51
|
Noh H, Shao Z, Coyle JT, Chung S. Modeling schizophrenia pathogenesis using patient-derived induced pluripotent stem cells (iPSCs). Biochim Biophys Acta Mol Basis Dis 2017; 1863:2382-2387. [PMID: 28668333 PMCID: PMC5737829 DOI: 10.1016/j.bbadis.2017.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/07/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
Abstract
Schizophrenia is a chronic disabling mental disorder that affects about 1% population world-wide, for which there is a desperate need to develop more effective treatments. In this minireview, we summarize the findings from recent studies using induced pluripotent stem cells to model the developmental pathogenesis of schizophrenia and discuss what we have learned from these studies. We also discuss what are the important next steps and key issues to be addressed to move the field forward.
Collapse
Affiliation(s)
- Haneul Noh
- Translational Stem Cell Neurobiology Lab, McLean Hospital/Harvard Medical School, Belmont, MA 02478, United States
| | - Zhicheng Shao
- Translational Stem Cell Neurobiology Lab, McLean Hospital/Harvard Medical School, Belmont, MA 02478, United States
| | - Joseph T Coyle
- Laboratory for Psychiatric and Molecular Neuroscience, McLean Hospital/Harvard Medical School, Belmont, MA 02478, United States
| | - Sangmi Chung
- Translational Stem Cell Neurobiology Lab, McLean Hospital/Harvard Medical School, Belmont, MA 02478, United States.
| |
Collapse
|
52
|
Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 2017; 16:634-643. [PMID: 28497576 PMCID: PMC5506442 DOI: 10.1111/acel.12605] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 12/19/2022] Open
Abstract
As it was established that aging is not associated with massive neuronal loss, as was believed in the mid‐20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging‐related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging‐related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging‐induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.
Collapse
Affiliation(s)
- Aleksandra Rozycka
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| | - Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| |
Collapse
|
53
|
Dorsolateral Prefrontal Cortex GABA Concentration in Humans Predicts Working Memory Load Processing Capacity. J Neurosci 2017; 36:11788-11794. [PMID: 27852785 DOI: 10.1523/jneurosci.1970-16.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/24/2016] [Accepted: 09/19/2016] [Indexed: 02/01/2023] Open
Abstract
The discovery of neural mechanisms of working memory (WM) would significantly enhance our understanding of complex human behaviors and guide treatment development for WM-related impairments found in neuropsychiatric conditions and aging. Although the dorsolateral prefrontal cortex (DLPFC) has long been considered critical for WM, we still know little about the neural elements and pathways within the DLPFC that support WM in humans. In this study, we tested whether an individual's DLPFC gamma-aminobutryic acid (GABA) content predicts individual differences in WM task performance using a novel behavioral approach. Twenty-three healthy adults completed a task that measured the unique contribution of major WM components (memory load, maintenance, and distraction resistance) to performance. This was done to address the possibility that components have differing GABA dependencies and the failure to parse WM into components would lead to missing true associations with GABA. The subjects then had their DLPFC GABA content measured by single-voxel proton magnetic spectroscopy. We found that individuals with lower DLPFC GABA showed greater performance degradation with higher load, accounting for 31% of variance, p(corrected) = 0.015. This relationship was component, neurochemical, and brain region specific. DLPFC GABA content did not predict performance sensitivity to other components tested; DLPFC glutamate + glutamine and visual cortical GABA content did not predict load sensitivity. These results confirm the involvement of DLPFC GABA in WM load processing in humans and implicate factors controlling DLPFC GABA content in the neural mechanisms of WM and its impairments. SIGNIFICANCE STATEMENT This study demonstrated for the first time that the amount of gamma-aminobutryic acid (GABA), the major inhibitory neurotransmitter of the brain, in an individual's prefrontal cortex predicts working memory (WM) task performance. Given that WM is required for many of the most characteristic cognitive and behavioral capabilities in humans, this finding could have a significant impact on our understanding of the neural basis of complex human behavior. Furthermore, this finding suggests that efforts to preserve or increase brain GABA levels could be fruitful in remediating WM-related deficits associated with neuropsychiatric conditions.
Collapse
|
54
|
Keshavan MS, Lawler AN, Nasrallah HA, Tandon R. New drug developments in psychosis: Challenges, opportunities and strategies. Prog Neurobiol 2017; 152:3-20. [PMID: 27519538 PMCID: PMC5362348 DOI: 10.1016/j.pneurobio.2016.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023]
Abstract
All currently approved drugs for schizophrenia work mainly by dopaminergic antagonism. While they are efficacious for psychotic symptoms, their efficacy is limited for negative symptoms and cognitive deficits which underlie the substantive disability in this illness. Recent insights into the biological basis of schizophrenia, especially in relation to non-dopaminergic mechanisms, have raised the efforts to find novel and effective drug targets, though with relatively little success thus far. Potential impediments to novel drug discovery include the continued use of symptom based disease definitions which leads to etiological and pathophysiological heterogeneity, lack of valid preclinical models for drug testing, and design limitations in clinical trials. These roadblocks can be addressed by (i) characterizing trans-diagnostic, translational pathophysiological dimensions as potential treatment targets, (ii) efficiency, accountability and, transparency in approaches to the clinical trials process, and (iii) leveraging recent advances in genetics and in vitro phenotypes. Accomplishing these goals is urgent given the significant unmet needs in the pharmacological treatment of schizophrenia. As this happens, it is imperative that clinicians employ optimal dosing, measurement-based care, and other best practices in utilizing existing treatments to optimize outcomes for their patients today.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, United States.
| | - Ashley N Lawler
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Massachusetts Mental Health Center, Harvard Medical School, United States
| | - Henry A Nasrallah
- Department of Neurology & Psychiatry, St Louis University, United States
| | - Rajiv Tandon
- Department of Psychiatry, University of Florida, Gainsville, Florida. and the North FL/South Georgia Veterans' Administration Medical Center, Gainesville, FL 32610, United States; The North Florida/South Georgia Veterans' Administration Medical Center, Gainesville, FL, 32610, United States
| |
Collapse
|
55
|
Abstract
Learning and memory are dependent on interactive excitatory and inhibitory mechanisms. In this review, we discuss a mechanism called disinhibition, which is the release of an inhibitory constraint that effectively results in an increased activity in the target neurons (for example, principal or projection neurons). We focus on discussing the role of disinhibition in learning and memory at a basic level and in disease models with cognitive deficits and highlight a strategy to reverse cognitive deficits caused by excess inhibition, through disinhibition of α5-containing GABA
A receptors mediating tonic inhibition in the hippocampus, based on subtype-selective negative allosteric modulators as a novel class of drugs.
Collapse
Affiliation(s)
- Hanns Möhler
- Institute of Pharmacology, University of Zurich, Zurich, Switzerland; Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
56
|
Katsumata S. [How to improve success rates of the compounds acting on CNS using biomarkers]. Nihon Yakurigaku Zasshi 2017; 149:148-153. [PMID: 28381657 DOI: 10.1254/fpj.149.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
57
|
Suhara T, Chaki S, Kimura H, Furusawa M, Matsumoto M, Ogura H, Negishi T, Saijo T, Higuchi M, Omura T, Watanabe R, Miyoshi S, Nakatani N, Yamamoto N, Liou SY, Takado Y, Maeda J, Okamoto Y, Okubo Y, Yamada M, Ito H, Walton NM, Yamawaki S. Strategies for Utilizing Neuroimaging Biomarkers in CNS Drug Discovery and Development: CINP/JSNP Working Group Report. Int J Neuropsychopharmacol 2016; 20:285-294. [PMID: 28031269 PMCID: PMC5604546 DOI: 10.1093/ijnp/pyw111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/15/2016] [Indexed: 01/07/2023] Open
Abstract
Despite large unmet medical needs in the field for several decades, CNS drug discovery and development has been largely unsuccessful. Biomarkers, particularly those utilizing neuroimaging, have played important roles in aiding CNS drug development, including dosing determination of investigational new drugs (INDs). A recent working group was organized jointly by CINP and Japanese Society of Neuropsychopharmacology (JSNP) to discuss the utility of biomarkers as tools to overcome issues of CNS drug development.The consensus statement from the working group aimed at creating more nuanced criteria for employing biomarkers as tools to overcome issues surrounding CNS drug development. To accomplish this, a reverse engineering approach was adopted, in which criteria for the utilization of biomarkers were created in response to current challenges in the processes of drug discovery and development for CNS disorders. Based on this analysis, we propose a new paradigm containing 5 distinct tiers to further clarify the use of biomarkers and establish new strategies for decision-making in the context of CNS drug development. Specifically, we discuss more rational ways to incorporate biomarker data to determine optimal dosing for INDs with novel mechanisms and targets, and propose additional categorization criteria to further the use of biomarkers in patient stratification and clinical efficacy prediction. Finally, we propose validation and development of new neuroimaging biomarkers through public-private partnerships to further facilitate drug discovery and development for CNS disorders.
