/ejhf.799] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
The autonomic nervous system, the renin-angiotensin-aldosterone system, and the natriuretic peptide system represent critical regulatory pathways in heart failure and as such have been the major targets of pharmacological development. The introduction and approval of angiotensin receptor neprilysin inhibitors (ARNi) have broadened the available drug treatments of patients with chronic heart failure with reduced ejection fraction. Neprilysin catalyses the degradation of a number of vasodilator peptides, including the natriuretic peptides, bradykinin, substance P, and adrenomedullin, as well as vasoconstrictor peptides, including endothelin-1 and angiotensin I and II. We review the multiple, potentially competing, substrates for neprilysin inhibition, and the resultant composite clinical effects of ARNi therapy. A mechanistic understanding of this novel therapeutic class may provide important insights into the expected on-target and off-target effects when this agent is more widely prescribed.
Collapse
Affiliation(s)
- Emilia D'Elia
- Cardiovascular Department, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Attilio Iacovoni
- Cardiovascular Department, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Muthiah Vaduganathan
- Brigham and Women's Hospital Heart & Vascular Center and Harvard Medical School, Boston, MA, USA
| | | | - Stefano Perlini
- Internal Medicine Department, IRCCS Polyclinic San Matteo, University of Pavia, Pavia, Italy
| | - Michele Senni
- Cardiovascular Department, Hospital Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
93
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
94
|
Peltonen T, Ohukainen P, Ruskoaho H, Rysä J. Targeting vasoactive peptides for managing calcific aortic valve disease. Ann Med 2017; 49:63-74. [PMID: 27585243 DOI: 10.1080/07853890.2016.1231933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Calcific aortic valve disease (CAVD) represents a spectrum of disease spanning from milder degrees of calcification of valve leaflets, i.e., aortic sclerosis, to severe calcification i.e., aortic stenosis (AS) with hemodynamic instability. The prevalence of CAVD is increasing rapidly due to the aging of the population, being up to 2.8% among patients over 75 years of age. Even without significant aortic valve stenosis, aortic sclerosis is associated with a 50% increased risk of myocardial infarction and death from cardiovascular causes. To date, there is no pharmacological treatment available to reverse or hinder the progression of CAVD. So far, the cholesterol-lowering therapies (statins) and renin-angiotensin system (RAS) blocking drugs have been the major pharmacological agents investigated for treatment of CAVD. Especially angiotensin receptor blockers (ARB)s and angiotensin convertase enzyme inhibitors (ACEI)s, have been under active investigation in clinical trials, but have proven to be unsuccessful in slowing the progression of CAVD. Several studies have suggested that other vasoactive hormones, including endothelin and apelin systems are also associated with development of AS. In the present review, we discuss the role of vasoactive factors in the pathogenesis of CAVD as novel pharmacological targets for the treatment of aortic valve calcification. Key messages Vasoactive factors are involved in the progression of calcific aortic valve disease. Endothelin and renin-angiotensin systems seem to be most prominent targets for therapeutic interventions in the view of valvular pathogenesis. Circulating vasoactive factors may provide targets for diagnostic tools of calcified aortic valve disease.
Collapse
Affiliation(s)
- Tuomas Peltonen
- a Research Unit of Biomedicine, Pharmacology and Toxicology , University of Oulu , Oulu , Finland
| | - Pauli Ohukainen
- a Research Unit of Biomedicine, Pharmacology and Toxicology , University of Oulu , Oulu , Finland
| | - Heikki Ruskoaho
- a Research Unit of Biomedicine, Pharmacology and Toxicology , University of Oulu , Oulu , Finland.,b Division of Pharmacology and Pharmacotherapy , University of Helsinki , Finland
| | - Jaana Rysä
- c School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , Finland
| |
Collapse
|
95
|
Nakao K, Kuwahara K, Nishikimi T, Nakagawa Y, Kinoshita H, Minami T, Kuwabara Y, Yamada C, Yamada Y, Tokudome T, Nagai-Okatani C, Minamino N, Nakao YM, Yasuno S, Ueshima K, Sone M, Kimura T, Kangawa K, Nakao K. Endothelium-Derived C-Type Natriuretic Peptide Contributes to Blood Pressure Regulation by Maintaining Endothelial Integrity. Hypertension 2017; 69:286-296. [DOI: 10.1161/hypertensionaha.116.08219] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/10/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022]
Abstract
We previously reported the secretion of C-type natriuretic peptide (CNP) from vascular endothelial cells and proposed the existence of a vascular natriuretic peptide system composed of endothelial CNP and smooth muscle guanylyl cyclase-B (GC-B), the CNP receptor, and involved in the regulation of vascular tone, remodeling, and regeneration. In this study, we assessed the functional significance of this system in the regulation of blood pressure in vivo using vascular endothelial cell–specific CNP knockout and vascular smooth muscle cell–specific GC-B knockout mice. These mice showed neither the skeletal abnormality nor the early mortality observed in systemic CNP or GC-B knockout mice. Endothelial cell–specific CNP knockout mice exhibited significantly increased blood pressures and an enhanced acute hypertensive response to nitric oxide synthetase inhibition. Acetylcholine-induced, endothelium-dependent vasorelaxation was impaired in rings of mesenteric artery isolated from endothelial cell–specific CNP knockout mice. In addition, endothelin-1 gene expression was enhanced in pulmonary vascular endothelial cells from endothelial cell–specific CNP knockout mice, which also showed significantly higher plasma endothelin-1 concentrations and a greater reduction in blood pressure in response to an endothelin receptor antagonist than their control littermates. By contrast, vascular smooth muscle cell–specific GC-B knockout mice exhibited blood pressures similar to control mice, and acetylcholine-induced vasorelaxation was preserved in their isolated mesenteric arteries. Nonetheless, CNP-induced acute vasorelaxation was nearly completely abolished in mesenteric arteries from vascular smooth muscle cell–specific GC-B knockout mice. These results demonstrate that endothelium-derived CNP contributes to the chronic regulation of vascular tone and systemic blood pressure by maintaining endothelial function independently of vascular smooth muscle GC-B.
