51
|
Zhang J, Liu Z, Tang J, Li Y, You Q, Yang J, Jin Y, Zou G, Ge Z, Zhu X, Yang Q, Liu Y. Fibroblast growth factor 2-induced human amniotic mesenchymal stem cells combined with autologous platelet rich plasma augmented tendon-to-bone healing. J Orthop Translat 2020; 24:155-165. [PMID: 33101966 PMCID: PMC7548348 DOI: 10.1016/j.jot.2020.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 01/09/2023] Open
Abstract
Objective The purpose of this study was to explore the effect of fibroblast growth factor 2 (FGF-2) on collagenous fibre formation and the osteogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs) in vitro, as well as the effect of FGF-2–induced hAMSCs combined with autologous platelet-rich plasma (PRP) on tendon-to-bone healing in vivo. Methods In vitro, hAMSCs were induced by various concentrations of FGF-2 (0, 10, 20, and 40 ng/ml) for 14 days, and the outcomes of ligamentous differentiation and osteogenic differentiation were detected by quantitative real-time reverse transcription PCR, Western blot, immunofluorescence, and picrosirius red staining. In addition, a lentivirus carrying the FGF-2 gene was used to transfect hAMSCs, and transfection efficiency was detected by quantitative real time reverse transcription PCR (qRT-PCR) and Western blot. In vivo, the effect of hAMSCs transfected with the FGF-2 gene combined with autologous PRP on tendon-to-bone healing was detected via histological examination, as well as biomechanical analysis and radiographic analysis. Results In vitro, different concentrations of FGF-2 (10, 20, and 40 ng/ml) all promoted the ligamentous differentiation and osteogenic differentiation of hAMSCs, and the low concentration of FGF-2 (10 ng/ml) had a good effect on differentiation. In addition, the lentivirus carrying the FGF-2 gene was successfully transfected into hAMSCs with an optimal multiplicity of infection (MOI) (50), and autologous PRP was prepared successfully. In vivo, the hAMSCs transfected with the FGF-2 gene combined with autologous PRP had a better effect on tendon-to-bone healing than the other groups (p < 0.05), as evidenced by histological examination, biomechanical analysis, and radiographic analysis. Conclusion hAMSCs transfected with the FGF-2 gene combined with autologous PRP could augment tendon-to-bone healing in a rabbit extra-articular model. The translational potential of this article hAMSCs transfected with the FGF-2 gene combined with autologous PRP may be a good clinical treatment for tendon-to-bone healing, especially for acute sports-related tendon–ligament injuries.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Ziming Liu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, China
| | - Jingfeng Tang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Yuwan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Qi You
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Jibin Yang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Ying Jin
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Gang Zou
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Zhen Ge
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Xizhong Zhu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Qifan Yang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| | - Yi Liu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China
| |
Collapse
|
52
|
Jiang L, Ding Z, Xia S, Liu Y, Lei S, Zhong M, Chen X. Poly lactic-co-glycolic acid scaffold loaded with plasmid DNA encoding fibroblast growth factor-2 promotes periodontal ligament regeneration of replanted teeth. J Periodontal Res 2020; 55:488-495. [PMID: 31960451 DOI: 10.1111/jre.12734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/12/2019] [Accepted: 12/28/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study investigated the effects of poly lactic-co-glycolic acid (PLGA) loaded with plasmid DNA encoding fibroblast growth factor-2 (pFGF-2) on human periodontal ligament cells (hPDLCs) in vitro and evaluated the ability of the PLGA/pFGF-2 scaffold to promote periodontal ligament (PDL) regeneration in a beagle dog teeth avulsion animal model. BACKGROUND Growth factor and scaffold play important roles in PDL regeneration. PLGA is a kind of biodegradable and biocompatible polymer that can be used as a carrier to deliver growth factors or genes. FGF-2 can induce potent proliferative responses, promote cell migration and regulate the production of extracellular matrix. Therefore, a gene-activated matrix composed of scaffold and genes is supposed to be a superior approach for promoting tissue regeneration. METHODS In this study, PLGA and PLGA/pFGF-2 scaffolds were fabricated using electrospinning. The characterization of scaffolds was shown by scanning electron microscope (SEM) and transmission electron microscope (TEM). dsDNA HS was used to test the plasmid release of PLGA/pFGF-2 scaffold. The viability and proliferation of hPDLCs on the two kinds of scaffolds were evaluated by the CCK-8 assay, and the expression of collagen I and scleraxis were analysed by RT-qPCR. The roots of avulsed teeth were covered by the two types of scaffolds and replanted into the alveolar pockets in beagles. Haematoxylin-eosin and Masson staining were used to evaluate the effects of PLGA/pFGF-2 scaffold on promoting PDL regeneration. RESULTS The smooth and uniform fibres can be observed in both scaffolds, and the plasmids were randomly distributed in the PLGA/pFGF-2 scaffold. dsDNA HS analysis demonstrated that the PLGA/pFGF-2 scaffold released up to 123 ng pFGF-2 over 21 days in a sustained manner without any obvious burst release. The PLGA/pFGF-2 scaffold promoted the proliferation of hPDLCs and increased the expression levels of collagen I and scleraxis compared with PLGA scaffold. Animal experiments showed that more regular PDL-like tissues and less root surface resorption occurred in the PLGA/pFGF-2 scaffold group compared with the PLGA scaffold group. CONCLUSIONS The PLGA/pFGF-2 scaffold promoted hPDLCs proliferation and facilitated periodontal ligament-related differentiation. The PLGA/pFGF-2 scaffold possesses excellent biological characteristics and could be used as a promising biomaterial for improving the treatment prognosis of replanted tooth.
