51
|
Weeks KL, Tham YK, Yildiz SG, Alexander Y, Donner DG, Kiriazis H, Harmawan CA, Hsu A, Bernardo BC, Matsumoto A, DePinho RA, Abel ED, Woodcock EA, McMullen JR. FoxO1 is required for physiological cardiac hypertrophy induced by exercise but not by constitutively active PI3K. Am J Physiol Heart Circ Physiol 2021; 320:H1470-H1485. [PMID: 33577435 DOI: 10.1152/ajpheart.00838.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor 1 receptor (IGF1R) and phosphoinositide 3-kinase p110α (PI3K) are critical regulators of exercise-induced physiological cardiac hypertrophy and provide protection in experimental models of pathological remodeling and heart failure. Forkhead box class O1 (FoxO1) is a transcription factor that regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K activation in vitro, but its role in physiological hypertrophy in vivo was unknown. We generated cardiomyocyte-specific FoxO1 knockout (cKO) mice and assessed the phenotype under basal conditions and settings of physiological hypertrophy induced by 1) swim training or 2) cardiac-specific transgenic expression of constitutively active PI3K (caPI3KTg+). Under basal conditions, male and female cKO mice displayed mild interstitial fibrosis compared with control (CON) littermates, but no other signs of cardiac pathology were present. In response to exercise training, female CON mice displayed an increase (∼21%) in heart weight normalized to tibia length vs. untrained mice. Exercise-induced hypertrophy was blunted in cKO mice. Exercise increased cardiac Akt phosphorylation and IGF1R expression but was comparable between genotypes. However, differences in Foxo3a, Hsp70, and autophagy markers were identified in hearts of exercised cKO mice. Deletion of FoxO1 did not reduce cardiac hypertrophy in male or female caPI3KTg+ mice. Cardiac Akt and FoxO1 protein expressions were significantly reduced in hearts of caPI3KTg+ mice, which may represent a negative feedback mechanism from chronic caPI3K, and negate any further effect of reducing FoxO1 in the cKO. In summary, FoxO1 contributes to exercise-induced hypertrophy. This has important implications when one is considering FoxO1 as a target for treating the diseased heart.NEW & NOTEWORTHY Regulators of exercise-induced physiological cardiac hypertrophy and protection are considered promising targets for the treatment of heart failure. Unlike pathological hypertrophy, the transcriptional regulation of physiological hypertrophy has remained largely elusive. To our knowledge, this is the first study to show that the transcription factor FoxO1 is a critical mediator of exercise-induced cardiac hypertrophy. Given that exercise-induced hypertrophy is protective, this finding has important implications when one is considering FoxO1 as a target for treating the diseased heart.
Collapse
Affiliation(s)
- Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Yow Keat Tham
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Suzan G Yildiz
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Yonali Alexander
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Amy Hsu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes Central Clinical School, Monash University, Clayton, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine University of Iowa, Iowa City, Iowa
| | | | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Victoria, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
52
|
|
53
|
Zhang Y, Taufalele PV, Cochran JD, Robillard-Frayne I, Marx JM, Soto J, Rauckhorst AJ, Tayyari F, Pewa AD, Gray LR, Teesch LM, Puchalska P, Funari TR, McGlauflin R, Zimmerman K, Kutschke WJ, Cassier T, Hitchcock S, Lin K, Kato KM, Stueve JL, Haff L, Weiss RM, Cox JE, Rutter J, Taylor EB, Crawford PA, Lewandowski ED, Des Rosiers C, Abel ED. Mitochondrial pyruvate carriers are required for myocardial stress adaptation. Nat Metab 2020; 2:1248-1264. [PMID: 33106689 PMCID: PMC8015649 DOI: 10.1038/s42255-020-00288-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
In addition to fatty acids, glucose and lactate are important myocardial substrates under physiologic and stress conditions. They are metabolized to pyruvate, which enters mitochondria via the mitochondrial pyruvate carrier (MPC) for citric acid cycle metabolism. In the present study, we show that MPC-mediated mitochondrial pyruvate utilization is essential for the partitioning of glucose-derived cytosolic metabolic intermediates, which modulate myocardial stress adaptation. Mice with cardiomyocyte-restricted deletion of subunit 1 of MPC (cMPC1-/-) developed age-dependent pathologic cardiac hypertrophy, transitioning to a dilated cardiomyopathy and premature death. Hypertrophied hearts accumulated lactate, pyruvate and glycogen, and displayed increased protein O-linked N-acetylglucosamine, which was prevented by increasing availability of non-glucose substrates in vivo by a ketogenic diet (KD) or a high-fat diet, which reversed the structural, metabolic and functional remodelling of non-stressed cMPC1-/- hearts. Although concurrent short-term KDs did not rescue cMPC1-/- hearts from rapid decompensation and early mortality after pressure overload, 3 weeks of a KD before transverse aortic constriction was sufficient to rescue this phenotype. Together, our results highlight the centrality of pyruvate metabolism to myocardial metabolism and function.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Animals
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Cardiomegaly/diagnostic imaging
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Constriction, Pathologic
- Cytosol/metabolism
- Diet, High-Fat
- Diet, Ketogenic
- Echocardiography
- In Vitro Techniques
- Mice
- Mice, Knockout
- Mitochondria, Heart/metabolism
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Myocardium/metabolism
- Myocytes, Cardiac/metabolism
- Pyruvic Acid/metabolism
- Stress, Physiological/genetics
- Stress, Physiological/physiology
Collapse
Affiliation(s)
- Yuan Zhang
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul V Taufalele
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jesse D Cochran
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Jonas Maximilian Marx
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Friedrich-Schiller University of Jena, Jena, Germany
| | - Jamie Soto
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Mouse Metabolic Phenotyping Core, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam J Rauckhorst
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Fariba Tayyari
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Alvin D Pewa
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lawrence R Gray
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lynn M Teesch
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Patrycja Puchalska
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Trevor R Funari
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rose McGlauflin
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kathy Zimmerman
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William J Kutschke
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Thomas Cassier
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shannon Hitchcock
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin Lin
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Kevin M Kato
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jennifer L Stueve
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Lauren Haff
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert M Weiss
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - James E Cox
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Howard Hughes Medical Institute, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Eric B Taylor
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Peter A Crawford
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - E Douglas Lewandowski
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, USA
- Department of Internal Medicine and Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montreal, Canada
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
54
|
Wende AR, Schell JC, Ha CM, Pepin ME, Khalimonchuk O, Schwertz H, Pereira RO, Brahma MK, Tuinei J, Contreras-Ferrat A, Wang L, Andrizzi CA, Olsen CD, Bradley WE, Dell'Italia LJ, Dillmann WH, Litwin SE, Abel ED. Maintaining Myocardial Glucose Utilization in Diabetic Cardiomyopathy Accelerates Mitochondrial Dysfunction. Diabetes 2020; 69:2094-2111. [PMID: 32366681 PMCID: PMC7506832 DOI: 10.2337/db19-1057] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
Cardiac glucose uptake and oxidation are reduced in diabetes despite hyperglycemia. Mitochondrial dysfunction contributes to heart failure in diabetes. It is unclear whether these changes are adaptive or maladaptive. To directly evaluate the relationship between glucose delivery and mitochondrial dysfunction in diabetic cardiomyopathy, we generated transgenic mice with inducible cardiomyocyte-specific expression of the GLUT4. We examined mice rendered hyperglycemic following low-dose streptozotocin prior to increasing cardiomyocyte glucose uptake by transgene induction. Enhanced myocardial glucose in nondiabetic mice decreased mitochondrial ATP generation and was associated with echocardiographic evidence of diastolic dysfunction. Increasing myocardial glucose delivery after short-term diabetes onset exacerbated mitochondrial oxidative dysfunction. Transcriptomic analysis revealed that the largest changes, driven by glucose and diabetes, were in genes involved in mitochondrial function. This glucose-dependent transcriptional repression was in part mediated by O-GlcNAcylation of the transcription factor Sp1. Increased glucose uptake induced direct O-GlcNAcylation of many electron transport chain subunits and other mitochondrial proteins. These findings identify mitochondria as a major target of glucotoxicity. They also suggest that reduced glucose utilization in diabetic cardiomyopathy might defend against glucotoxicity and caution that restoring glucose delivery to the heart in the context of diabetes could accelerate mitochondrial dysfunction by disrupting protective metabolic adaptations.
Collapse
Affiliation(s)
- Adam R Wende
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - John C Schell
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Chae-Myeong Ha
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Mark E Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE
| | - Hansjörg Schwertz
- Division of Occupational Medicine, Molecular Medicine Program, and Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT
| | - Renata O Pereira
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Manoja K Brahma
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Joseph Tuinei
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Ariel Contreras-Ferrat
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Li Wang
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Chase A Andrizzi
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Curtis D Olsen
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
| | - Wayne E Bradley
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Louis J Dell'Italia
- Birmingham Veterans Affairs Medical Center, Birmingham, AL
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | | | - Sheldon E Litwin
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, UT
- Department of Medicine, Medical University of South Carolina, Charleston, SC
- Division of Cardiology, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
55
|
Bertrand L, Auquier J, Renguet E, Angé M, Cumps J, Horman S, Beauloye C. Glucose transporters in cardiovascular system in health and disease. Pflugers Arch 2020; 472:1385-1399. [PMID: 32809061 DOI: 10.1007/s00424-020-02444-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Glucose transporters are essential for the heart to sustain its function. Due to its nature as a high energy-consuming organ, the heart needs to catabolize a huge quantity of metabolic substrates. For optimized energy production, the healthy heart constantly switches between various metabolites in accordance with substrate availability and hormonal status. This metabolic flexibility is essential for the maintenance of cardiac function. Glucose is part of the main substrates catabolized by the heart and its use is fine-tuned via complex molecular mechanisms that include the regulation of the glucose transporters GLUTs, mainly GLUT4 and GLUT1. Besides GLUTs, glucose can also be transported by cotransporters of the sodium-glucose cotransporter (SGLT) (SLC5 gene) family, in which SGLT1 and SMIT1 were shown to be expressed in the heart. This SGLT-mediated uptake does not seem to be directly linked to energy production but is rather associated with intracellular signalling triggering important processes such as the production of reactive oxygen species. Glucose transport is markedly affected in cardiac diseases such as cardiac hypertrophy, diabetic cardiomyopathy and heart failure. These alterations are not only fingerprints of these diseases but are involved in their onset and progression. The present review will depict the importance of glucose transport in healthy and diseased heart, as well as proposed therapies targeting glucose transporters.
Collapse
Affiliation(s)
- Luc Bertrand
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.
| | - Julien Auquier
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Edith Renguet
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Marine Angé
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Julien Cumps
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Avenue Hippocrate 55, B1.55.05, B-1200, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
56
|
Snyder J, Zhai R, Lackey AI, Sato PY. Changes in Myocardial Metabolism Preceding Sudden Cardiac Death. Front Physiol 2020; 11:640. [PMID: 32612538 PMCID: PMC7308560 DOI: 10.3389/fphys.2020.00640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Heart disease is widely recognized as a major cause of death worldwide and is the leading cause of mortality in the United States. Centuries of research have focused on defining mechanistic alterations that drive cardiac pathogenesis, yet sudden cardiac death (SCD) remains a common unpredictable event that claims lives in every age group. The heart supplies blood to all tissues while maintaining a constant electrical and hormonal feedback communication with other parts of the body. As such, recent research has focused on understanding how myocardial electrical and structural properties are altered by cardiac metabolism and the various signaling pathways associated with it. The importance of cardiac metabolism in maintaining myocardial function, or lack thereof, is exemplified by shifts in cardiac substrate preference during normal development and various pathological conditions. For instance, a shift from fatty acid (FA) oxidation to oxygen-sparing glycolytic energy production has been reported in many types of cardiac pathologies. Compounded by an uncoupling of glycolysis and glucose oxidation this leads to accumulation of undesirable levels of intermediate metabolites. The resulting accumulation of intermediary metabolites impacts cardiac mitochondrial function and dysregulates metabolic pathways through several mechanisms, which will be reviewed here. Importantly, reversal of metabolic maladaptation has been shown to elicit positive therapeutic effects, limiting cardiac remodeling and at least partially restoring contractile efficiency. Therein, the underlying metabolic adaptations in an array of pathological conditions as well as recently discovered downstream effects of various substrate utilization provide guidance for future therapeutic targeting. Here, we will review recent data on alterations in substrate utilization in the healthy and diseased heart, metabolic pathways governing cardiac pathogenesis, mitochondrial function in the diseased myocardium, and potential metabolism-based therapeutic interventions in disease.