Collapse
Affiliation(s)
- Kazuhiro Nakao
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Koichiro Kuwahara
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Toshio Nishikimi
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yasuaki Nakagawa
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Hideyuki Kinoshita
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Takeya Minami
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yoshihiro Kuwabara
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Chinatsu Yamada
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yuko Yamada
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Takeshi Tokudome
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Chiaki Nagai-Okatani
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Naoto Minamino
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Yoko M. Nakao
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Shinji Yasuno
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Kenji Ueshima
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Masakatsu Sone
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Takeshi Kimura
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Kenji Kangawa
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| | - Kazuwa Nakao
- From the Department of Medicine and Clinical Science (Kazuhiro Nakao, K. Kuwahara, T.N., Y.N., H.K., T.M., Y.K., C.Y., Y.Y., M.S., Kazuwa Nakao), Department of Peptide Research (Kazuhiro Nakao, Y.Y., K. Kangawa), Medical Innovation Center (Kazuwa Nakao), and Department of Cardiovascular Medicine (K. Kuwahara, T.N., Y.N., H.K., T.M., C.Y., T.K.), Kyoto University Graduate School of Medicine, Japan; Department of Biochemistry (T.T., K. Kangawa) and Department of Molecular Pharmacology (C.N.-O., N.M.),
| |
Collapse
|
96
|
Fukushima A, Kinugawa S. Renin-Angiotensin-Aldosterone System and Natriuretic Peptides as Possible Targets of Waon Therapy in Heart Failure. Circ J 2017; 81:635-636. [DOI: 10.1253/circj.cj-17-0286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arata Fukushima
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| |
Collapse
|
97
|
Leung SWS, Vanhoutte PM. Endothelium-dependent hyperpolarization: age, gender and blood pressure, do they matter? Acta Physiol (Oxf) 2017; 219:108-123. [PMID: 26548576 DOI: 10.1111/apha.12628] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022]
Abstract
Under physiological conditions, the endothelium generates vasodilator signals [prostacyclin, nitric oxide NO and endothelium-dependent hyperpolarization (EDH)], for the regulation of vascular tone. The relative importance of these two signals depends on the diameter of the blood vessels: as the diameter of the arteries decreases, the contribution of EDH to the regulation of vascular tone increases. The mechanism involved in EDH varies with species and blood vessel types; nevertheless, activation of endothelial intermediate- and small-conductance calcium-activated potassium channels (IKCa and SKCa , respectively) is characteristic of the EDH pathway. IKCa - and SKCa -mediated EDH are reduced with endothelial dysfunction, which develops with ageing and hypertension, and is less pronounced in female than in age-matched male until after menopause. Impaired EDH-mediated relaxation is related to a reduced involvement of SKCa , so that the response becomes more dependent on IKCa . The latter depends on the activation of adenosine monophosphate-activated protein kinase (AMPK) and silent information regulator T1 (SIRT1), proteins associated with the process of cellular senescence and vascular signalling in response to the female hormone. An understanding of the role of AMPK and/or SIRT1 in EDH-like responses may help identifying effective pharmacological strategies to prevent the development of vascular complications of different aetiologies.
