51
|
An CH, Nie SM, Sun YX, Fan SP, Luo BY, Li Z, Liu ZG, Chang WH. Seroprevalence trend of human brucellosis and MLVA genotyping characteristics of Brucella melitensis in Shaanxi Province, China, during 2008-2020. Transbound Emerg Dis 2021; 69:e423-e434. [PMID: 34510783 DOI: 10.1111/tbed.14320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
In this study, a total of 179,907 blood samples from populations with suspected Brucella spp. infections were collected between 2008 and 2020 and analyzed by the Rose Bengal plate test (RBPT) and serum agglutination test (SAT). Moreover, conventional biotyping, B. abortus-melitensis-ovis-suis polymerase chain reaction (AMOS-PCR), and multiple-locus variable-number tandem repeat analysis (MLVA) was applied to characterize the isolated strains. A total of 8103 (4.50%) samples were positive in RBPT, while 7705 (4.28%, 95% confidence interval (CI) 4.19-4.37) samples were positive in SAT. There was a significant difference in seroprevalence for human brucellosis over time, in different areas and different cities (districts) (χ2 = 2 = 32.23, 1984.14, and 3749.51, p < .05). The highest seropositivity (8.22% (4, 965/60393; 95% CI 8.00-8.44) was observed in Yulin City, which borders Inner Mongolia, Ningxia, and Gansu Province, China, regions that have a high incidence of human brucellosis. Moreover, 174 Brucella strains were obtained, including nine with B. melitensis bv. 1, 145 with B. melitensis bv. 3, and 20 with B. melitensis variants. After random selection, 132 B. melitensis were further genotyped using MLVA-16. The 132 strains were sorted into 100 MLVA-16 genotypes (GTs) (GT 1-100), 81 of which were single GTs represented by singular independent strains. The remaining 19 shared GTs involved 51 strains, and each GT included two to seven isolates from the Shaan northern and Guanzhong areas. These data indicated that although sporadic cases were a dominant epidemic characteristic of human brucellosis in this province, more than 38.6% (51/132) outbreaks were also found in the Shaan northern area and Guanzhong areas. The 47 shared MLVA-16 GTs were observed in strains (n = 71) from this study and strains (n = 337) from 19 other provinces of China. These data suggest that strains from the northern provinces are a potential source of human brucellosis cases in Shaanxi Province. It is urgent to strengthen the surveillance and control of the trade and transfer of infected sheep among regions.
Collapse
Affiliation(s)
- Cui-Hong An
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China.,Department of Microbiology and Immunology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shou-Min Nie
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Yang-Xin Sun
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Suo-Ping Fan
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Bo-Yan Luo
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Zhi-Guo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Diseases Control and Prevention, Beijing, China
| | - Wen-Hui Chang
- Department of Plague and Brucellosis, Shaanxi Center for Disease Control and Prevention, Xi'an, China
| |
Collapse
|
52
|
Pan C, Yue H, Zhu L, Ma GH, Wang HL. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev 2021; 176:113867. [PMID: 34280513 PMCID: PMC8285224 DOI: 10.1016/j.addr.2021.113867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023]
Abstract
Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities. Nevertheless, there has been no systematic summary of the delivery systems to cover a wide range of infectious pathogens. We herein summarized and compared the delivery systems for major or epidemic infectious diseases caused by bacteria, viruses, fungi, and parasites. We also included the newly licensed vaccines (e.g., COVID-19 vaccines) and those close to licensure. Furthermore, we highlighted advanced delivery systems with high efficiency, cross-protection, or long-term protection against epidemic pathogens, and we put forward prospects and thoughts on the development of future prophylactic vaccines.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Heng-Liang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China.
| |
Collapse
|
53
|
Whole Genome Sequence Analysis of Brucella melitensis Phylogeny and Virulence Factors. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Brucellosis has a wide range of clinical severity in humans that remains poorly understood. Whole genome sequencing (WGS) analysis may be able to detect variation in virulence genes. We used Brucella melitensis sequences in the NCBI Sequence Read Archive (SRA) database to assemble 248 whole genomes, and additionally, assembled 27 B. melitensis genomes from samples of human patients in Southern Israel. We searched the 275 assembled genomes for the 43 B. melitensis virulence genes in the Virulence Factors of Pathogenic Bacteria Database (VFDB) and 10 other published putative virulence genes. We explored pan-genome variation across the genomes and in a pilot analysis, explored single nucleotide polymorphism (SNP) variation among the ten putative virulence genes. More than 99% of the genomes had sequences for all Brucella melitensis virulence genes included in the VFDB. The 10 other virulence genes of interest were present across all the genomes, but three of these genes had SNP variation associated with particular Brucella melitensis genotypes. SNP variation was also seen within the Israeli genomes obtained from a small geographic region. While the Brucella genome is highly conserved, this novel and large whole genome study of Brucella demonstrates the ability of whole genome and pan-genome analysis to screen multiple genomes and identify SNP variation in both known and novel virulence genes that could be associated with differential disease virulence. Further development of whole genome techniques and linkage with clinical metadata on disease outcomes could shed light on whether such variation in the Brucella genome plays a role in pathogenesis.
Collapse
|
54
|
Yin D, Bai Q, Wu X, Li H, Shao J, Sun M, Jiang H, Zhang J. Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein. PLoS Negl Trop Dis 2021; 15:e0009695. [PMID: 34403421 PMCID: PMC8396774 DOI: 10.1371/journal.pntd.0009695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/27/2021] [Accepted: 07/31/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Brucellosis, as a serious zoonotic infectious disease, has been recognized as a re-emerging disease in the developing countries worldwide. In china, the incidence of brucellosis is increasing each year, seriously threatening the health of humans as well as animal populations. Despite a quite number of diagnostic methods currently being used for brucellosis, innovative technologies are still needed for its rapid and accurate diagnosis, especially in area where traditional diagnostic is unavailable. METHODOLOGY/PRINCIPAL FINDINGS In this study, a total of 22 B cell linear epitopes were predicted from five Brucella outer membrane proteins (OMPs) using an immunoinformatic approach. These epitopes were then chemically synthesized, and with the method of indirect ELISA (iELISA), each of them displayed a certain degree of capability in identifying human brucellosis positive sera. Subsequently, a fusion protein consisting of the 22 predicted epitopes was prokaryotically expressed and used as diagnostic antigen in a newly established brucellosis testing method, nano-ZnO modified paper-based ELISA (nano-p-ELISA). According to the verifying test using a collection of sera collected from brucellosis and non-brucellosis patients, the sensitivity and specificity of multiepitope based nano-p-ELISA were 92.38% and 98.35% respectively. The positive predictive value was 98.26% and the negative predictive value was 91.67%. The multiepitope based fusion protein also displayed significantly higher specificity than Brucella lipopolysaccharide (LPS) antigen. CONCLUSIONS B cell epitopes are important candidates for serologically testing brucellosis. Multiepitope fusion protein based nano-p-ELISA displayed significantly sensitivity and specificity compared to Brucella LPS antigen. The strategy applied in this study will be helpful to develop rapid and accurate diagnostic method for brucellosis in human as well as animal populations.
Collapse
Affiliation(s)
- Dehui Yin
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Qiongqiong Bai
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiling Wu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Han Li
- Department of Infection Control, the First Hospital of Jilin University, Changchun, China
| | - Jihong Shao
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Mingjun Sun
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, China
- * E-mail: (MS); (HJ); (JZ)
| | - Hai Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (MS); (HJ); (JZ)
| | - Jingpeng Zhang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
- * E-mail: (MS); (HJ); (JZ)
| |
Collapse
|
55
|
Tschopp R, Gebregiorgis A, Tassachew Y, Andualem H, Osman M, Waqjira MW, Hattendorf J, Mohammed A, Hamid M, Molla W, Mitiku SA, Walke H, Negron M, Kadzik M, Mamo G. Integrated human-animal sero-surveillance of Brucellosis in the pastoral Afar and Somali regions of Ethiopia. PLoS Negl Trop Dis 2021; 15:e0009593. [PMID: 34358232 PMCID: PMC8372887 DOI: 10.1371/journal.pntd.0009593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/18/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022] Open
Abstract
Background Brucellosis is widespread in Ethiopia with variable reported prevalence depending on the geographical area, husbandry practices and animal species. However, there is limited information on the disease prevalence amongst pastoral communities, whose life is intricately linked with their livestock. Methodology We conducted an integrated human-animal brucellosis sero-surveillance study in two adjacent pastoral regions, Afar and Somali region (SRS). This cross-sectional study included 13 woredas (districts) and 650 households. Blood samples were collected from people and livestock species (cattle, camel, goats and sheep). Sera were analyzed with C-ELISA for camels and shoats (sheep and goats), with I-ELISA for cattle and IgG ELISA for humans. Descriptive and inferential statistics analyses were performed. Results A total of 5469 sera were tested by ELISA. Prevalence of livestock was 9.0% in Afar and 8.6% in SRS (ranging from 0.6 to 20.2% at woreda level). In humans, prevalence was 48.3% in Afar and 34.9% in SRS (ranging from 0.0 to 74.5% at woreda level). 68.4% of all households in Afar and 57.5% of households in SRS had at least one animal reactor. Overall, 4.1% of animals had a history of abortion. The proportion of animals with abortion history was higher in seropositive animals than in seronegative animals. Risk factor analysis showed that female animals were significantly at higher risk of being reactors (p = 0.013). Among the species, cattle had the least risk of being reactors (p = 0.014). In humans, there was a clear regional association of disease prevalence (p = 0.002). The older the people, the highest the odds of being seropositive. Conclusion Brucellosis is widespread in humans and animals in pastoral communities of Afar and SRS with the existence of geographical hotspots. No clear association was seen between human and particular livestock species prevalence, hence there was no indication as whether B. abortus or B. melitensis are circulating in these areas, which warrants further molecular research prior to embarking on a national control programs. Such programs will need to be tailored to the pastoral context. Brucellosis is a neglected disease of livestock that can be transmitted to people through consumption of raw animal products and direct contact with animal birth material. Although prevalent in Ethiopia, there is limited information on the disease prevalence amongst pastoral communities, whose life is intricately linked with their livestock. We therefore, conducted a disease surveillance in people and their livestock in Afar and Somali region (SRS), two pastoral regions of Ethiopia. The study included 13 districts and 650 households. A total of 5469 blood samples were collected from people and livestock species (cattle, camel, sheep and goats) and analyzed using commercial brucellosis ELISA assays. Livestock brucellosis prevalence was 9% in Afar and 8.6% in SRS (ranging from 0.6 to 20.2% at woreda level). In humans, prevalence was 48.3% in Afar and 34.9% in SRS (ranging from 0 to 74.5% at woreda level). 68.4% of all households in Afar and 57.5% of households in SRS had at least one positive animal. This study showed that the disease is widespread in human and their livestock in pastoral communities of Afar and SRS with the existence of geographical hotspots. Results will advise on tailored surveillance programs in pastoral communities.