Collapse
Affiliation(s)
- Liming Jiang
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Zhenjiang Ding
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Shang Xia
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Yao Liu
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Shuang Lei
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Ming Zhong
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Xu Chen
- Department of Paediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
53
|
Yu Y, Chen Y, Zheng YJ, Weng QH, Zhu SP, Zhou DS. LncRNA TUG1 promoted osteogenic differentiation through promoting bFGF ubiquitination. In Vitro Cell Dev Biol Anim 2020; 56:42-48. [PMID: 31907757 DOI: 10.1007/s11626-019-00410-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
LncRNA TUG1 has the potential to promote the osteogenic differentiation of several cells, but the role of lncRNA TUG1 in osteogenic differentiation of tendon stem/progenitor cells (TSPCs) is still unknown. This study aims to determine the role of lncRNA TUG1 in osteogenic differentiation of TSPCs. bFGF, RUNX2, and Osterix protein expressions were detected by western blot. LncRNA TUG1 and bFGF expression was detected by qRT-PCR. RNA immunoprecipitation (RIP) assay was used to confirm the interaction between TUG1 and bFGF2. Ubiquitination assay was used to determine the ubiquitination of bFGF protein. During osteogenic differentiation, the protein expression of bFGF was significantly downregulated in TSPCs, and the expression of TUG1 was significantly elevated in TSPCs. Interfering TUG1 or overexpressing bFGF suppressed osteogenic differentiation of TSPCs. In addition, lncRNA TUG1 interacted with bFGF, and lncRNA TUG1 promoted the ubiquitination of bFGF protein. We also determined that lncRNA TUG1 downregulated bFGF protein expression through promoting the ubiquitination of bFGF. LncRNA TUG1 promoted the osteogenic differentiation of TSPCs through promoting bFGF ubiquitination.
Collapse
Affiliation(s)
- Yang Yu
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qi-Hao Weng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Si-Pin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dong-Sheng Zhou
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
54
|
FGF-2-Induced Human Amniotic Mesenchymal Stem Cells Seeded on a Human Acellular Amniotic Membrane Scaffold Accelerated Tendon-to-Bone Healing in a Rabbit Extra-Articular Model. Stem Cells Int 2020; 2020:4701476. [PMID: 32399042 PMCID: PMC7199597 DOI: 10.1155/2020/4701476] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/02/2019] [Accepted: 12/14/2019] [Indexed: 01/26/2023] Open
Abstract
Background FGF-2 (basic fibroblast growth factor) has a positive effect on the proliferation and differentiation of many kinds of MSCs. Therefore, it represents an ideal molecule to facilitate tendon-to-bone healing. Nonetheless, no studies have investigated the application of FGF-2-induced human amniotic mesenchymal stem cells (hAMSCs) to accelerate tendon-to-bone healing in vivo. Objective The purpose of this study was to explore the effect of FGF-2 on chondrogenic differentiation of hAMSCs in vitro and the effect of FGF-2-induced hAMSCs combined with a human acellular amniotic membrane (HAAM) scaffold on tendon-to-bone healing in vivo. Methods In vitro, hAMSCs were transfected with a lentivirus carrying the FGF-2 gene, and the potential for chondrogenic differentiation of hAMSCs induced by the FGF-2 gene was assessed using immunofluorescence and toluidine blue (TB) staining. HAAM scaffold was prepared, and hematoxylin and eosin (HE) staining and scanning electron microscopy (SEM) were used to observe the microstructure of the HAAM scaffold. hAMSCs transfected with and without FGF-2 were seeded on the HAAM scaffold at a density of 3 × 105 cells/well. Immunofluorescence staining of vimentin and phalloidin staining were used to confirm cell adherence and growth on the HAAM scaffold. In vivo, the rabbit extra-articular tendon-to-bone healing model was created using the right hind limb of 40 New Zealand White rabbits. Grafts mimicking tendon-to-bone interface (TBI) injury were created and subjected to treatment with the HAAM scaffold loaded with FGF-2-induced hAMSCs, HAAM scaffold loaded with hAMSCs only, HAAM scaffold, and no special treatment. Macroscopic observation, imageological analysis, histological assessment, and biomechanical analysis were conducted to evaluate tendon-to-bone healing after 3 months. Results In vitro, cartilage-specific marker staining was positive for the FGF-2 overexpression group. The HAAM scaffold displayed a netted structure and mass extracellular matrix structure. hAMSCs or hAMSCs transfected with FGF-2 survived on the HAAM scaffold and grew well. In vivo, the group treated with HAAM scaffold loaded with FGF-2-induced hAMSCs had the narrowest bone tunnel after three months as compared with other groups. In addition, macroscopic and histological scores were higher for this group than for the other groups, along with the best mechanical strength. Conclusion hAMSCs transfected with FGF-2 combined with the HAAM scaffold could accelerate tendon-to-bone healing in a rabbit extra-articular model.