Collapse
Affiliation(s)
- Tetsuya Suhara
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Shigeyuki Chaki
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Haruhide Kimura
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Makoto Furusawa
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Mitsuyuki Matsumoto
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Hiroo Ogura
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Takaaki Negishi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Takeaki Saijo
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Makoto Higuchi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Tomohiro Omura
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Rira Watanabe
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Sosuke Miyoshi
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Noriaki Nakatani
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Noboru Yamamoto
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Shyh-Yuh Liou
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Yuhei Takado
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Jun Maeda
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Yasumasa Okamoto
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Yoshiaki Okubo
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Makiko Yamada
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Hiroshi Ito
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Noah M. Walton
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| | - Shigeto Yamawaki
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan (Drs Suhara, Higuchi, Takado, Maeda, and Yamada); Taisho Pharmaceutical Co., Ltd., Saitama, Japan (Drs Chaki and Omura); Takeda Pharmaceutical Co., Ltd., Kanagawa, Japan (Drs Kimura and Furusawa); Astellas Pharma Inc., Ibaraki, Japan (Drs Matsumoto and Miyoshi); Eisai Co., Ltd., Tokyo, Japan (Drs Ogura and Yamamoto); Mochida Pharmaceutical Co., Ltd., Tokyo, Japan (Dr Negishi); Mitsubishi Tanabe Pharma Co., Kanagawa, Japan (Dr Saijo); Daiichi Sankyo Co., Ltd., Tokyo, Japan (Dr Watanabe); Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan (Dr Nakatani); Ono Pharmaceutical Co., Ltd., Osaka, Japan (Dr Liou); Hiroshima University, Hiroshima, Japan (Drs Okamoto and Yamawaki); Nippon Medical School, Tokyo, Japan (Dr Okubo); Fukushima Medical University, Fukushima, Japan (Dr Ito); Astellas Research Institute of America LLC, IL, USA (Dr Walton)
| |
Collapse
|
58
|
Brady LJ, Bartley AF, Li Q, McMeekin LJ, Hablitz JJ, Cowell RM, Dobrunz LE. Transcriptional dysregulation causes altered modulation of inhibition by haloperidol. Neuropharmacology 2016; 111:304-313. [PMID: 27480797 PMCID: PMC5207497 DOI: 10.1016/j.neuropharm.2016.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
Many neuropsychiatric and neurodevelopmental disorders such as schizophrenia and autism involve interneuron transcriptional dysregulation. The transcriptional coactivator PGC-1α regulates gene expression in GABAergic interneurons, which are important for regulating hippocampal network activity. Genetic deletion of PGC-1α causes a decrease in parvalbumin expression, similar to what is observed in schizophrenia postmortem tissue. Our lab has previously shown that PGC-1α-/- mice have enhanced GABAergic inhibition onto CA1 pyramidal cells, which increases the inhibition/excitation (I/E) ratio, alters hippocampal circuit function, and impairs hippocampal dependent behavior. The typical antipsychotic haloperidol, a dopamine receptor antagonist with selectivity for D2-like receptors, has previously been shown to increase excitation in the CA1 region of hippocampus. We therefore tested whether haloperidol could normalize the I/E balance in CA1 of PGC-1α-/- mice, potentially improving circuit function and behavior. Surprisingly, we discovered instead that interneuron transcriptional dysregulation caused by loss of PGC-1α alters the effects of haloperidol on hippocampal synaptic transmission and circuit function. Acute administration of haloperidol causes disinhibition in CA1 and decreases the I/E ratio onto CA1 pyramidal cells in slices from PGC-1α+/+ mice, but not PGC-1α-/- mice. The spread of activity in CA1, assessed by voltage sensitive dye imaging, is increased by haloperidol in slices from PGC-1α+/+ mice; however haloperidol decreases the spread of activity in slices from PGC-1α-/- mice. Haloperidol increased the power of hippocampal gamma oscillation in slices from PGC-1α+/+ mice but reduced the power of gamma oscillations in slices from PGC-1α-/- mice. Nest construction, an innate hippocampal-dependent behavior, is inhibited by haloperidol in PGC-1α+/+ mice, but not in PGC-1α-/- mice, which already have impaired nest building. The effects of haloperidol are mimicked and occluded by a D2 receptor antagonist in slices from PGC-1α+/+ mice, and the effects of blocking D2 receptors are lost in slices from PGC-1α-/- mice, although there is no change in D2 receptor transcript levels. Together, our results show that hippocampal inhibitory synaptic transmission, CA1 circuit function, and hippocampal dependent behavior are modulated by the antipsychotic haloperidol, and that these effects of haloperidol are lost in PGC-1α-/- mice. These results have implications for the treatment of individuals with conditions involving PGC-1α deficiency.
Collapse
Affiliation(s)
- Lillian J Brady
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Aundrea F Bartley
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Qin Li
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Laura J McMeekin
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - John J Hablitz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| | - Rita M Cowell
- Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1720 7th Ave. S., Birmingham, AL, USA.
| | - Lynn E Dobrunz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, USA; Civitan International Research Center, University of Alabama at Birmingham, 1719 6th Ave. S., Birmingham, AL, USA.
| |
Collapse
|
59
|
Mehta R, Singh A, Bókkon I, Nath Mallick B. REM sleep and its Loss-Associated Epigenetic Regulation with Reference to Noradrenaline in Particular. Curr Neuropharmacol 2016; 14:28-40. [PMID: 26813120 PMCID: PMC4787282 DOI: 10.2174/1570159x13666150414185737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/02/2015] [Accepted: 04/11/2015] [Indexed: 01/12/2023] Open
Abstract
Sleep is an essential physiological process, which has been divided into rapid eye movement sleep (REMS) and non-REMS (NREMS) in higher animals. REMS is a unique phenomenon that unlike other sleep-waking states is not under voluntary control. Directly or indirectly it influences or gets influenced by most of the physiological processes controlled by the brain. It has been proposed that REMS serves housekeeping function of the brain. Extensive research has shown that during REMS at least noradrenaline (NA) -ergic neurons must cease activity and upon REMS loss, there are increased levels of NA in the brain, which then induces many of the REMS loss associated acute and chronic effects. The NA level is controlled by many bio-molecules that are regulated at the molecular and transcriptional levels. Similarly, NA can also directly or indirectly modulate the synthesis and levels of many molecules, which in turn may affect physiological processes. The burgeoning field of behavioral neuroepigenetics has gained importance in recent years and explains the regulatory mechanisms underlying several behavioral phenomena. As REMS and its loss associated changes in NA modulate several pathophysiological processes, in this review we have attempted to explain on one hand how the epigenetic mechanisms regulating the gene expression of factors like tyrosine hydroxylase (TH), monoamine oxidase (MAO), noradrenaline transporter (NAT) control NA levels and on the other hand, how NA per se can affect other molecules in neural circuitry at the epigenetic level resulting in behavioral changes in health and diseases. An
understanding of these events will expose the molecular basis of REMS and its loss-associated pathophysiological changes; which are presented as a testable hypothesis for confirmation.
Collapse
|
60
|
Early postnatal GABAA receptor modulation reverses deficits in neuronal maturation in a conditional neurodevelopmental mouse model of DISC1. Mol Psychiatry 2016; 21:1449-59. [PMID: 26728564 PMCID: PMC4935661 DOI: 10.1038/mp.2015.203] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/21/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
Abstract
Exploring drug targets based on disease-associated molecular mechanisms during development is crucial for the generation of novel prevention and treatment strategies for neurodevelopmental psychiatric conditions. We report that prefrontal cortex (PFC)-specific postnatal knockdown of DISC1 via in utero electroporation combined with an inducible knockdown expression system drives deficits in synaptic GABAA function and dendritic development in pyramidal neurons, as well as abnormalities in sensorimotor gating, albeit without profound memory deficits. We show for the first time that DISC1 is specifically involved in regulating cell surface expression of α2 subunit-containing GABAA receptors in immature developing neurons, but not after full maturation. Notably, pharmacological intervention with α2/3 subtype-selective GABAA receptor positive allosteric modulators during the early postnatal period ameliorates dendritic deficits and behavioral abnormalities induced by knockdown of DISC1. These findings highlight a critical role of DISC1-mediated disruption of postnatal GABA signaling in aberrant PFC maturation and function.
Collapse
|
61
|
Dickinson A, Jones M, Milne E. Measuring neural excitation and inhibition in autism: Different approaches, different findings and different interpretations. Brain Res 2016; 1648:277-289. [PMID: 27421181 DOI: 10.1016/j.brainres.2016.07.011] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022]
Abstract
The balance of neural excitation and inhibition (E/I balance) is often hypothesised to be altered in autism spectrum disorder (ASD). One widely held view is that excitation levels are elevated relative to inhibition in ASD. Understanding whether, and how, E/I balance may be altered in ASD is important given the recent interest in trialling pharmacological interventions for ASD which target inhibitory neurotransmitter function. Here we provide a critical review of evidence for E/I balance in ASD. We conclude that data from a number of domains provides support for alteration in excitation and inhibitory neurotransmission in ASD, but when considered collectively, the available literature provide little evidence to support claims for either a net increase in excitation or a net increase in inhibition. Strengths and limitations of available techniques are considered, and directions for future research discussed.
Collapse
Affiliation(s)
- Abigail Dickinson
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| | - Myles Jones
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK
| | - Elizabeth Milne
- Department of Psychology, University of Sheffield, Western Bank, Sheffield S10 2TP, UK.
| |
Collapse
|
62
|
Merner ND, Mercado A, Khanna AR, Hodgkinson A, Bruat V, Awadalla P, Gamba G, Rouleau GA, Kahle KT. Gain-of-function missense variant in SLC12A2, encoding the bumetanide-sensitive NKCC1 cotransporter, identified in human schizophrenia. J Psychiatr Res 2016; 77:22-6. [PMID: 26955005 DOI: 10.1016/j.jpsychires.2016.02.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Abstract
Perturbations of γ-aminobutyric acid (GABA) neurotransmission in the human prefrontal cortex have been implicated in the pathogenesis of schizophrenia (SCZ), but the mechanisms are unclear. NKCC1 (SLC12A2) is a Cl(-)-importing cation-Cl(-) cotransporter that contributes to the maintenance of depolarizing GABA activity in immature neurons, and variation in SLC12A2 has been shown to increase the risk for schizophrenia via alterations of NKCC1 mRNA expression. However, no disease-causing mutations or functional variants in NKCC1 have been identified in human patients with SCZ. Here, by sequencing three large French-Canadian (FC) patient cohorts of SCZ, autism spectrum disorders (ASD), and intellectual disability (ID), we identified a novel heterozygous NKCC1 missense variant (p.Y199C) in SCZ. This variant is located in an evolutionarily conserved residue in the critical N-terminal regulatory domain and exhibits high predicted pathogenicity. No NKCC1 variants were detected in ASD or ID, and no KCC3 variants were identified in any of the three neurodevelopmental disorder cohorts. Functional experiments show Y199C is a gain-of-function variant, increasing Cl(-)-dependent and bumetanide-sensitive NKCC1 activity even in conditions in which the transporter is normally functionally silent (hypotonicity). These data are the first to describe a functional missense variant in SLC12A2 in human SCZ, and suggest that genetically encoded dysregulation of NKCC1 may be a risk factor for, or contribute to the pathogenesis of, human SCZ.