Collapse
Affiliation(s)
- J Snyder
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - R Zhai
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - A I Lackey
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - P Y Sato
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
57
|
Lerchenmüller C, Rabolli CP, Yeri A, Kitchen R, Salvador AM, Liu LX, Ziegler O, Danielson K, Platt C, Shah R, Damilano F, Kundu P, Riechert E, Katus HA, Saffitz JE, Keshishian H, Carr SA, Bezzerides VJ, Das S, Rosenzweig A. CITED4 Protects Against Adverse Remodeling in Response to Physiological and Pathological Stress. Circ Res 2020; 127:631-646. [PMID: 32418505 DOI: 10.1161/circresaha.119.315881] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Cardiac CITED4 (CBP/p300-interacting transactivators with E [glutamic acid]/D [aspartic acid]-rich-carboxylterminal domain4) is induced by exercise and is sufficient to cause physiological hypertrophy and mitigate adverse ventricular remodeling after ischemic injury. However, the role of endogenous CITED4 in response to physiological or pathological stress is unknown. OBJECTIVE To investigate the role of CITED4 in murine models of exercise and pressure overload. METHODS AND RESULTS We generated cardiomyocyte-specific CITED4 knockout mice (C4KO) and subjected them to an intensive swim exercise protocol as well as transverse aortic constriction (TAC). Echocardiography, Western blotting, qPCR, immunohistochemistry, immunofluorescence, and transcriptional profiling for mRNA and miRNA (microRNA) expression were performed. Cellular crosstalk was investigated in vitro. CITED4 deletion in cardiomyocytes did not affect baseline cardiac size or function in young adult mice. C4KO mice developed modest cardiac dysfunction and dilation in response to exercise. After TAC, C4KOs developed severe heart failure with left ventricular dilation, impaired cardiomyocyte growth accompanied by reduced mTOR (mammalian target of rapamycin) activity and maladaptive cardiac remodeling with increased apoptosis, autophagy, and impaired mitochondrial signaling. Interstitial fibrosis was markedly increased in C4KO hearts after TAC. RNAseq revealed induction of a profibrotic miRNA network. miR30d was decreased in C4KO hearts after TAC and mediated crosstalk between cardiomyocytes and fibroblasts to modulate fibrosis. miR30d inhibition was sufficient to increase cardiac dysfunction and fibrosis after TAC. CONCLUSIONS CITED4 protects against pathological cardiac remodeling by regulating mTOR activity and a network of miRNAs mediating cardiomyocyte to fibroblast crosstalk. Our findings highlight the importance of CITED4 in response to both physiological and pathological stimuli.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.).,Cardiology Department, University Hospital Heidelberg, Germany (C.L., E.R., H.A.K.).,German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Germany (C.L., E.R., H.A.K.)
| | - Charles P Rabolli
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Ashish Yeri
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Robert Kitchen
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Ane M Salvador
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Laura X Liu
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Olivia Ziegler
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Kirsty Danielson
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Colin Platt
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Ravi Shah
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Federico Damilano
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Piyusha Kundu
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Eva Riechert
- Cardiology Department, University Hospital Heidelberg, Germany (C.L., E.R., H.A.K.).,German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Germany (C.L., E.R., H.A.K.)
| | - Hugo A Katus
- Cardiology Department, University Hospital Heidelberg, Germany (C.L., E.R., H.A.K.).,German Center for Cardiovascular Research, Partner Site Heidelberg/Mannheim, Germany (C.L., E.R., H.A.K.)
| | - Jeffrey E Saffitz
- Pathology Department, Beth Israel Deaconess Medical Center, Boston, MA (J.E.S.)
| | | | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA (H.K., S.A.C.)
| | | | - Saumya Das
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| | - Anthony Rosenzweig
- From the Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston (C.L., C.P.R., A.Y., R.K., A.M.S., L.X.L., O.Z., K.D., C.P., R.S., F.D., P.K., S.D., A.R.)
| |
Collapse
|
58
|
Yin HM, Yan LF, Liu Q, Peng Z, Zhang CY, Xia Y, Su D, Gu AH, Zhou Y. Activating transcription factor 3 coordinates differentiation of cardiac and hematopoietic progenitors by regulating glucose metabolism. SCIENCE ADVANCES 2020; 6:eaay9466. [PMID: 32494702 PMCID: PMC7202888 DOI: 10.1126/sciadv.aay9466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/27/2020] [Indexed: 05/10/2023]
Abstract
The cardiac and hematopoietic progenitors (CPs and HPs, respectively) in the mesoderm ultimately form a well-organized circulation system, but mechanisms that reconcile their development remain elusive. We found that activating transcription factor 3 (atf3) was highly expressed in the CPs, HPs, and mesoderm, in zebrafish. The atf3 -/- mutants exhibited atrial dilated cardiomyopathy and a high ratio of immature myeloid cells. These manifestations were primarily caused by the blockade of differentiation of both CPs and HPs within the anterior lateral plate mesoderm. Mechanistically, Atf3 targets cebpγ to repress slc2a1a-mediated glucose utilization. The high rate of glucose metabolism in atf3 -/- mutants inhibited the differentiation of progenitors by changing the redox state. Therefore, atf3 could provide CPs and HPs with metabolic adaptive capacity to changes in glucose levels. Our study provides new insights into the role of atf3 in the coordination of differentiation of CPs and HPs by regulating glucose metabolism.
Collapse
Affiliation(s)
- Hui-Min Yin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Li-Feng Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Peng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Yuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Xia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dan Su
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ai-Hua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| | - Yong Zhou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Corresponding author. (A.-H.G.); (Y.Z.)
| |
Collapse
|
59
|
Zhang J, Vincent KP, Peter AK, Klos M, Cheng H, Huang SM, Towne JK, Ferng D, Gu Y, Dalton ND, Chan Y, Li R, Peterson KL, Chen J, McCulloch AD, Knowlton KU, Ross RS. Cardiomyocyte Expression of ZO-1 Is Essential for Normal Atrioventricular Conduction but Does Not Alter Ventricular Function. Circ Res 2020; 127:284-297. [PMID: 32345129 DOI: 10.1161/circresaha.119.315539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE ZO-1 (Zonula occludens-1), a plasma membrane-associated scaffolding protein regulates signal transduction, transcription, and cellular communication. Global deletion of ZO-1 in the mouse is lethal by embryonic day 11.5. The function of ZO-1 in cardiac myocytes (CM) is largely unknown. OBJECTIVE To determine the function of CM ZO-1 in the intact heart, given its binding to other CM proteins that have been shown instrumental in normal cardiac conduction and function. METHODS AND RESULTS We generated ZO-1 CM-specific knockout (KO) mice using α-Myosin Heavy Chain-nuclear Cre (ZO-1cKO) and investigated physiological and electrophysiological function by echocardiography, surface ECG and conscious telemetry, intracardiac electrograms and pacing, and optical mapping studies. ZO-1cKO mice were viable, had normal Mendelian ratios, and had a normal lifespan. Ventricular morphometry and function were not significantly different between the ZO-1cKO versus control (CTL) mice, basally in young or aged mice, or even when hearts were subjected to hemodynamic loading. Atrial mass was increased in ZO-1cKO. Electrophysiological and optical mapping studies indicated high-grade atrioventricular (A-V) block in ZO-1cKO comparing to CTL hearts. While ZO-1-associated proteins such as vinculin, connexin 43, N-cadherin, and α-catenin showed no significant change with the loss of ZO-1, Connexin-45 and Coxsackie-adenovirus (CAR) proteins were reduced in atria of ZO-1cKO. Further, with loss of ZO-1, ZO-2 protein was increased significantly in ventricular CM in a presumed compensatory manner but was still not detected in the AV nodal myocytes. Importantly, the expression of the sodium channel protein NaV1.5 was altered in AV nodal cells of the ZO-1cKO versus CTL. CONCLUSIONS ZO-1 protein has a unique physiological role in cardiac nodal tissue. This is in alignment with its known interaction with CAR and Cx45, and a new function in regulating the expression of NaV1.5 in AV node. Uniquely, ZO-1 is dispensable for function of the working myocardium.
Collapse
Affiliation(s)
- Jianlin Zhang
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Kevin P Vincent
- Department of Bioengineering (K.P.V., A.D.M.), University of California San Diego, La Jolla, CA
| | - Angela K Peter
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Matthew Klos
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Hongqiang Cheng
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Selina M Huang
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Jordan K Towne
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Debbie Ferng
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Yusu Gu
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Nancy D Dalton
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Yunghang Chan
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Ruixia Li
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Kirk L Peterson
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Ju Chen
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
| | - Andrew D McCulloch
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
- Department of Bioengineering (K.P.V., A.D.M.), University of California San Diego, La Jolla, CA
| | | | - Robert S Ross
- From the Department of Medicine (J.Z., A.K.P., M.K., H.C., S.M.H., J.K.T., D.F., Y.G., N.D.D., Y.C., J.K.T., D.F., Y.G., N.D.D., Y.C., R.L., K.L.P., J.C., A.D.M., R.S.R.), University of California San Diego, La Jolla, CA
- Veterans Administration Healthcare, Cardiology Section, San Diego, CA (R.S.R.)
| |
Collapse
|
60
|
L-Glucose: Another Path to Cancer Cells. Cancers (Basel) 2020; 12:cancers12040850. [PMID: 32244695 PMCID: PMC7225996 DOI: 10.3390/cancers12040850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/31/2023] Open
Abstract
Cancerous tumors comprise cells showing metabolic heterogeneity. Among numerous efforts to understand this property, little attention has been paid to the possibility that cancer cells take up and utilize otherwise unusable substrates as fuel. Here we discuss this issue by focusing on l-glucose, the mirror image isomer of naturally occurring d-glucose; l-glucose is an unmetabolizable sugar except in some bacteria. By combining relatively small fluorophores with l-glucose, we generated fluorescence-emitting l-glucose tracers (fLGs). To our surprise, 2-NBDLG, one of these fLGs, which we thought to be merely a control substrate for the fluorescent d-glucose tracer 2-NBDG, was specifically taken up into tumor cell aggregates (spheroids) that exhibited nuclear heterogeneity, a major cytological feature of malignancy in cancer diagnosis. Changes in mitochondrial activity were also associated with the spheroids taking up fLG. To better understand these phenomena, we review here the Warburg effect as well as key studies regarding glucose uptake. We also discuss tumor heterogeneity involving aberrant uptake of glucose and mitochondrial changes based on the data obtained by fLG. We then consider the use of fLGs as novel markers for visualization and characterization of malignant tumor cells.