Collapse
Affiliation(s)
- S. W. S. Leung
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| | - P. M. Vanhoutte
- Department of Pharmacology & Pharmacy; University of Hong Kong; Hong Kong Hong Kong SAR China
| |
Collapse
|
98
|
Abstract
The novel combination sacubitril/valsartan represents a new therapeutic approach in the management of heart failure. With the simultaneous blockage of the enzyme neprilysin (by sacubitril) and angiotensin II receptors (by valsartan), this combination reduces the degradation of natriuretic peptides and other counterregulatory peptide systems while avoiding the deleterious effect of angiotensin II receptors activation and thereby encompasses a beneficial impact of 2 important neurohormonal pathways activated in heart failure. As opposed to previously tested neprilysin inhibitors, sacubitril/valsartan represents a more effective method in reducing morbidity and mortality in heart failure, while preserving a safety profile comparable to well-established, standard, angiotensin-converting enzyme inhibitor's therapy.
Collapse
Affiliation(s)
- Ofer Havakuk
- 1 Division of Cardiovascular Medicine, Department of Medicine, LAC/USC Medical Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Uri Elkayam
- 1 Division of Cardiovascular Medicine, Department of Medicine, LAC/USC Medical Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
99
|
Yin Z, Zhao Y, Li H, Yan M, Zhou L, Chen C, Wang DW. miR-320a mediates doxorubicin-induced cardiotoxicity by targeting VEGF signal pathway. Aging (Albany NY) 2016; 8:192-207. [PMID: 26837315 PMCID: PMC4761722 DOI: 10.18632/aging.100876] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Vascular homeostasis abnormalities may involve in doxorubicin induced cardiotoxicity. Methods Enhanced cardiac miR-320a expression, reduced cardiac microvessel density and impaired cardiac function were observed in mice treated by anthracycline doxorubicin. To further explore the role of miR-320a in doxorubicin induced cardiotoxicity, microRNA mimics/inhibitor in vitro and rAAV administration in vivo were employed in mice. Results Knockdown of miR-320a not only resulted in enhanced proliferation and inhibited apoptosis in cultured endothelial cells, but also attenuated cardiac abnormalities induced by doxorubicin. On the contrary, overexpression of miR-320a enhanced apoptosis in vitro, and aggravated vessel abnormalities in heart and subsequent cardiac dysfunction in mice. Furthermore, Western blot assays showed that VEGF-A was a potential target of miR-320a, which was verified by anti-Ago2 co-immunoprecipitation. Moreover, as same as miR-320a, siRNA against VEGF-A reinforced doxorubicin induced endothelial cells injury. Finally, the negative effects of miR-320a on vascular homeostasis and cardiac function were alleviated by VEGF-A re-expression in doxorubicin treated mice. Conclusion Our observations demonstrate that miR-320a play important roles in doxorubicin induced cardiotoxicity via vessel homeostasis in heart and thus, inhibition of miR-320a may be applied to the treatment of cardiac dysfunction induced by anthracycline.
Collapse
Affiliation(s)
- Zhongwei Yin
- Division of Cardiology, Departments of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanru Zhao
- Division of Cardiology, Departments of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huaping Li
- Division of Cardiology, Departments of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Mengwen Yan
- Division of Cardiology, Departments of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ling Zhou
- Division of Cardiology, Departments of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Division of Cardiology, Departments of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
100
|
Jacobs B, Dussor G. Neurovascular contributions to migraine: Moving beyond vasodilation. Neuroscience 2016; 338:130-144. [PMID: 27312704 PMCID: PMC5083225 DOI: 10.1016/j.neuroscience.2016.06.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
Abstract
Migraine is the third most common disease worldwide, the most common neurological disorder, and one of the most common pain conditions. Despite its prevalence, the basic physiology and underlying mechanisms contributing to the development of migraine are still poorly understood and development of new therapeutic targets is long overdue. Until recently, the major contributing pathophysiological event thought to initiate migraine was cerebral and meningeal arterial vasodilation. However, the role of vasodilation in migraine is unclear and recent findings challenge its necessity. While vasodilation itself may not contribute to migraine, it remains possible that vessels play a role in migraine pathophysiology in the absence of vasodilation. Blood vessels consist of a variety of cell types that both release and respond to numerous mediators including growth factors, cytokines, adenosine triphosphate (ATP), and nitric oxide (NO). Many of these mediators have actions on neurons that can contribute to migraine. Conversely, neurons release factors such as norepinephrine and calcitonin gene-related peptide (CGRP) that act on cells native to blood vessels. Both normal and pathological events occurring within and between vascular cells could thus mediate bi-directional communication between vessels and the nervous system, without the need for changes in vascular tone. This review will discuss the potential contribution of the vasculature, specifically endothelial cells, to current neuronal mechanisms hypothesized to play a role in migraine. Hypothalamic activity, cortical spreading depression (CSD), and dural afferent input from the cranial meninges will be reviewed with a focus on how these mechanisms can influence or be impacted by blood vessels. Together, the data discussed will provide a framework by which vessels can be viewed as important potential contributors to migraine pathophysiology, even in light of the current uncertainty over the role of vasodilation in this disorder.
Collapse
Affiliation(s)
- Blaine Jacobs
- Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Gregory Dussor
- Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
| |
Collapse
|