Collapse
Affiliation(s)
- Rea Tschopp
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | | | - Yayehyirad Tassachew
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Hawasa University college of Medicine and Health Sciences, Hawassa, Ethiopia
| | - Henok Andualem
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Debre Tabor University college of Medicine and Health Science, Department of Medical Laboratory,Debre Tabor, Ethiopia
| | - Mahlet Osman
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Mulugeta Waji Waqjira
- ALERT (All African Leprosy, Tuberculosis and Rehabilitation Training) Center Clinical laboratory, Addis Ababa, Ethiopia
| | - Jan Hattendorf
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Abdulkadir Mohammed
- Addis Ababa University, College of Veterinary Medicine and Agriculture, Bishoftu, Ethiopia
| | - Muhammed Hamid
- Samara University College of Veterinary Medicine, Samara, Ethiopia
| | - Wassie Molla
- University of Gondor, College of Veterinary Medicine and Animal Sciences, Gondor, Ethiopia
| | | | - Henry Walke
- U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Maria Negron
- U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Melissa Kadzik
- U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Gezahegne Mamo
- Addis Ababa University, College of Veterinary Medicine and Agriculture, Bishoftu, Ethiopia
| |
Collapse
|
56
|
Bhagyaraj E, Wang H, Yang X, Hoffman C, Akgul A, Goodwin ZI, Pascual DW. Mucosal Vaccination Primes NK Cell-Dependent Development of CD8 + T Cells Against Pulmonary Brucella Infection. Front Immunol 2021; 12:697953. [PMID: 34305935 PMCID: PMC8293993 DOI: 10.3389/fimmu.2021.697953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Past studies with the live, double-mutant B. abortus (znBAZ) strain resulted in nearly complete protection of mice against pulmonary challenge with wild-type (wt) Brucella via a dominant CD8+ T cell response. To understand the contribution innate immune cells in priming CD8+ T cell responses, mice were nasally dosed with wt B. abortus, smooth vaccine strain 19 (S19), or znBAZ, and examined for innate immune cell activation. Flow cytometric analysis revealed that znBAZ, but not wt B. abortus nor S19 infection, induces up to a 5-fold increase in the frequency of IFN-γ-producing NK cells in mouse lungs. These NK cells express increased CXCR3 and Ki67, indicating their recruitment and proliferation subsequent to znBAZ infection. Their activation status was augmented noted by the increased NKp46 and granzyme B, but decreased NKG2A expression. Further analysis demonstrated that both lung caspase-1+ inflammatory monocytes and monocyte-derived macrophages secrete chemokines and cytokines responsible for NK cell recruitment and activation. Moreover, neutralizing IL-18, an NK cell-activating cytokine, reduced the znBAZ-induced early NK cell response. NK cell depletion also significantly impaired lung dendritic cell (DC) activation and migration to the lower respiratory lymph nodes (LRLNs). Both lung DC activation and migration to LRLNs were significantly impaired in NK cell-depleted or IFN-γ-/- mice, particularly the CD11b+ and monocytic DC subsets. Furthermore, znBAZ vaccination significantly induced CD8+ T cells, and upon in vivo NK cell depletion, CD8+ T cells were reduced 3-fold compared to isotype-treated mice. In summary, these data show that znBAZ induces lung IFN-γ+ NK cells, which plays a critical role in influencing lung DC activation, migration, and promoting protective CD8+ T cell development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David W. Pascual
- Department of Infectious Diseases & Immunology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
57
|
Seroprevalence of Brucella canis in canines from a dog shelter in Bogotá, Colombia. ACTA ACUST UNITED AC 2021; 41:260-270. [PMID: 34214267 PMCID: PMC8375667 DOI: 10.7705/biomedica.5409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 01/18/2023]
Abstract
Introduction: The risk of Brucella canis infection in humans and dogs has increased due to the permanent exposure to asymptomatic carrier dogs. In Colombia, there is evidence of B. canis infection in humans living with dogs. In the case of Bogotá, an additional concern is the lack of updated information related to the prevalence of the infection in dogs.
Objective: To determine the seroprevalence of infection by B. canis in dogs intended for adoption programs in Bogotá.
Materials and methods: By means of a descriptive cross-sectional study carried out in a dog shelter in Bogotá, anti-B. canis IgG antibodies were detected in the serum from 51 dogs 28 females and 23 males) using a lateral-flow immunochromatographic test. Additionally, seropositive animals were analyzed with PCR to detect Brucella spp DNA.
Results: Brucella canis seroprevalence was 1.96% (1/51). The seropositive dog was an asymptomatic three-year-old she-dog in which no bacteria DNA was detected in the blood through PCR.
Conclusions: The seroprevalence determined in this study represented by a single dog with anti-B. canis IgG can be considered a potential risk both for canine and human populations since this single dog could have a persistent infection capable of spreading the bacteria.
Collapse
|
58
|
Zhou Y, Meng Y, Ren Y, Liu Z, Li Z. A Retrospective Survey of the Abortion Outbreak Event Caused by Brucellosis at a Blue Fox Breeding Farm in Heilongjiang Province, China. Front Vet Sci 2021; 8:666254. [PMID: 34212019 PMCID: PMC8239190 DOI: 10.3389/fvets.2021.666254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Brucellosis is a common zoonosis in China, resulting in abortion in animals. Outbreaks of abortion in blue foxes caused by Brucella infection have rarely been reported. In the present study, 3-5 mL blood samples collected from the femoral veins of 10 abortuses of blue foxes were assessed by RBPT (Rose Bengal plate test) and SAT (serum tube agglutination test) to preliminarily investigate the source of infection for the clustering of abortion events at a blue fox farm in Heilongjiang Province. Screening experiments showed that all 10 blood samples were positive in the RBPT, while only eight blood samples out of the 10 were positive in the SAT. Subsequently, 10 tissue samples (spleen, lungs, stomach contents, and afterbirth) from the same 10 foxes were assessed using AMOS (acronym for B. abortus, melitensis, ovis, and suis)-PCR (polymerase chain reaction), and sequencing analysis was performed on amplification products to verify the results of the serology survey. Results showed a spectral band of ~731 bp in these samples. BLAST showed sequences of AMOS-PCR products in this study to be 100% similar (E = 0.0) to sequences in B. melitensis strain from GenBank. These data preliminarily indicated that the blue fox's outbreak of abortion events was caused by brucellosis via the B. melitensis strain. Then 726 serum samples were tested by RBPT and SAT to determine the prevalence of brucellosis on the farm. A comprehensive epidemiological and reproductive status survey of the infected blue fox population was performed. The seropositive rate was found to be 67.90% (493/726) by RBPT and 41.32% (300/726) by SAT. The technicians had stopped feeding the foxes with chicken carcasses and instead fed them raw ground sheep organs (lungs, tracheae, placentae, and dead sheep fetuses) infected by B. meliteneis strains, and that this change in diet caused the outbreak of abortion events. The high abortion rate (55%) and low cub survival rate (65%) were the most distinctive features of the outbreak; these factors led to severe economic losses. Feeding cooked sheep/goat offal and strict breeding management is necessary for disease prevention.
Collapse
Affiliation(s)
- Yulong Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ye Meng
- Department of Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yachao Ren
- Pharmacy Department, Harbin Medical University-Daqing, Daqing, China
| | - Zhiguo Liu
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| |
Collapse
|
59
|
Santos RL, Souza TD, Mol JPS, Eckstein C, Paíxão TA. Canine Brucellosis: An Update. Front Vet Sci 2021; 8:594291. [PMID: 33738302 PMCID: PMC7962550 DOI: 10.3389/fvets.2021.594291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/28/2021] [Indexed: 01/18/2023] Open
Abstract
Canine brucellosis is an infectious and zoonotic disease caused by Brucella canis, which has been reported worldwide, and is a major public health concern due to close contact between dogs and humans. In dogs, canine brucellosis manifests with abortion outbreaks, reproductive failure, enlargement of lymph nodes, and occasionally affects the osteoarticular system, although the occurrence of asymptomatic infections in dogs are not uncommon. In humans, the disease is associated with a febrile syndrome, commonly with non-specific symptoms including splenomegaly, fatigue, and weakness. Infection of dogs occurs mostly by the oronasal route when in contact with contaminated tissues such as aborted fetuses, semen, urine, and vaginal secretions. In humans, contact with contaminated fluids from infected dogs is an important source of infection, and it is an occupational risk for veterinarians, breeders, laboratory workers, among other professionals who deal with infected animals or biological samples. The diagnosis in dogs is largely based on serologic methods. However, serologic diagnosis of canine brucellosis remains very challenging due to the low accuracy of available tests. Molecular diagnostic methods have been increasingly used in the past few years. Treatment of infected dogs is associated with a high frequency of relapse, and should be employed only in selected cases. Currently there are no commercially available vaccines for prevention of canine brucellosis. Therefore, development of novel and improved diagnostic methods as well as the development of efficacious and safe vaccination protocols are needed for an effective control of canine brucellosis and its associated zoonotic risk.
Collapse
Affiliation(s)
- Renato L Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tayse D Souza
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana P S Mol
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Eckstein
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tatiane A Paíxão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
60
|
NLRP6-associated host microbiota composition impacts in the intestinal barrier to systemic dissemination of Brucella abortus. PLoS Negl Trop Dis 2021; 15:e0009171. [PMID: 33617596 PMCID: PMC7932538 DOI: 10.1371/journal.pntd.0009171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 03/04/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Brucella abortus is a Gram-negative bacterium responsible for a worldwide zoonotic infection—Brucellosis, which has been associated with high morbidity rate in humans and severe economic losses in infected livestock. The natural route of infection is through oral and nasal mucosa but the invasion process through host gut mucosa is yet to be understood. Studies have examined the role of NLRP6 (NOD-like receptor family pyrin domain-containing-6 protein) in gut homeostasis and defense against pathogens. Here, we investigated the impact of gut microbiota and NLRP6 in a murine model of Ba oral infection. Nlrp6-/- and wild-type (WT) mice were infected by oral gavage with Ba and tissues samples were collected at different time points. Our results suggest that Ba oral infection leads to significant alterations in gut microbiota. Moreover, Nlrp6-/- mice were more resistant to infection, with decreased CFU in the liver and reduction in gut permeability when compared to the control group. Fecal microbiota transplantation from WT and Nlrp6-/- into germ-free mice reflected the gut permeability phenotype from the donors. Additionally, depletion of gut microbiota by broad-spectrum-antibiotic treatment prevented Ba replication in WT while favoring bacterial growth in Nlrp6-/-. Finally, we observed higher eosinophils in the gut and leukocytes in the blood of infected Nlrp6-/- compared to WT-infected mice, which might be associated to the Nlrp6-/- resistance phenotype. Altogether, these results indicated that gut microbiota composition is the major factor involved in the initial stages of pathogen host replication and partially also by the resistance phenotype observed in Nlrp6 -/- mice regulating host inflammation against Ba infection. Brucella abortus (Ba) is an intracellular bacterium that causes zoonotic and clinical problems worldwide. Although the common route of infection is through oral and nasal, the mechanisms toward the gastrointestinal mucosa response is still unexplored. It is well known that microbiota promotes and maintains host intestinal homeostasis during bacterial infections. However, mechanisms by which the gut microbiota affects the Ba infection have not yet been demonstrated. Here, we provide significant insights into the relationship between gut microbiota and B. abortus oral infection and demonstrate the gut microbiota contribution to the gut permeability and dissemination of Ba. Furthermore, we investigated the participation of the gut microbiota from Nlrp6 deficient mice, on the gut permeability and Ba infection. Substantial experiments performed, mostly in vivo, showed that gut microbiota alterations promote gut barrier disruption, as indicated by increased gut permeability after Ba oral infection. Thus, our work highlights the role of gut mucosal environment through gut microbiota and Nlrp6 molecule involved in host innate immune responses to Ba infection.
Collapse
|
61
|
Roop RM, Barton IS, Hopersberger D, Martin DW. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev 2021; 85:e00021-19. [PMID: 33568459 PMCID: PMC8549849 DOI: 10.1128/mmbr.00021-19] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacteria in the genus Brucella are important human and veterinary pathogens. The abortion and infertility they cause in food animals produce economic hardships in areas where the disease has not been controlled, and human brucellosis is one of the world's most common zoonoses. Brucella strains have also been isolated from wildlife, but we know much less about the pathobiology and epidemiology of these infections than we do about brucellosis in domestic animals. The brucellae maintain predominantly an intracellular lifestyle in their mammalian hosts, and their ability to subvert the host immune response and survive and replicate in macrophages and placental trophoblasts underlies their success as pathogens. We are just beginning to understand how these bacteria evolved from a progenitor alphaproteobacterium with an environmental niche and diverged to become highly host-adapted and host-specific pathogens. Two important virulence determinants played critical roles in this evolution: (i) a type IV secretion system that secretes effector molecules into the host cell cytoplasm that direct the intracellular trafficking of the brucellae and modulate host immune responses and (ii) a lipopolysaccharide moiety which poorly stimulates host inflammatory responses. This review highlights what we presently know about how these and other virulence determinants contribute to Brucella pathogenesis. Gaining a better understanding of how the brucellae produce disease will provide us with information that can be used to design better strategies for preventing brucellosis in animals and for preventing and treating this disease in humans.
Collapse
Affiliation(s)
- R Martin Roop
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Ian S Barton
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Dariel Hopersberger
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Daniel W Martin
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
62
|
Hu YN, Zhou BT, Yang HR, Peng QL, Gu XR, Sun SS. Effect of rifampicin on anticoagulation of warfarin: A case report. World J Clin Cases 2021; 9:1087-1095. [PMID: 33644171 PMCID: PMC7896655 DOI: 10.12998/wjcc.v9.i5.1087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The drug interaction between warfarin and rifampicin is widely known, but there are still some difficulties in managing the combination of the two drugs.
CASE SUMMARY A patient with brucellosis received strict monitoring from a Chinese pharmacist team during combination of warfarin and rifampicin. The dose of warfarin was increased to 350% in 3 mo before reaching the lower international normalized ratio treatment window. No obvious adverse reaction occurred during the drug-adjustment period. This is the first case report of long-term combined use of rifampicin and warfarin in patients with brucellosis and valve replacement in China based on the Chinese lower warfarin dose and international normalized ratio range.