Collapse
Affiliation(s)
- Nancy D Merner
- Harrison School of Pharmacy, Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - Adriana Mercado
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Arjun R Khanna
- Department of Neurobiology, Harvard Medical School, Boston, MA 02125, USA
| | - Alan Hodgkinson
- CHU Sainte Justine Research Centre, Department of Pediatrics, Faculty of Medicine, Universite de Montreal, Montréal, Quebec, Canada
| | - Vanessa Bruat
- CHU Sainte Justine Research Centre, Department of Pediatrics, Faculty of Medicine, Universite de Montreal, Montréal, Quebec, Canada
| | - Philip Awadalla
- CHU Sainte Justine Research Centre, Department of Pediatrics, Faculty of Medicine, Universite de Montreal, Montréal, Quebec, Canada; CARTaGENE, 3333 Queen Mary Road, Office 493, Montreal, Quebec, Canada
| | - Gerardo Gamba
- Molecular Physiology Uinit, Instituto de Investigaciones Biomédicas, Univesidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Guy A Rouleau
- Montreal Neurological Hospital and Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada.
| | - Kristopher T Kahle
- Department of Neurosurgery and Pediatrics, Interdepartmental Neuroscience Program, Program on Neurogenetics, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
63
|
Abstract
PURPOSE OF REVIEW We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. RECENT FINDINGS Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. SUMMARY Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.
Collapse
|
64
|
Sustained Modafinil Treatment Effects on Control-Related Gamma Oscillatory Power in Schizophrenia. Neuropsychopharmacology 2016; 41:1231-40. [PMID: 26329382 PMCID: PMC4793107 DOI: 10.1038/npp.2015.271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/07/2015] [Accepted: 07/21/2015] [Indexed: 01/05/2023]
Abstract
Control-related cognitive processes such as rule selection and maintenance are associated with cortical oscillations in the gamma range, and modulated by catecholamine neurotransmission. Control-related gamma power is impaired in schizophrenia, and an understudied treatment target. It remains unknown whether pro-catecholamine pharmacological agents augment control-related gamma oscillations in schizophrenia. We tested the effects of 4-week fixed-dose daily adjunctive modafinil (MOD) 200 mg, in a randomized double-blind, placebo-controlled, parallel-groups design. Twenty-seven stable schizophrenia patients performed a cognitive control task during EEG, at baseline and after 4 weeks of treatment. EEG data underwent time-frequency decomposition with Morlet wavelets to determine power of 4-80 Hz oscillations. The modafinil group (n=14), relative to placebo group (n=13), exhibited enhanced oscillatory power associated with high-control rule selection in the gamma range after treatment, with additional effects during rule maintenance in gamma and sub-gamma ranges. MOD-treated patients who exhibited improved task performance with treatment also showed greater treatment-related delay period gamma compared with MOD-treated patients without improved performance. This is the first evidence in schizophrenia of augmentation of cognition-related gamma oscillations by an FDA-approved agent with therapeutic potential. Gamma oscillations represent a novel treatment target in this disorder, and modulation of catecholamine signaling may represent a viable strategy at this target.
Collapse
|
65
|
Lladó-Pelfort L, Troyano-Rodriguez E, van den Munkhof HE, Cervera-Ferri A, Jurado N, Núñez-Calvet M, Artigas F, Celada P. Phencyclidine-induced disruption of oscillatory activity in prefrontal cortex: Effects of antipsychotic drugs and receptor ligands. Eur Neuropsychopharmacol 2016; 26:614-25. [PMID: 26781158 DOI: 10.1016/j.euroneuro.2015.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 11/13/2015] [Indexed: 12/23/2022]
Abstract
The non-competitive NMDA receptor (NMDA-R) antagonist phencyclidine (PCP) markedly disrupts thalamocortical activity, increasing excitatory neuron discharge and reducing low frequency oscillations (LFO, <4Hz) that temporarily group neuronal discharge. These actions are mainly driven by PCP interaction with NMDA-R in GABAergic neurons of the thalamic reticular nucleus and likely underlie PCP psychotomimetic activity. Here we report that classical (haloperidol, chlorpromazine, perphenazine) and atypical (clozapine, olanzapine, quetiapine, risperidone, ziprasidone, aripripazole) antipsychotic drugs--but not the antidepressant citalopram--countered PCP-evoked fall of LFO in the medial prefrontal cortex (mPFC) of anesthetized rats. PCP reduces LFO by breaking the physiological balance between excitatory and inhibitory transmission. Next, we examined the role of different neurotransmitter receptors to reverse PCP actions. D2-R and D1-R blockade may account for classical antipsychotic action since raclopride and SCH-23390 partially reversed PCP effects. Atypical antipsychotic reversal may additionally involve 5-HT1A-R activation (but not 5-HT2A-R blockade) since 8-OH-DPAT and BAYx3702 (but not M100907) fully countered PCP effects. Blockade of histamine H1-R (pyrilamine) and α1-adrenoceptors (prazosin) was without effect. However, the enhancement of GABAA-R-mediated neurotransmission (using muscimol, diazepam or valproate) and the reduction of excitatory neurotransmission (using the mGluR2/3 agonist LY379268 and the preferential kainite/AMPA antagonist CNQX--but not the preferential AMPA/kainate antagonist NBQX) partially or totally countered PCP effects. Overall, these results shed new light on the neurobiological mechanisms used by antipsychotic drugs to reverse NMDA-R antagonist actions and suggest that agents restoring the physiological excitatory/inhibitory balance altered by PCP may be new targets in antipsychotic drug development.
Collapse
Affiliation(s)
- L Lladó-Pelfort
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Troyano-Rodriguez
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - H E van den Munkhof
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A Cervera-Ferri
- Departament d׳Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, València, Spain
| | - N Jurado
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Núñez-Calvet
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - F Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - P Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
66
|
Wang X, Li P, Liu J, Jin X, Li L, Zhang D, Sun P. Gastrodin Attenuates Cognitive Deficits Induced by 3,3′-Iminodipropionitrile. Neurochem Res 2016; 41:1401-9. [DOI: 10.1007/s11064-016-1845-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 01/13/2023]
|
67
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
68
|
Glahn DC, Knowles EEM, Pearlson GD. Genetics of cognitive control: Implications for Nimh's research domain criteria initiative. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:111-20. [PMID: 26768522 DOI: 10.1002/ajmg.b.32345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
Cognitive control refers to a set of mental processes that modulate other cognitive and emotional systems in service of goal-directed adaptive behavior. There is growing support for the notion that cognitive control abnormalities are a central component of many of the neuropsychological deficits observed in individuals with mental illnesses, particularly those with psychotic disorders. NIMH's research domain criteria (RDoC) initiative, which is designed to develop biologically informed constructs to better understand psychopathology, designated cognitive control a construct within the cognitive systems domain. Identification of genes that influence cognitive control or its supportive brain systems will improve our understating of the RDoC construct and provide candidate genes for psychotic disorders. We examine evidence for cognitive control deficits in psychosis, determine if these measures could be useful endophenotypes, and explore work linking genetic variation to cognitive control performance. While there is a wealth of evidence to support the notion the cognitive control is a valid endophenotype for psychosis, its genetic underpinning remains ill characterized. However, existing work provides a promising foundation on which future endeavors might build. Confirming existing individual gene associations will go some way to expanding our understanding of the genetics of cognitive control, and by extension, psychotic disorders. Yet, to truly understand the molecular underpinnings of such complex traits, it may be necessary to evaluate genes in tandem, focusing not on single genes but rather on empirically derived gene sets or on functionally defined networks of genes.