Collapse
|
55
|
Li Z, Xiang S, Li EN, Fritch MR, Alexander PG, Lin H, Tuan RS. Tissue Engineering for Musculoskeletal Regeneration and Disease Modeling. Handb Exp Pharmacol 2020; 265:235-268. [PMID: 33471201 DOI: 10.1007/164_2020_377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Musculoskeletal injuries and associated conditions are the leading cause of physical disability worldwide. The concept of tissue engineering has opened up novel approaches to repair musculoskeletal defects in a fast and/or efficient manner. Biomaterials, cells, and signaling molecules constitute the tissue engineering triad. In the past 40 years, significant progress has been made in developing and optimizing all three components, but only a very limited number of technologies have been successfully translated into clinical applications. A major limiting factor of this barrier to translation is the insufficiency of two-dimensional cell cultures and traditional animal models in informing the safety and efficacy of in-human applications. In recent years, microphysiological systems, often referred to as organ or tissue chips, generated according to tissue engineering principles, have been proposed as the next-generation drug testing models. This chapter aims to first review the current tissue engineering-based approaches that are being applied to fabricate and develop the individual critical elements involved in musculoskeletal organ/tissue chips. We next highlight the general strategy of generating musculoskeletal tissue chips and their potential in future regenerative medicine research. Exemplary microphysiological systems mimicking musculoskeletal tissues are described. With sufficient physiological accuracy and relevance, the human cell-derived, three-dimensional, multi-tissue systems have been used to model a number of orthopedic disorders and to test new treatments. We anticipate that the novel emerging tissue chip technology will continually reshape and improve our understanding of human musculoskeletal pathophysiology, ultimately accelerating the development of advanced pharmaceutics and regenerative therapies.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiqi Xiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eileen N Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA.
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
56
|
Baldwin M, Snelling S, Dakin S, Carr A. Augmenting endogenous repair of soft tissues with nanofibre scaffolds. J R Soc Interface 2019; 15:rsif.2018.0019. [PMID: 29695606 DOI: 10.1098/rsif.2018.0019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
As our ability to engineer nanoscale materials has developed we can now influence endogenous cellular processes with increasing precision. Consequently, the use of biomaterials to induce and guide the repair and regeneration of tissues is a rapidly developing area. This review focuses on soft tissue engineering, it will discuss the types of biomaterial scaffolds available before exploring physical, chemical and biological modifications to synthetic scaffolds. We will consider how these properties, in combination, can provide a precise design process, with the potential to meet the requirements of the injured and diseased soft tissue niche. Finally, we frame our discussions within clinical trial design and the regulatory framework, the consideration of which is fundamental to the successful translation of new biomaterials.
Collapse
Affiliation(s)
- Mathew Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
57
|
Connor DE, Paulus JA, Dabestani PJ, Thankam FK, Dilisio MF, Gross RM, Agrawal DK. Therapeutic potential of exosomes in rotator cuff tendon healing. J Bone Miner Metab 2019; 37:759-767. [PMID: 31154535 PMCID: PMC6830879 DOI: 10.1007/s00774-019-01013-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023]
Abstract
Rotator cuff tears are common musculoskeletal injuries that can cause significant pain and disability. While the clinical results of rotator cuff repair can be good, failure of tendon healing remains a significant problem. Molecular mechanisms underlying structural failure following surgical repair remain unclear. Histologically, enhanced inflammation, disorganization of the collagen fibers, calcification, apoptosis and tissue necrosis affect the normal healing process. Mesenchymal stem cells (MSCs) have the ability to provide improved healing following rotator cuff repair via the release of mediators from secreted 30-100 nm extracellular vesicles called exosomes. They carry regulatory proteins, mRNA and miRNA and have the ability to increase collagen synthesis and angiogenesis through increased expression of mRNA and release of proangiogenic factors and regulatory proteins that play a major role in proper tissue remodeling and preventing extracellular matrix degradation. Various studies have shown the effect of exosomes on improving outcome of cutaneous wound healing, scar tissue formation, degenerative bone disease and Duchenne Muscular Dystrophy. In this article, we critically reviewed the potential role of exosomes in tendon regeneration and propose the novel use of exosomes alone or seeded onto biomaterial matrices to stimulate secretion of favorable cellular factors in accelerating the healing response following rotator cuff repair.
Collapse
Affiliation(s)
- Denton E Connor
- Department of Clinical and Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jordan A Paulus
- Department of Clinical and Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Parinaz Jila Dabestani
- Department of Clinical and Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Finosh K Thankam
- Department of Clinical and Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Matthew F Dilisio
- Department of Clinical and Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - R Michael Gross
- Department of Clinical and Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, The Peekie Nash Carpenter Endowed Chair in Medicine, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
58
|
Calejo I, Costa-Almeida R, Reis RL, Gomes ME. Enthesis Tissue Engineering: Biological Requirements Meet at the Interface. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:330-356. [DOI: 10.1089/ten.teb.2018.0383] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isabel Calejo
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Manuela E. Gomes
- 3B's Research Group, I3Bs—Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Center for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
59
|
Saveh-Shemshaki N, S.Nair L, Laurencin CT. Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomater 2019; 94:64-81. [PMID: 31128319 DOI: 10.1016/j.actbio.2019.05.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/27/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
Abstract
The rotator cuff consists of a cuff of soft tissue responsible for rotating the shoulder. Rotator cuff tendon tears are responsible for a significant source of disability and pain in the adult population. Most rotator cuff tendon tears occur at the bone-tendon interface. Tear size, patient age, fatty infiltration of muscle, have a major influence on the rate of retear after surgical repair. The high incidence of retears (up to 94% in some studies) after surgery makes rotator cuff injuries a critical musculoskeletal problem to address. The limitations of current treatments motivate regenerative engineering approaches for rotator cuff regeneration. Various fiber-based matrices are currently being investigated due to their structural similarity with native tendons and their ability to promote regeneration. This review will discuss the current approaches for rotator cuff regeneration, recent advances in fabrication and enhancement of nanofiber-based matrices and the development and use of complex nano/microstructures for rotator cuff regeneration. STATEMENT OF SIGNIFICANCE: Regeneration paradigms for musculoskeletal tissues involving the rotator cuff of the shoulder have received great interest. Novel technologies based on nanomaterials have emerged as possible robust solutions for rotator cuff injury and treatment due to structure/property relationships. The aim of the review submitted is to comprehensively describe and evaluate the development and use of nano-based material technologies for applications to rotator cuff tendon healing and regeneration.