CONCLUSION Anticoagulation for valve replacement in Chinese patients differs from that in other races. Establishment of a pharmacist clinic provides vital assistance in warfarin dose adjustment.
Collapse
Affiliation(s)
- Ya-Ni Hu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Bo-Ting Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- The Institute of Hospital Pharmacy, Central South University, Changsha 410008, Hunan Province, China
| | - Hua-Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Qi-Lin Peng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xu-Rui Gu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Shu-Sen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 31329, United States
| |
Collapse
|
63
|
González-Espinoza G, Arce-Gorvel V, Mémet S, Gorvel JP. Brucella: Reservoirs and Niches in Animals and Humans. Pathogens 2021; 10:pathogens10020186. [PMID: 33572264 PMCID: PMC7915599 DOI: 10.3390/pathogens10020186] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is an intracellular bacterium that causes abortion, reproduction failure in livestock and leads to a debilitating flu-like illness with serious chronic complications if untreated in humans. As a successful intracellular pathogen, Brucella has developed strategies to avoid recognition by the immune system of the host and promote its survival and replication. In vivo, Brucellae reside mostly within phagocytes and other cells including trophoblasts, where they establish a preferred replicative niche inside the endoplasmic reticulum. This process is central as it gives Brucella the ability to maintain replicating-surviving cycles for long periods of time, even at low bacterial numbers, in its cellular niches. In this review, we propose that Brucella takes advantage of the environment provided by the cellular niches in which it resides to generate reservoirs and disseminate to other organs. We will discuss how the favored cellular niches for Brucella infection in the host give rise to anatomical reservoirs that may lead to chronic infections or persistence in asymptomatic subjects, and which may be considered as a threat for further contamination. A special emphasis will be put on bone marrow, lymph nodes, reproductive and for the first time adipose tissues, as well as wildlife reservoirs.
Collapse
|
64
|
Comparative proteomic analysis of outer membrane vesicles from Brucella suis, Brucella ovis, Brucella canis and Brucella neotomae. Arch Microbiol 2021; 203:1611-1626. [PMID: 33432377 PMCID: PMC7799404 DOI: 10.1007/s00203-020-02170-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/22/2020] [Accepted: 12/27/2020] [Indexed: 01/18/2023]
Abstract
Gram-negative bacteria release nanovesicles, called outer membrane vesicles (OMVs), from their outer membrane. Proteomics has been used to determine their composition. OMVs contain proteins able to elicit an immune response, so they have been proposed as a model to develop acellular vaccines. In this study, OMVs of Brucella suis, B. ovis, B. canis, and B. neotomae were purified and analyzed by SDS-PAGE, transmission electron microscopy and liquid chromatography coupled to mass spectrometry to determine the pan-proteome of these vesicles. In addition, antigenic proteins were detected by western blot with anti-Brucella sera. The in silico analysis of the pan-proteome revealed many homologous proteins, such as Omp16, Omp25, Omp31, SodC, Omp2a, and BhuA. Proteins contained in the vesicles from different Brucella species were detected by anti-Brucella sera. The occurrence of previously described immunogenic proteins derived from OMVs supports the use of these vesicles as candidates to be evaluated as an acellular brucellosis vaccine.
Collapse
|
65
|
Deng X, Guo J, Sun Z, Liu L, Zhao T, Li J, Tang G, Zhang H, Wang W, Cao S, Zhu D, Tao T, Cao G, Baryshnikov PI, Chen C, Zhao Z, Chen L, Zhang H. Brucella-Induced Downregulation of lncRNA Gm28309 Triggers Macrophages Inflammatory Response Through the miR-3068-5p/NF-κB Pathway. Front Immunol 2020; 11:581517. [PMID: 33414782 PMCID: PMC7784117 DOI: 10.3389/fimmu.2020.581517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives The underlying mechanism of the inflammatory response against Brucellosis caused by Brucella remains poorly understood. This study aimed to determine the role of long non-coding RNAs (lncRNAs) in regulating of inflammatory and anti-Brucella responses. Materials and methods Microarray analysis was performed to detect differentially expressed lncRNAs in THP-1 cells infected with an S2308 Brucella strain. The candidate lncRNAs were screened using bioinformatic analysis and siRNAs; bioinformatic prediction and luciferase reporter assay were also conducted, while inflammatory responses was assessed using RT‐qPCR, western blot, immunofluorescence, ELISA, HE, and immunohistochemistry. Results The lncRNA Gm28309 was identified to be involved in regulating inflammation induced by Brucella. Gm28309, localized in the cytoplasm, was down-expressed in RAW264.7 cells infected with S2308. Overexpression of Gm28309 or inhibition of miR-3068-5p repressed p65 phosphorylation and reduced NLRP3 inflammasome and IL-1β and IL-18 secretion. Mechanistically, Gm28309 acted as a ceRNA of miR-3068-5p to activate NF-κB pathway by targeting κB-Ras2, an inhibitor of NF-κB signaling. Moreover, the number of intracellular Brucella was higher when Gm28309 was overexpressed or when miR-3068-5p or p65 was inhibited. However, these effects were reversed by the miR-3068-5p mimic. Conclusions Our study demonstrates, for the first time, that LncRNAs are involved in regulating immune responses during Brucella infection, and Gm28309, an lncRNA, plays a crucial role in activating NF-κB/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Laizhen Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jia Li
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Guochao Tang
- Technology Center, Xinjiang Tianrun Dairy Biological Products Co., Ltd, Urumqi, China
| | - Hai Zhang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tingting Tao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - P I Baryshnikov
- College of Veterinary, Altai National Agricultural University, Barnaul, Russia
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zongsheng Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Lihua Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
66
|
Sauvé CC, Hernández-Ortiz A, Jenkins E, Mavrot F, Schneider A, Kutz S, Saliki JT, Daoust PY. Exposure of the Gulf of St. Lawrence grey seal Halichoerus grypus population to potentially zoonotic infectious agents. DISEASES OF AQUATIC ORGANISMS 2020; 142:105-118. [PMID: 33269722 DOI: 10.3354/dao03536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The population of grey seals Halichoerus grypus in Canadian waters is currently used as a commercial source of meat for human consumption. As with domestic livestock, it is important to understand the occurrence in these seals of infectious agents that may be of public health significance and thus ensure appropriate measures are in place to avoid zoonotic transmission. This study examined the prevalence of antibodies against Brucella spp., Erysipelothrix rhusiopathiae, 6 serovars of Leptospira interrogans, and Toxoplasma gondii in 59 grey seals and determined by polymerase chain reaction (PCR) the presence of these potentially zoonotic agents in specific organs and tissues of seropositive animals. The presence of encysted Trichinella spp. larvae was also investigated by digestion of tongue, diaphragm and other muscle samples, but none were detected. Seroprevalence against Brucella spp. and E. rhusiopathiae was low (5 and 3%, respectively). All 59 seals tested had antibodies against L. interrogans, but no carrier of this bacterium was detected by PCR. Seroprevalence against T. gondii was 53%, and DNA of this protozoan was detected by PCR in 11/30 (37%) seropositive animals. Standard sanitary measures mandatory for commercialization of meat products for human consumption should greatly reduce the potential for exposure to these infectious agents. However, special consideration should be given to freezing seal meat for at least 3 d to ensure destruction of tissue cysts of T. gondii.
Collapse
Affiliation(s)
- Caroline C Sauvé
- Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Herrán Ramirez OL, Azevedo Santos H, Jaramillo Delgado IL, da Costa Angelo I. Seroepidemiology of bovine brucellosis in Colombia's preeminent dairy region, and its potential public health impact. Braz J Microbiol 2020; 51:2133-2143. [PMID: 32918242 PMCID: PMC7688874 DOI: 10.1007/s42770-020-00377-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 11/27/2022] Open
Abstract
A cross-sectional study was conducted to determine the associated factors of brucellosis in Colombia's preeminent dairy region declared in quarantine. A total of 656 samples were collected from cows ≥ 2-year-old from 40 herds. Samples were screened by the Rose Bengal Plate Test, and the Fluorescence Polarized Assay test and Competitive ELISA were used as confirmatory tests. A cow was classified as positive if the screening and both confirmatory tests were positive. A herd was classified as positive if at least one cow was seropositive. The factors associated to seropositivity were tested using a logistic regression model with explanatory variables regarding cattle management, zootechnical parameters, and sanitary practices. The seroprevalence at the animal level was 6.6% (43/656) and at herd level 27.5% (11/40). In the model, five variables explained the animal cases: purchase or animal transfer between owner's farms (OR = 2.79, 95% CI 1.42, 5.49), history of abortion (OR = 4.22, 95% CI 1.91, 9.33), birth of weak calves (OR = 13.77, 95% CI 2.75, 68.91), use of a bull for mating (OR = 9.69, 95% CI 2.23, 42.18), and the vaccination in adulthood (OR = 3.03, 95% CI 1.04.8.78). In the model at the herd level, two variables explained the cases: birth of weak calves (OR = 9.60, 95% CI 1.54, 59.76) and purchase or animal transfer between owner's farms (OR = 7.22, 95% CI 1.03, 50.62). These results justify the need for a quarantine declaration in the region and the implementation of epidemiological studies as a public health measures used to combat outbreak.
Collapse
Affiliation(s)
- Olga Lucia Herrán Ramirez
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, P.O. Box 23897-000, Seropedica, RJ, Brazil.
| | - Huarrisson Azevedo Santos
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, P.O. Box 23897-000, Seropedica, RJ, Brazil
| | | | - Isabele da Costa Angelo
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, P.O. Box 23897-000, Seropedica, RJ, Brazil
| |
Collapse
|
68
|
Pierce CF, Brown VR, Olsen SC, Boggiatto P, Pedersen K, Miller RS, Speidel SE, Smyser TJ. Loci Associated With Antibody Response in Feral Swine ( Sus scrofa) Infected With Brucella suis. Front Vet Sci 2020; 7:554674. [PMID: 33324693 PMCID: PMC7724110 DOI: 10.3389/fvets.2020.554674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Feral swine (Sus scrofa) are a destructive invasive species widespread throughout the United States that disrupt ecosystems, damage crops, and carry pathogens of concern for the health of domestic stock and humans including Brucella suis-the causative organism for swine brucellosis. In domestic swine, brucellosis results in reproductive failure due to abortions and infertility. Contact with infected feral swine poses spillover risks to domestic pigs as well as humans, companion animals, wildlife, and other livestock. Genetic factors influence the outcome of infectious diseases; therefore, genome wide association studies (GWAS) of differential immune responses among feral swine can provide an understanding of disease dynamics and inform management to prevent the spillover of brucellosis from feral swine to domestic pigs. We sought to identify loci associated with differential antibody responses among feral swine naturally infected with B. suis using a case-control GWAS. Tissue, serum, and genotype data (68,516 bi-allelic single nucleotide polymorphisms) collected from 47 feral swine were analyzed in this study. The 47 feral swine were culture positive for Brucella spp. Of these 47, 16 were antibody positive (cases) whereas 31 were antibody negative (controls). Single-locus GWAS were performed using efficient mixed-model association eXpedited (EMMAX) methodology with three genetic models: additive, dominant, and recessive. Eight loci associated with seroconversion were identified on chromosome 4, 8, 9, 10, 12, and 18. Subsequent bioinformatic analyses revealed nine putative candidate genes related to immune function, most notably phagocytosis and induction of an inflammatory response. Identified loci and putative candidate genes may play an important role in host immune responses to B. suis infection, characterized by a detectable bacterial presence yet a differential antibody response. Given that antibody tests are used to evaluate brucellosis infection in domestic pigs and for disease surveillance in invasive feral swine, additional studies are needed to fully understand the genetic component of the response to B. suis infection and to more effectively translate estimates of Brucella spp. antibody prevalence among feral swine to disease control management action.