Collapse
Affiliation(s)
- David C Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Emma E M Knowles
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Godfrey D Pearlson
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, Connecticut.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
69
|
Lewis DA, Glausier JR. Alterations in Prefrontal Cortical Circuitry and Cognitive Dysfunction in Schizophrenia. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:31-75. [PMID: 27627824 DOI: 10.1007/978-3-319-30596-7_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
70
|
Ranlund S, Adams RA, Díez Á, Constante M, Dutt A, Hall MH, Maestro Carbayo A, McDonald C, Petrella S, Schulze K, Shaikh M, Walshe M, Friston K, Pinotsis D, Bramon E. Impaired prefrontal synaptic gain in people with psychosis and their relatives during the mismatch negativity. Hum Brain Mapp 2015; 37:351-65. [PMID: 26503033 PMCID: PMC4843949 DOI: 10.1002/hbm.23035] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 12/11/2022] Open
Abstract
The mismatch negativity (MMN) evoked potential, a preattentive brain response to a discriminable change in auditory stimulation, is significantly reduced in psychosis. Glutamatergic theories of psychosis propose that hypofunction of NMDA receptors (on pyramidal cells and inhibitory interneurons) causes a loss of synaptic gain control. We measured changes in neuronal effective connectivity underlying the MMN using dynamic causal modeling (DCM), where the gain (excitability) of superficial pyramidal cells is explicitly parameterised. EEG data were obtained during a MMN task—for 24 patients with psychosis, 25 of their first‐degree unaffected relatives, and 35 controls—and DCM was used to estimate the excitability (modeled as self‐inhibition) of (source‐specific) superficial pyramidal populations. The MMN sources, based on previous research, included primary and secondary auditory cortices, and the right inferior frontal gyrus. Both patients with psychosis and unaffected relatives (to a lesser degree) showed increased excitability in right inferior frontal gyrus across task conditions, compared to controls. Furthermore, in the same region, both patients and their relatives showed a reversal of the normal response to deviant stimuli; that is, a decrease in excitability in comparison to standard conditions. Our results suggest that psychosis and genetic risk for the illness are associated with both context‐dependent (condition‐specific) and context‐independent abnormalities of the excitability of superficial pyramidal cell populations in the MMN paradigm. These abnormalities could relate to NMDA receptor hypofunction on both pyramidal cells and inhibitory interneurons, and appear to be linked to the genetic aetiology of the illness, thereby constituting potential endophenotypes for psychosis. Hum Brain Mapp 37:351–365, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siri Ranlund
- Division of Psychiatry, University College London, London, United Kingdom
| | - Rick A Adams
- Division of Psychiatry, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Álvaro Díez
- Division of Psychiatry, University College London, London, United Kingdom
| | - Miguel Constante
- Department of Psychiatry, Hospital Beatriz Angelo, Lisbon, Portugal
| | - Anirban Dutt
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Mei-Hua Hall
- Psychology Research Laboratory, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, USA
| | - Amparo Maestro Carbayo
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Colm McDonald
- Department of Psychiatry, Clinical Science Institute, National University of Ireland, Galway, Ireland
| | - Sabrina Petrella
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,Department of Psychiatry, Clinical and Experimental Science Institute, University of Foggia, Italy
| | - Katja Schulze
- The South London and Maudsley NHS Foundation Trust, University Hospital Lewisham, London, United Kingdom
| | - Madiha Shaikh
- The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.,Neuroepidemiology and Ageing Research Unit, Imperial College, London, United Kingdom
| | - Muriel Walshe
- Division of Psychiatry, University College London, London, United Kingdom.,The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Dimitris Pinotsis
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, United Kingdom.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,The South London and Maudsley NHS Foundation Trust, NIHR Biomedical Research Centre for Mental Health at the Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| |
Collapse
|
71
|
Mortazavi M, Farzin D, Zarhghami M, Hosseini SH, Mansoori P, Nateghi G. Efficacy of Zinc Sulfate as an Add-on Therapy to Risperidone Versus Risperidone Alone in Patients With Schizophrenia: A Double-Blind Randomized Placebo-Controlled Trial. IRANIAN JOURNAL OF PSYCHIATRY AND BEHAVIORAL SCIENCES 2015; 9:e853. [PMID: 26576178 PMCID: PMC4644625 DOI: 10.17795/ijpbs-853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 07/24/2014] [Accepted: 02/07/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Zinc can modulate fast-excitatory transmission, facilitate the release of amino butyric acid and potentiate nicotinic acetylcholine receptors. There are also emerging evidences discussing the implication of these neurotransmitters in pathophysiology of schizophrenia. OBJECTIVES The purpose of this study was to evaluate the efficacy of Zn sulfate as an add-on therapy in the treatment of schizophrenia in a 6-week, double-blind and placebo-controlled trial. PATIENTS AND METHODS Eligible participants were 30 inpatients with schizophrenia according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision criteria. Patients were randomly allocated into two equal groups; one group of patients received risperidone 6 mg/day plus capsules of Zn sulfate (each containing 50 mg elemental Zn) three times a day and another group received risperidone 6 mg/day plus placebo. The Positive and Negative Syndrome Scale (PANSS) was applied to assess the psychotic symptoms and aggression risk at baseline, week 2, 4, and 6 of the study. RESULTS The results of this study showed that both protocols significantly decreased the scores on all subscales of the PANSS and supplemental aggression risk subscale as well as PANSS total score over the study. However, this improvement was significantly higher in Zn sulfate receiving group compared to the placebo group. No major clinical side-effects were detected. CONCLUSIONS It may be concluded that Zn is an effective adjuvant agent in the management of patients with schizophrenia.
Collapse
Affiliation(s)
- Mehran Mortazavi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Davood Farzin
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, IR Iran ; Department of Pharmacology, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Mehran Zarhghami
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, IR Iran ; Department of Psychiatry, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Seyed Hamzeh Hosseini
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, IR Iran ; Department of Psychiatry, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Parisa Mansoori
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, IR Iran
| | - Gholamreza Nateghi
- Psychiatry and Behavioral Sciences Research Center, Addiction Institute, Mazandaran University of Medical Sciences, Sari, IR Iran ; Department of Psychiatry, School of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
| |
Collapse
|
72
|
Transcriptional regulation of GAD1 GABA synthesis gene in the prefrontal cortex of subjects with schizophrenia. Schizophr Res 2015; 167:28-34. [PMID: 25458568 PMCID: PMC4417100 DOI: 10.1016/j.schres.2014.10.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022]
Abstract
Expression of GAD1 GABA synthesis enzyme is highly regulated by neuronal activity and reaches mature levels in the prefrontal cortex not before adolescence. A significant portion of cases diagnosed with schizophrenia show deficits in GAD1 RNA and protein levels in multiple areas of adult cerebral cortex, possibly reflecting molecular or cellular defects in subtypes of GABAergic interneurons essential for network synchronization and cognition. Here, we review 20years of progress towards a better understanding of disease-related regulation of GAD1 gene expression. For example, deficits in cortical GAD1 RNA in some cases of schizophrenia are associated with changes in the epigenetic architecture of the promoter, affecting DNA methylation patterns and nucleosomal histone modifications. These localized chromatin defects at the 5' end of GAD1 are superimposed by disordered locus-specific chromosomal conformations, including weakening of long-range promoter-enhancer loopings and physical disconnection of GAD1 core promoter sequences from cis-regulatory elements positioned 50 kilobases further upstream. Studies on the 3-dimensional architecture of the GAD1 locus in neurons, including developmentally regulated higher order chromatin compromised by the disease process, together with exploration of locus-specific epigenetic interventions in animal models, could pave the way for future treatments of psychosis and schizophrenia.
Collapse
|
73
|
GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophr Res 2015; 167:84-90. [PMID: 25458856 PMCID: PMC4409914 DOI: 10.1016/j.schres.2014.10.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022]
Abstract
Abnormalities of GABAergic interneurons are some of the most consistent findings from post-mortem studies of schizophrenia. However, linking these molecular deficits with in vivo observations in patients - a critical goal in order to evaluate interventions that would target GABAergic deficits - presents a challenge. Explanatory models have been developed based on animal work and the emerging experimental literature in schizophrenia patients. This literature includes: neuroimaging ligands to GABA receptors, magnetic resonance spectroscopy (MRS) of GABA concentration, transcranial magnetic stimulation of cortical inhibitory circuits and pharmacologic probes of GABA receptors to dynamically challenge the GABA system, usually in combination with neuroimaging studies. Pharmacologic challenges have elicited behavioral changes, and preliminary studies of therapeutic GABAergic interventions have been conducted. This article critically reviews the evidence for GABAergic dysfunction from each of these areas. These methods remain indirect measures of GABAergic function, and a broad array of dysfunction is linked with the putative GABAergic measures, including positive symptoms, cognition, emotion, motor processing and sensory processing, covering diverse brain areas. Measures of receptor binding have not shown replicable group differences in binding, and MRS assays of GABA concentration have yielded equivocal evidence of large-scale alteration in GABA concentration. Overall, the experimental base remains sparse, and much remains to be learned about the role of GABAergic interneurons in healthy brains. Challenges with pharmacologic and functional probes show promise, and may yet enable a better characterization of GABAergic deficits in schizophrenia.
Collapse
|
74
|
Multitarget drug discovery projects in CNS diseases: quantitative systems pharmacology as a possible path forward. Future Med Chem 2015; 6:1757-69. [PMID: 25574530 DOI: 10.4155/fmc.14.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Clinical development in brain diseases has one of the lowest success rates in the pharmaceutical industry, and many promising rationally designed single-target R&D projects fail in expensive Phase III trials. By contrast, successful older CNS drugs do have a rich pharmacology. This article will provide arguments suggesting that highly selective single-target drugs are not sufficiently powerful to restore complex neuronal circuit homeostasis. A rationally designed multitarget project can be derisked by dialing in an additional symptomatic treatment effect on top of a disease modification target. Alternatively, we expand upon a hypothetical workflow example using a humanized computer-based quantitative systems pharmacology platform. The hope is that incorporating rationally multipharmacology drug discovery could potentially lead to more impactful polypharmacy drugs.
Collapse
|
75
|
Mueller TM, Remedies CE, Haroutunian V, Meador-Woodruff JH. Abnormal subcellular localization of GABAA receptor subunits in schizophrenia brain. Transl Psychiatry 2015; 5:e612. [PMID: 26241350 PMCID: PMC4564557 DOI: 10.1038/tp.2015.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/27/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022] Open
Abstract
Inhibitory neurotransmission is primarily mediated by γ-aminobutyric acid (GABA) activating synaptic GABA type A receptors (GABA(A)R). In schizophrenia, presynaptic GABAergic signaling deficits are among the most replicated findings; however, postsynaptic GABAergic deficits are less well characterized. Our lab has previously demonstrated that although there is no difference in total protein expression of the α1-6, β1-3 or γ2 GABA(A)R subunits in the superior temporal gyrus (STG) in schizophrenia, the α1, β1 and β2 GABA(A)R subunits are abnormally N-glycosylated. N-glycosylation is a posttranslational modification that has important functional roles in protein folding, multimer assembly and forward trafficking. To investigate the impact that altered N-glycosylation has on the assembly and trafficking of GABA(A)Rs in schizophrenia, this study used western blot analysis to measure the expression of α1, α2, β1, β2 and γ2 GABA(A)R subunits in subcellular fractions enriched for endoplasmic reticulum (ER) and synapses (SYN) from STG of schizophrenia (N = 16) and comparison (N = 14) subjects and found evidence of abnormal localization of the β1 and β2 GABA(A)R subunits and subunit isoforms in schizophrenia. The β2 subunit is expressed as three isoforms at 52 kDa (β2(52 kDa)), 50 kDa (β2(50 kDa)) and 48 kDa (β2(48 kDa)). In the ER, we found increased total β2 GABA(A)R subunit (β2(ALL)) expression driven by increased β2(50 kDa), a decreased ratio of β(248 kDa):β2(ALL) and an increased ratio of β2(50 kDa):β2(48 kDa). Decreased ratios of β1:β2(ALL) and β1:β2(50 kDa) in both the ER and SYN fractions and an increased ratio of β2(52 kDa):β(248 kDa) at the synapse were also identified in schizophrenia. Taken together, these findings provide evidence that alterations of N-glycosylation may contribute to GABAergic signaling deficits in schizophrenia by disrupting the assembly and trafficking of GABA(A)Rs.