Collapse
|
61
|
Zheng X, Arias EB, Qi NR, Saunders TL, Cartee GD. In vivo glucoregulation and tissue-specific glucose uptake in female Akt substrate 160 kDa knockout rats. PLoS One 2020; 15:e0223340. [PMID: 32053588 PMCID: PMC7018090 DOI: 10.1371/journal.pone.0223340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/26/2020] [Indexed: 01/31/2023] Open
Abstract
The Rab GTPase activating protein known as Akt substrate of 160 kDa (AS160 or TBC1D4) regulates insulin-stimulated glucose uptake in skeletal muscle, the heart, and white adipose tissue (WAT). A novel rat AS160-knockout (AS160-KO) was created with CRISPR/Cas9 technology. Because female AS160-KO versus wild type (WT) rats had not been previously evaluated, the primary objective of this study was to compare female AS160-KO rats with WT controls for multiple, important metabolism-related endpoints. Body mass and composition, physical activity, and energy expenditure were not different between genotypes. AS160-KO versus WT rats were glucose intolerant based on an oral glucose tolerance test (P<0.001) and insulin resistant based on a hyperinsulinemic-euglycemic clamp (HEC; P<0.001). Tissue glucose uptake during the HEC of female AS160-KO versus WT rats was: 1) significantly lower in epitrochlearis (P<0.05) and extensor digitorum longus (EDL; P<0.01) muscles of AS160-KO compared to WT rats; 2) not different in soleus, gastrocnemius or WAT; and 3) ~3-fold greater in the heart (P<0.05). GLUT4 protein content was reduced in AS160-KO versus WT rats in the epitrochlearis (P<0.05), EDL (P<0.05), gastrocnemius (P<0.05), soleus (P<0.05), WAT (P<0.05), and the heart (P<0.005). Insulin-stimulated glucose uptake by isolated epitrochlearis and soleus muscles was lower (P<0.001) in AS160-KO versus WT rats. Akt phosphorylation of insulin-stimulated tissues was not different between the genotypes. A secondary objective was to probe processes that might account for the genotype-related increase in myocardial glucose uptake, including glucose transporter protein abundance (GLUT1, GLUT4, GLUT8, SGLT1), hexokinase II protein abundance, and stimulation of the AMP-activated protein kinase (AMPK) pathway. None of these parameters differed between genotypes. Metabolic phenotyping in the current study revealed AS160 deficiency produced a profound glucoregulatory phenotype in female AS160-KO rats that was strikingly similar to the results previously reported in male AS160-KO rats.
Collapse
Affiliation(s)
- Xiaohua Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Edward B. Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nathan R. Qi
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
- Division of Genetic Medicine Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States of America
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
62
|
Barbeau PA, Houad JM, Huber JS, Paglialunga S, Snook LA, Herbst EAF, Dennis KMJH, Simpson JA, Holloway GP. Ablating the Rab-GTPase activating protein TBC1D1 predisposes rats to high-fat diet-induced cardiomyopathy. J Physiol 2020; 598:683-697. [PMID: 31845331 DOI: 10.1113/jp279042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS Although the role of TBC1D1 within the heart remains unknown, expression of TBC1D1 increases in the left ventricle following an acute infarction, suggesting a biological importance within this tissue. We investigated the mechanistic role of TBC1D1 within the heart, aiming to establish the consequences of attenuating TBC1D1 signalling in the development of diabetic cardiomyopathy, as well as to determine potential sex differences. TBC1D1 ablation increased plasma membrane fatty acid binding protein content and myocardial palmitate oxidation. Following high-fat feeding, TBC1D1 ablation dramatically increased fibrosis and induced end-diastolic dysfunction in both male and female rats in the absence of changes in mitochondrial bioenergetics. Altogether, independent of sex, ablating TBC1D1 predisposes the left ventricle to pathological remodelling following high-fat feeding, and suggests TBC1D1 protects against diabetic cardiomyopathy. ABSTRACT TBC1D1, a Rab-GTPase activating protein, is involved in the regulation of glucose handling and substrate metabolism within skeletal muscle, and is essential for maintaining pancreatic β-cell mass and insulin secretion. However, the function of TBC1D1 within the heart is largely unknown. Therefore, we examined the role of TBC1D1 in the left ventricle and the functional consequence of ablating TBC1D1 on the susceptibility to high-fat diet-induced abnormalities. Since mutations within TBC1D1 (R125W) display stronger associations with clinical parameters in women, we further examined possible sex differences in the predisposition to diabetic cardiomyopathy. In control-fed animals, TBC1D1 ablation did not alter insulin-stimulated glucose uptake, or echocardiogram parameters, but increased accumulation of a plasma membrane fatty acid transporter and the capacity for palmitate oxidation. When challenged with an 8 week high-fat diet, TBC1D1 knockout rats displayed a four-fold increase in fibrosis compared to wild-type animals, and this was associated with diastolic dysfunction, suggesting a predisposition to diet-induced cardiomyopathy. Interestingly, high-fat feeding only induced cardiac hypertrophy in male TBC1D1 knockout animals, implicating a possible sex difference. Mitochondrial respiratory capacity and substrate sensitivity to pyruvate and ADP were not altered by diet or TBC1D1 ablation, nor were markers of oxidative stress, or indices of overt heart failure. Altogether, independent of sex, ablation of TBC1D1 not only increased the susceptibility to high-fat diet-induced diastolic dysfunction and left ventricular fibrosis, independent of sex, but also predisposed male animals to the development of cardiac hypertrophy. These data suggest that TBC1D1 may exert cardioprotective effects in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Pierre-Andre Barbeau
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jacy M Houad
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jason S Huber
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Sabina Paglialunga
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Laelie A Snook
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Eric A F Herbst
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Kaitlyn M J H Dennis
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Jeremy A Simpson
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Graham P Holloway
- Department of Human Health & Nutritional Sciences, University of Guelph, Ontario, Canada
| |
Collapse
|
63
|
Ashrafi G, de Juan-Sanz J, Farrell RJ, Ryan TA. Molecular Tuning of the Axonal Mitochondrial Ca 2+ Uniporter Ensures Metabolic Flexibility of Neurotransmission. Neuron 2019; 105:678-687.e5. [PMID: 31862210 DOI: 10.1016/j.neuron.2019.11.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
The brain is a vulnerable metabolic organ and must adapt to different fuel conditions to sustain function. Nerve terminals are a locus of this vulnerability, but how they regulate ATP synthesis as fuel conditions vary is unknown. We show that synapses can switch from glycolytic to oxidative metabolism, but to do so, they rely on activity-driven presynaptic mitochondrial Ca2+ uptake to accelerate ATP production. We demonstrate that, whereas mitochondrial Ca2+ uptake requires elevated extramitochondrial Ca2+ in non-neuronal cells, axonal mitochondria readily take up Ca2+ in response to small changes in external Ca2+. We identified the brain-specific protein MICU3 as a critical driver of this tuning of Ca2+ sensitivity. Ablation of MICU3 renders axonal mitochondria similar to non-neuronal mitochondria, prevents acceleration of local ATP synthesis, and impairs presynaptic function under oxidative conditions. Thus, presynaptic mitochondria rely on MICU3 to facilitate mitochondrial Ca2+ uptake during activity and achieve metabolic flexibility.
Collapse
Affiliation(s)
- Ghazaleh Ashrafi
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jaime de Juan-Sanz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ryan J Farrell
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; David Rockefeller Graduate Program, Rockefeller University, New York, NY 10065, USA
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
64
|
Chen C, Manso AM, Ross RS. Talin and Kindlin as Integrin-Activating Proteins: Focus on the Heart. Pediatr Cardiol 2019; 40:1401-1409. [PMID: 31367953 PMCID: PMC7590617 DOI: 10.1007/s00246-019-02167-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
Integrin receptors enable cells to sense and respond to their chemical and physical environment. As a class of membrane receptors, they provide a dynamic, tightly regulated link between the extracellular matrix or cellular counter-receptors and intracellular cytoskeletal and signaling networks. They enable transmission of mechanical force across the plasma membrane, and particularly for cardiomyocytes, may sense the mechanical load placed on cells. Talins and Kindlins are two families of FERM-domain proteins which bind the cytoplasmic tail of integrins, recruit cytoskeletal and signaling proteins involved in mechano-transduction, and those which synergize to activate integrins, allowing the integrins to physically change and bind to extracellular ligands. In this review, we will discuss the roles of talin and kindlin, particularly as integrin activators, with a focus on cardiac myocytes.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA
| | - Ana Maria Manso
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA
| | - Robert S Ross
- Department of Medicine/Cardiology, UCSD School of Medicine, La Jolla, CA, 92093, USA.
- Department of Medicine/Cardiology, Veterans Administration Healthcare, San Diego, CA, 92161, USA.
- University of California, San Diego, Biomedical Research Facility 2, Room 2A-17, 9500 Gilman Drive #0613-C, La Jolla, CA, 92093-0613, USA.
| |
Collapse
|
65
|
Abstract
Metabolic pathways integrate to support tissue homeostasis and to prompt changes in cell phenotype. In particular, the heart consumes relatively large amounts of substrate not only to regenerate ATP for contraction but also to sustain biosynthetic reactions for replacement of cellular building blocks. Metabolic pathways also control intracellular redox state, and metabolic intermediates and end products provide signals that prompt changes in enzymatic activity and gene expression. Mounting evidence suggests that the changes in cardiac metabolism that occur during development, exercise, and pregnancy as well as with pathological stress (eg, myocardial infarction, pressure overload) are causative in cardiac remodeling. Metabolism-mediated changes in gene expression, metabolite signaling, and the channeling of glucose-derived carbon toward anabolic pathways seem critical for physiological growth of the heart, and metabolic inefficiency and loss of coordinated anabolic activity are emerging as proximal causes of pathological remodeling. This review integrates knowledge of different forms of cardiac remodeling to develop general models of how relationships between catabolic and anabolic glucose metabolism may fortify cardiac health or promote (mal)adaptive myocardial remodeling. Adoption of conceptual frameworks based in relational biology may enable further understanding of how metabolism regulates cardiac structure and function.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA (A.A.G.)
| | - Bradford G Hill
- the Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville School of Medicine, KY (B.G.H.).
| |
Collapse
|
66
|
Abstract
The heart consumes large amounts of energy in the form of ATP that is continuously replenished by oxidative phosphorylation in mitochondria and, to a lesser extent, by glycolysis. To adapt the ATP supply efficiently to the constantly varying demand of cardiac myocytes, a complex network of enzymatic and signalling pathways controls the metabolic flux of substrates towards their oxidation in mitochondria. In patients with heart failure, derangements of substrate utilization and intermediate metabolism, an energetic deficit, and oxidative stress are thought to underlie contractile dysfunction and the progression of the disease. In this Review, we give an overview of the physiological processes of cardiac energy metabolism and their pathological alterations in heart failure and diabetes mellitus. Although the energetic deficit in failing hearts - discovered >2 decades ago - might account for contractile dysfunction during maximal exertion, we suggest that the alterations of intermediate substrate metabolism and oxidative stress rather than an ATP deficit per se account for maladaptive cardiac remodelling and dysfunction under resting conditions. Treatments targeting substrate utilization and/or oxidative stress in mitochondria are currently being tested in patients with heart failure and might be promising tools to improve cardiac function beyond that achieved with neuroendocrine inhibition.
Collapse
|
67
|
Mele L, Maskell LJ, Stuckey DJ, Clark JE, Heads RJ, Budhram-Mahadeo VS. The POU4F2/Brn-3b transcription factor is required for the hypertrophic response to angiotensin II in the heart. Cell Death Dis 2019; 10:621. [PMID: 31413277 PMCID: PMC6694165 DOI: 10.1038/s41419-019-1848-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/27/2019] [Accepted: 07/15/2019] [Indexed: 01/27/2023]
Abstract
Adult hearts respond to increased workload such as prolonged stress or injury, by undergoing hypertrophic growth. During this process, the early adaptive responses are important for maintaining cardiac output whereas at later stages, pathological responses such as cardiomyocyte apoptosis and fibrosis cause adverse remodelling, that can progress to heart failure. Yet the factors that control transition from adaptive responses to pathological remodelling in the heart are not well understood. Here we describe the POU4F2/Brn-3b transcription factor (TF) as a novel regulator of adaptive hypertrophic responses in adult hearts since Brn-3b mRNA and protein are increased in angiotensin-II (AngII) treated mouse hearts with concomitant hypertrophic changes [increased heart weight:body weight (HW:BW) ratio]. These effects occur specifically in cardiomyocytes because Brn-3b expression is increased in AngII-treated primary cultures of neonatal rat ventricular myocytes (NRVM) or foetal heart-derived H9c2 cells, which undergo characteristic sarcomeric re-organisation seen in hypertrophic myocytes and express hypertrophic markers, ANP/βMHC. The Brn-3b promoter is activated by known hypertrophic signalling pathways e.g. p42/p44 mitogen-activated protein kinase (MAPK/ERK1/2) or calcineurin (via NFAT). Brn-3b target genes, e.g. cyclin D1, GLUT4 and Bax, are increased at different stages following AngII treatment, supporting distinct roles in cardiac responses to stress. Furthermore, hearts from male Brn-3b KO mutant mice display contractile dysfunction at baseline but also attenuated hypertrophic responses to AngII treatment. Hearts from AngII-treated male Brn-3b KO mice develop further contractile dysfunction linked to extensive fibrosis/remodelling. Moreover, known Brn-3b target genes, e.g. GLUT4, are reduced in AngII-treated Brn-3b KO hearts, suggesting that Brn-3b and its target genes are important in driving adaptive hypertrophic responses in stressed heart.