Collapse
Affiliation(s)
- Courtney F. Pierce
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Vienna R. Brown
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Feral Swine Damage Management Program, Fort Collins, CO, United States
| | - Steven C. Olsen
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Diseases, National Animal Disease Center, Ames, IA, United States
| | - Paola Boggiatto
- United States Department of Agriculture, Agricultural Research Service, Infectious Bacterial Diseases, National Animal Disease Center, Ames, IA, United States
| | - Kerri Pedersen
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, Raleigh, NC, United States
| | - Ryan S. Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, United States
| | - Scott E. Speidel
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Timothy J. Smyser
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| |
Collapse
|
69
|
Olsen SC, Crawford LS, Fuentes A, Kostovic M, Boggiatto PM. Influence of species of negative control sera on results of a brucellosis fluorescence polarization assay. J Vet Diagn Invest 2020; 33:67-72. [PMID: 33213290 DOI: 10.1177/1040638720970888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We evaluated serologic responses of cattle, bison, elk, and swine representing negative control, early vaccination (4-8 wk), late vaccination (21-28 wk) or booster vaccination, early after-experimental challenge (2-4 wk), and late after-experimental challenge (8-21 wk), in a brucellosis fluorescence polarization assay (FPA; n = 10 sera per species per treatment) using negative control sera from cattle, bison, elk, and swine (n = 5 per species). Sera from cattle shedding Brucella abortus strain RB51 in milk were also evaluated against the 20 negative control sera. The species of negative control sera used in the FPA could increase (p < 0.05) delta millipolarization (mP; delta mP = sample mP - negative control mP) results. In general, the species of negative control sera did not alter the interpretation of FPA results in control, vaccinated, or infected animals. Even after repeated RB51 vaccinations in bison, cattle, or elk, or in cattle shedding RB51 in milk, serologic results from the FPA remained negative. Species differences in FPA results were noted; elk developed robust humoral responses very quickly after infection that resulted in strong positive FPA results. In cattle and bison, humoral responses appeared to develop over a longer period of time, and greater delta mP values were detected at later times after infection. Sensitivity of the FPA for detecting infected animals was greatest for elk in early challenge samples and bison in late challenge samples. Our data suggest that species of origin of negative control sera does not influence interpretation of the FPA in natural hosts of Brucella abortus.
Collapse
Affiliation(s)
- Steven C Olsen
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA
| | - Lauren S Crawford
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA
| | - Antonio Fuentes
- Montana Department of Livestock, Montana Veterinary Diagnostic Laboratory, Bozeman, MT
| | | | - Paola M Boggiatto
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA
| |
Collapse
|
70
|
Abo El-Ela FI, Hussein KH, El-Banna HA, Gamal A, Rouby S, Menshawy AMS, EL-Nahass ELS, Anwar S, Zeinhom MMA, Salem HF, Al-Sayed MAY, El-Newery HA, Shokier KAM, EL-Nesr KA, Hosein HI. Treatment of Brucellosis in Guinea Pigs via a Combination of Engineered Novel pH-Responsive Curcumin Niosome Hydrogel and Doxycycline-Loaded Chitosan-Sodium Alginate Nanoparticles: an In Vitro and In Vivo Study. AAPS PharmSciTech 2020; 21:326. [PMID: 33206259 DOI: 10.1208/s12249-020-01833-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/25/2020] [Indexed: 01/13/2023] Open
Abstract
Brucellosis is a common zoonotic infection, particularly in the developing world. The recommended treatment regimens for brucellosis involve the use of two medications such as doxycycline and curcumin in order to avoid relapses and prolonged use of these drugs. Doxycycline has excellent activity in the acidic phagolysosomal environment, while curcumin modulates the immune system function and macrophage activity. Due to the intracellular existence of Brucellae and the different anti-immune mechanisms of Brucella, the treatment of Brucella infection faces many limitations. The design of nanosystems is a promising treatment approach for brucellosis. The objective of this study was to design and evaluate the efficacy of in situ pH-responsive curcumin-loaded niosome hydrogel and doxycycline-loaded chitosan-sodium alginate nanoparticles as chemotherapeutic agents against brucellosis. The prepared formulae showed a spherical nano shape with a slow drug release pattern and small particle size. The prepared formulae were evaluated in vivo using Guinea pigs experimentally infected with Brucella melitensis biovar3. The prepared formula combination gave a significant high reduction rate of Brucella spleen viable count compared with that of untreated controls at p < 0.05. The results showed that the treatment schemes were not fully successful in eliminating Brucella infection in Guinea pigs; however, they significantly (p < 0.05) reduced the viable Brucella count in a shorter time and sub-therapeutic doses. Collectively the novel prepared formulae could be a successful therapy for the effective treatment of brucellosis infection at the recommended therapeutic doses. Graphical abstract.
Collapse
|
71
|
Daggett J, Rogers A, Harms J, Splitter GA, Durward-Diioia M. Hepatic and splenic immune response during acute vs. chronic Brucella melitensis infection using in situ microscopy. Comp Immunol Microbiol Infect Dis 2020; 73:101490. [PMID: 33068875 DOI: 10.1016/j.cimid.2020.101490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/30/2022]
Abstract
Brucella melitensis is an intracellular bacteria causing disease in humans as an incidental host. The infection initiates as acute flu-like symptoms and may transform into a chronic cyclic infection. This cyclic infection may be partly due to the bacteria's ability to persist within antigen presenting cells and evade the CD8 + T cell response over long periods of time. This research aims to characterize the immune response of the acute and chronic forms of brucellosis in the murine liver and spleen. We also sought to determine if the exhaustion of the CD8 + T cells was a permanent or temporary change. This was accomplished by using adoptive transfer of acutely infected CD8 + T cells and chronically infected CD8 + T cells into a naïve host followed by re-infection. The histological examination presented supports the concept that exhausted T-cells can regain function through evidence of granulomatous inflammation after virulent challenge in a new host environment.
Collapse
Affiliation(s)
- Juliane Daggett
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States; Department of Animal Care and Technologies, Arizona State University, United States
| | - Alexandra Rogers
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
| | - Jerome Harms
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, United States
| | - Gary A Splitter
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, United States
| | - Marina Durward-Diioia
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States; Department of Biomedical Sciences, Idaho College of Osteopathic Medicine, United States.
| |
Collapse
|
72
|
Garofolo G, Petrella A, Lucifora G, Di Francesco G, Di Guardo G, Pautasso A, Iulini B, Varello K, Giorda F, Goria M, Dondo A, Zoppi S, Di Francesco CE, Giglio S, Ferringo F, Serrecchia L, Ferrantino MAR, Zilli K, Janowicz A, Tittarelli M, Mignone W, Casalone C, Grattarola C. Occurrence of Brucella ceti in striped dolphins from Italian Seas. PLoS One 2020; 15:e0240178. [PMID: 33007030 PMCID: PMC7531818 DOI: 10.1371/journal.pone.0240178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/21/2020] [Indexed: 01/15/2023] Open
Abstract
Brucella ceti infections have been increasingly reported in cetaceans, although a very limited characterization of Mediterranean Brucella spp. isolates has been previously reported and relatively few data exist about brucellosis among cetaceans in Italy. To address this gap, we studied 8 cases of B. ceti infection in striped dolphins (Stenella coeruleoalba) stranded along the Italian coastline from 2012 to 2018, investigated thanks to the Italian surveillance activity on stranded cetaceans. We focused on cases of stranding in eastern and western Italian seas, occurred along the Apulia (N = 6), Liguria (N = 1) and Calabria (N = 1) coastlines, through the analysis of gross and microscopic findings, the results of microbiological, biomolecular and serological investigations, as well as the detection of other relevant pathogens. The comparative genomic analysis used whole genome sequences of B. ceti from Italy paired with the publicly available complete genomes. Pathological changes consistent with B. ceti infection were detected in the central nervous system of 7 animals, showing non-suppurative meningoencephalitis. In 4 cases severe coinfections were detected, mostly involving Dolphin Morbillivirus (DMV). The severity of B. ceti-associated lesions supports the role of this microbial agent as a primary neurotropic pathogen for striped dolphins. We classified the 8 isolates into the common sequence type 26 (ST-26). Whole genome SNP analysis showed that the strains from Italy clustered into two genetically distinct clades. The first clade comprised exclusively the isolates from Ionian and Adriatic Seas, while the second one included the strain from the Ligurian Sea and those from the Catalonian coast. Plotting these clades onto the geographic map suggests a link between their phylogeny and topographical distribution. These results represent the first extensive characterization of B. ceti isolated from Italian waters reported to date and show the usefulness of WGS for understanding of the evolution of this emerging pathogen.
Collapse
Affiliation(s)
- Giuliano Garofolo
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Antonio Petrella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Giuseppe Lucifora
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Vibo Valentia, Italy
| | - Gabriella Di Francesco
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | | | | | - Barbara Iulini
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Katia Varello
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Federica Giorda
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
- Institute for Animal Health and Food Safety (IUSA), Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Maria Goria
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Alessandro Dondo
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Simona Zoppi
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | | | - Stefania Giglio
- M.A.R.E. Calabria Association, Montepaone (Catanzaro), Italy
| | - Furio Ferringo
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | | | - Katiuscia Zilli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Anna Janowicz
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Manuela Tittarelli
- National and OIE Reference Laboratory for Brucellosis, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise, Teramo, Italy
| | - Walter Mignone
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Cristina Casalone
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
| | - Carla Grattarola
- OIE Collaborating Centre Health of Marine Mammals, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Torino, Italy
- * E-mail:
| |
Collapse
|
73
|
Daly R, Willis KC, Wood J, Brown K, Brown D, Beguin-Strong T, Smith R, Ruesch H. Seroprevalence of Brucella canis in dogs rescued from South Dakota Indian reservations, 2015-2019. Prev Vet Med 2020; 184:105157. [PMID: 33002657 DOI: 10.1016/j.prevetmed.2020.105157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
Canine brucellosis, caused by Brucella canis, is an infectious disease with implications for canine as well as human health. The identification of infected dogs originating from and around two South Dakota Indian reservations prompted an examination of the seroprevalence of B. canis in stray or owner-surrendered dogs from these communities. Using results from in-clinic screening tests of 3898 dogs over more than 4 years, we determined an overall apparent B. canis seroprevalence of 6.8% (adjusted estimated true prevalence of 29.4%), with rates declining over time. The apparent rate was similar to other surveys of stray dog populations in the US. Older dogs were significantly more likely to be B. canis-positive than younger dogs, as were reproductively intact dogs versus altered dogs (although this difference was not statistically significant). There were geographic differences in seropositive rates as well, with higher rates found in dogs originating from one reservation compared to other locations. Current diagnostic tests lack sensitivity to effectively identify all B. canis-infected dogs, but results from this study are valuable for investigating differences among risk factors for infection. Because of the potential for B. canis to infect other dogs and people, stray dog populations should be screened for B. canis before those animals are placed in adoptive homes.
Collapse
Affiliation(s)
- Russell Daly
- Department of Veterinary and Biomedical Sciences, 1155 North Campus Drive, South Dakota State University, Brookings, SD, 57007 USA.
| | - K C Willis
- Lightshine Canine: A Rez Dog Rescue, 1341 S Bowen St., Longmont, CO, 80501 USA.
| | - Janet Wood
- Butler Veterinary Clinic, 420 W. US Hwy 20, Valentine, NE, 69201 USA.
| | - Kayla Brown
- Fall River Veterinary Clinic, 27618 Scenic Rd., Hot Springs, SD, 57747 USA.
| | - Dustin Brown
- Fall River Veterinary Clinic, 27618 Scenic Rd., Hot Springs, SD, 57747 USA.
| | | | - Rockie Smith
- High Plains Veterinary Service, 1310 E. Bennett Ave., Martin, SD, 57551 USA.
| | - Haley Ruesch
- Department of Veterinary and Biomedical Sciences, 1155 North Campus Drive, South Dakota State University, Brookings, SD, 57007 USA.
| |
Collapse
|
74
|
Islam S, Barua SR, Moni SP, Islam A, Rahman AKMA, Chowdhury S. Seroprevalence and risk factors for bovine brucellosis in the Chittagong Metropolitan Area of Bangladesh. Vet Med Sci 2020; 7:86-98. [PMID: 32949434 PMCID: PMC7840193 DOI: 10.1002/vms3.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 07/27/2020] [Accepted: 08/16/2020] [Indexed: 01/09/2023] Open
Abstract
Brucellosis is a neglected endemic zoonosis in Bangladesh and has a significant impact on public health and animal welfare of dairy farming as well as dairy farm economics. A cross‐sectional study was conducted to evaluate the seroprevalence of and risk factors for brucellosis in dairy cattle in the Chittagong metropolitan area (CMA) of Chittagong, Bangladesh. We collected serum samples (n = 158) from six randomly selected dairy farms in the CMA between February and November, 2015. The Rose Bengal Plate Test (RBPT) and a competitive ELISA (cELISA) were used as the screening and confirmatory tests respectively. Farm level and animal level demographic and risk factor data were collected using a questionnaire. The risk factors were analysed using a multivariable logistic regression with random effects. The overall seroprevalences of antibodies against brucellosis in cattle were 21.5% (34/158) and 7.6% (12/158) based on parallel and serial interpretation of the two tests respectively. Our results revealed that 20.3% (32/158) samples were positive using the RBPT and 8.9% (14/158) were positive using the cELISA. The within‐herd seroprevalence ranged from 10% to 26.3% and 5 to 20.7% using the RBPT and cELISA tests respectively. The odds of seropositivity were significantly higher in lactating cows (OR: 2.59; 95% CI: 1.02–6.55), cows producing less than 2 litres of milk (OR: 29.6; 95% CI: 4.3–353.8), cow producing 2–12 litres of milk (OR: 4.8; 95% CI: 1.1–33.4) and cows with reproductive disorders (OR: 3.2; 95% CI: 1.2–10.1). About 7.6% (12/158) and 1.3% (2/158) of cattle were found to be infected with acute and chronic brucellosis respectively. Based on these results, we suggest that cows that have reproductive disorders and are producing little milk should be prioritized for brucellosis screening in CMA. The screening tests should be used to control brucellosis in cattle in order to protect animal welfare, human health and to minimize the economic losses.