Collapse
Affiliation(s)
- T M Mueller
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA,Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 593A, Birmingham, AL 35294-0021, USA. E-mail:
| | - C E Remedies
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA,Science and Technology Honors Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - V Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | - J H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
76
|
Synchronizing theta oscillations with direct-current stimulation strengthens adaptive control in the human brain. Proc Natl Acad Sci U S A 2015; 112:9448-53. [PMID: 26124116 DOI: 10.1073/pnas.1504196112] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Executive control and flexible adjustment of behavior following errors are essential to adaptive functioning. Loss of adaptive control may be a biomarker of a wide range of neuropsychiatric disorders, particularly in the schizophrenia spectrum. Here, we provide support for the view that oscillatory activity in the frontal cortex underlies adaptive adjustments in cognitive processing following errors. Compared with healthy subjects, patients with schizophrenia exhibited low frequency oscillations with abnormal temporal structure and an absence of synchrony over medial-frontal and lateral-prefrontal cortex following errors. To demonstrate that these abnormal oscillations were the origin of the impaired adaptive control in patients with schizophrenia, we applied noninvasive dc electrical stimulation over the medial-frontal cortex. This noninvasive stimulation descrambled the phase of the low-frequency neural oscillations that synchronize activity across cortical regions. Following stimulation, the behavioral index of adaptive control was improved such that patients were indistinguishable from healthy control subjects. These results provide unique causal evidence for theories of executive control and cortical dysconnectivity in schizophrenia.
Collapse
|
77
|
Gonzalez-Burgos G, Cho RY, Lewis DA. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry 2015; 77:1031-40. [PMID: 25863358 PMCID: PMC4444373 DOI: 10.1016/j.biopsych.2015.03.010] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/09/2015] [Accepted: 03/07/2015] [Indexed: 11/17/2022]
Abstract
Cognitive deficits are a core clinical feature of schizophrenia but respond poorly to available medications. Thus, understanding the neural basis of these deficits is crucial for the development of new therapeutic interventions. The types of cognitive processes affected in schizophrenia are thought to depend on the precisely timed transmission of information in cortical regions via synchronous oscillations at gamma band frequency. Here, we review 1) data from clinical studies suggesting that induction of frontal cortex gamma oscillations during tasks that engage cognitive or complex perceptual functions is attenuated in schizophrenia; 2) findings from basic neuroscience studies highlighting the features of parvalbumin-positive interneurons that are critical for gamma oscillation production; and 3) results from recent postmortem human brain studies providing additional molecular bases for parvalbumin-positive interneuron alterations in prefrontal cortical circuitry in schizophrenia.
Collapse
Affiliation(s)
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, Texas
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburg, Pennsylvania.
| |
Collapse
|
78
|
Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol Psychiatry 2015; 77:1010-9. [PMID: 25847179 DOI: 10.1016/j.biopsych.2015.02.034] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/22/2015] [Accepted: 02/24/2015] [Indexed: 12/30/2022]
Abstract
Impairments in working memory (WM) and other cognitive functions are cardinal neuropsychological symptoms in schizophrenia (ScZ). The prefrontal cortex (PFC) is important for mediating and executing these functions. Functional neuroimaging and molecular studies have consistently shown PFC abnormalities in ScZ. In addition, recent studies have suggested that impairments in oscillatory activity, especially in the gamma band (approximately 30-80 Hz), reflect disturbed cortical information processing in this patient group. Here we review evidence that dysfunctional gamma-band responses (GBR) in the PFC could be a factor contributing to WM and other cognitive deficits in ScZ. We provide an overview of noninvasive electrophysiological studies reporting frontal GBR abnormalities in ScZ patients during WM and other cognitive tasks. In agreement with the often-reported hypofrontality in functional neuroimaging studies, the majority of reviewed studies revealed reduced amplitudes or reduced phase locking of GBR over frontal areas in this patient group. Clinical implications derived from these findings and possibilities to foster future studies on GBR abnormalities in ScZ patients, are discussed. Since oscillatory activity in the gamma band has previously been linked to a variety of neurotransmitters, such as the gamma-aminobutyric acid-ergic system, the study of prefrontal GBR could also have implications for pharmacologic approaches in the treatment of WM and other cognitive deficits in ScZ.
Collapse
|
79
|
Tse MT, Piantadosi PT, Floresco SB. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research. Biol Psychiatry 2015; 77:929-39. [PMID: 25442792 DOI: 10.1016/j.biopsych.2014.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear. We provide an overview of postmortem GABAergic perturbations in the brain affected by schizophrenia and describe circumstantial evidence linking these alterations to cognitive dysfunction. In addition, we conduct a survey of studies using neurodevelopmental, genetic, and pharmacologic rodent models that induce schizophrenia-like cognitive impairments, highlighting the convergence of these mechanistically distinct approaches to prefrontal GABAergic disruption. We review preclinical studies that have directly targeted prefrontal cortical GABAergic transmission using local application of GABAA receptor antagonists. These studies have provided an important link between GABA transmission and cognitive dysfunction in schizophrenia because they show that reducing prefrontal inhibitory transmission induces various cognitive, emotional, and dopaminergic abnormalities that resemble aspects of the disorder. These converging clinical and preclinical findings provide strong support for the idea that perturbations in GABA signaling drive certain forms of cognitive dysfunction in schizophrenia. Future studies using this approach will yield information to refine further a putative "GABA hypothesis" of schizophrenia.
Collapse
Affiliation(s)
- Maric T Tse
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick T Piantadosi
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stan B Floresco
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
80
|
De la Torre GG, Perez MJ, Ramallo MA, Randolph C, González-Villegas MB. Screening of Cognitive Impairment in Schizophrenia: Reliability, Sensitivity, and Specificity of the Repeatable Battery for the Assessment of Neuropsychological Status in a Spanish Sample. Assessment 2015; 23:221-31. [PMID: 25934161 DOI: 10.1177/1073191115583715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND In recent years, a number of studies focusing on the evaluation of neuropsychological deficits in individuals with schizophrenia have shown deficits that include several cognitive functions. Attention deficits as well as memory or executive function deficits are common in this kind of disorder together with sustained attention problems, working memory deficiencies, and problem-solving difficulties, among many others. Currently, the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) is gaining special importance in the evaluation of the cognitive deficits associated with schizophrenia. METHOD In this article, we describe an RBANS screening in a sample of 88 Spanish patients diagnosed with schizophrenia. We also aimed to check the battery's reliability, sensitivity, and specificity in the studied sample. We performed a comparative study with 88 healthy participants. RESULTS The results showed a reliability index value of α = .795 and an item value of α = .762. For total test reliability, we obtained an index value of α = .761 and an item value of α = .762. Sensitivity score was 87.5% and specificity 86.4%. CONCLUSIONS RBANS obtained good reliability, sensitivity, and specificity scores and represents a good screening tool in detecting cognitive deficits associated with schizophrenia.
Collapse
|
81
|
Cho KKA, Hoch R, Lee AT, Patel T, Rubenstein JLR, Sohal VS. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/-) mice. Neuron 2015; 85:1332-43. [PMID: 25754826 DOI: 10.1016/j.neuron.2015.02.019] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/07/2015] [Accepted: 01/29/2015] [Indexed: 10/23/2022]
Abstract
Abnormalities in GABAergic interneurons, particularly fast-spiking interneurons (FSINs) that generate gamma (γ; ∼30-120 Hz) oscillations, are hypothesized to disrupt prefrontal cortex (PFC)-dependent cognition in schizophrenia. Although γ rhythms are abnormal in schizophrenia, it remains unclear whether they directly influence cognition. Mechanisms underlying schizophrenia's typical post-adolescent onset also remain elusive. We addressed these issues using mice heterozygous for Dlx5/6, which regulate GABAergic interneuron development. In Dlx5/6(+/-) mice, FSINs become abnormal following adolescence, coinciding with the onset of cognitive inflexibility and deficient task-evoked γ oscillations. Inhibiting PFC interneurons in control mice reproduced these deficits, whereas stimulating them at γ-frequencies restored cognitive flexibility in adult Dlx5/6(+/-) mice. These pro-cognitive effects were frequency specific and persistent. These findings elucidate a mechanism whereby abnormal FSIN development may contribute to the post-adolescent onset of schizophrenia endophenotypes. Furthermore, they demonstrate a causal, potentially therapeutic, role for PFC interneuron-driven γ oscillations in cognitive domains at the core of schizophrenia.