Collapse
|
60
|
Yonemitsu R, Tokunaga T, Shukunami C, Ideo K, Arimura H, Karasugi T, Nakamura E, Ide J, Hiraki Y, Mizuta H. Fibroblast Growth Factor 2 Enhances Tendon-to-Bone Healing in a Rat Rotator Cuff Repair of Chronic Tears. Am J Sports Med 2019; 47:1701-1712. [PMID: 31038985 DOI: 10.1177/0363546519836959] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The effects of fibroblast growth factor 2 (FGF-2) on healing after surgical repair of chronic rotator cuff (RC) tears remain unclear. HYPOTHESIS FGF-2 enhances tenogenic healing response, leading to biomechanical and histological improvement of repaired chronic RC tears in rats. STUDY DESIGN Controlled laboratory study. METHODS Adult male Sprague-Dawley rats (n = 117) underwent unilateral surgery to refix the supraspinatus tendon to its insertion site 3 weeks after detachment. Animals were assigned to either the FGF-2 group or a control group. The effects of FGF-2 were assessed via biomechanical tests at 3 weeks after detachment and at 6 and 12 weeks postoperatively and were assessed histologically and immunohistochemically for proliferating cell nuclear antigen and mesenchymal stem cell (MSC)-related markers at 2, 6, and 12 weeks postoperatively. The expression of tendon/enthesis-related markers, including SRY-box 9 (Sox9), scleraxis (Scx), and tenomodulin (Tnmd), were assessed by real-time reverse transcription polymerase chain reaction, in situ hybridization, and immunohistochemistry. The effect of FGF-2 on comprehensive gene expressions at the healing site was evaluated by microarray analysis. RESULTS The FGF-2 group showed a significant increase in mechanical strength at 6 and 12 weeks compared with control; the FGF-2 group also showed significantly higher histological scores at 12 weeks than control, indicating the presence of more mature tendon-like tissue. At 12 weeks, Scx and Tnmd expression increased significantly in the FGF-2 group, whereas no significant differences in Sox9 were found between groups over time. At 2 weeks, the percentage of positive cells expressing MSC-related markers increased in the FGF-2 group. Microarray analysis at 2 weeks after surgery showed that the expression of several growth factor genes and extracellular matrix-related genes was influenced by FGF-2 treatment. CONCLUSION FGF-2 enhanced the formation of tough tendon-like tissues including an increase in Scx- or Tnmd-expressing cells at 12 weeks after surgical repair of chronic RC tears. The increase in mesenchymal progenitors and the changes in gene expression upon FGF-2 treatment in the early phase of healing appear to be related to a certain favorable microenvironment for tenogenic healing response of chronic RC tears. CLINICAL RELEVANCE These findings may provide advantages in therapeutic strategies for patients with RC tears.
Collapse
Affiliation(s)
- Ryuji Yonemitsu
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Tokunaga
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Biomedical Sciences Major, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsumasa Ideo
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Arimura
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuki Karasugi
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichi Nakamura
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Ide
- Department of Advanced Joint Reconstructive Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
61
|
Xie S, Zhou Y, Tang Y, Chen C, Li S, Zhao C, Hu J, Lu H. -Book-shaped decellularized tendon matrix scaffold combined with bone marrow mesenchymal stem cells-sheets for repair of achilles tendon defect in rabbit. J Orthop Res 2019; 37:887-897. [PMID: 30816590 DOI: 10.1002/jor.24255] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/17/2019] [Indexed: 02/04/2023]
Abstract
Tissue-engineering approaches have great potential to improve the treatment of tendon injuries which are major musculoskeletal disorders. The purpose of this study was to assess the tissue engineering potential of a novel multilayered decellularized tendon "book" scaffold with bone marrow mesenchymal stem cells (BMSCs) sheets for repair of an Achilles tendon defect in a rabbit model. In this study, we developed a novel book-shaped decellularized scaffold derived from the extracellular matrix of tendon tissues from New Zealand white rabbits. Hematoxylin and eosin (H&E) staining, 4', 6-diamidino-2-phenylindole (DAPI) staining, DNA quantitation, and scanning electron microscopy (SEM) confirmed the efficiency of decellularization. After culturing BMSCs on decellularized scaffolds, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, SEM, quantitative real time polymerase chain reaction (qRT-PCR), and immunofluorescence analysis demonstrated that decellularized scaffolds have the capacity to yield homogeneous distribution and alignment of BMSCs, as well as support their differentiation into tendon. Tenomodulin and Alpha-1 collagen type I are important indicators for evaluating tenogenic differentiation of BMSCs. When decellularized "book" scaffolds with BMSCs sheets were used to repair a 1 mm Achilles tendon defect, histomorphological analysis, immunohistochemical assessment, and biomechanical testing showed that the book-shaped decellularized tendon matrix scaffold and BMSCs sheets could promote the regeneration of type I collagen at the wound site during healing, and improve the mechanical properties of the repaired tendon. Therefore, the results of this study suggest that the novel decellularized "book" tendon scaffolds combined with BMSCs sheets have therapeutic effects on improving the healing quality of the Achilles tendon. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-11, 2019.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yongchun Zhou
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Department of Orthopedic, Shaanxi Provincial People's Hospital, Xi'an, 710000, People's Republic of China
| | - Yifu Tang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Can Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Shengcan Li
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Chunfeng Zhao
- Division of Orthopedic Research and Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, 55905
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China
| |
Collapse
|
62
|
Sugiyama Y, Naito K, Goto K, Kojima Y, Furuhata A, Igarashi M, Nagaoka I, Kaneko K. Effect of aging on the tendon structure and tendon-associated gene expression in mouse foot flexor tendon. Biomed Rep 2019; 10:238-244. [PMID: 30972219 DOI: 10.3892/br.2019.1200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/07/2019] [Indexed: 01/23/2023] Open
Abstract
To evaluate the biological changes in tendons during the aging process, the present study examined the effect of aging on the tendon structure, distribution of collagen types I and III, and expression of tendon-associated genes, using flexor tendons in a mouse model. Histological assessment of the tendon structure and distribution of collagen types I and III were performed, and the expression of tendon-associated genes was evaluated in flexor digitorium longus tendons of young (8 weeks) and aged (78 weeks) female C57BL/6 mice. The results indicated that the Soslowsky score, based on the analysis of cellularity, fibroblastic changes, and collagen fiber orientation and disruption, was significantly increased, or worsened, in the tendons of the aged group compared with those in the young group. Furthermore, in the aged group, the distribution of type I collagen was decreased and the distribution of type III collagen was relatively increased compared with the young group. Finally, the mRNA expression levels of collagen (type I and type III) and tenogenic markers (Mohawk homeobox, tenomodulin and scleraxis BHLH transcription factor) were significantly decreased in the aged group compared with the young group. The present observations demonstrated that the structure of the tendons, distribution of types I and III collagen and the expression of tendon-associated genes were modulated by aging in the flexor tendon, and that these changes may contribute to the degeneration of tendons in tendinopathy.