Collapse
Affiliation(s)
- Laura Mele
- Molecular Biology Development and Disease, UCL Institute of Cardiovascular Science, London, UK
| | - Lauren J Maskell
- Molecular Biology Development and Disease, UCL Institute of Cardiovascular Science, London, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine, UCL Faculty of Medical Sciences, London, UK
| | - James E Clark
- School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| | - Richard J Heads
- School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College, London, UK
| | | |
Collapse
|
68
|
Affiliation(s)
- Diem H Tran
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| | - Zhao V Wang
- 1 Division of Cardiology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX
| |
Collapse
|
69
|
Arias EB, Zheng X, Agrawal S, Cartee GD. Whole body glucoregulation and tissue-specific glucose uptake in a novel Akt substrate of 160 kDa knockout rat model. PLoS One 2019; 14:e0216236. [PMID: 31034517 PMCID: PMC6488193 DOI: 10.1371/journal.pone.0216236] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/16/2019] [Indexed: 11/26/2022] Open
Abstract
Akt substrate of 160 kDa (also called AS160 or TBC1D4) is a Rab GTPase activating protein and key regulator of insulin-stimulated glucose uptake which is expressed by multiple tissues, including skeletal muscle, white adipose tissue (WAT) and the heart. This study introduces a novel rat AS160-knockout (AS160-KO) model that was created using CRISPR/Cas9 technology. We compared male AS160-KO versus wildtype (WT) rats for numerous metabolism-related endpoints. Body mass, body composition, energy expenditure and physical activity did not differ between genotypes. Oral glucose intolerance was detected in AS160-KO versus WT rats (P<0.005). A hyperinsulinemic-euglycemic clamp (HEC) revealed insulin resistance for glucose infusion rate (P<0.05) with unaltered hepatic glucose production in AS160-KO versus WT rats. Genotype-effects on glucose uptake during the HEC: 1) was significantly lower in epitrochlearis (P<0.01) and extensor digitorum longus (P<0.05) of AS160-KO versus WT rats, and tended to be lower for AS160-KO versus WT rats in the soleus (P<0.06) and gastrocnemius (P<0.08); 2) tended to be greater for AS160-KO versus WT rats in white adipose tissue (P = 0.09); and 3) was significantly greater in the heart (P<0.005) of AS160-KO versus WT rats. GLUT4 protein abundance was significantly lower for AS160-KO versus WT rats in each tissue analyzed (P<0.01–0.001) except the gastrocnemius. Ex vivo insulin-stimulated glucose uptake was significantly lower (P<0.001) for AS160-KO versus WT rats in isolated epitrochlearis or soleus. Insulin-stimulated Akt phosphorylation (in vivo or ex vivo) did not differ between genotypes for any tissue tested. Ex vivo AICAR-stimulated glucose uptake by isolated epitrochlearis was significantly lower for AS160-KO versus WT rats (P<0.01) without genotype-induced alteration in AMP-activated protein phosphorylation. This unique AS160-KO rat model, which elucidated striking genotype-related modifications in glucoregulation, will enable future research aimed at understanding AS160’s roles in numerous physiological processes in response to various interventions (e.g., diet and/or exercise).
Collapse
Affiliation(s)
- Edward B. Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Xiaohua Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Swati Agrawal
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
70
|
Abstract
Significance: Diabetic cardiomyopathy (DCM) is a frequent complication occurring even in well-controlled asymptomatic diabetic patients, and it may advance to heart failure (HF). Recent Advances: The diabetic heart is characterized by a state of "metabolic rigidity" involving enhanced rates of fatty acid uptake and mitochondrial oxidation as the predominant energy source, and it exhibits mitochondrial electron transport chain defects. These alterations promote redox state changes evidenced by a decreased NAD+/NADH ratio associated with an increase in acetyl-CoA/CoA ratio. NAD+ is a co-substrate for deacetylases, sirtuins, and a critical molecule in metabolism and redox signaling; whereas acetyl-CoA promotes protein lysine acetylation, affecting mitochondrial integrity and causing epigenetic changes. Critical Issues: DCM lacks specific therapies with treatment only in later disease stages using standard, palliative HF interventions. Traditional therapy targeting neurohormonal signaling and hemodynamics failed to improve mortality rates. Though mitochondrial redox state changes occur in the heart with obesity and diabetes, how the mitochondrial NAD+/NADH redox couple connects the remodeled energy metabolism with mitochondrial and cytosolic antioxidant defense and nuclear epigenetic changes remains to be determined. Mitochondrial therapies targeting the mitochondrial NAD+/NADH redox ratio may alleviate cardiac dysfunction. Future Directions: Specific therapies must be supported by an optimal understanding of changes in mitochondrial redox state and how it influences other cellular compartments; this field has begun to surface as a therapeutic target for the diabetic heart. We propose an approach based on an alternate mitochondrial electron transport that normalizes the mitochondrial redox state and improves cardiac function in diabetes.
Collapse
Affiliation(s)
- Jessica M Berthiaume
- 1 Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University , Cleveland, Ohio
| | - Jacob G Kurdys
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| | - Danina M Muntean
- 3 Department of Functional Sciences-Pathophysiology, "Victor Babes" University of Medicine and Pharmacy , Timisoara, Romania
| | - Mariana G Rosca
- 2 Department of Foundational Sciences, College of Medicine, Central Michigan University , Mount Pleasant, Michigan
| |
Collapse
|
71
|
Bowman PRT, Smith GL, Gould GW. Cardiac SNARE Expression in Health and Disease. Front Endocrinol (Lausanne) 2019; 10:881. [PMID: 31920989 PMCID: PMC6930865 DOI: 10.3389/fendo.2019.00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
SNARE proteins are integral to intracellular vesicular trafficking, which in turn is the process underlying the regulated expression of substrate transporters such as the glucose transporter GLUT4 at the cell surface of insulin target tissues. Impaired insulin stimulated GLUT4 trafficking is associated with reduced cardiac function in many disease states, most notably diabetes. Despite this, our understanding of the expression and regulation of SNARE proteins in cardiac tissue and how these may change in diabetes is limited. Here we characterize the array of SNARE proteins expressed in cardiac tissue, and quantify the levels of expression of VAMP2, SNAP23, and Syntaxin4-key proteins involved in insulin-stimulated GLUT4 translocation. We examined SNARE protein levels in cardiac tissue from two rodent models of insulin resistance, db/db mice and high-fat fed mice, and show alterations in patterns of expression are evident. Such changes may have implications for cardiac function.
Collapse
Affiliation(s)
- Peter R. T. Bowman
- Henry Wellcome Laboratory of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L. Smith
- College of Medical, Veterinary and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gwyn W. Gould
- Henry Wellcome Laboratory of Cell Biology, College of Medical, Veterinary and Life Sciences, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
- *Correspondence: Gwyn W. Gould
| |
Collapse
|
72
|
Trotta MC, Maisto R, Alessio N, Hermenean A, D'Amico M, Di Filippo C. The Melanocortin MC5R as a New Target for Treatment of High Glucose-Induced Hypertrophy of the Cardiac H9c2 Cells. Front Physiol 2018; 9:1475. [PMID: 30416452 PMCID: PMC6212602 DOI: 10.3389/fphys.2018.01475] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022] Open
Abstract
The study explored the anti-hypertrophic effect of the melanocortin MC5R stimulation in H9c2 cardiac myocytes exposed to high glucose. This has been done by using α-MSH and selective MC5R agonists and assessing the expression of GLUT4 and GLUT1 transporters, miR-133 and urotensin receptor levels as a marker of cardiac hypertrophy. The study shows for the first time an up-regulation of MC5R expression levels in H9c2 cardiomyocytes exposed to high glucose medium (33 mM D-glucose) for 48 h, compared to cells grown in normal glucose medium (5.5 mM D-glucose). Moreover, H9c2 cells exposed to high glucose showed a significant reduction in cell viability (-40%), a significant increase in total protein per cell number (+109%), and an increase of the urotensin receptor expression levels as an evidence of cells hypertrophy. The pharmacological stimulation of MC5R with α-MSH (90 pM)of the high glucose exposed H9c2 cells increased the cell survival (+50,8%) and reduced the total protein per cell number (-28,2%) with respect to high glucose alone, confirming a reduction of the hypertrophic state as per cell area measurement. Similarly, PG-901 (selective agonist, 10-10 M) significantly increased cell viability (+61,0 %) and reduced total protein per cell number (-40,2%), compared to cells exposed to high glucose alone. Interestingly, the MC5R agonist reduced the GLUT1/GLUT4 glucose transporters ratio on the cell membranes exhibited by the hypertrophic H9c2 cells and increased the intracellular PI3K activity, mediated by a decrease of the levels of the miRNA miR-133a. The beneficial effects of MC5R agonism on the cardiac hypertrophy caused by high glucose was also observed also by echocardiographic evaluations of rats made diabetics with streptozotocin (65 mg/kg i.p.). Therefore, the melanocortin MC5R could be a new target for the treatment of high glucose-induced hypertrophy of the cardiac H9c2 cells.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa Maisto
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anca Hermenean
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Arad, Romania
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clara Di Filippo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
73
|
Adipose tissue dysfunction is associated with low levels of the novel Palmitic Acid Hydroxystearic Acids. Sci Rep 2018; 8:15757. [PMID: 30361530 PMCID: PMC6202399 DOI: 10.1038/s41598-018-34113-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Adipose tissue dysfunction is considered an important contributor to systemic insulin resistance and Type 2 diabetes (T2D). Recently, a novel family of endogenous lipids, palmitic acid hydroxy stearic acids (PAHSAs), was discovered. These have anti-diabetic and anti-inflammatory effects in mice and are reduced in serum and adipose tissue of insulin resistant humans. In the present study, we investigate if adipose tissue dysfunction is associated with reduced PAHSA levels in human subjects and if PAHSAs influence adipocyte differentiation. Our results show that low expression of adipocyte GLUT4 and adipocyte hypertrophy, markers of adipose tissue dysfunction, are associated with reduced expression of key enzymes for de novo lipogenesis and adipose tissue levels of PAHSAs in human subjects. We also show that GLUT4 is not only a marker of adipose tissue dysfunction, but may be causally related to the observed impairments. PAHSAs may also act locally in the adipose tissue to improve adipogenesis through a mechanism bypassing direct activation of peroxisome proliferator-activated receptor (PPARγ). The discovery of PAHSAs and our current results provide novel insights into positive effects of lipid species in adipose tissue and mechanisms by which dysfunctional adipose tissue is associated with insulin resistance and risk of developing T2D.
Collapse
|
74
|
Schaffer S, Jong CJ, Shetewy A, Ramila KC, Ito T. Impaired Energy Production Contributes to Development of Failure in Taurine Deficient Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:435-446. [PMID: 28849473 DOI: 10.1007/978-94-024-1079-2_35] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Taurine forms a conjugate in the mitochondria with a uridine residue in the wobble position of tRNALeu(UUR). The resulting product, 5-taurinomethyluridine tRNALeu(UUR), increases the interaction between the UUG codon and AAU anticodon of tRNALeu(UUR), thereby improving the decoding of the UUG codon. We have shown that the protein most affected by the taurine conjugation product is ND6, which is a subunit of complex I of the respiratory chain. Thus, taurine deficiency exhibits reduced respiratory chain function. Based on these findings, we proposed that the taurine deficient heart is energy deficient. To test this idea, hearts were perfused with buffer containing acetate and glucose as substrates. The utilization of both substrates, as well as the utilization of endogenous lipids, was significantly reduced in the taurine deficient heart. This led to a 25% decrease in ATP production, an effect primarily caused by diminished aerobic metabolism and respiratory function. In addition, inefficient oxidative phosphorylation causes a further decrease in ATP generation. The data support the idea that reductions in energy metabolism, including oxidative phosphorylation, ATP generation and high energy phosphate content, contribute to the severity of the cardiomyopathy. The findings are also consistent with the hypothesis that taurine deficiency and reduced myocardial energy content increases mortality of the taurine deficient, failing heart. The clinical implications of these findings are addressed.