Collapse
Affiliation(s)
- Kathleen K A Cho
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Renee Hoch
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anthony T Lee
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tosha Patel
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikaas S Sohal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
82
|
α4β2 nicotinic receptor stimulation of the GABAergic system within the orbitofrontal cortex ameliorates the severe crossmodal object recognition impairment in ketamine-treated rats: Implications for cognitive dysfunction in schizophrenia. Neuropharmacology 2015; 90:42-52. [DOI: 10.1016/j.neuropharm.2014.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 11/23/2022]
|
83
|
Richetto J, Labouesse MA, Poe MM, Cook JM, Grace AA, Riva MA, Meyer U. Behavioral effects of the benzodiazepine-positive allosteric modulator SH-053-2'F-S-CH₃ in an immune-mediated neurodevelopmental disruption model. Int J Neuropsychopharmacol 2015; 18:pyu055. [PMID: 25636893 PMCID: PMC4360215 DOI: 10.1093/ijnp/pyu055] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Impaired γ-aminobutyric acid (GABA) signaling may contribute to the emergence of cognitive deficits and subcortical dopaminergic hyperactivity in patients with schizophrenia and related psychotic disorders. Against this background, it has been proposed that pharmacological interventions targeting GABAergic dysfunctions may prove useful in correcting such cognitive impairments and dopaminergic imbalances. METHODS Here, we explored possible beneficial effects of the benzodiazepine-positive allosteric modulator SH-053-2'F-S-CH₃, with partial selectivity at the α2, α3, and α5 subunits of the GABAA receptor in an immune-mediated neurodevelopmental disruption model. The model is based on prenatal administration of the viral mimetic polyriboinosinic-polyribocytidilic acid [poly(I:C)] in mice, which is known to capture various GABAergic, dopamine-related, and cognitive abnormalities implicated in schizophrenia and related disorders. RESULTS Real-time polymerase chain reaction analyses confirmed the expected alterations in GABAA receptor α subunit gene expression in the medial prefrontal cortices and ventral hippocampi of adult poly(I:C) offspring relative to control offspring. Systemic administration of SH-053-2'F-S-CH₃ failed to normalize the poly(I:C)-induced deficits in working memory and social interaction, but instead impaired performance in these cognitive and behavioral domains both in control and poly(I:C) offspring. In contrast, SH-053-2'F-S-CH₃ was highly effective in mitigating the poly(I:C)-induced amphetamine hypersensitivity phenotype without causing side effects in control offspring. CONCLUSIONS Our preclinical data suggest that benzodiazepine-like positive allosteric modulators with activity at the α2, α3, and α5 subunits of the GABAA receptor may be particularly useful in correcting pathological overactivity of the dopaminergic system, but they may be ineffective in targeting multiple pathological domains that involve the co-existence of psychotic, social, and cognitive dysfunctions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Urs Meyer
- Center of Neuropharmacology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy (Drs Richetto and Riva); Physiology and Behavior Laboratory, ETH Zurich, Schorenstrasse 16, 8603 Schwerzenbach, Switzerland (Drs Labouesse and Meyer); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI (Drs Poe and Cook); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA (Dr Grace); Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milan, Italy (Dr Riva).
| |
Collapse
|
84
|
Tek C, Palmese LB, Krystal AD, Srihari VH, DeGeorge PC, Reutenauer EL, Guloksuz S. The impact of eszopiclone on sleep and cognition in patients with schizophrenia and insomnia: a double-blind, randomized, placebo-controlled trial. Schizophr Res 2014; 160:180-5. [PMID: 25454802 PMCID: PMC5589464 DOI: 10.1016/j.schres.2014.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/01/2014] [Accepted: 10/03/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Insomnia is frequent in schizophrenia and may contribute to cognitive impairment as well as overuse of weight inducing sedative antipsychotics. We investigated the effects of eszopiclone on sleep and cognition for patients with schizophrenia-related insomnia in a double-blind placebo controlled study, followed by a two-week, single-blind placebo phase. METHODS Thirty-nine clinically stable outpatients with schizophrenia or schizoaffective disorder and insomnia were randomized to either 3mg eszopiclone (n=20) or placebo (n=19). Primary outcome measure was change in Insomnia Severity Index (ISI) over 8 weeks. Secondary outcome measure was change in MATRICS Consensus Cognitive Battery (MATRICS). Sleep diaries, psychiatric symptoms, and quality of life were also monitored. RESULTS ISI significantly improved more in eszopiclone (mean=-10.7, 95% CI=-13.2; -8.2) than in placebo (mean=-6.9, 95% CI=-9.5; -4.3) with a between-group difference of -3.8 (95% CI=-7.5; -0.2). MATRICS score change did not differ between groups. On further analysis there was a significant improvement in the working memory test, letter-number span component of MATRICS (mean=9.8±9.2, z=-2.00, p=0.045) only for subjects with schizophrenia on eszopiclone. There were improvements in sleep diary items in both groups with no between-group differences. Psychiatric symptoms remained stable. Discontinuation rates were similar. Sleep remained improved during single-blind placebo phase after eszopiclone was stopped, but the working memory improvement in patients with schizophrenia was not durable. CONCLUSIONS Eszopiclone stands as a safe and effective alternative for the treatment of insomnia in patients with schizophrenia. Its effects on cognition require further study.
Collapse
Affiliation(s)
- Cenk Tek
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Laura B. Palmese
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew D. Krystal
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
| | - Vinod H. Srihari
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Pamela C. DeGeorge
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Erin L. Reutenauer
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sinan Guloksuz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
85
|
Keshavan MS, Giedd J, Lau JYF, Lewis DA, Paus T. Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry 2014; 1:549-58. [PMID: 26361314 DOI: 10.1016/s2215-0366(14)00081-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 10/24/2022]
Abstract
Adolescence is a time of extensive neuroanatomical, functional, and chemical reorganisation of the brain which parallels substantial maturational changes in cognition and affect regulation. This period is characterised by stabilisation of synapses to diminish redundancy and increase efficiency of neural function, fine-tuning of excitatory and inhibitory neurotransmitter systems, beginning of integration between late maturing and early maturing brain structures, and development of effective connections. In effect, these so-called moving parts create a state of dynamic change that might underlie adolescent behaviours. Imbalances or changes in timing of these developmental processes clearly increase the risk for psychiatric disorders. Genetic, environmental, and epigenetic factors that shape brain development and hormonal changes that affect stress reactivity could be reasons why some, but not all, adolescents are at a heightened risk of developing a psychopathological disorder. In this Series paper, we assess the neurobiology of the changing adolescent brain, implications of this knowledge, and future research in major psychiatric disorders, particularly for psychotic disorders.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA.
| | - Jay Giedd
- Brain Imaging Section, Child Psychiatry Branch, NIMH, Bethesda, MD, USA
| | | | - David A Lewis
- Department of Psychiatry, Western Psychiatric Institute and Clinic, Pittsburgh, PA, USA
| | - Tomáš Paus
- Rotman Research Institute and Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
86
|
Modafinil effects on middle-frequency oscillatory power during rule selection in schizophrenia. Neuropsychopharmacology 2014; 39:3018-26. [PMID: 24964814 PMCID: PMC4229573 DOI: 10.1038/npp.2014.155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/23/2014] [Accepted: 06/08/2014] [Indexed: 01/12/2023]
Abstract
Control-related cognitive processes such as rule selection are associated with cortical oscillations in the theta, alpha and, beta ranges, and modulated by catecholamine neurotransmission. Thus, a potential strategy for improving cognitive control deficits in schizophrenia would be to use pro-catecholamine pharmacological agents to augment these control-related oscillations. In a double-blind, placebo-controlled (within-subjects) study, we tested the effects of adjunctive single-dose modafinil 200 mg on rule-related 4-30 Hz oscillations in 23 stable schizophrenia patients, using EEG during cognitive control task performance. EEG data underwent time-frequency decomposition with Morlet wavelets to determine the power of 4-30 Hz oscillations. Modafinil (relative to placebo) enhanced oscillatory power associated with high-control rule selection in theta, alpha, and beta ranges, with modest effects during rule maintenance. Modafinil treatment in schizophrenia augments middle-frequency cortical oscillatory power associated with rule selection, and may subserve diverse subcomponent processes in proactive cognitive control.
Collapse
|
87
|
De la Torre GG, Suárez-Llorens A, Caballero FJ, Ramallo MA, Randolph C, Lleó A, Sala I, Sánchez B. Norms and reliability for the Spanish version of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) Form A. J Clin Exp Neuropsychol 2014; 36:1023-30. [PMID: 25363544 DOI: 10.1080/13803395.2014.965664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the adult population. Tools capable of detecting predementia and established diagnoses of dementia are very important for assessing these patients. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) is a brief neuropsychological battery that has been successful at detecting cognitive impairment in degenerative and nondegenerative neurological diseases. The objective of this study was to test reliability and sensibility and obtain normative data of a Spanish adaptation of the RBANS. In this study, 50 participants with AD and 336 healthy participants stratified according to the Spanish Census, with different levels of education, were tested with the RBANS (Form A). Descriptive analyses were performed on a pilot sample from the general population, and comparative analyses were performed on data from the two samples. We obtained an overall reliability coefficient (Cronbach's alpha) of .92. RBANS showed strong specificity and moderately low sensitivity. Participants in the AD group performed significantly worse on most subtests than control participants. Implications with regard to the specificity and sensitivity of the Spanish version of the RBANS are discussed.
Collapse
|
88
|
Veerappa AM, Saldanha M, Padakannaya P, Ramachandra NB. Family based genome-wide copy number scan identifies complex rearrangements at 17q21.31 in dyslexics. Am J Med Genet B Neuropsychiatr Genet 2014; 165B:572-80. [PMID: 25139666 DOI: 10.1002/ajmg.b.32260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/26/2014] [Indexed: 01/18/2023]
Abstract
Developmental dyslexia (DD) is a complex heritable disorder with unexpected difficulty in learning to read and spell despite adequate intelligence, education, environment, and normal senses. We performed genome-wide screening for copy number variations (CNVs) in 10 large Indian dyslexic families using Affymetrix Genome-Wide Human SNP Array 6.0. Results revealed the complex genomic rearrangements due to one non-contiguous deletion and five contiguous micro duplications and micro deletions at 17q21.31 region in three dyslexic families. CNVs in this region harbor the genes KIAA1267, LRRC37A, ARL17A/B, NSFP1, and NSF. The CNVs in case 1 and case 2 at this locus were found to be in homozygous state and case 3 was a de novo CNV. These CNVs were found with at least one CNV having a common break and end points in the parents. This cluster of genes containing NSF is implicated in learning, cognition, and memory, though not formally associated with dyslexia. Molecular network analysis of these and other dyslexia related module genes suggests NSF and other genes to be associated with cellular/vesicular membrane fusion and synaptic transmission. Thus, we suggest that NSF in this cluster would be the nearest gene responsible for the learning disability phenotype.