Collapse
Affiliation(s)
- Shariful Islam
- Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh.,Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh.,Ecohealth Alliance, New York, NY, USA
| | - Shama Ranjan Barua
- Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh.,Department of Livestock Services, Farmgate, Dhaka, Bangladesh
| | - Shahnaj Parvin Moni
- Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh
| | - Ariful Islam
- Ecohealth Alliance, New York, NY, USA.,Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong, VIC, Australia
| | | | - Sharmin Chowdhury
- Chittagong Veterinary and Animal Sciences University (CVASU), Chittagong, Bangladesh
| |
Collapse
|
75
|
Isolation and Identification of Two Brucella Species from a Volcanic Lake in Mexico. Curr Microbiol 2020; 77:3565-3572. [PMID: 32897398 DOI: 10.1007/s00284-020-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
Brucellosis is a zoonosis caused by bacteria of the Brucella genus. Any source of contamination that could be infectious must be monitored to reduce the risk of exposure to brucellosis, so the purpose of this work was to determine the presence of Brucella spp. on surface water and tilapia (Oreochromis niloticus) skin from a volcanic lake in Mexico. A seasonal sampling during 2016-2017 was carried out at fifteen specific sites for water sampling and five sites for the collection of tilapia fish. From all water and fish samples tested, we found only three isolates of Brucella species. We isolated and identified B. abortus from surface water through bacteriological and molecular techniques, and B. abortus and B. suis from the same tilapia skin sample. The isolated strains likely came from breeding animals that are common to the region, such as infected pigs or cattle with Brucella abortus or B. suis, respectively. A similar finding has not been reported in a water from volcanic lake or tilapia fish in Mexico. We concluded that B. abortus and B. suis are present on the surface water of the volcanic lake and tilapia skin as possible contaminants derived from biological material from cows and pigs carrying this bacterium.
Collapse
|
76
|
Omp16, a conserved peptidoglycan-associated lipoprotein, is involved in Brucella virulence in vitro. J Microbiol 2020; 58:793-804. [PMID: 32870485 DOI: 10.1007/s12275-020-0144-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/02/2020] [Accepted: 07/09/2020] [Indexed: 01/31/2023]
Abstract
Brucella, the bacterial agent of common zoonotic brucellosis, primarily infects specific animal species. The Brucella outer membrane proteins (Omps) are particularly attractive for developing vaccine and improving diagnostic tests and are associated with the virulence of smooth Brucella strains. Omp16 is a homologue to peptidoglycan-associated lipoproteins (Pals), and an omp16 mutant has not been generated in any Brucella strain until now. Very little is known about the functions and pathogenic mechanisms of Omp16 in Brucella. Here, we confirmed that Omp16 has a conserved Pal domain and is highly conserved in Brucella. We attempted to delete omp16 in Brucella suis vaccine strain 2 (B. suis S2) without success, which shows that Omp16 is vital for Brucella survival. We acquired a B. suis S2 Omp16 mutant via conditional complementation. Omp16 deficiency impaired Brucella outer membrane integrity and activity in vitro. Moreover, inactivation of Omp16 decreased bacterial intracellular survival in macrophage RAW 264.7 cells. B. suis S2 and its derivatives induced marked expression of IL-1β, IL-6, and TNF-a mRNA in Raw 264.7 cells. Whereas inactivation of Omp16 in Brucella enhanced IL-1β and IL-6 expression in Raw 264.7 cells. Altogether, these findings show that the Brucella Omp16 mutant was obtained via conditional complementation and confirmed that Omp16 can maintain outer membrane integrity and be involved in bacterial virulence in Brucella in vitro and in vivo. These results will be important in uncovering the pathogenic mechanisms of Brucella.
Collapse
|
77
|
A Proof of Principle for the Detection of Viable Brucella spp. in Raw Milk by qPCR Targeting Bacteriophages. Microorganisms 2020; 8:microorganisms8091326. [PMID: 32878169 PMCID: PMC7565414 DOI: 10.3390/microorganisms8091326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023] Open
Abstract
Brucellosis is still a global health issue, and surveillance and control of this zoonotic disease in livestock remains a challenge. Human outbreaks are mainly linked to the consumption of unpasteurized dairy products. The detection of human pathogenic Brucella species in food of animal origin is time-consuming and laborious. Bacteriophages are broadly applied to the typing of Brucella isolates from pure culture. Since phages intracellularly replicate to very high numbers, they can also be used as specific indicator organisms of their host bacteria. We developed a novel real-time PCR (qPCR) assay targeting the highly conserved helicase sequence harbored in all currently known Brucella-specific lytic phages. Quality and performance tests determined a limit of detection of <1 genomic copy/µL. In raw milk artificially contaminated with Brucella microti, Izv phages were reliably detected after 39 h of incubation, indicating the presence of viable bacteria. The qPCR assay showed high stability in the milk matrix and significantly shortened the time to diagnosis when compared to traditional culture-based techniques. Hence, our molecular assay is a reliable and sensitive method to analyze phage titers, may help to reduce the hands-on time needed for the screening of potentially contaminated food, and reveals infection risks without bacterial isolation.
Collapse
|
78
|
Kornspan D, Zahavi T, Salmon-Divon M. The Acidic Stress Response of the Intracellular Pathogen Brucella melitensis: New Insights from a Comparative, Genome-Wide Transcriptome Analysis. Genes (Basel) 2020; 11:genes11091016. [PMID: 32872264 PMCID: PMC7563570 DOI: 10.3390/genes11091016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
The intracellular pathogenic bacteria belonging to the genus Brucella must cope with acidic stress as they penetrate the host via the gastrointestinal route, and again during the initial stages of intracellular infection. A transcription-level regulation has been proposed to explain this but the specific molecular mechanisms are yet to be determined. We recently reported a comparative transcriptomic analysis of the attenuated vaccine Brucella melitensis strain Rev.1 against the virulent strain 16M in cultures grown under either neutral or acidic conditions. Here, we re-analyze the RNA-seq data of 16M from our previous study and compare it to published transcriptomic data of this strain from both an in cellulo and an in vivo model. We identify 588 genes that are exclusively differentially expressed in 16M grown under acidic versus neutral pH conditions, including 286 upregulated genes and 302 downregulated genes that are not differentially expressed in either the in cellulo or the in vivo model. Of these, we highlight 13 key genes that are known to be associated with a bacterial response to acidic stress and, in our study, were highly upregulated under acidic conditions. These genes provide new molecular insights into the mechanisms underlying the acid-resistance of Brucella within its host.
Collapse
Affiliation(s)
- David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan 50250, Israel
- Correspondence: ; Tel.: +972-3-968-1745
| | - Tamar Zahavi
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
| | - Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel 40700, Israel; (T.Z.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
79
|
Yang J, Wang G, Li H, Zheng W, Guo B, Wang Z. Knockdown of Mg 2+/Mn 2+ dependent protein phosphatase 1A promotes apoptosis in BV2 cells infected with Brucella suis strain 2 vaccine. Exp Ther Med 2020; 20:926-932. [PMID: 32742335 PMCID: PMC7388305 DOI: 10.3892/etm.2020.8745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
The ability to inhibit host macrophage apoptosis is one of the survival strategies of intracellular bacteria, including Brucella. In the present study the role of Mg2+/Mn2+ dependent protein phosphatase 1A (PPM1A) in the apoptosis of Brucella suis (B. suis) strain 2 vaccine-infected BV2 cells was investigated. Compared with control cells, the protein expression levels of cleaved caspase-3 were markedly increased in PPM1A short hairpin (sh)RNA-transfected BV2 cells. Flow cytometry analysis showed that treatment with JNK activator anisomycin significantly increased the rate of apoptosis in BV2 cells in comparison with the control cells. Furthermore, PPM1A shRNA significantly increased the levels of JNK phosphorylation and the levels of cleaved caspase-3 in BV2 cells infected with B. suis strain 2 in comparison with the control cells. DAPI staining showed nuclear condensation in B. suis infected BV2 cells transfected with PPM1A shRNA in comparison with the control shRNA cells. Flow cytometry analysis showed that PPM1A shRNA significantly increased the percentage of apoptotic BV2 cells infected with B. suis strain 2 compared with those transfected with control shRNA. Taken together, these data suggested that knockdown of PPM1A promotes apoptosis in B. suis strain 2-infected BV2 cells and that PPM1A may be a potential target in the development of treatments to inhibit intracellular growth of B. suis.
Collapse
Affiliation(s)
- Juan Yang
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Guowei Wang
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Haining Li
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Wenli Zheng
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Burui Guo
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Zhenhai Wang
- Department of Neurology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China.,Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
80
|
Zhou JH, Li H, Li X, Gao J, Xu L, Han S, Liu Y, Shang Y, Cao X. Tracing Brucella evolutionary dynamics in expanding host ranges through nucleotide, codon and amino acid usages in genomes. J Biomol Struct Dyn 2020; 39:3986-3995. [PMID: 32448095 DOI: 10.1080/07391102.2020.1773313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The host range of Brucella organisms has expanded from terrestrial and marine mammals to fish and amphibians. The high homology genomes of different Brucella organisms promote us to investigate evolutionary patterns for nucleotide, codon and amino acid usage patterns at gene levels among Brucella species. Although the similar patterns for nucleotide and synonymous codon usages exist in gene population, GC composition at the first codon position has significant correlations to that of the second and third codon positions, respectively, suggesting that nucleotide usages surrounding one codon influence synonymous codon usage patterns. Evolutionary patterns represented by synonymous codon and amino acid usages reflect host factor impacting Brucella speciation. As for genetic variations of important virulent factors involved with different biological functions, genes encoding lipoplysaccharides (LPSs) display more distinctive codon adaptation to Brucella than those of the BvrR/BvrS system and type IV secretion system. By Bayesian analysis, the polygenetic constructions for these genes of virulent factors shared by Brucella species display the purifying/positive selections and partially host factor in mediating genetic variations of these genes. The systemic analyses for nucleotide, synonymous codon and amino acid usages at gene level and genetic variations of important virulent factor genes display that host limitation influences either genetic characterizations at gene level or a particular gene involved in virulent factors of Brucella.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Hua Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China.,China Agricultural Vet Biology and Technology limited liability company, Lanzhou, Gansu, P.R. China
| | - Xuerui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Jing Gao
- Gansu Center for Animal Disease Prevention and Control, Lanzhou, Gansu, P.R. China
| | - Long- Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P.R. China
| | - Shengyi Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P.R. China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| | - Xiaoan Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P.R. China
| |
Collapse
|
81
|
Golshani M, Amani M, Amirzadeh F, Nazeri E, Davar Siadat S, Nejati-Moheimani M, Arsang A, Bouzari S. Evaluation of Poly(I:C) and combination of CpG ODN plus Montanide ISA adjuvants to enhance the efficacy of outer membrane vesicles as an acellular vaccine against Brucella melitensis infection in mice. Int Immunopharmacol 2020; 84:106573. [PMID: 32454410 DOI: 10.1016/j.intimp.2020.106573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023]
Abstract
Brucellosis is the most common zoonotic disease worldwide and still there is no vaccine for human use. The commercial animal vaccines also have major problems that limit their use. Therefore, there is a need for an effective Brucella vaccine which is multivalent and produces a good protective immunity with minimal disadvantages. Due to their heterogeneous composition and diverse functions, OMVs are promising acellular vaccine candidates against brucellosis. In the present study, the potential of Poly(I:C) or CpG ODN 1826+ Montanide ISA 70 VG adjuvant formulations were evaluated to enhance the immunity and protection levels conferred by OMVs against Brucella challenge in mice. The results indicated that both vaccine regimens were able to induce strong Th1-biased responses and confer protective levels significantly higher than REV.1 live vaccine. With regard to the results, it is concluded that OMVs in either adjuvant can be introduced as a new vaccine candidate against B. melitensis infection.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Amani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Amirzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Elahe Nazeri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amin Arsang
- Bacterial Vaccine and Antigen Production Branch, Pasteur Institute of Iran, Karaj, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
82
|
Application of an O-Linked Glycosylation System in Yersinia enterocolitica Serotype O:9 to Generate a New Candidate Vaccine against Brucella abortus. Microorganisms 2020; 8:microorganisms8030436. [PMID: 32244903 PMCID: PMC7143757 DOI: 10.3390/microorganisms8030436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Brucellosis is a major zoonotic public health threat worldwide, causing veterinary morbidity and major economic losses in endemic regions. However, no efficacious brucellosis vaccine is yet available, and live attenuated vaccines commonly used in animals can cause human infection. N- and O-linked glycosylation systems have been successfully developed and exploited for the production of successful bioconjugate vaccines. Here, we applied an O-linked glycosylation system to a low-pathogenicity bacterium, Yersinia enterocolitica serotype O:9 (Y. enterocolitica O:9), which has repeating units of O-antigen polysaccharide (OPS) identical to that of Brucella abortus (B. abortus), to develop a bioconjugate vaccine against Brucella. The glycoprotein we produced was recognized by both anti-B. abortus and anti-Y. enterocolitica O:9 monoclonal antibodies. Three doses of bioconjugate vaccine-elicited B. abortus OPS-specific serum IgG in mice, significantly reducing bacterial loads in the spleen following infection with the B. abortus hypovirulent smooth strain A19. This candidate vaccine mitigated B. abortus infection and prevented severe tissue damage, thereby protecting against lethal challenge with A19. Overall, the results indicated that the bioconjugate vaccine elicited a strong immune response and provided significant protection against brucellosis. The described vaccine preparation strategy is safe and avoids large-scale culture of the highly pathogenic B. abortus.