Collapse
Affiliation(s)
- Stephen Schaffer
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, USA.
| | - Chian Ju Jong
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Aza Shetewy
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - K C Ramila
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Takashi Ito
- School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| |
Collapse
|
75
|
Hang W, He B, Chen J, Xia L, Wen B, Liang T, Wang X, Zhang Q, Wu Y, Chen Q, Chen J. Berberine Ameliorates High Glucose-Induced Cardiomyocyte Injury via AMPK Signaling Activation to Stimulate Mitochondrial Biogenesis and Restore Autophagic Flux. Front Pharmacol 2018; 9:1121. [PMID: 30337876 PMCID: PMC6178920 DOI: 10.3389/fphar.2018.01121] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Type II diabetes (T2D)-induced cardiomyocyte hypertrophy is closely linked to the impairment of mitochondrial function. Berberine has been shown to be a promising effect for hypoglycemia in T2D models. High glucose-induced cardiomyocyte hypertrophy in vitro has been reported. The present study investigated the protective effect and the underlying mechanism of berberine on high glucose-induced H9C2 cell line. Methods: High glucose-induced H9C2 cell line was used to mimic the hyperglycemia resulting in cardiomyocyte hypertrophy. Berberine was used to rescue in this model and explore the mechanism in it. Confocal microscopy, immunofluorescence, RT-PCR, and western blot analysis were performed to evaluate the protective effects of berberine in high glucose-induced H9C2 cell line. Results: Berberine dramatically alleviated hypertrophy of H9C2 cell line and significantly ameliorated mitochondrial function by rectifying the imbalance of fusion and fission in mitochondrial dynamics. Furthermore, berberine further promoted mitogenesis and cleared the damaged mitochondria via mitophagy. In addition, berberine also restored autophagic flux in high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation. Conclusion: Berberine ameliorates high glucose-induced cardiomyocyte injury via AMPK signaling pathway activation to stimulate mitochondrial biogenesis and restore autophagicflux in H9C2 cell line.
Collapse
Affiliation(s)
- Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, China
| | - Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangtao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingjie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,New Products of TCM Senile Diseases Co-Innovation Center of Hubei, School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
76
|
Peterson JM, Wang DJ, Shettigar V, Roof SR, Canan BD, Bakkar N, Shintaku J, Gu JM, Little SC, Ratnam NM, Londhe P, Lu L, Gaw CE, Petrosino JM, Liyanarachchi S, Wang H, Janssen PML, Davis JP, Ziolo MT, Sharma SM, Guttridge DC. NF-κB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model. Nat Commun 2018; 9:3431. [PMID: 30143619 PMCID: PMC6109146 DOI: 10.1038/s41467-018-05910-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder causing progressive muscle degeneration. Although cardiomyopathy is a leading mortality cause in DMD patients, the mechanisms underlying heart failure are not well understood. Previously, we showed that NF-κB exacerbates DMD skeletal muscle pathology by promoting inflammation and impairing new muscle growth. Here, we show that NF-κB is activated in murine dystrophic (mdx) hearts, and that cardiomyocyte ablation of NF-κB rescues cardiac function. This physiological improvement is associated with a signature of upregulated calcium genes, coinciding with global enrichment of permissive H3K27 acetylation chromatin marks and depletion of the transcriptional repressors CCCTC-binding factor, SIN3 transcription regulator family member A, and histone deacetylase 1. In this respect, in DMD hearts, NF-κB acts differently from its established role as a transcriptional activator, instead promoting global changes in the chromatin landscape to regulate calcium genes and cardiac function.
Collapse
Affiliation(s)
- Jennifer M Peterson
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, NY, 13902, USA
| | - David J Wang
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA
| | - Vikram Shettigar
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Steve R Roof
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Q Test Labs, Columbus, OH, 43235, USA
| | - Benjamin D Canan
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Nadine Bakkar
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurobiology, St Joseph's Hospital and Medical Center-Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jonathan Shintaku
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Jin-Mo Gu
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Biomedical Engineering and Pediatrics, Emory University, Decatur, GA, 30322, USA
| | - Sean C Little
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA.,Bristol-Myers Squibb, Wallingford, CT, 06492, USA
| | - Nivedita M Ratnam
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Priya Londhe
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Leina Lu
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Christopher E Gaw
- The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer M Petrosino
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Sandya Liyanarachchi
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Huating Wang
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Jonathan P Davis
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Mark T Ziolo
- Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA.,The Ohio State University Medical Center, Columbus, OH, 43210, USA.,Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, 43210, Ohio, USA
| | - Sudarshana M Sharma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Denis C Guttridge
- Department of Cancer Biology and Genetics, Columbus, OH, 43210, USA. .,Center for Muscle Health and Neuromuscular Disorders, Columbus, OH, 43210, USA. .,The Ohio State University Medical Center, Columbus, OH, 43210, USA. .,Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, 29425, USA.
| |
Collapse
|
77
|
Ancey PB, Contat C, Meylan E. Glucose transporters in cancer - from tumor cells to the tumor microenvironment. FEBS J 2018; 285:2926-2943. [PMID: 29893496 DOI: 10.1111/febs.14577] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 12/18/2022]
Abstract
Solute carriers of the glucose transporter (GLUT) family mediate the first step for cellular glucose usage. The upregulation of GLUTs has been reported in numerous cancer types as a result of perturbation of gene expression or protein relocalization or stabilization. Because they enable to sustain the energy demand required by tumor cells for various biochemical programs, they are promising targets for the development of anticancer strategies. Recently, important biological insights have come from the fine crystal structure determination of several GLUTs; these advances will likely catalyze the development of new selective inhibitory compounds. Furthermore, deregulated glucose metabolism of nontumor cells in the tumor mass is beginning to be appreciated and could have major implications for our understanding of how glucose uptake by specific cell types influences the behavior of neighboring cells in the same microenvironment. In this review, we discuss some of the deregulation mechanisms of glucose transporters, their genetic and pharmacological targeting in cancer, and new functions they may have in nontumor cells of the tumor environment or beyond glucose uptake for glycolysis.
Collapse
Affiliation(s)
- Pierre-Benoit Ancey
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Caroline Contat
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Etienne Meylan
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
78
|
Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of Metabolic Flexibility in the Failing Heart. Front Cardiovasc Med 2018; 5:68. [PMID: 29928647 PMCID: PMC5997788 DOI: 10.3389/fcvm.2018.00068] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
To maintain its high energy demand the heart is equipped with a highly complex and efficient enzymatic machinery that orchestrates ATP production using multiple energy substrates, namely fatty acids, carbohydrates (glucose and lactate), ketones and amino acids. The contribution of these individual substrates to ATP production can dramatically change, depending on such variables as substrate availability, hormonal status and energy demand. This "metabolic flexibility" is a remarkable virtue of the heart, which allows utilization of different energy substrates at different rates to maintain contractile function. In heart failure, cardiac function is reduced, which is accompanied by discernible energy metabolism perturbations and impaired metabolic flexibility. While it is generally agreed that overall mitochondrial ATP production is impaired in the failing heart, there is less consensus as to what actual switches in energy substrate preference occur. The failing heart shift toward a greater reliance on glycolysis and ketone body oxidation as a source of energy, with a decrease in the contribution of glucose oxidation to mitochondrial oxidative metabolism. The heart also becomes insulin resistant. However, there is less consensus as to what happens to fatty acid oxidation in heart failure. While it is generally believed that fatty acid oxidation decreases, a number of clinical and experimental studies suggest that fatty acid oxidation is either not changed or is increased in heart failure. Of importance, is that any metabolic shift that does occur has the potential to aggravate cardiac dysfunction and the progression of the heart failure. An increasing body of evidence shows that increasing cardiac ATP production and/or modulating cardiac energy substrate preference positively correlates with heart function and can lead to better outcomes. This includes increasing glucose and ketone oxidation and decreasing fatty acid oxidation. In this review we present the physiology of the energy metabolism pathways in the heart and the changes that occur in these pathways in heart failure. We also look at the interventions which are aimed at manipulating the myocardial metabolic pathways toward more efficient substrate utilization which will eventually improve cardiac performance.
Collapse
Affiliation(s)
| | | | | | - Gary D. Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
79
|
Heitmeier MR, Payne MA, Weinheimer C, Kovacs A, Hresko RC, Jay PY, Hruz PW. Metabolic and Cardiac Adaptation to Chronic Pharmacologic Blockade of Facilitative Glucose Transport in Murine Dilated Cardiomyopathy and Myocardial Ischemia. Sci Rep 2018; 8:6475. [PMID: 29691457 PMCID: PMC5915485 DOI: 10.1038/s41598-018-24867-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/11/2018] [Indexed: 01/14/2023] Open
Abstract
GLUT transgenic and knockout mice have provided valuable insight into the role of facilitative glucose transporters (GLUTs) in cardiovascular and metabolic disease, but compensatory physiological changes can hinder interpretation of these models. To determine whether adaptations occur in response to GLUT inhibition in the failing adult heart, we chronically treated TG9 mice, a transgenic model of dilated cardiomyopathy and heart failure, with the GLUT inhibitor ritonavir. Glucose tolerance was significantly improved with chronic treatment and correlated with decreased adipose tissue retinol binding protein 4 (RBP4) and resistin. A modest improvement in lifespan was associated with decreased cardiomyocyte brain natriuretic peptide (BNP) expression, a marker of heart failure severity. GLUT1 and -12 protein expression was significantly increased in left ventricular (LV) myocardium in ritonavir-treated animals. Supporting a switch from fatty acid to glucose utilization in these tissues, fatty acid transporter CD36 and fatty acid transcriptional regulator peroxisome proliferator-activated receptor α (PPARα) mRNA were also decreased in LV and soleus muscle. Chronic ritonavir also increased cardiac output and dV/dt-d in C57Bl/6 mice following ischemia-reperfusion injury. Taken together, these data demonstrate compensatory metabolic adaptation in response to chronic GLUT blockade as a means to evade deleterious changes in the failing heart.
Collapse
Affiliation(s)
- Monique R Heitmeier
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Maria A Payne
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Carla Weinheimer
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, USA
| | - Attila Kovacs
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, USA
| | - Richard C Hresko
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Patrick Y Jay
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA.,Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - Paul W Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, USA. .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, USA.
| |
Collapse
|
80
|
Wang K, Xu Y, Sun Q, Long J, Liu J, Ding J. Mitochondria regulate cardiac contraction through ATP-dependent and independent mechanisms. Free Radic Res 2018; 52:1256-1265. [PMID: 29544373 DOI: 10.1080/10715762.2018.1453137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The multipurpose organelle mitochondria play an essential role(s) in controlling cardiac muscle contraction. Mitochondria, not only function as the powerhouses and the energy source of myocytes but also modulate intracellular Ca2+ homeostasis, the production of intermediary metabolites/reactive oxygen species (ROS), and other cellular processes. Those molecular events can substantially influence myocardial contraction. Mitochondrial dysfunction is usually associated with cardiac remodelling, and is the causal factor of heart contraction defects in many cases. The manipulation of mitochondria or mitochondria-relevant pathways appears to be a promising therapeutic approach to treat the diseases.