Collapse
Affiliation(s)
- Avinash M Veerappa
- Genetics and Genomics Laboratory, Department of Studies in Zoology, University of Mysore, Manasagangotri, Mysore
| | | | | | | |
Collapse
|
89
|
Barch DM, Sheffield JM. Cognitive impairments in psychotic disorders: common mechanisms and measurement. World Psychiatry 2014; 13:224-32. [PMID: 25273286 PMCID: PMC4219054 DOI: 10.1002/wps.20145] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decades of research have provided robust evidence of cognitive impairments in psychotic disorders. Individuals with schizophrenia appear to be impaired on the majority of neuropsychological tasks, leading some researchers to argue for a "generalized deficit", in which the multitude of cognitive impairments are the result of a common neurobiological source. One such common mechanism may be an inability to actively represent goal information in working memory as a means to guide behavior, with the associated neurobiological impairment being a disturbance in the function of the dorsolateral prefrontal cortex. Here, we provide a discussion of the evidence for such impairment in schizophrenia, and how it manifests in domains typically referred to as cognitive control, working memory and episodic memory. We also briefly discuss cognitive impairment in affective psychoses, reporting that the degree of impairment is worse in schizophrenia than in bipolar disorder and psychotic major depression, but the profile of impairment is similar, possibly reflecting common mechanisms at the neural level. Given the recent release of the DSM-5, we end with a brief discussion on assessing cognition in the context of diagnosis and treatment planning in psychotic disorders.
Collapse
Affiliation(s)
- Deanna M Barch
- Departments of Psychology, Psychiatry and Radiology, Washington University in St. Louis, 1 Brookings Dr., St. Louis, MO, 63130, USA
| | | |
Collapse
|
90
|
Hiyoshi T, Kambe D, Karasawa J, Chaki S. Involvement of glutamatergic and GABAergic transmission in MK-801-increased gamma band oscillation power in rat cortical electroencephalograms. Neuroscience 2014; 280:262-74. [PMID: 25220900 DOI: 10.1016/j.neuroscience.2014.08.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/25/2014] [Accepted: 08/31/2014] [Indexed: 12/30/2022]
Abstract
Hypofunction of the N-methyl-D-aspartic acid receptor (NMDAr) has been considered to play a crucial role in the pathophysiology of schizophrenia. In rodent electroencephalogram (EEG) studies, non-competitive NMDAr antagonists have been reported to produce aberrant basal gamma band oscillation (GBO), as observed in schizophrenia. Aberrations in GBO power have attracted attention as a translational biomarker for the development of novel antipsychotic drugs. However, the neuronal mechanisms as well as the pharmacological significance of NMDAr antagonist-induced aberrant GBO power have not been fully investigated. In the present study, to address the above questions, we examined the pharmacological properties of MK-801 (0.1 mg/kg)-increased basal GBO power in rat cortical EEG. Riluzole (3-10 mg/kg), a glutamate release inhibitor, reduced the MK-801-increased basal GBO power. In contrast, L-838,417 (1-3 mg/kg), an α2/3/5 subunit-selective GABAA receptor-positive allosteric modulator, enhanced the GBO increase. Antipsychotics such as haloperidol (0.05-0.3 mg/kg) and clozapine (1-10 mg/kg) dose-dependently attenuated the MK-801-increased GBO power. Likewise, LY379268 (0.3-3 mg/kg), an metabotropic glutamate 2/3 receptor (mGlu2/3 receptor) agonist, reduced the GBO increase in a dose-dependent manner, which was antagonized by an mGlu2/3 receptor antagonist LY341495. These results suggest that an increase in cortical GBO power induced by NMDAr hypofunction can be attributed to the aberrant activities of both excitatory pyramidal neurons and inhibitory interneurons in local circuits. The aberrant cortical GBO power reflecting cortical network dysfunction observed in schizophrenia might be a useful biomarker for the discovery of novel antipsychotic drugs.
Collapse
Affiliation(s)
- T Hiyoshi
- Pharmacology 1, Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan.
| | - D Kambe
- Pharmacology 1, Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - J Karasawa
- Pharmacology 1, Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| | - S Chaki
- Pharmacology 1, Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd., 1-403 Yoshino-cho, Kita-ku, Saitama, Saitama 331-9530, Japan
| |
Collapse
|
91
|
Tregellas JR. Neuroimaging biomarkers for early drug development in schizophrenia. Biol Psychiatry 2014; 76:111-9. [PMID: 24094513 PMCID: PMC4026337 DOI: 10.1016/j.biopsych.2013.08.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 11/18/2022]
Abstract
Given the relative inability of currently available antipsychotic treatments to adequately provide sustained recovery and improve quality of life for patients with schizophrenia, new treatment strategies are urgently needed. One way to improve the therapeutic development process may be an increased use of biomarkers in early clinical trials. Reliable biomarkers that reflect aspects of disease pathophysiology can be used to determine if potential treatment strategies are engaging their desired biological targets. This review evaluates three potential neuroimaging biomarkers: hippocampal hyperactivity, gamma-band deficits, and default network abnormalities. These deficits have been widely replicated in the illness, correlate with measures of positive symptoms, are consistent with models of disease pathology, and have shown initial promise as biomarkers of biological response in early studies of potential treatment strategies. Two key features of these deficits, and a guiding rationale for the focus of this review, are that the deficits are not dependent upon patients' performance of specific cognitive tasks and they have analogues in animal models of schizophrenia, greatly increasing their appeal for use as biomarkers. Using neuroimaging biomarkers such as those proposed here to establish early in the therapeutic development process if treatment strategies are having their intended biological effect in humans may facilitate development of new treatments for schizophrenia.
Collapse
Affiliation(s)
- Jason R Tregellas
- Research Service, Denver Veterans Affairs Medical Center, and Department of Psychiatry, University of Colorado Medical School, Aurora, Colorado.
| |
Collapse
|
92
|
Ennaceur A. Tests of unconditioned anxiety - pitfalls and disappointments. Physiol Behav 2014; 135:55-71. [PMID: 24910138 DOI: 10.1016/j.physbeh.2014.05.032] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 02/05/2023]
Abstract
The plus-maze, the light-dark box and the open-field are the main current tests of unconditioned anxiety for mice and rats. Despite their disappointing achievements, they remain as popular as ever and seem to play an important role in an ever-growing demand for behavioral phenotyping and drug screening. Numerous reviews have repeatedly reported their lack of consistency and reliability but they failed to address the core question of whether these tests do provide unequivocal measures of fear-induced anxiety, that these measurements are not confused with measures of fear-induced avoidance or natural preference responses - i.e. discriminant validity. In the present report, I examined numerous issues that undermine the validity of the current tests, and I highlighted various flaws in the aspects of these tests and the methodologies pursued. This report concludes that the evidence in support of the validity of the plus-maze, the light/dark box and the open-field as anxiety tests is poor and methodologically questionable.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Department of Pharmacy, Wharncliffe Street, Sunderland SR1 3SD, UK.
| |
Collapse
|
93
|
Deidda G, Bozarth IF, Cancedda L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front Cell Neurosci 2014; 8:119. [PMID: 24904277 PMCID: PMC4033255 DOI: 10.3389/fncel.2014.00119] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 01/30/2023] Open
Abstract
During mammalian ontogenesis, the neurotransmitter GABA is a fundamental regulator of neuronal networks. In neuronal development, GABAergic signaling regulates neural proliferation, migration, differentiation, and neuronal-network wiring. In the adult, GABA orchestrates the activity of different neuronal cell-types largely interconnected, by powerfully modulating synaptic activity. GABA exerts these functions by binding to chloride-permeable ionotropic GABAA receptors and metabotropic GABAB receptors. According to its functional importance during development, GABA is implicated in a number of neurodevelopmental disorders such as autism, Fragile X, Rett syndrome, Down syndrome, schizophrenia, Tourette's syndrome and neurofibromatosis. The strength and polarity of GABAergic transmission is continuously modulated during physiological, but also pathological conditions. For GABAergic transmission through GABAA receptors, strength regulation is achieved by different mechanisms such as modulation of GABAA receptors themselves, variation of intracellular chloride concentration, and alteration in GABA metabolism. In the never-ending effort to find possible treatments for GABA-related neurological diseases, of great importance would be modulating GABAergic transmission in a safe and possibly physiological way, without the dangers of either silencing network activity or causing epileptic seizures. In this review, we will discuss the different ways to modulate GABAergic transmission normally at work both during physiological and pathological conditions. Our aim is to highlight new research perspectives for therapeutic treatments that reinstate natural and physiological brain functions in neuro-pathological conditions.
Collapse
Affiliation(s)
- Gabriele Deidda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Ignacio F Bozarth
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genova, Italy
| |
Collapse
|
94
|
Yoshimura RF, Tran MB, Hogenkamp DJ, Johnstone TB, Xie JY, Porreca F, Gee KW. Limited central side effects of a β-subunit subtype-selective GABAA receptor allosteric modulator. J Psychopharmacol 2014; 28:472-8. [PMID: 24108410 DOI: 10.1177/0269881113507643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GABAergic anxiolytics have well-documented centrally mediated side effects including sedation, potentiation of ethanol, tolerance, abuse liability and memory impairment. Most research directed towards identifying an anxioselective GABAergic therapeutic has been based upon the theory that these side effects could be mitigated by avoiding α1/5-subunit GABAA receptors while specifically targeting those with the α2/3-subunit. Unfortunately, there are prominent exceptions to this theory and it has yet to be translated into clinical success. We previously demonstrated that β2/3-subunit-selective GABAA receptor-positive allosteric modulators act as anxiolytics with reduced sedation and ethanol potentiation regardless of their activity at α1-subunit GABAA receptors. The prototypical β2/3-subunit-selective positive allosteric modulator, 2-261, is further characterized here for additional side effects commonly associated with central GABAA receptor activation. In mice, 10 times the anxiolytic dose (10 mg/kg) of 2-261 does not induce behavioral tolerance in the elevated plus maze following a 2 week subchronic treatment. In rats, an anxiolytic dose (10 mg/kg) of 2-261 is inactive in conditioned place preference, suggesting a reduced abuse liability. In rats, 10 times the anxiolytic dose (100 mg/kg) of 2-261 does not have a significant amnestic effect in the radial arm maze, suggesting a greater therapeutic index for memory impairment. These results suggest that β2/3-subunit subtype-selective GABAA receptor-positive allosteric modulators not only have reduced sedative liability, but also a reduction in other central side effects commonly associated with broader GABAA receptor activation. β2/3-subunit-selective compounds may represent a novel design template for anxiolytics with benzodiazepine-like efficacy and mitigated side effects.