Collapse
Affiliation(s)
- Yoichi Sugiyama
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kiyohito Naito
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kenji Goto
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Atsushi Furuhata
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Mamoru Igarashi
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazuo Kaneko
- Department of Medicine for Motor Organs, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
63
|
Kimmerling KA, McQuilling JP, Staples MC, Mowry KC. Tenocyte cell density, migration, and extracellular matrix deposition with amniotic suspension allograft. J Orthop Res 2019; 37:412-420. [PMID: 30378182 PMCID: PMC6587843 DOI: 10.1002/jor.24173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/22/2018] [Indexed: 02/04/2023]
Abstract
Amniotic suspension allografts (ASA), derived from placental tissues, contain particulated amniotic membrane and amniotic fluid cells. Recently, ASA and other placental-derived allografts have been used in orthopaedic applications, including tendinopathies and tendon injuries. The purpose of this study was to determine the potential effects of ASA on tenocyte cell density, migration, and responses to inflammatory stimuli. Tenocyte cell density was measured using AlamarBlue over multiple time points, while migration was determined using a Boyden chamber assay. Deposition of ECM markers were measured using BioColor kits. Gene expression and protein production of cytokines and growth factors following stimulus with pro-inflammatory IL-1β and TNF-α was measured using qPCR and ELISAs. Conditioned media (CM) was made from ASA and used for all assays in this study. In vitro, ASA CM treatment significantly promoted tenocyte increases in cell density and migration compared to assay media controls. ASA CM also increased the deposition of extracellular matrix (ECM) proteins, including collagen, elastin, and sGAG. Following inflammatory stimulation and treatment with ASA CM, tenocytes downregulated IL-8 gene expression, a pro-inflammatory cytokine normally elevated during the inflammatory phase of tendon healing. Additionally, tenocytes treated with ASA CM had significantly lower protein levels of TGF-β1 compared to controls. This study evaluated ASA and its effect on tenocytes; specifically, treatment with ASA resulted in increased cell density, more robust migration and matrix deposition, and some alteration of inflammatory targets. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:412-420, 2019.
Collapse
Affiliation(s)
| | | | - Miranda C. Staples
- Milestone Research Organization4901 Morena Blvd, Suite 132San DiegoCalifornia92117
| | - Katie C. Mowry
- Organogenesis Inc.2641 Rocky Ridge LaneBirmingham, AL 35216
| |
Collapse
|
64
|
Ho TC, Tsai SH, Yeh SI, Chen SL, Tung KY, Chien HY, Lu YC, Huang CH, Tsao YP. PEDF-derived peptide promotes tendon regeneration through its mitogenic effect on tendon stem/progenitor cells. Stem Cell Res Ther 2019; 10:2. [PMID: 30606221 PMCID: PMC6318926 DOI: 10.1186/s13287-018-1110-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023] Open
Abstract
Background Tendon stem/progenitor cells (TSPC) exhibit a low proliferative response to heal tendon injury, leading to limited regeneration outcomes. Exogenous growth factors that activate TSPC proliferation have emerged as a promising approach for treatment. Here, we evaluated the pigment epithelial-derived factor (PEDF)-derived short peptide (PSP; 29-mer) for treating acute tendon injury and to determine the timing and anatomical features of CD146- and necleostemin-positive TSPC in the tendon healing process. Methods Tendon cells were isolated from rabbit Achilles tendons, stimulated by the 29-mer and analyzed for colony-forming capacity. The expression of the TSPC markers CD146, Oct4, and nestin, induced by the 29-mer, was examined by immunostaining and western blotting. Tendo-Achilles injury was induced in rats by full-thickness insertion of an 18-G needle and immediately treated topically with an alginate gel, loaded with 29-mer. The distribution of TSPC in the injured tendon and their proliferation were monitored using immunohistochemistry with antibodies to CD146 and nucleostemin and by BrdU labeling. Results TSPC markers were enriched among the primary tendon cells when stimulated by the 29-mer. The 29-mer also induced the clonogenicity of CD146+ TSPC, implying TSPC stemness was retained during TSPC expansion in culture. Correspondingly, the expanded TSPC differentiated readily into tenocyte-like cells after removal of the 29-mer from culture. 29-mer/alginate gel treatment caused extensive expansion of CD146+ TSPC in their niche on postoperative day 2, followed by infiltration of CD146+/BrdU− TSPC into the injured tendon on day 7. The nucleostemin+ TSPC were located predominantly in the healing region of the injured tendon in the later phase (day 7) and exhibited proliferative capacity. By 3 weeks, 29-mer-treated tendons showed more organized collagen fiber regeneration and higher tensile strength than control tendons. In culture, the mitogenic effect of the 29-mer was found to be mediated by the phosphorylation of ERK2 and STAT3 in nucleostemin+ TSPC. Conclusions The anatomical analysis of TSPC populations in the wound healing process supports the hypothesis that substantial expansion of resident TSPC by exogenous growth factor is beneficial for tendon healing. The study suggests that synthetic 29-mer peptide may be an innovative therapy for acute tendon rupture.