Collapse
|
83
|
Huy TXN, Bernardo Reyes AW, Vu SH, Arayan LT, Hop HT, Min W, Lee HJ, Lee JH, Kim S. Immunogenicity and protective response induced by recombinant Brucella abortus proteins Adk, SecB and combination of these two recombinant proteins against a virulent strain B. abortus 544 infection in BALB/c mice. Microb Pathog 2020; 143:104137. [PMID: 32169487 DOI: 10.1016/j.micpath.2020.104137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
In this study, two recombinant proteins encoded by Brucella abortus genes Adk and SecB were evaluated as single subunit vaccine (SSV) as well as combined subunit vaccine (CSV) against B. abortus infection in BALB/c mice. These genes were cloned into pcold-TF expression system and recombinant proteins were expressed in Escherichia coli DH5α. The immunoreactivity of purified rAdk and rSecB was analyzed by immunoblotting showing that purified rAdk and rSecB as well as pcold-TF vector strongly reacted with Brucella-positive serum. Mice were immunized intraperitoneally with SSVs, CSV, pcold-TF, RB51 and PBS. The analysis of cytokine revealed that SSVs and CSV can strongly induce production of proinflammatory cytokines TNF and IL-6, suggesting that these subunit vaccines elicited innate immune response, particularly, activated antimicrobial mechanism of macrophages to limit the initial infection. On the other hand, immunization with SSVs and CSV elicited strong IFN-γ production and decreased IL-10 production compared to PBS group. The secretion profiles of IFN-γ and IL-10 together with an enhancement of blood CD4+ population and significantly induced specific IgG1 and IgG2a antibodies indicated that SSVs and CSV induced not only humoral immunity but also T helper 1 T cell immunity. Finally, spleen proliferation and bacterial burden in the spleen of mice vaccinated with these subunit vaccines were significantly lower than those of PBS group, which conferred significant protection against B. abortus infection. Altogether, the potential of these antigens of B. abortus could be prospective candidates to develop subunit vaccines against brucellosis.
Collapse
Affiliation(s)
- Tran Xuan Ngoc Huy
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam; Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Alisha Wehdnesday Bernardo Reyes
- Institute of Applied Sciences, Ho Chi Minh City University of Technology - HUTECH, 475A Dien Bien Phu St., Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Lauren Togonon Arayan
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Huynh Tan Hop
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - WonGi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hu Jang Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
84
|
Mackie JT, Blyde D, Harris L, Roe WD, Keyburn AL. Brucellosis associated with stillbirth in a bottlenose dolphin in Australia. Aust Vet J 2020; 98:92-95. [PMID: 32030727 DOI: 10.1111/avj.12903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 01/31/2023]
Abstract
A captive adult female bottlenose dolphin presented with stillbirth. The placenta appeared oedematous. No other gross lesions were evident in the placenta or the stillborn calf. Histopathology revealed mild multifocal placentitis and foetal encephalitis. Brucella sp. was isolated from lung, liver, spleen and kidney. Sequence and phylogenetic analysis demonstrated this organism to be most similar to Brucella ceti sequence type (ST) 27. Brucella sp. DNA was detected in formalin-fixed paraffin-embedded placenta and brain by real-time PCR using primers targeting the IS711 gene. Immunohistochemical staining revealed Brucella sp. antigen in placental inflammation. This is the first report of isolation of Brucella sp. from a marine mammal in the Southern Hemisphere and the first report of marine Brucella-associated disease in Australia.
Collapse
Affiliation(s)
- J T Mackie
- QML Vetnostics, Murarrie, Queensland, Australia
| | - D Blyde
- Sea World, Main Beach, Queensland, Australia
| | - L Harris
- QML Vetnostics, Murarrie, Queensland, Australia
| | - W D Roe
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - A L Keyburn
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
85
|
Allen AR, Milne G, Drees K, Presho E, Graham J, McAdam P, Jones K, Wright L, Skuce R, Whatmore AM, Graham J, Foster JT. Genomic epizootiology of a Brucella abortus outbreak in Northern Ireland (1997-2012). INFECTION GENETICS AND EVOLUTION 2020; 81:104235. [PMID: 32035245 DOI: 10.1016/j.meegid.2020.104235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the recent past (1997-2012), Northern Ireland in the United Kingdom suffered an outbreak of Brucella abortus, which at its height affected over 200 cattle herds. Initially, isolates were characterized using multi-locus variable number tandem repeats analysis (MLVA). While informative in this setting, hyper-variability in some loci limited the resolution necessary to infer fine-scale disease transmission networks. Consequently, we applied whole-genome sequencing to isolates from this outbreak to evaluate higher resolution markers for disease epizootiology. RESULTS Phylogenetic analysis revealed that the B. abortus outbreak in Northern Ireland was caused by two distinct pathogen lineages. One contained isolates consistent with the 1997-2012 outbreak being linked to a previous endemic infection thought eradicated. The dominant second lineage exhibited little genetic diversity throughout the recrudescent outbreak, with limited population sub-structure evident. This finding was inconsistent with prior MLVA molecular characterizations that suggested the presence of seven clonal complexes. Spatio-temporal modeling revealed a significant association of pairwise SNP differences between isolates and geographic distances. However, effect sizes were very small due to reduced pathogen diversity. CONCLUSIONS Genome sequence data suggested that hyper-variability in some MLVA loci contributed to an overestimate of pathogen diversity in the most recent outbreak. The low diversity observed in our genomic dataset made it inappropriate to apply phylodynamic methods to these data. We conclude that maintaining data repositories of genome sequence data will be invaluable for source attribution/epizootiological inference should recrudescence ever re-occur. However genomic epizootiological methods may have limited utility in some settings, such as when applied to recrudescent/re-emergent infections of slowly-evolving bacterial pathogens.
Collapse
Affiliation(s)
- Adrian R Allen
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom..
| | - Georgina Milne
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Kevin Drees
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Rudman Hall, 46 College Road, Durham, NH, USA
| | - Eleanor Presho
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Jordon Graham
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Paul McAdam
- Fios Genomics, Nine Edinburgh Bioquarter, 9 Little France Road, Edinburgh, United Kingdom
| | - Kerri Jones
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Lorraine Wright
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Robin Skuce
- Agri Food and Biosciences Institute (AFBI), AFBI Stormont, Bacteriology Branch, Stoney Road, Belfast, United Kingdom
| | - Adrian M Whatmore
- Department of Bacteriology, Animal and Plant Health Agency (APHA), New Haw, Addlestone, Surrey, United Kingdom
| | - Judith Graham
- Department of Agriculture, Environment and Rural Affairs, Veterinary Service, Belfast, Northern Ireland, United Kingdom
| | - Jeffrey T Foster
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Rudman Hall, 46 College Road, Durham, NH, USA
| |
Collapse
|
86
|
Zagros Mountains: A region in Iran with extremely high incidence of Brucellosis. Infect Control Hosp Epidemiol 2020; 41:380-382. [PMID: 31971123 DOI: 10.1017/ice.2019.378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
87
|
Duplantier AJ, Shurtleff AC, Miller C, Chiang CY, Panchal RG, Sunay M. Combating biothreat pathogens: ongoing efforts for countermeasure development and unique challenges. DRUG DISCOVERY TARGETING DRUG-RESISTANT BACTERIA 2020. [PMCID: PMC7258707 DOI: 10.1016/b978-0-12-818480-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Research to discover and develop antibacterial and antiviral drugs with potent activity against pathogens of biothreat concern presents unique methodological and process-driven challenges. Herein, we review laboratory approaches for finding new antibodies, antibiotics, and antiviral molecules for pathogens of biothreat concern. Using high-throughput screening techniques, molecules that directly inhibit a pathogen’s entry, replication, or growth can be identified. Alternatively, molecules that target host proteins can be interesting targets for development when countering biothreat pathogens, due to the modulation of the host immune response or targeting proteins that interfere with the pathways required by the pathogen for replication. Monoclonal and cocktail antibody therapies approved by the Food and Drug Administration for countering anthrax and under development for treatment of Ebola virus infection are discussed. A comprehensive tabular review of current in vitro, in vivo, pharmacokinetic and efficacy datasets has been presented for biothreat pathogens of greatest concern. Finally, clinical trials and animal rule or traditional drug approval pathways are also reviewed. Opinions; interpretations; conclusions; and recommendations are those of the authors and are not necessarily endorsed by the US Army.
Collapse
|
88
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
89
|
Giambartolomei GH, Delpino MV. Immunopathogenesis of Hepatic Brucellosis. Front Cell Infect Microbiol 2019; 9:423. [PMID: 31956605 PMCID: PMC6951397 DOI: 10.3389/fcimb.2019.00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/28/2019] [Indexed: 01/18/2023] Open
Abstract
The hepatic immune system can induce rapid and controlled responses to pathogenic microorganisms and tumor cells. Accordingly, most of the microorganisms that reach the liver through the blood are eliminated. However, some of them, including Brucella spp., take advantage of the immunotolerant capacity of the liver to persist in the host. Brucella has a predilection for surviving in the reticuloendothelial system, with the liver being the largest organ of this system in the human body. Therefore, its involvement in brucellosis is practically invariable. In patients with active brucellosis, the liver is commonly affected, and the most frequent clinical manifestation is hepatosplenomegaly. The molecular mechanisms implicated in liver damage have been recently elucidated. It has been demonstrated how Brucella interacts with hepatocytes inducing its death by apoptosis. The inflammatory microenvironment and the direct effect of Brucella on hepatic stellate cells (HSC) induce their activation and turn these cells from its quiescent form to their fibrogenic phenotype. This HSC activation induced by Brucella infection relies on the presence of a functional type IV secretion system and the effector protein BPE005 through a mechanism involved in the activation of the autophagic pathway. Finally, the molecular mechanisms of liver brucellosis observed so far are shedding light on how the interaction of Brucella with liver cells may play an important role in the discovery of new targets to control the infection. In this review, we report the current understanding of the interaction between liver structural cells and immune system cells during Brucella infection.