Collapse
Affiliation(s)
- Ryan F Yoshimura
- 1Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Ahmed AO, Bhat IA. Psychopharmacological treatment of neurocognitive deficits in people with schizophrenia: a review of old and new targets. CNS Drugs 2014; 28:301-18. [PMID: 24526625 DOI: 10.1007/s40263-014-0146-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurocognitive impairments significantly contribute to disability and the overall clinical picture in schizophrenia spectrum disorders. There has therefore been a concerted effort, guided by the discovery of neurotransmitter and synaptic systems in the central nervous system, to develop and test compounds that may ameliorate neurocognitive deficits. The current article summarizes the results of efforts to test neurocognitive-enhancing agents in schizophrenia. Overall, existing clinical trials provide little reason to be enthusiastic about the benefits of psychopharmacological agents at enhancing neurocognition in schizophrenia-a state of affairs that may reflect the inadequacy of single neurotransmitter or receptor models. The etiologic and phenomenological complexity of neurocognitive deficits in schizophrenia may be better served by psychopharmacological agents that (i) target neurotransmitter systems proximal in the causal chain to neurocognitive deficits; (ii) enhance distal survival processes in the central nervous system-neurogenesis, neuronal growth, synaptogenesis, and connectivity; and (iii) counteract the negative effects of aberrant neurodevelopment in schizophrenia, such as neuroinflammation and oxidative stress. Future efforts to develop psychopharmacological agents for neurocognitive impairment in schizophrenia should reflect the knowledge of its complex etiology by addressing aberrations along its causal chain. Clinical trials may benefit methodologically from (i) an appreciation of the phenomenological heterogeneity of neurocognitive deficits in schizophrenia; (ii) a characterization of the predictors of treatment response; and (iii) a recognition of issues of sample size, statistical power, treatment duration, and dosing.
Collapse
Affiliation(s)
- Anthony O Ahmed
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Georgia Regents University, 997 Saint Sebastian Way, Augusta, GA, 30912, USA,
| | | |
Collapse
|
96
|
Abstract
While second-generation antipsychotics treat negative as well as positive symptoms, recovery for persons with schizophrenia remains elusive, in part because there are no FDA-approved medications that treat the cognitive deficits of schizophrenia (CDS). Recent work has identified agents that, when added to antipsychotics, improve cognition in schizophrenia. This work and hypothesized mechanisms of action will be reviewed.
Collapse
|
97
|
Chen CMA, Stanford AD, Mao X, Abi-Dargham A, Shungu DC, Lisanby SH, Schroeder CE, Kegeles LS. GABA level, gamma oscillation, and working memory performance in schizophrenia. NEUROIMAGE-CLINICAL 2014; 4:531-9. [PMID: 24749063 PMCID: PMC3989525 DOI: 10.1016/j.nicl.2014.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/05/2023]
Abstract
A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia. We compared in vivo GABA measures and gamma band oscillations in schizophrenia. Correlations between left DLPFC GABA and gamma amplitude were significant. Peak gamma frequency significantly correlated with GABA and performance. Patients had significantly lower amplitudes in gamma oscillations than controls. Working memory performance was significantly lower for patients than for controls.
Collapse
Affiliation(s)
- Chi-Ming A Chen
- Department of Psychology, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA
| | - Arielle D Stanford
- Department of Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Xiangling Mao
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, 516 East 72nd Street, New York, NY 10021, USA
| | - Anissa Abi-Dargham
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, the New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA ; Department of Radiology, Columbia University, College of Physicians and Surgeons, The New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dikoma C Shungu
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, 516 East 72nd Street, New York, NY 10021, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Trent Drive and Erwin Road, Durham, NC 27710, USA
| | - Charles E Schroeder
- Cognitive Neuroscience and Schizophrenia Program, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, the New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA ; Department of Radiology, Columbia University, College of Physicians and Surgeons, The New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
98
|
Lett TA, Voineskos AN, Kennedy JL, Levine B, Daskalakis ZJ. Treating working memory deficits in schizophrenia: a review of the neurobiology. Biol Psychiatry 2014; 75:361-70. [PMID: 24011822 DOI: 10.1016/j.biopsych.2013.07.026] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 01/06/2023]
Abstract
Cognitive deficits are a core feature of schizophrenia. Among these deficits, working memory impairment is considered a central cognitive impairment in schizophrenia. The prefrontal cortex, a region critical for working memory performance, has been demonstrated as a critical liability region in schizophrenia. As yet, there are no standardized treatment options for working memory deficits in schizophrenia. In this review, we summarize the neuronal basis for working memory impairment in schizophrenia, including dysfunction in prefrontal signaling pathways (e.g., γ-aminobutyric acid transmission) and neural network synchrony (e.g., gamma/theta oscillations). We discuss therapeutic strategies for working memory dysfunction such as pharmacological agents, cognitive remediation therapy, and repetitive transcranial magnetic stimulation. Despite the drawbacks of current approaches, the advances in neurobiological and translational treatment strategies suggest that clinical application of these methods will occur in the near future.
Collapse
Affiliation(s)
- Tristram A Lett
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, Toronto, Ontario, Canada; Department of Psychiatry, Toronto, Ontario, Canada
| | - James L Kennedy
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, Toronto, Ontario, Canada; Department of Psychiatry, Toronto, Ontario, Canada
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Rotman Research Institute, Baycrest Centre Toronto, Toronto, Ontario, Canada
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Science, Toronto, Ontario, Canada; Department of Psychiatry, Toronto, Ontario, Canada.
| |
Collapse
|
99
|
Smith MJ, Cobia DJ, Wang L, Alpert KI, Cronenwett WJ, Goldman MB, Mamah D, Barch DM, Breiter HC, Csernansky JG. Cannabis-related working memory deficits and associated subcortical morphological differences in healthy individuals and schizophrenia subjects. Schizophr Bull 2014; 40:287-99. [PMID: 24342821 PMCID: PMC3932091 DOI: 10.1093/schbul/sbt176] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cannabis use is associated with working memory (WM) impairments; however, the relationship between cannabis use and WM neural circuitry is unclear. We examined whether a cannabis use disorder (CUD) was associated with differences in brain morphology between control subjects with and without a CUD and between schizophrenia subjects with and without a CUD, and whether these differences related to WM and CUD history. Subjects group-matched on demographics included 44 healthy controls, 10 subjects with a CUD history, 28 schizophrenia subjects with no history of substance use disorders, and 15 schizophrenia subjects with a CUD history. Large-deformation high-dimensional brain mapping with magnetic resonance imaging was used to obtain surface-based representations of the striatum, globus pallidus, and thalamus, compared across groups, and correlated with WM and CUD history. Surface maps were generated to visualize morphological differences. There were significant cannabis-related parametric decreases in WM across groups. Similar cannabis-related shape differences were observed in the striatum, globus pallidus, and thalamus in controls and schizophrenia subjects. Cannabis-related striatal and thalamic shape differences correlated with poorer WM and younger age of CUD onset in both groups. Schizophrenia subjects demonstrated cannabis-related neuroanatomical differences that were consistent and exaggerated compared with cannabis-related differences found in controls. The cross-sectional results suggest that both CUD groups were characterized by WM deficits and subcortical neuroanatomical differences. Future longitudinal studies could help determine whether cannabis use contributes to these observed shape differences or whether they are biomarkers of a vulnerability to the effects of cannabis that predate its misuse.
Collapse
Affiliation(s)
- Matthew J. Smith
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,*To whom correspondence should be addressed; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 710 N. Lake Shore Drive, 13th Floor, Abbott Hall, Chicago, IL 60611, US; tel: 1-312-503-2542, fax: 1-312-503-0527, e-mail:
| | - Derin J. Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kathryn I. Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Will J. Cronenwett
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Morris B. Goldman
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Daniel Mamah
- Department of Psychiatry, Washington University, St Louis, MO
| | | | - Hans C. Breiter
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,Warren Wright Adolescent Center, Northwestern University Feinberg School of Medicine, Chicago, IL,Denotes shared senior authorship on this article
| | - John G. Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL;,Denotes shared senior authorship on this article
| |
Collapse
|
100
|
Guo S, Yu Y, Zhang J, Feng J. A reversal coarse-grained analysis with application to an altered functional circuit in depression. Brain Behav 2013; 3:637-48. [PMID: 24363967 PMCID: PMC3868169 DOI: 10.1002/brb3.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION When studying brain function using functional magnetic resonance imaging (fMRI) data containing tens of thousands of voxels, a coarse-grained approach - dividing the whole brain into regions of interest - is applied frequently to investigate the organization of the functional network on a relatively coarse scale. However, a coarse-grained scheme may average out the fine details over small spatial scales, thus rendering it difficult to identify the exact locations of functional abnormalities. METHODS A novel and general approach to reverse the coarse-grained approach by locating the exact sources of the functional abnormalities is proposed. RESULTS Thirty-nine patients with major depressive disorder (MDD) and 37 matched healthy controls are studied. A circuit comprising the left superior frontal gyrus (SFGdor), right insula (INS), and right putamen (PUT) exhibit the greatest changes between the patients with MDD and controls. A reversal coarse-grained analysis is applied to this circuit to determine the exact location of functional abnormalities. CONCLUSIONS The voxel-wise time series extracted from the reversal coarse-grained analysis (source) had several advantages over the original coarse-grained approach: (1) presence of a larger and detectable amplitude of fluctuations, which indicates that neuronal activities in the source are more synchronized; (2) identification of more significant differences between patients and controls in terms of the functional connectivity associated with the sources; and (3) marked improvement in performing discrimination tasks. A software package for pattern classification between controls and patients is available in Supporting Information.
Collapse
Affiliation(s)
- Shuixia Guo
- College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University Changsha, Hunan, China
| | - Yun Yu
- College of Mathematics and Computer Science, Key Laboratory of High Performance Computing and Stochastic Information Processing (Ministry of Education of China), Hunan Normal University Changsha, Hunan, China
| | - Jie Zhang
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University Shanghai, China
| | - Jianfeng Feng
- Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University Shanghai, China ; Department of Computer Science, University of Warwick Coventry, U.K
| |
Collapse
|