Collapse
Affiliation(s)
- Kexin Wang
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Yang Xu
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Qiong Sun
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jiangang Long
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jiankang Liu
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| | - Jian Ding
- a Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology & Frontier Institute of Science and Technology, Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
81
|
Li L, Byrd M, Doh K, Dixon PD, Lee H, Tiwari S, Ecelbarger CM. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice. Physiol Rep 2018; 4:4/23/e13052. [PMID: 27923977 PMCID: PMC5357825 DOI: 10.14814/phy2.13052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 02/02/2023] Open
Abstract
The major site of fructose metabolism in the kidney is the proximal tubule (PT). To test whether insulin and/or IGF1 signaling in the PT is involved in renal structural/functional responses to dietary fructose, we bred mice with dual knockout (KO) of the insulin receptor (IR) and the IGF1 receptor (IGF1R) in PT by Cre-lox recombination, using a γ-glutamyl transferase promoter. KO mice had slightly (~10%) reduced body and kidney weights, as well as, a reduction in mean protein-to-DNA ratio in kidney cortex suggesting smaller cell size. Under control diet, IR and IGF1R protein band densities were 30-50% (P < 0.05) lower than WT, and the relative difference was greater in male animals. Male, but not female KO, also had significantly reduced band densities for Akt (protein kinase B), phosphorylated AktT308 and IRY1162/1163 A high-fructose diet (1-month) led to a significant increase in kidney weight in WT males (12%), but not in KO males or in either genotype of female mice. Kidney enlargement in the WT males was accompanied by a small, insignificant fall in protein-to-DNA ratio, supporting hyperplasia rather than hypertrophy. Fructose feeding of male WT mice led to significantly higher sodium bicarbonate exchanger (NBCe1), sodium hydrogen exchanger (NHE3), sodium phosphate co-transporter (NaPi-2), and transforming growth factor-β (TGF-β) abundances, as compared to male KO, suggesting elevated transport capacity and an early feature of fibrosis may have accompanied the renal enlargement. Overall, IR and/or IGF1R appear to have a role in PT cell size and enlargement in response to high-fructose diet.
Collapse
Affiliation(s)
- Lijun Li
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Marcus Byrd
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Kwame Doh
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Patrice D Dixon
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Hwal Lee
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | - Swasti Tiwari
- Department of Medicine, Georgetown University, Washington, District of Columbia.,Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | |
Collapse
|
82
|
Stroud MJ, Fang X, Veevers J, Chen J. Generation and Analysis of Striated Muscle Selective LINC Complex Protein Mutant Mice. Methods Mol Biol 2018; 1840:251-281. [PMID: 30141050 PMCID: PMC6887482 DOI: 10.1007/978-1-4939-8691-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The linker of nucleoskeleton and cytoskeleton (LINC) complex mediates intracellular cross talk between the nucleus and the cytoplasm. In striated muscle, the LINC complex provides structural support to the myocyte nucleus and plays an essential role in regulating gene expression and mechanotransduction. A wide range of cardiac and skeletal myopathies have been linked to mutations in LINC complex proteins. Studies utilizing tissue-specific knockout and mutant mouse models have revealed important insights into the roles of the LINC complex in striated muscle. In this chapter, we describe several feasible approaches for generating striated muscle-specific gene knockout and mutant mouse models to study LINC complex protein function in cardiac and skeletal muscle. The experimental procedures used for phenotyping and analysis of LINC complex knockout mice are also described.
Collapse
Affiliation(s)
- Matthew J Stroud
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Cardiovascular Division, King's College London, British Heart Foundation Centre of Excellence, London, UK
| | - Xi Fang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Veevers
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ju Chen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
83
|
Effect of Gegen Qinlian Decoction on Cardiac Gene Expression in Diabetic Mice. Int J Genomics 2017; 2017:7421761. [PMID: 29379793 PMCID: PMC5742884 DOI: 10.1155/2017/7421761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/30/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of this research is to investigate the therapeutic effect of GGQL decoction on cardiac dysfunction and elucidate the pharmacological mechanisms. db/db mice were divided into DB group or GGQL group, and WT mice were used as control. All mice were accessed by echocardiography. And the total RNA of LV tissue samples was sequenced, then differential expression genes were analyzed. The RNA-seq results were validated by the results of RT-qPCR of 4 genes identified as differentially expressed. The content of pyruvate and ceramide in myocardial tissue was also measured. The results showed that GGQL decoction could significantly improve the diastolic dysfunction, increase the content of pyruvate, and had the trend to reduce the ceramide content. The results of RNA-seq showed that 2958 genes were differentially expressed when comparing the DB group with the WT group. Among them, compared with the DB group, 26 genes were differentially regulated in the GGQL group. The expression results of 4 genes were consistent with the RNA-seq results. Our study reveals that GGQL decoction has a therapeutic effect on diastolic dysfunction of the left ventricular and the effect may be related to its role in promoting myocardial glycolysis and decreasing the content of ceramide.
Collapse
|
84
|
Serpooshan V, Liu YH, Buikema JW, Galdos FX, Chirikian O, Paige S, Venkatraman S, Kumar A, Rawnsley DR, Huang X, Pijnappels DA, Wu SM. Nkx2.5+ Cardiomyoblasts Contribute to Cardiomyogenesis in the Neonatal Heart. Sci Rep 2017; 7:12590. [PMID: 28974782 PMCID: PMC5626718 DOI: 10.1038/s41598-017-12869-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/15/2017] [Indexed: 01/26/2023] Open
Abstract
During normal lifespan, the mammalian heart undergoes limited renewal of cardiomyocytes. While the exact mechanism for this renewal remains unclear, two possibilities have been proposed: differentiated myocyte replication and progenitor/immature cell differentiation. This study aimed to characterize a population of cardiomyocyte precursors in the neonatal heart and to determine their requirement for cardiac development. By tracking the expression of an embryonic Nkx2.5 cardiac enhancer, we identified cardiomyoblasts capable of differentiation into striated cardiomyocytes in vitro. Genome-wide expression profile of neonatal Nkx2.5+ cardiomyoblasts showed the absence of sarcomeric gene and the presence of cardiac transcription factors. To determine the lineage contribution of the Nkx2.5+ cardiomyoblasts, we generated a doxycycline suppressible Cre transgenic mouse under the regulation of the Nkx2.5 enhancer and showed that neonatal Nkx2.5+ cardiomyoblasts mature into cardiomyocytes in vivo. Ablation of neonatal cardiomyoblasts resulted in ventricular hypertrophy and dilation, supporting a functional requirement of the Nkx2.5+ cardiomyoblasts. This study provides direct lineage tracing evidence that a cardiomyoblast population contributes to cardiogenesis in the neonatal heart. The cell population identified here may serve as a promising therapeutic for pediatric cardiac regeneration.
Collapse
Affiliation(s)
- Vahid Serpooshan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuan-Hung Liu
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Division of Cardiology, Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Section of Cardiology, Cardiovascular Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jan W Buikema
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Francisco X Galdos
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Orlando Chirikian
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Sharon Paige
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sneha Venkatraman
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Biology Program, California State University Channel Islands, Camarillo, CA, USA
| | - Anusha Kumar
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - David R Rawnsley
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Xiaojing Huang
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Daniël A Pijnappels
- Cardiovascular Research Center and Department of Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.,Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Division of Cardiovascular Medicine, and Stanford University School of Medicine, Stanford, CA, USA. .,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
85
|
Ritterhoff J, Tian R. Metabolism in cardiomyopathy: every substrate matters. Cardiovasc Res 2017; 113:411-421. [PMID: 28395011 DOI: 10.1093/cvr/cvx017] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
Cardiac metabolism is highly adaptive to changes in fuel availability and the energy demand of the heart. This metabolic flexibility is key for the heart to maintain its output during the development and in response to stress. Alterations in substrate preference have been observed in multiple disease states; a clear understanding of their impact on cardiac function in the long term is critical for the development of metabolic therapies. In addition, the contribution of cellular metabolism to growth, survival, and other signalling pathways through the generation of metabolic intermediates has been increasingly noted, adding another layer of complexity to the impact of metabolism on cardiac function. In a quest to understand the complexity of the cardiac metabolic network, genetic tools have been engaged to manipulate cardiac metabolism in a variety of mouse models. The ability to engineer cardiac metabolism in vivo has provided tremendous insights and brought about conceptual innovations. In this review, we will provide an overview of the cardiac metabolic network and highlight alterations observed during cardiac development and pathological hypertrophy. We will focus on consequences of altered substrate preference on cardiac response to chronic stresses through energy providing and non-energy providing pathways.
Collapse
|
86
|
Zhang TJ, Guo RX, Li X, Wang YW, Li YJ. Tetrandrine cardioprotection in ischemia–reperfusion (I/R) injury via JAK3/STAT3/Hexokinase II. Eur J Pharmacol 2017; 813:153-160. [DOI: 10.1016/j.ejphar.2017.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022]
|
87
|
Artese A, Stamford BA, Moffatt RJ. Cigarette Smoking: An Accessory to the Development of Insulin Resistance. Am J Lifestyle Med 2017; 13:602-605. [PMID: 31662726 DOI: 10.1177/1559827617726516] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 01/21/2023] Open
Abstract
Insulin resistance is a condition characterized by decreased sensitivity of a skeletal or adipose cell to insulin, resulting in decreased glucose uptake by the cell. This can lead to hyperinsulinemia and further reduce insulin sensitivity. Insulin resistance is one of the primary factors contributing to metabolic syndrome (MetS), causing elevated glucose and fatty acid concentrations in the blood. Smoking is associated with insulin resistance in a dose-dependent manner. It directly increases the risk for insulin resistance, mainly via hormone activation, and may indirectly cause insulin resistance due to its effects on abdominal obesity. Nicotine may be the factor underlying these potential mechanisms. With the prevalence of prediabetes and diabetes on the rise, and considering the role of smoking and its relationship to insulin resistance, smoking reduction or cessation may be a viable option for those who are at risk or already identified as insulin resistant. Therefore, smoking cessation or reduction would serve as a beneficial component in any diabetes prevention or treatment plan.
Collapse
Affiliation(s)
- Ashley Artese
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, Florida (AA, RJM).,Department of Kinesiology and Integrative Physiology, Hanover College, Hanover, Indiana (BAS)
| | - Bryant A Stamford
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, Florida (AA, RJM).,Department of Kinesiology and Integrative Physiology, Hanover College, Hanover, Indiana (BAS)
| | - Robert J Moffatt
- Department of Nutrition, Food and Exercise Sciences, College of Human Sciences, Florida State University, Tallahassee, Florida (AA, RJM).,Department of Kinesiology and Integrative Physiology, Hanover College, Hanover, Indiana (BAS)
| |
Collapse
|
88
|
Wende AR, Kim J, Holland WL, Wayment BE, O'Neill BT, Tuinei J, Brahma MK, Pepin ME, McCrory MA, Luptak I, Halade GV, Litwin SE, Abel ED. Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological stresses. Am J Physiol Heart Circ Physiol 2017; 313:H1098-H1108. [PMID: 28822962 DOI: 10.1152/ajpheart.00101.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
Pathological cardiac hypertrophy may be associated with reduced expression of glucose transporter 4 (GLUT4) in contrast to exercise-induced cardiac hypertrophy, where GLUT4 levels are increased. However, mice with cardiac-specific deletion of GLUT4 (G4H-/-) have normal cardiac function in the unstressed state. This study tested the hypothesis that cardiac GLUT4 is required for myocardial adaptations to hemodynamic demands. G4H-/- and control littermates were subjected to either a pathological model of left ventricular pressure overload [transverse aortic constriction (TAC)] or a physiological model of endurance exercise (swim training). As predicted after TAC, G4H-/- mice developed significantly greater hypertrophy and more severe contractile dysfunction. Somewhat surprisingly, after exercise training, G4H-/- mice developed increased fibrosis and apoptosis that was associated with dephosphorylation of the prosurvival kinase Akt in concert with an increase in protein levels of the upstream phosphatase protein phosphatase 2A (PP2A). Exercise has been shown to decrease levels of ceramide; G4H-/- hearts failed to decrease myocardial ceramide in response to exercise. Furthermore, G4H-/- hearts have reduced levels of the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1, lower carnitine palmitoyl-transferase activity, and reduced hydroxyacyl-CoA dehydrogenase activity. These basal changes may also contribute to the impaired ability of G4H-/- hearts to adapt to hemodynamic stresses. In conclusion, GLUT4 is required for the maintenance of cardiac structure and function in response to physiological or pathological processes that increase energy demands, in part through secondary changes in mitochondrial metabolism and cellular stress survival pathways such as Akt.NEW & NOTEWORTHY Glucose transporter 4 (GLUT4) is required for myocardial adaptations to exercise, and its absence accelerates heart dysfunction after pressure overload. The requirement for GLUT4 may extend beyond glucose uptake to include defects in mitochondrial metabolism and survival signaling pathways that develop in its absence. Therefore, GLUT4 is critical for responses to hemodynamic stresses.