Collapse
Affiliation(s)
- Tsung-Chuan Ho
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Shawn H Tsai
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.,Department of Optometry, Chung Shan Medical University, Taichung, 40201, Taiwan
| | - Shu-I Yeh
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Show-Li Chen
- Department of Microbiology, School of Medicine, National Taiwan University, No. 1 Jen Ai road, section 1, Taipei, 100, Taiwan
| | - Kwang-Yi Tung
- Department of Plastic Surgery, Mackay Memorial Hospital, No. 92, Sec. 2, Zhongshan N. Rd., Taipei, 10449, Taiwan
| | - Hsin-Yu Chien
- Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan
| | - Yung-Chang Lu
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan
| | - Chang-Hung Huang
- Departments of Biomechanics Laboratory, and Orthopaedic Surgery, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan.,Department of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yeou-Ping Tsao
- Department of Medical Research, Mackay Memorial Hospital, No. 45, Minsheng Rd., Tamsui District, New Taipei City, 25160, Taiwan. .,Department of Ophthalmology, Mackay Memorial Hospital, No. 92, Sec. 2, Chung Shan North Road, Taipei, 10449, Taiwan.
| |
Collapse
|
65
|
Nakamichi R, Kataoka K, Asahara H. Essential role of Mohawk for tenogenic tissue homeostasis including spinal disc and periodontal ligament. Mod Rheumatol 2018; 28:933-940. [PMID: 29667905 PMCID: PMC6511339 DOI: 10.1080/14397595.2018.1466644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/17/2018] [Indexed: 01/09/2023]
Abstract
Tendons and ligaments play essential roles in connecting muscle and bone and stabilizing the connections between bones. The damage to tendons and ligaments caused by aging, injury, and arthritis induces the dysfunction of the musculoskeletal system and reduces the quality of life. Current therapy for damaged tendons and ligaments depends on self-repair; however, it is difficult to reconstruct normal tissue. Regeneration therapy for tendons and ligaments has not been achieved, partly because the mechanism, cell biology, and pathophysiology of tendon and ligament development remain unclear. This review summarizes the role of the transcription factor, Mohawk, which controls tendon and ligament cell differentiation, in the maintenance of cell homeostasis, as well as its function in disease and the possibility of new therapeutic approaches.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Kensuke Kataoka
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
66
|
Gemalmaz HC, Sarıyılmaz K, Ozkunt O, Gurgen SG, Silay S. Role of a combination dietary supplement containing mucopolysaccharides, vitamin C, and collagen on tendon healing in rats. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2018; 52:452-458. [PMID: 30245052 PMCID: PMC6318503 DOI: 10.1016/j.aott.2018.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 05/14/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022]
Abstract
Objective The aim of this study was to investigate the effect of mucopolysaccharide, vitamin C, and collagen supplementation on the healing of Achilles tendon in rats. Methods Sixteen rats were separated into 2 groups. Both Achilles tendons of all rats were transected 5 mm above the insertion and repaired using a Kessler suture. After the surgical repair, the study group received the daily recommended amount of the supplement by gastric gavage, while the control group received a placebo. At the end of the third week, the animals were sacrificed. The biomechanical properties of the groups were compared with ultimate tensile strength and stiffness tests. The biological properties of the 2 groups were assessed with a histomorphometric comparison to determine the amount of collagen type I (COL1), proliferating cell nuclear antigen (PCNA), and transforming growth factor β1 (TGF-β1) expression in 3 different tissue subgroups (collagen matrix, tenocytes, and endotenon fibroblasts). Results Analysis of histomorphometric results revealed that the rats receiving dietary supplements demonstrated a significant increase in PCNA (mean value of 86 in the control group and 168.85 in the trial group; p < 0.05) and TGF-β1 (mean value of 87.57 in the control group and 161.85 in the trial group; p < 0.05) in the endotenon fibroblasts of the repair site. However, there was no difference between the groups in PCNA or TGF-β1 when the collagen matrix and the tenocytes of the repair site were examined. Furthermore, no significant difference could be found between groups in COL1 in any of the 3 tissue subgroups (collagen matrix, tenocytes, and endotenon fibroblasts). The statistical analysis also indicated that the rats receiving supplements did not demonstrate a significant increase in the ultimate tendon tensile strength or stiffness. Conclusion The results of this study revealed no advantage to the oral administration of the trial supplement in collagen synthesis or biomechanical properties in rats after 3 weeks using the presented study design. However, the increased expression of PCNA and TGFβ1 seen in the endotenon fibroblasts of the repair site might play a role in the continuum of tendon healing.