Collapse
Affiliation(s)
- Guillermo Hernán Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
90
|
Liu ZG, Wang M, Zhao HY, Piao DR, Jiang H, Li ZJ. Investigation of the molecular characteristics of Brucella isolates from Guangxi Province, China. BMC Microbiol 2019; 19:292. [PMID: 31842756 PMCID: PMC6916230 DOI: 10.1186/s12866-019-1665-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Background Human brucellosis has become a severe public health problem in China’s Guangxi Province, and there has been higher prevalence of brucellosis in this region after 2010. Both multiple locus variable-number tandem repeat analysis (MLVA) and multilocus sequence typing (MLST) assay schedules were used to genotype isolates and determine relationships among isolates. Results A total of 40 isolates of Brucella were obtained from humans, pigs, and dogs from 1961 to 2016. There were at least three species of Brucella detected in Guangxi Province, Brucella melitensis, Brucella suis, and Brucella canis, with 16, 17, and 7 isolates, respectively. Of which B. suis biovar 3 was the predominant species resulting in pig brucellosis in the area examined before 2000s. Moreover, B. melitensis biovar 3 was found to be mainly responsible for human brucellosis during 2012–2016. All B. melitensis isolates in this study belonged to East Mediterranean lineage. MLVA-11 genotype 116 was the dominant genotype and represented 81.2% of the isolates. MLVA cluster analysis showed there to be 44% (7/16) brucellosis cases caused by B. melitensis with a profile of outbreak epidemic from 2012 to 2016. However, nearly 83.3% (20/24) of brucellosis cases resulting from both B. suis and B. canis showed no epidemiological links or sporadic characteristics. MLVA-16 analysis confirmed extensive genotype-sharing events between B. melitensis isolates from Guangxi and other northern provinces within China. These data revealed that there are potential epidemiology links among these strains. B. suis strains of this study showed a unique genetic lineage at the global level and may have existed historically in this area. However, present B. canis isolates were closely related to previously reported isolates in Korea, where they may have originated. MLST typing showed that the population structure of Brucella strains had changed considerably in this province; ST17 and ST21, two previously predominant populations appeared to have been replaced by recently emerging ST8 group. Conclusions Our investigation data have inspired the hypothesis that Guangxi Province had been subject to an imported human brucellosis epidemic. Our data suggest that strains found in Northern regions of China are the principal source of infections in recent cases of human brucellosis in Guangxi Province. Comparative genomic analysis from more strains is necessary to confirm this hypothesis. This work will facilitate better understanding of the epidemiology and improve the effectiveness of control and prevention of brucellosis in this region.
Collapse
Affiliation(s)
- Zhi-Guo Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206, People's Republic of China.,Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Huhhot, 010031, People's Republic of China
| | - Miao Wang
- Ulanqab Centre for Endemic Disease Prevention and Control, Jining, 012000, Inner Mongolia, China
| | - Hong-Yan Zhao
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206, People's Republic of China
| | - Dong-Ri Piao
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206, People's Republic of China
| | - Hai Jiang
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206, People's Republic of China
| | - Zhen-Jun Li
- State Key Laboratory for Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping, Beijing, 102206, People's Republic of China.
| |
Collapse
|
91
|
Boggiatto PM, Olsen SC. Tulathromycin treatment does not affect bacterial dissemination or clearance of Brucella melitensis 16M following experimental infection of goats. PLoS One 2019; 14:e0226242. [PMID: 31821358 PMCID: PMC6903718 DOI: 10.1371/journal.pone.0226242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/22/2019] [Indexed: 11/18/2022] Open
Abstract
Brucellosis in sheep and goats, a zoonotic disease primarily associated with Brucella melitensis infections, causes significant economic losses and public health concerns worldwide. Although control measures are effective, economic limitations and nomadic lifestyles may limit vaccination coverage, and test and removal policies may not be feasible. In this study, we evaluated the effects of therapy with a long acting antimicrobial tulathromycin on the pathogenesis of brucellosis. Thirty-five goats were randomly assigned for experimental infection with B. melitensis strain 16M while open or during mid-gestation. Approximately half of the animals in each group were then treated with tulathromycin and subsequently assessed for the development of humoral responses to infection, clinical presentation, and bacterial dissemination and colonization. All animals, regardless of treatment group were successfully challenged with B. melitensis 16M demonstrated by bacterial recovery from conjunctival swabs and development of positive antibody titers. In goats infected while open, no animals aborted and Brucella was recovered from only one animal in tulathromycin-treated and one animal from the untreated group. Tulathromycin treatment of pregnant goats did not prevent abortion nor did it reduce bacterial dissemination, colonization, or shedding. Our data suggests that treatment of goats in mid-gestation with tulathromycin at the labeled dose does not influence disease pathogenesis or tissue colonization after experimental B. melitensis challenge.
Collapse
Affiliation(s)
- Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
- * E-mail:
| | - Steven C. Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
| |
Collapse
|
92
|
Deng Y, Liu X, Duan K, Peng Q. Research Progress on Brucellosis. Curr Med Chem 2019; 26:5598-5608. [PMID: 29745323 DOI: 10.2174/0929867325666180510125009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Brucellosis is a debilitating febrile illness caused by an intracellular Brucella. The disease is distributed in humans and animals widely, especially in developing countries. Ten species are included in the genus Brucella nowadays; four species of them are pathogenic to humans, which make brucellosis a zoonosis with more than 500,000 new cases reported annually. For human brucellosis, the most pathogenic species is B. melitensis followed by B. suis, while B. abortus is the mildest type of brucellosis. The infection mechanism of Brucella is complicated and mostly relies on its virulence factors. The therapy of the disease contains vaccination and antibiotic. However, there are some defects in currently available vaccines such as the lower protective level and safety. Thus, safe and efficient vaccines for brucellosis are still awaited. The dual therapy of antibacterial is effective in the treatment of brucellosis if a rapid and exact detection method is found.
Collapse
Affiliation(s)
- Yuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xinyue Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Kaifang Duan
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| |
Collapse
|
93
|
Liu Y, Sun J, Peng X, Dong H, Qin Y, Shen Q, Jiang H, Xu G, Feng Y, Sun S, Ding J, Chen R. Deletion of the LuxR-type regulator VjbR in Brucella canis affects expression of type IV secretion system and bacterial virulence, and the mutant strain confers protection against Brucella canis challenge in mice. Microb Pathog 2019; 139:103865. [PMID: 31715318 DOI: 10.1016/j.micpath.2019.103865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 01/25/2023]
Abstract
Brucella spp. are facultative intracellular pathogens and zoonotic agents which pose a huge threat to human health and animal husbandry. The B. melitensis, B. abortus, and B. suis cause undulant fever and influenza-like symptoms in humans. However, the effects of B. canis have not been extensively studied. The quorum sensing-dependent transcriptional regulator VjbR influences the Brucella virulence in smooth type Brucella strains, such as B. melitensis, B. abortus and rough type Brucella ovis. However, the function of VjbR in the rough-type B. canis is unknown. In the present study, we discovered that deletion of this regulator significantly affected Brucella virulence in macrophage and mice infection models. The expression levels of virB operon and the ftcR gene were significantly altered in the vjbR mutant strain. We further investigated the protective effect of different doses of the vjbR mutant in mice and the results indicated that VjbR conferred protection against the virulent B. canis strain. This study presents the first evidence that the transcriptional regulator VjbR has important function in B. canis. In addition, according to its reduced virulence and the protective immunity it induces in mice, it can be a potential live attenuated vaccine against B. canis.
Collapse
Affiliation(s)
- Yufu Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China; Zhaoqing Institute of Biotechnology Co., Ltd, Zhaoqing, China
| | - Jiali Sun
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaowei Peng
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Hao Dong
- China Animal Disease Control Center, Beijing, China
| | - Yuming Qin
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Qingchun Shen
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Hui Jiang
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Guanlong Xu
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Yu Feng
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Shijing Sun
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China
| | - Jiabo Ding
- Department of Inspection Technology Research, China Institute of Veterinary Drug Control, Beijing, China.
| | - Ruiai Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
94
|
Kolo FB, Adesiyun AA, Fasina FO, Katsande CT, Dogonyaro BB, Potts A, Matle I, Gelaw AK, van Heerden H. Seroprevalence and characterization of Brucella species in cattle slaughtered at Gauteng abattoirs, South Africa. Vet Med Sci 2019; 5:545-555. [PMID: 31414558 PMCID: PMC6868451 DOI: 10.1002/vms3.190] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Brucellosis is an infectious and contagious zoonotic bacterial disease of both humans and animals. In developing countries where brucellosis is endemic, baseline data on the prevalence of brucellosis, using abattoir facilities, is important. OBJECTIVES The aim of this study was to determine the seroprevalence of antibodies against Brucella in slaughter cattle at Gauteng province, South Africa and to characterize isolates of Brucella spp. METHODS In this cross-sectional study, un-clotted blood samples with corresponding organ tissue samples were collected from slaughtered cattle. Serological [Rose Bengal test (RBT), complement fixation test (CFT) and indirect ELISA (iELISA)], molecular (PCR) and bacteriological methods were used to detect Brucella antibodies and Brucella spp. from 200 slaughtered cattle in 14 abattoirs. RESULTS The RBT revealed a seroprevalence of brucellosis as 11.0% (22 of 200) and iELISA confirmed 5.5% (11 of 200). The estimated seroprevalence from RBT and iELISA was 5.5% while RBT and CFT was 2.0% (4 of 200). Brucella melitensis (n = 6) and B. abortus (n = 5) were isolated from 11 cattle tissues (5.5%) as confirmed to species level with AMOS PCR and differentiated from vaccine strains with Bruce-ladder PCR. Seven of the 11 isolates originated from seropositive cattle of which five were biotyped as B. abortus bv 1 (n = 2) and B. melitensis bv 2 (n = 1) and B. melitensis bv 3 (n = 2). CONCLUSIONS This is the first documentation of B. melitensis in cattle in South Africa. The zoonotic risk of brucellosis posed by Brucella-infected slaughter cattle to abattoir workers and consumers of improperly cooked beef cannot be ignored.
Collapse
Affiliation(s)
- Francis B. Kolo
- Department of Veterinary Tropical DiseasesUniversity of PretoriaPretoriaSouth Africa
| | - Abiodun A. Adesiyun
- Department of Production Animal StudiesUniversity of PretoriaPretoriaSouth Africa
- Department of Basic Veterinary SciencesFaculty of Medical SciencesUniversity of the West IndiesSt. AugustineTrinidad and Tobago
| | - Folorunso O. Fasina
- Department of Veterinary Tropical DiseasesUniversity of PretoriaPretoriaSouth Africa
| | - Charles T. Katsande
- Gauteng Department of Agriculture and Rural DevelopmentJohannesburgSouth Africa
| | - Banenat B. Dogonyaro
- Department of Veterinary Tropical DiseasesUniversity of PretoriaPretoriaSouth Africa
| | - Andrew Potts
- Agricultural Research Council - Onderstepoort Veterinary ResearchPretoriaSouth Africa
| | - Itumeleng Matle
- Agricultural Research Council - Onderstepoort Veterinary ResearchPretoriaSouth Africa
| | - Awoke K. Gelaw
- Agricultural Research Council - Onderstepoort Veterinary ResearchPretoriaSouth Africa
| | - Henriette van Heerden
- Department of Veterinary Tropical DiseasesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
95
|
Bagheri Nejad R, Yahyaraeyat R, Es-Haghi A, Nayeri Fasaei B, Zahraei Salehi T. Induction of specific cell-mediated immune responses and protection in BALB/c mice by vaccination with outer membrane vesicles from a Brucella melitensis human isolate. APMIS 2019; 127:797-804. [PMID: 31514254 DOI: 10.1111/apm.12997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/06/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide bacterial zoonosis caused by Brucella spp. No approved vaccine is available for human use against the disease. In this study, outer membrane vesicles (OMVs) from a Brucella melitensis biovar 1 human isolate obtained in Iran were used to immunize BALB/c mice (n = 12) by 2 intramuscular injections with a 2-week interval. Another group of 12 mice was used as non-vaccinated controls. Two weeks after the last vaccination, six mice of each group were sacrificed, and proliferation and interferon gamma (IFNγ) production responses of their splenocytes were evaluated following in vitro stimulation with killed Brucella cells. The other mice were challenged with the virulent B. melitensis isolate. Two weeks later, mice were killed and spleens were cultured to determine the number of the challenge strain. The results showed proliferative response and IFNγ production of splenocytes from vaccinated mice (stimulation index: 2.18 ± 0.57, and 1519.35 ± 10.70 pg/mL, respectively) were significantly higher than those of control mice (stimulation index: 1.02 ± 0.02, and 210.01 ± 17.58 pg/mL, respectively). Numbers of the challenge strain in spleens of vaccinated mice were also significantly less than those in the controls with 1.6 units of protection. Our study revealed vaccination with OMVs of the B. melitensis isolate could induce specific immune responses and protection against infection in the mouse model suggesting their potential application for active immunization against brucellosis.