Collapse
Affiliation(s)
- Adam R Wende
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah; .,Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jaetaek Kim
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - William L Holland
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Benjamin E Wayment
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Brian T O'Neill
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah.,Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Joseph Tuinei
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah
| | - Manoja K Brahma
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark E Pepin
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mark A McCrory
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ivan Luptak
- Division of Cardiology, Boston University School of Medicine, Boston, Massachusetts
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Sheldon E Litwin
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, Utah.,Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
89
|
Wei C, Bajpai R, Sharma H, Heitmeier M, Jain AD, Matulis SM, Nooka AK, Mishra RK, Hruz PW, Schiltz GE, Shanmugam M. Development of GLUT4-selective antagonists for multiple myeloma therapy. Eur J Med Chem 2017; 139:573-586. [PMID: 28837922 DOI: 10.1016/j.ejmech.2017.08.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 12/24/2022]
Abstract
Cancer cells consume more glucose to fuel metabolic programs fundamental to sustaining their survival, growth and proliferation. Among the fourteen SLC2A family members, GLUTs 1 and 4 are high-affinity glucose transporters. GLUT4 (SLC2A4) is highly expressed in muscle and adipose tissue. Basally retained within the cell, GLUT4 traffics to the plasma membrane (PM) in response to insulin and exercise-stimulation. The plasma cell malignancy multiple myeloma (MM) exhibits increased constitutive expression of GLUT4 on the PM, co-opting use of GLUT4 for survival and proliferation. GLUT4 inhibition by knockdown or treatment with the FDA-approved HIV protease inhibitor ritonavir leads to cytostatic and/or cytotoxic and chemosensitizing effects in tumor cells both in vitro and in vivo. We recently reported our generation of GLUT4 homology models and virtual high-throughput screening (vHTS) to identify multiple series of novel GLUT4 antagonists. In this report, we describe our initial hit-to-lead optimization to synthesize new analogs with improved potency and selectivity for GLUT4, and the biological characterization of these compounds in a variety of assays. We show that our lead compound (compound 20) decreases glucose uptake and cell proliferation as well as inhibits the expression of pro-survival MCL-1 in MM similar to the effect observed via knockdown of GLUT4 expression. Compound 20 is also effective at chemosensitizing multiple myeloma cell lines and patient samples to venetoclax, dexamethasone and melphalan. In sum, we report development of selective GLUT4 inhibitors lacking inhibitory activity against GLUT1 and GLUT8. We show that selective pharmacological inhibition of GLUT4 is feasible and this may represent a novel strategy for the treatment and chemosensitization of multiple myeloma to standard therapeutics.
Collapse
Affiliation(s)
- Changyong Wei
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Richa Bajpai
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Horrick Sharma
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Monique Heitmeier
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Atul D Jain
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Shannon M Matulis
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ajay K Nooka
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA
| | - Paul W Hruz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gary E Schiltz
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, IL 60208, USA; Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
90
|
Manso AM, Okada H, Sakamoto FM, Moreno E, Monkley SJ, Li R, Critchley DR, Ross RS. Loss of mouse cardiomyocyte talin-1 and talin-2 leads to β-1 integrin reduction, costameric instability, and dilated cardiomyopathy. Proc Natl Acad Sci U S A 2017; 114:E6250-E6259. [PMID: 28698364 PMCID: PMC5544289 DOI: 10.1073/pnas.1701416114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Continuous contraction-relaxation cycles of the heart require strong and stable connections of cardiac myocytes (CMs) with the extracellular matrix (ECM) to preserve sarcolemmal integrity. CM attachment to the ECM is mediated by integrin complexes localized at the muscle adhesion sites termed costameres. The ubiquitously expressed cytoskeletal protein talin (Tln) is a component of muscle costameres that links integrins ultimately to the sarcomere. There are two talin genes, Tln1 and Tln2. Here, we tested the function of these two Tln forms in myocardium where Tln2 is the dominant isoform in postnatal CMs. Surprisingly, global deletion of Tln2 in mice caused no structural or functional changes in heart, presumably because CM Tln1 became up-regulated. Tln2 loss increased integrin activation, although levels of the muscle-specific β1D-integrin isoform were reduced by 50%. With this result, we produced mice that had simultaneous loss of both CM Tln1 and Tln2 and found that cardiac dysfunction occurred by 4 wk with 100% mortality by 6 mo. β1D integrin and other costameric proteins were lost from the CMs, and membrane integrity was compromised. Given that integrin protein reduction occurred with Tln loss, rescue of the phenotype was attempted through transgenic integrin overexpression, but this could not restore WT CM integrin levels nor improve heart function. Our results show that CM Tln2 is essential for proper β1D-integrin expression and that Tln1 can substitute for Tln2 in preserving heart function, but that loss of all Tln forms from the heart-muscle cell leads to myocyte instability and a dilated cardiomyopathy.
Collapse
Affiliation(s)
- Ana Maria Manso
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093;
- Cardiology Section, Department of Medicine, Veterans Administration Healthcare, San Diego, CA 92161
| | - Hideshi Okada
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
- Cardiology Section, Department of Medicine, Veterans Administration Healthcare, San Diego, CA 92161
| | - Francesca M Sakamoto
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
| | - Emily Moreno
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
| | - Susan J Monkley
- Department of Molecular Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Ruixia Li
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093
| | - David R Critchley
- Department of Molecular Cell Biology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Robert S Ross
- Division of Cardiology, Department of Medicine, University of California at San Diego School of Medicine, La Jolla, CA 92093;
- Cardiology Section, Department of Medicine, Veterans Administration Healthcare, San Diego, CA 92161
| |
Collapse
|
91
|
Fang X, Bogomolovas J, Wu T, Zhang W, Liu C, Veevers J, Stroud MJ, Zhang Z, Ma X, Mu Y, Lao DH, Dalton ND, Gu Y, Wang C, Wang M, Liang Y, Lange S, Ouyang K, Peterson KL, Evans SM, Chen J. Loss-of-function mutations in co-chaperone BAG3 destabilize small HSPs and cause cardiomyopathy. J Clin Invest 2017; 127:3189-3200. [PMID: 28737513 DOI: 10.1172/jci94310] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Defective protein quality control (PQC) systems are implicated in multiple diseases. Molecular chaperones and co-chaperones play a central role in functioning PQC. Constant mechanical and metabolic stress in cardiomyocytes places great demand on the PQC system. Mutation and downregulation of the co-chaperone protein BCL-2-associated athanogene 3 (BAG3) are associated with cardiac myopathy and heart failure, and a BAG3 E455K mutation leads to dilated cardiomyopathy (DCM). However, the role of BAG3 in the heart and the mechanisms by which the E455K mutation leads to DCM remain obscure. Here, we found that cardiac-specific Bag3-KO and E455K-knockin mice developed DCM. Comparable phenotypes in the 2 mutants demonstrated that the E455K mutation resulted in loss of function. Further experiments revealed that the E455K mutation disrupted the interaction between BAG3 and HSP70. In both mutants, decreased levels of small heat shock proteins (sHSPs) were observed, and a subset of proteins required for cardiomyocyte function was enriched in the insoluble fraction. Together, these observations suggest that interaction between BAG3 and HSP70 is essential for BAG3 to stabilize sHSPs and maintain cardiomyocyte protein homeostasis. Our results provide insight into heart failure caused by defects in BAG3 pathways and suggest that increasing BAG3 protein levels may be of therapeutic benefit in heart failure.
Collapse
Affiliation(s)
- Xi Fang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Julius Bogomolovas
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tongbin Wu
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Wei Zhang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Canzhao Liu
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | | | - Zhiyuan Zhang
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaolong Ma
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongxin Mu
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Dieu-Hung Lao
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Yusu Gu
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Celine Wang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Michael Wang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Yan Liang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Stephan Lange
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Kunfu Ouyang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | | | - Sylvia M Evans
- Department of Medicine, UCSD, La Jolla, California, USA.,Department of Pharmacology and.,Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Ju Chen
- Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
92
|
Zhang Z, Mu Y, Veevers J, Peter AK, Manso AM, Bradford WH, Dalton ND, Peterson KL, Knowlton KU, Ross RS, Zhou X, Chen J. Postnatal Loss of Kindlin-2 Leads to Progressive Heart Failure. Circ Heart Fail 2017; 9:CIRCHEARTFAILURE.116.003129. [PMID: 27502369 DOI: 10.1161/circheartfailure.116.003129] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND The striated muscle costamere, a multiprotein complex at the boundary between the sarcomere and the sarcolemma, plays an integral role in maintaining striated muscle structure and function. Multiple costamere-associated proteins, such as integrins and integrin-interacting proteins, have been identified and shown to play an increasingly important role in the pathogenesis of human cardiomyopathy. Kindlin-2 is an adaptor protein that binds to the integrin β cytoplasmic tail to promote integrin activation. Genetic deficiency of Kindlin-2 results in embryonic lethality, and knockdown of the Kindlin-2 homolog in Caenorhabditis elegans and Danio rerio suggests that it has an essential role in integrin function and normal muscle structure and function. The precise role of Kindlin-2 in the mammalian cardiac myocyte remains to be determined. METHODS AND RESULTS The current studies were designed to investigate the role of Kindlin-2 in the mammalian heart. We generated a series of cardiac myocyte-specific Kindlin-2 knockout mice with excision of the Kindlin-2 gene in either developing or adult cardiac myocytes. We found that mice lacking Kindlin-2 in the early developing heart are embryonic lethal. We demonstrate that deletion of Kindlin-2 at late gestation or in adult cardiac myocytes resulted in heart failure and premature death, which were associated with enlargement of the heart and extensive fibrosis. In addition, integrin β1D protein expression was significantly downregulated in the adult heart. CONCLUSIONS Kindlin-2 is required to maintain integrin β1D protein stability. Postnatal loss of Kindlin-2 from cardiac myocytes leads to progressive heart failure, showing the importance of costameric proteins like Kindlin-2 for homeostasis of normal heart function.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Yongxin Mu
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Jennifer Veevers
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Angela K Peter
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Ana Maria Manso
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - William H Bradford
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Nancy D Dalton
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Kirk L Peterson
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Kirk U Knowlton
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Robert S Ross
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Xinmin Zhou
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.)
| | - Ju Chen
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (Z.Z., X.Z.); Department of Medicine-Cardiology, University of California San Diego, La Jolla (Z.Z., Y.M., J.V., A.K.P., A.M.M., W.H.B., N.D.D., K.L.P., K.U.K., R.S.R., J.C.); Veterans Administration Healthcare, Medicine/Cardiology, San Diego, CA (A.M.M., R.S.R.).
| |
Collapse
|
93
|
Guo CA, Guo S. Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J Endocrinol 2017; 233:R131-R143. [PMID: 28381504 PMCID: PMC9675292 DOI: 10.1530/joe-16-0679] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
The heart is an insulin-dependent and energy-consuming organ in which insulin and nutritional signaling integrates to the regulation of cardiac metabolism, growth and survival. Heart failure is highly associated with insulin resistance, and heart failure patients suffer from the cardiac energy deficiency and structural and functional dysfunction. Chronic pathological conditions, such as obesity and type 2 diabetes mellitus, involve various mechanisms in promoting heart failure by remodeling metabolic pathways, modulating cardiac energetics and impairing cardiac contractility. Recent studies demonstrated that insulin receptor substrates 1 and 2 (IRS-1,-2) are major mediators of both insulin and insulin-like growth factor-1 (IGF-1) signaling responsible for myocardial energetics, structure, function and organismal survival. Importantly, the insulin receptor substrates (IRS) play an important role in the activation of the phosphatidylinositide-3-dependent kinase (PI-3K) that controls Akt and Foxo1 signaling cascade, regulating the mitochondrial function, cardiac energy metabolism and the renin-angiotensin system. Dysregulation of this branch in signaling cascades by insulin resistance in the heart through the endocrine system promotes heart failure, providing a novel mechanism for diabetic cardiomyopathy. Therefore, targeting this branch of IRS→PI-3K→Foxo1 signaling cascade and associated pathways may provide a fundamental strategy for the therapeutic and nutritional development in control of metabolic and cardiovascular diseases. In this review, we focus on insulin signaling and resistance in the heart and the role energetics play in cardiac metabolism, structure and function.