Collapse
Affiliation(s)
| | | | - Okan Ozkunt
- Acıbadem University School of Medicine, Istanbul, Turkey.
| | - Seren Gulsen Gurgen
- Celal Bayar University School of Vocational Health Services, Department of Histology and Embryology, Manisa, Turkey.
| | - Sena Silay
- Acıbadem University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
67
|
Bianco ST, Moser HL, Galatz LM, Huang AH. Biologics and stem cell-based therapies for rotator cuff repair. Ann N Y Acad Sci 2018; 1442:35-47. [PMID: 30008172 DOI: 10.1111/nyas.13918] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022]
Abstract
The rotator cuff is composed of several distinct muscles and tendons that function in concert to coordinate shoulder motion. Injuries to these tendons frequently result in permanent dysfunction and persistent pain. Despite considerable advances in operation techniques, surgical repair alone still does not fully restore rotator cuff function. This review focuses on recent research in the use of biologics and stem cell-based therapies to augment repair, highlighting promising avenues for future work and remaining challenges. While a number of animal models are used for rotator cuff studies, the anatomy of the rotator cuff varies dramatically between species. Since the rodent rotator cuff shares the most anatomical features with the human, this review will focus primarily on rodent models to enable consistent interpretation of outcome measures.
Collapse
Affiliation(s)
- Spencer T Bianco
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helen L Moser
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York.,Shoulder, Elbow and Orthopaedic Sports Medicine, Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Leesa M Galatz
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
68
|
Le W, Cheah AEJ, Yao J. Ex-vivo Tendon Repair Augmented with Bone Marrow Derived Mesenchymal Stem Cells Stimulated with Myostatin for Tenogenesis. J Hand Surg Asian Pac Vol 2018; 23:47-57. [PMID: 29409426 DOI: 10.1142/s2424835518500066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND To investigate the effect of myostatin (GDF-8) stimulation of bone marrow derived mesenchymal stem cells (BMSCs) on tenogenesis in the setting of tendon repair. GDF-8 has demonstrated the ability to augment tenogenesis and we sought to identify if this effect could lead to the focused differentiation of pluripotential stem cells down a tenocyte lineage ex vivo. METHODS Cadaveric upper limb flexor tendons were harvested, decellularized and divided into 1 cm segments. Sutures seeded with stem cells were passed through tendon segments to simulate repair. The repaired tendons were then cultured either with or without myostatin for 3, 5, and 7 days. The experiment was also repeated with non-decellularized tendons for a total of 4 groups. The tendons were then evaluated for the expression of scleraxis and tenomodulin, two biomarkers for tendon. RESULTS Myostatin stimulation led to an increase in expression of tenomodulin and scleraxis at 5 and 7 days in both the decellularized and non-decellularized tendons. Myostatin increased the differentiation of BMSCs into tenocytes and/or led to the upregulation of tenomodulin and scleraxis production by the native tenocytes present within the non-decellularized tendons. CONCLUSIONS The addition of myostatin to BMSCs leads to tenocyte differentiation as evidenced by the expression of tenocyte biomarkers, scleraxis and tenomodulin. This effect is maintained in an ex vivo tendon repair model suggestive that these cells survive the passage through tendon tissue and remain metabolically active.
Collapse
Affiliation(s)
- Wei Le
- * Robert A. Chase Hand & Upper Limb Center, Department of Orthopaedic Surgery, Stanford University Medical Center, Redwood City, CA, USA
| | - Andre Eu-Jin Cheah
- * Robert A. Chase Hand & Upper Limb Center, Department of Orthopaedic Surgery, Stanford University Medical Center, Redwood City, CA, USA.,† Department of Hand & Reconstructive Microsurgery, National University Hospital, National University Health System, Singapore
| | - Jeffrey Yao
- * Robert A. Chase Hand & Upper Limb Center, Department of Orthopaedic Surgery, Stanford University Medical Center, Redwood City, CA, USA
| |
Collapse
|
69
|
Mistry J, Henn RF, Etcheson JI, Gwam CU, George NE, Delanois RE. Biologic Therapies as Adjunctive Treatments in Rotator Cuff Repair. JBJS Rev 2018; 6:e1. [PMID: 29979232 DOI: 10.2106/jbjs.rvw.17.00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jaydev Mistry
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - R Frank Henn
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jennifer I Etcheson
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Chukwuweike U Gwam
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Nicole E George
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, Maryland
| | - Ronald E Delanois
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, Baltimore, Maryland
| |
Collapse
|
70
|
Schneider M, Angele P, Järvinen TA, Docheva D. Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing. Adv Drug Deliv Rev 2018; 129:352-375. [PMID: 29278683 DOI: 10.1016/j.addr.2017.12.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 12/01/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Due to the increasing age of our society and a rise in engagement of young people in extreme and/or competitive sports, both tendinopathies and tendon ruptures present a clinical and financial challenge. Tendon has limited natural healing capacity and often responds poorly to treatments, hence it requires prolonged rehabilitation in most cases. Till today, none of the therapeutic options has provided successful long-term solutions, meaning that repaired tendons do not recover their complete strength and functionality. Our understanding of tendon biology and healing increases only slowly and the development of new treatment options is insufficient. In this review, following discussion on tendon structure, healing and the clinical relevance of tendon injury, we aim to elucidate the role of stem cells in tendon healing and discuss new possibilities to enhance stem cell treatment of injured tendon. To date, studies mainly apply stem cells, often in combination with scaffolds or growth factors, to surgically created tendon defects. Deeper understanding of how stem cells and vasculature in the healing tendon react to growth factors, common drugs used to treat injured tendons and promising cellular boosters could help to develop new and more efficient ways to manage tendon injuries.