Collapse
Affiliation(s)
- Ramin Bagheri Nejad
- Department of Microbiology & Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Bacterial Vaccines, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Ramak Yahyaraeyat
- Department of Microbiology & Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Es-Haghi
- Department of Physicochemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Bahar Nayeri Fasaei
- Department of Microbiology & Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology & Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
96
|
Salmon-Divon M, Kornspan D. Transcriptomic analysis of smooth versus rough Brucella melitensis Rev.1 vaccine strains reveals insights into virulence attenuation. Int J Med Microbiol 2019; 310:151363. [PMID: 31699441 DOI: 10.1016/j.ijmm.2019.151363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/10/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022] Open
Abstract
Brucella melitensis Rev.1 is the live attenuated Elberg-originated vaccine strain of the facultative intracellular Brucella species, and is widely used to control brucellosis in small ruminants. However, Rev.1 may cause abortions in small ruminants that have been vaccinated during the last trimester of gestation, it is pathogenic to humans, and it induces antibodies directed at the O-polysaccharide (O-PS) of the smooth lipopolysaccharide, thus making it difficult to distinguish between vaccinated and infected animals. Rough Brucella strains, which lack O-PS and are considered less pathogenic, have been introduced to address these drawbacks; however, as Rev.1 confers a much better immunity than the rough mutants, it is still considered the reference vaccine for the prophylaxis of brucellosis in small ruminants. Therefore, developing an improved vaccine strain, which lacks the Rev.1 drawbacks, is a highly evaluated task, which requires a better understanding of the molecular mechanisms underlying the virulence attenuation of Rev.1 smooth strains and of natural Rev.1 rough strains, which are currently only partly understood. As the acidification of the Brucella-containing vacuole during the initial stages of infection is crucial for their survival, identifying the genes that contribute to their survival in an acidic environment versus a normal environment will greatly assist our understanding of the molecular pathogenic mechanisms and the attenuated virulence of the Rev.1 strain. Here, we compared the transcriptomes of the smooth and natural rough Rev.1 strains, each grown under either normal or acidic conditions. We found 12 key genes that are significantly downregulated in the Rev.1 rough strains under normal pH, as compared with Rev.1 smooth strains, and six highly important genes that are significantly upregulated in the smooth strains under acidic conditions, as compared with Rev.1 rough strains. All 18 differentially expressed genes are associated with bacterial virulence and survival and may explain the attenuated virulence of the rough Rev.1 strains versus smooth Rev.1 strains, thus providing new insights into the virulence attenuation mechanisms of Brucella. These highly important candidate genes may facilitate the design of new and improved brucellosis vaccines.
Collapse
Affiliation(s)
- Mali Salmon-Divon
- Genomic Bioinformatics Laboratory, Department of Molecular Biology, Ariel University, Ariel, Israel; Adelson School of Medicine, Ariel University, Israel.
| | - David Kornspan
- Department of Bacteriology, Kimron Veterinary Institute, Bet Dagan, Israel.
| |
Collapse
|
97
|
Lindahl JF, Vrentas CE, Deka RP, Hazarika RA, Rahman H, Bambal RG, Bedi JS, Bhattacharya C, Chaduhuri P, Fairoze NM, Gandhi RS, Gill JPS, Gupta NK, Kumar M, Londhe S, Rahi M, Sharma PK, Shome R, Singh R, Srinivas K, Swain BB. Brucellosis in India: results of a collaborative workshop to define One Health priorities. Trop Anim Health Prod 2019; 52:387-396. [PMID: 31620958 DOI: 10.1007/s11250-019-02029-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/24/2019] [Indexed: 01/25/2023]
Abstract
Brucellosis is an important zoonosis worldwide. In livestock, it frequently causes chronic disease with reproductive failures that contribute to production losses, and in humans, it causes an often-chronic febrile illness that is frequently underdiagnosed in many low- and middle-income countries, including India. India has one of the largest ruminant populations in the world, and brucellosis is endemic in the country in both humans and animals. In November 2017, the International Livestock Research Institute invited experts from government, national research institutes, universities, and different international organizations to a one-day meeting to set priorities towards a "One Health" control strategy for brucellosis in India. Using a risk prioritization exercise followed by discussions, the meeting agreed on the following priorities: collaboration (transboundary and transdisciplinary); collection of more epidemiological evidence in humans, cattle, and in small ruminants (which have been neglected in past research); Economic impact studies, including cost effectiveness of control programmes; livestock vaccination, including national facilities for securing vaccines for the cattle population; management of infected animals (with the ban on bovine slaughter, alternatives such as sanctuaries must be explored); laboratory capacities and diagnostics (quality must be assured and better rapid tests developed); and increased awareness, making farmers, health workers, and the general public more aware of risks of brucellosis and zoonoses in general. Overall, the meeting participants agreed that brucellosis control will be challenging in India, but with collaboration to address the priority areas listed here, it could be possible.
Collapse
Affiliation(s)
- Johanna F Lindahl
- Department of Biosciences, International Livestock Research Institute, Regional Office, 298 Kim Ma Street, Ba Dinh District, Hanoi, 100000, Vietnam.,Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O Box 7054, SE-750 07, Uppsala, Sweden.,Zoonosis Science Centre, Uppsala University, P.O Box 582, SE-751 23, Uppsala, Sweden
| | - Catherine E Vrentas
- National Animal Disease Center, U.S. Department of Agriculture, Ames, IA, 50010, USA. .,The Engaged Scientist, Richmond, VA, USA.
| | - Ram P Deka
- International Livestock Research Institute, Guwahati Office, Guwahati, 781022, India
| | - Razibuddin A Hazarika
- Department of Veterinary Public Health, Assam Agricultural University, Khanapara Campus, Guwahati, 781022, India
| | - H Rahman
- South Asia Regional Office, NASC Complex, International Livestock Research Institute, Pusa, New Delhi, 110012, India
| | - R G Bambal
- Department of Animal Husbandry, Dairying & Fisheries, Ministry of Agriculture & Farmers Welfare, Government of India, Krishi Bhavan, New Delhi, 110001, India
| | - J S Bedi
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - C Bhattacharya
- Department of Animal Husbandry, Government of National Capital Territory (NCT), Delhi, India
| | - Pallab Chaduhuri
- Division of Bacteriology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | - Nadeem Mohamed Fairoze
- Department of LPT, Veterinary College, Karnataka Veterinary Animal & Fisheries Sciences University Bangalore, Bangalore, 560024, India
| | - R S Gandhi
- Indian Council of Agricultural Research (ICAR), Krishi Bhavan, New Delhi, 110001, India
| | - J P S Gill
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, 141004, India
| | - N K Gupta
- National Centre for Disease Control, 22 Shamnath Marg, Delhi, 110054, India
| | - M Kumar
- Department of Veterinary Microbiology, Bihar Veterinary College, Patna, 800014, India
| | - S Londhe
- South Asia Regional Programme, World Agroforestry Center (ICRAF), DPS Marg, Pusa Campus, New Delhi, 110012, India
| | - M Rahi
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, 110029, India
| | - P K Sharma
- ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - R Shome
- ICAR-National Institute for Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, 560064, India
| | - R Singh
- Bihar Animal Sciences University, Patna, 800014, India
| | - K Srinivas
- Indian Immunologicals Ltd., Hyderabad, 500030, India
| | - B B Swain
- South Asia Regional Office, NASC Complex, International Livestock Research Institute, Pusa, New Delhi, 110012, India
| |
Collapse
|
98
|
Avila-Granados LM, Garcia-Gonzalez DG, Zambrano-Varon JL, Arenas-Gamboa AM. Brucellosis in Colombia: Current Status and Challenges in the Control of an Endemic Disease. Front Vet Sci 2019; 6:321. [PMID: 31616678 PMCID: PMC6768962 DOI: 10.3389/fvets.2019.00321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Brucellosis is a zoonosis of nearly worldwide distribution. The disease is considered to be endemic in most of the developing countries with a substantial impact on both human and animal health as well as on the economy. The aim of this scoping review is to provide an overview of the brucellosis status in Colombia and the factors associated with its persistence, to highlight the strengths and gaps of the adopted countermeasures and to supply evidence to policy-makers on the best approaches to mitigate the disease burden. Due to the presence of brucellosis in several susceptible production livestock systems scattered throughout the country, a plan for its control, prevention and eradication was established almost 20 years ago. However, despite extensive efforts, brucellosis prevalence has fluctuated over the years without any trend of decreasing. The restricted budget allocated for brucellosis control is a limiting factor for the success of the program. For instance, the absence of indemnities for farmers results in infected animals remaining on farms which potentially increases the risk of disease spread. Likewise, disease surveillance is restricted to Brucella abortus and excludes other Brucella species of importance, such as B. melitensis and B. suis. The countermeasures are mostly focused on cattle and only a few actions are in place for the management of brucellosis in other livestock species. In humans, cases of brucellosis are annually diagnosed, although the disease remains highly underreported. High impact educational and training programs are required to address the disease in a comprehensive manner, including vulnerable groups, such as traditional smallholders and low-productivity regions, as well as other stakeholders, such as healthcare and veterinary authorities. Important financial investments based on sustained cooperation between governmental institutions, industry, and farmers are important for developing affordable and effective strategies to control the disease.
Collapse
Affiliation(s)
- Lisa M Avila-Granados
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States.,Departamento de Salud Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogota, Colombia
| | - Daniel G Garcia-Gonzalez
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jorge L Zambrano-Varon
- Departamento de Salud Animal, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogota, Colombia
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
99
|
Li X, Zhao C, Liu Y, Li Y, Lian F, Wang D, Zhang Y, Wang J, Song X, Li J, Yang Y, Xu K. Fluorescence signal amplification assay for the detection of B. melitensis 16M, based on peptide-mediated magnetic separation technology and a AuNP-mediated bio-barcode assembled by quantum dot technology. Analyst 2019; 144:2704-2715. [PMID: 30864589 DOI: 10.1039/c9an00028c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Members of the Brucella spp. are facultative intracellular bacteria that can cause global brucellosis, a zoonotic disease. Herein, a novel fluorescence signal amplification (FSA) method for the rapid detection of B. melitensis 16M was developed based on peptide-mediated magnetic separation (PMS) technology and Au nanoparticle (AuNP)-mediated bio-barcode assay technology assembled by quantum dots (QDs). The PMS technology was used to specifically capture and isolate B. melitensis 16M from food. The immunomagnetic bead-B. melitensis 16M bioconjugates (IMBs-B. melitensis 16M) were then identified by IgY on the surface of AuNPs and the oligonucleotide chains on the surface of the gold nanoparticles were hybridized with bio-barcodes assembled by quantum dots (QD-probe2). The IMB/B. melitensis 16M/IgY-AuNP-probe1/QD-probe2 bioconjugates were concentrated by magnetic separation. Therefore, as the concentration of B. melitensis 16M in the sample increased, the unbound QD-probe2 in the supernatant reduced, and the B. melitensis 16M in the sample could be indirectly measured by detecting the fluorescence in the supernatant. This FSA method can detect B. melitensis 16M concentration in the range of 10 to 106 cfu ml-1 without pre-enrichment, and the limit of detection (LOD) is as low as 10 cfu ml-1 with high specificity. Furthermore, the proposed method for the detection of B. melitensis 16M has a LOD of 1.07 × 102 cfu ml-1 and a linear range from 102 to 107 cfu ml-1 in milk, and a LOD of 1.72 × 102 cfu ml-1, and a linear range from 102 to 106 cfu ml-1 in lamb leach. In addition, this method takes less than 3 h to perform. Thus, the assay that was developed in this study shows promise for rapid, sensitive, and specific detection of B. melitensis 16M.
Collapse
Affiliation(s)
- Xinxin Li
- School of Public Health of Jilin University, Changchun, Jilin 130021, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
First Genome Sequence of Brucella abortus Biovar 3 Strain BAU21/S4023, Isolated from a Dairy Cow in Bangladesh. Microbiol Resour Announc 2019; 8:8/24/e00446-19. [PMID: 31196923 PMCID: PMC6554610 DOI: 10.1128/mra.00446-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report the genome sequence of Brucella abortus biovar 3 strain BAU21/S4023, isolated from a dairy cow that suffered an abortion in Savar, Dhaka, Bangladesh. The genome sequence length is 3,244,234 bp with a 57.2% GC content, 3,147 coding DNA sequences (CDSs), 51 tRNAs, 1 transfer messenger RNA (tmRNA), and 3 rRNA genes. We report the genome sequence of Brucella abortus biovar 3 strain BAU21/S4023, isolated from a dairy cow that suffered an abortion in Savar, Dhaka, Bangladesh. The genome sequence length is 3,244,234 bp with a 57.2% GC content, 3,147 coding DNA sequences (CDSs), 51 tRNAs, 1 transfer messenger RNA (tmRNA), and 3 rRNA genes.
Collapse
|