Collapse
Affiliation(s)
- Cathy A Guo
- Department of Nutrition and Food ScienceCollege of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Shaodong Guo
- Department of Nutrition and Food ScienceCollege of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
94
|
McMillin SL, Schmidt DL, Kahn BB, Witczak CA. GLUT4 Is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle. Diabetes 2017; 66:1491-1500. [PMID: 28279980 PMCID: PMC5440020 DOI: 10.2337/db16-1075] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/24/2017] [Indexed: 12/23/2022]
Abstract
GLUT4 is necessary for acute insulin- and contraction-induced skeletal muscle glucose uptake, but its role in chronic muscle loading (overload)-induced glucose uptake is unknown. Our goal was to determine whether GLUT4 is required for overload-induced glucose uptake. Overload was induced in mouse plantaris muscle by unilateral synergist ablation. After 5 days, muscle weights and ex vivo [3H]-2-deoxy-d-glucose uptake were assessed. Overload-induced muscle glucose uptake and hypertrophic growth were not impaired in muscle-specific GLUT4 knockout mice, demonstrating that GLUT4 is not necessary for these processes. To assess which transporters mediate overload-induced glucose uptake, chemical inhibitors were used. The facilitative GLUT inhibitor cytochalasin B, but not the sodium-dependent glucose cotransport inhibitor phloridzin, prevented overload-induced uptake demonstrating that GLUTs mediate this effect. To assess which GLUT, hexose competition experiments were performed. Overload-induced [3H]-2-deoxy-d-glucose uptake was not inhibited by d-fructose, demonstrating that the fructose-transporting GLUT2, GLUT5, GLUT8, and GLUT12 do not mediate this effect. To assess additional GLUTs, immunoblots were performed. Overload increased GLUT1, GLUT3, GLUT6, and GLUT10 protein levels twofold to fivefold. Collectively, these results demonstrate that GLUT4 is not necessary for overload-induced muscle glucose uptake or hypertrophic growth and suggest that GLUT1, GLUT3, GLUT6, and/or GLUT10 mediate overload-induced glucose uptake.
Collapse
Affiliation(s)
- Shawna L McMillin
- Department of Kinesiology, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Denise L Schmidt
- Department of Kinesiology, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Carol A Witczak
- Department of Kinesiology, East Carolina University, Greenville, NC
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC
- Department of Physiology, East Carolina University, Greenville, NC
- Brody School of Medicine, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| |
Collapse
|
95
|
De Jong KA, Lopaschuk GD. Complex Energy Metabolic Changes in Heart Failure With Preserved Ejection Fraction and Heart Failure With Reduced Ejection Fraction. Can J Cardiol 2017; 33:860-871. [PMID: 28579160 DOI: 10.1016/j.cjca.2017.03.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022] Open
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex, and are dependent not only on the severity and type of heart failure present, but also on the coexistence of common comorbidities such as obesity and type 2 diabetes. In this article we review the cardiac energy metabolic changes that occur in heart failure. An emphasis is made on distinguishing the differences in cardiac energy metabolism between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) and in clarifying the common misconceptions surrounding the fate of fatty acids and glucose in the failing heart. The major key points from this article are: (1) mitochondrial oxidative capacity is reduced in HFpEF and HFrEF; (2) fatty acid oxidation is increased in HFpEF and reduced in HFrEF (however, oxidative metabolism of fatty acids in HFrEF still exceeds that of glucose); (3) glucose oxidation is decreased in HFpEF and HFrEF; (4) there is an uncoupling between glucose uptake and oxidation in HFpEF and HFrEF, resulting in an increased rate of glycolysis; (5) ketone body oxidation is increased in HFrEF, which might further reduce fatty acid and glucose oxidation; and finally, (6) branched chain amino acid oxidation is impaired in HFrEF. The understanding of these changes in cardiac energy metabolism in heart failure are essential to allow the development of metabolic modulators in the treatment of heart failure.
Collapse
Affiliation(s)
- Kirstie A De Jong
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
96
|
Reno CM, Puente EC, Sheng Z, Daphna-Iken D, Bree AJ, Routh VH, Kahn BB, Fisher SJ. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation. Diabetes 2017; 66:587-597. [PMID: 27797912 PMCID: PMC5319720 DOI: 10.2337/db16-0917] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose.
Collapse
Affiliation(s)
- Candace M Reno
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, MO
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Erwin C Puente
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Zhenyu Sheng
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ
| | - Dorit Daphna-Iken
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Adam J Bree
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Vanessa H Routh
- Department of Pharmacology and Physiology, Rutgers New Jersey Medical School, Newark, NJ
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Simon J Fisher
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, MO
- Division of Endocrinology, Metabolism, and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
97
|
GLUT4 Mobilization Supports Energetic Demands of Active Synapses. Neuron 2017; 93:606-615.e3. [PMID: 28111082 DOI: 10.1016/j.neuron.2016.12.020] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/08/2016] [Accepted: 12/15/2016] [Indexed: 12/19/2022]
Abstract
The brain is highly sensitive to proper fuel availability as evidenced by the rapid decline in neuronal function during ischemic attacks and acute severe hypoglycemia. We previously showed that sustained presynaptic function requires activity-driven glycolysis. Here, we provide strong evidence that during action potential (AP) firing, nerve terminals rely on the glucose transporter GLUT4 as a glycolytic regulatory system to meet the activity-driven increase in energy demands. Activity at synapses triggers insertion of GLUT4 into the axonal plasma membrane driven by activation of the metabolic sensor AMP kinase. Furthermore, we show that genetic ablation of GLUT4 leads to an arrest of synaptic vesicle recycling during sustained AP firing, similar to what is observed during acute glucose deprivation. The reliance on this biochemical regulatory system for "exercising" synapses is reminiscent of that occurring in exercising muscle to sustain cellular function and identifies nerve terminals as critical sites of proper metabolic control.
Collapse
|
98
|
Chowdhury S, Ghosh S, Rashid K, Sil PC. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats. Food Chem Toxicol 2016; 97:187-198. [PMID: 27621051 DOI: 10.1016/j.fct.2016.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022]
Abstract
The cardiomyocytes are one of the major sources of hyperglycemia induced ROS generation. The present study focuses on the ameliorative role of ferulic acid in combating cardiac complications in diabetic rats. Induction of diabetes by STZ in male Wistar rats (at a dose of 50 mg kg-1 body wt, i.p.) reduced body weight and plasma insulin level, enhanced blood glucose, disturbed the intra-cellular antioxidant machineries and disintegrated the normal radiation pattern of cardiac muscle fibers. Induction of ER stress (up-regulation in the levels of CHOP, GRP78, eIF2α signaling, increased calpain-1 expression), caspase-3 activation, PARP cleavage and DNA fragmentation were evidenced from immunoblot analyses and DNA fragmentation assay. However, ferulic acid administration, (at a dose of 50 mg kg-1 body wt, orally for eight weeks) in post-hyperglycemia could reverse such adverse effects. Also, the molecule increased GLUT-4 translocation to the cardiac membrane by enhanced phosphorylation of PI3Kinase, AKT and inactivation of GSK-3β thereby altering the hyperglycemic condition in the cardiac tissue of diabetic rats. Therefore, as a potential therapeutic, ferulic acid, exhibiting antioxidant and hypoglycemic effects, may hold promise in circumventing stress mediated diabetic cardiomyopathy in rats.
Collapse
Affiliation(s)
- Sayantani Chowdhury
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Kahkashan Rashid
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
99
|
Li Z, Frey JL, Wong GW, Faugere MC, Wolfgang MJ, Kim JK, Riddle RC, Clemens TL. Glucose Transporter-4 Facilitates Insulin-Stimulated Glucose Uptake in Osteoblasts. Endocrinology 2016; 157:4094-4103. [PMID: 27689415 PMCID: PMC5086531 DOI: 10.1210/en.2016-1583] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent studies have identified the osteoblast as an insulin responsive cell that participates in global energy homeostasis. Here, we show that glucose transporter-4 (Glut4) is required for insulin-dependent uptake and oxidation of glucose in mature osteoblasts. In primary cultures of mouse osteoblasts, insulin increased uptake and oxidation of 14C-glucose in a dose-dependent fashion but did not significantly affect uptake or oxidation of 14C-oleate. In vitro, undifferentiated osteoblasts expressed 3 high-affinity Gluts: Glut1, Glut4, and Glut3. However, although levels of Glut1 and Glut3 remained constant during the course of osteoblast differentiation, Glut4 expression increased by 5-fold in association with enhanced insulin-stimulated glucose uptake. Glut4 ablation in osteoblasts in vitro eliminated insulin-stimulated glucose uptake, reduced proliferation and diminished measures of osteoblast maturation. In vivo, Glut4 expression was observed in osteoblasts, osteocytes, and chondrocytes at a level approaching that observed in adjacent skeletal muscle. To determine the importance of Glut4 in bone in vivo, we generated mice lacking Glut4 in osteoblasts and osteocytes (ΔGlut4). ΔGlut4 mice exhibited normal bone architecture but exhibited an increase in peripheral fat in association with hyperinsulinemia, β-cell islet hypertrophy, and reduced insulin sensitivity. Surprisingly, the expression of insulin target genes in liver, muscle, and adipose from ΔGlut4 mice were unchanged or increased, indicating that alterations in glucose homeostasis were the result of reduced clearance by bone. These findings suggest that Glut4 mediates insulin-stimulated glucose uptake by mature osteoblasts/osteocytes and that the magnitude of glucose use by bone cells is sufficient to impact global glucose disposal in the mouse.
Collapse
Affiliation(s)
- Zhu Li
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Julie L Frey
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - G William Wong
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Marie-Claude Faugere
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Michael J Wolfgang
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Jason K Kim
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Ryan C Riddle
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| | - Thomas L Clemens
- Department of Orthopaedic Surgery (Z.L., J.L.F., R.C.R., T.L.C.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Physiology (G.W.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Medicine (M.-C.F.), Division of Nephology, University of Kentucky, Lexington, Kentucky 40356; Department of Biological Chemistry (M.J.W.), Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Program in Molecular Medicine (J.K.K.), University of Massachusetts Medical School, Wooster, Massachusetts 01605; and Baltimore Veterans Administration Medical Center (R.C.R., T.L.C.), Baltimore, Maryland 21201
| |
Collapse
|
100
|
Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K, Ebert AD, Shukla P, Abilez OJ, Churko JM, Karakikes I, Jung G, Ichida F, Wu SM, Snyder MP, Bernstein D, Wu JC. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 2016; 18:1031-42. [PMID: 27642787 PMCID: PMC5042877 DOI: 10.1038/ncb3411] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 08/12/2016] [Indexed: 02/07/2023]
Abstract
Left ventricular non-compaction (LVNC) is the third most prevalent cardiomyopathy in children and its pathogenesis has been associated with the developmental defect of the embryonic myocardium. We show that patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from LVNC patients carrying a mutation in the cardiac transcription factor TBX20 recapitulate a key aspect of the pathological phenotype at the single-cell level and this was associated with perturbed transforming growth factor beta (TGF-β) signalling. LVNC iPSC-CMs have decreased proliferative capacity due to abnormal activation of TGF-β signalling. TBX20 regulates the expression of TGF-β signalling modifiers including one known to be a genetic cause of LVNC, PRDM16, and genome editing of PRDM16 caused proliferation defects in iPSC-CMs. Inhibition of TGF-β signalling and genome correction of the TBX20 mutation were sufficient to reverse the disease phenotype. Our study demonstrates that iPSC-CMs are a useful tool for the exploration of pathological mechanisms underlying poorly understood cardiomyopathies including LVNC.
Collapse
Affiliation(s)
- Kazuki Kodo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sang-Ging Ong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Vittavat Termglinchan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Keiichi Hirono
- Department of Pediatrics, University of Toyama, Toyama-shi, Toyama 930-8555, Japan
| | - Kolsoum InanlooRahatloo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Praveen Shukla
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jared M Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gwanghyun Jung
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fukiko Ichida
- Department of Pediatrics, University of Toyama, Toyama-shi, Toyama 930-8555, Japan
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|