Collapse
|
71
|
Zhang YJ, Chen X, Li G, Chan KM, Heng BC, Yin Z, Ouyang HW. Concise Review: Stem Cell Fate Guided By Bioactive Molecules for Tendon Regeneration. Stem Cells Transl Med 2018; 7:404-414. [PMID: 29573225 PMCID: PMC5905226 DOI: 10.1002/sctm.17-0206] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Tendon disorders, which are commonly presented in the clinical setting, disrupt the patients' normal work and life routines, and they damage the careers of athletes. However, there is still no effective treatment for tendon disorders. In the field of tissue engineering, the potential of the therapeutic application of exogenous stem cells to treat tendon pathology has been demonstrated to be promising. With the development of stem cell biology and chemical biology, strategies that use inductive tenogenic factors to program stem cell fate in situ are the most easily and readily translatable to clinical applications. In this review, we focus on bioactive molecules that can potentially induce tenogenesis in adult stem cells, and we summarize the various differentiation factors found in comparative studies. Moreover, we discuss the molecular regulatory mechanisms of tenogenesis, and we examine the various challenges in developing standardized protocols for achieving efficient and reproducible tenogenesis. Finally, we discuss and predict future directions for tendon regeneration. Stem Cells Translational Medicine 2018;7:404-414.
Collapse
Affiliation(s)
- Yan-Jie Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| | - Gang Li
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Kai-Ming Chan
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Boon Chin Heng
- Faculty of Dentistry, Department of Endodontology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China.,Faculty of Medicine, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, People's Republic of China
| | - Hong-Wei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| |
Collapse
|
72
|
Costa-Almeida R, Franco AR, Pesqueira T, Oliveira MB, Babo PS, Leonor IB, Mano JF, Reis RL, Gomes ME. The effects of platelet lysate patches on the activity of tendon-derived cells. Acta Biomater 2018; 68:29-40. [PMID: 29341933 DOI: 10.1016/j.actbio.2018.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/04/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. STATEMENT OF SIGNIFICANCE Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards simultaneously reducing post-implantation surgical site infections and promoting tendon regeneration for prospective in vivo applications.
Collapse
|
73
|
Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Sci Rep 2018; 8:3155. [PMID: 29453333 PMCID: PMC5816641 DOI: 10.1038/s41598-018-21194-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Tenomodulin (Tnmd) is a type II transmembrane glycoprotein predominantly expressed in tendons and ligaments. We found that scleraxis (Scx), a member of the Twist-family of basic helix-loop-helix transcription factors, is a transcriptional activator of Tnmd expression in tenocytes. During embryonic development, Scx expression preceded that of Tnmd. Tnmd expression was nearly absent in tendons and ligaments of Scx-deficient mice generated by transcription activator-like effector nucleases-mediated gene disruption. Tnmd mRNA levels were dramatically decreased during serial passages of rat tenocytes. Scx silencing by small interfering RNA significantly suppressed endogenous Tnmd mRNA levels in tenocytes. Mouse Tnmd contains five E-box sites in the ~1-kb 5′-flanking region. A 174-base pair genomic fragment containing a TATA box drives transcription in tenocytes. Enhancer activity was increased in the upstream region (−1030 to −295) of Tnmd in tenocytes, but not in NIH3T3 and C3H10T1/2 cells. Preferential binding of both Scx and Twist1 as a heterodimer with E12 or E47 to CAGATG or CATCTG and transactivation of the 5′-flanking region were confirmed by electrophoresis mobility shift and dual luciferase assays, respectively. Scx directly transactivates Tnmd via these E-boxes to positively regulate tenocyte differentiation and maturation.
Collapse
|
74
|
Charles MD, Christian DR, Cole BJ. The Role of Biologic Therapy in Rotator Cuff Tears and Repairs. Curr Rev Musculoskelet Med 2018; 11:150-161. [PMID: 29411322 DOI: 10.1007/s12178-018-9469-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review was to establish the foundation of the major biologic adjuvants to rotator cuff repairs and review recent scientific findings. RECENT FINDINGS Platelet-rich plasma (PRP) overall has no significant impact on functional outcomes and repair integrity, but may be more advantageous in small to medium tears. Further studies should focus on leukocyte-rich versus poor preparations and the use of PRP in patients that are high risk for repair failure. Biologic and synthetic patches or augments provide mechanical stability for large and massive rotator cuff tears and decrease re-tear rates. Mesenchymal stem cells have demonstrated improved healing rates without an impact on outcomes. Cytokines and growth factors show promise in animal models, but require human trials to further evaluate. In massive or revision repairs, allograft or synthetic patch augmentation should be considered. Platelet-rich plasma may have benefit in smaller tears. Further studies are needed to evaluate the value of mesenchymal stem cells and various cytologic chemical signals.
Collapse
Affiliation(s)
- Michael D Charles
- Department of Orthopaedics, Rush University Medical Center, Chicago, IL, USA
| | - David R Christian
- Department of Orthopaedics, Rush University Medical Center, Chicago, IL, USA
| | - Brian J Cole
- Department of Orthopaedics, Rush University Medical Center, Chicago, IL, USA. .,, Chicago, USA.
| |
Collapse
|
75
|
Narayanan G, Nair LS, Laurencin CT. Regenerative Engineering of the Rotator Cuff of the Shoulder. ACS Biomater Sci Eng 2018; 4:751-786. [PMID: 33418763 DOI: 10.1021/acsbiomaterials.7b00631] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rotator cuff tears often heal poorly, leading to re-tears after repair. This is in part attributed to the low proliferative ability of the resident cells (tendon fibroblasts and tendon-stem cells) upon injury to the rotator cuff tissue and the low vascularity of the tendon insertion. In addition, surgical outcomes of current techniques used in clinical settings are often suboptimal, leading to the formation of neo-tissue with poor biomechanics and structural characteristics, which results in re-tears. This has prompted interest in a new approach, which we term as "Regenerative Engineering", for regenerating rotator cuff tendons. In the Regenerative Engineering paradigm, roles played by stem cells, scaffolds, growth factors/small molecules, the use of local physical forces, and morphogenesis interplayed with clinical surgery techniques may synchronously act, leading to synergistic effects and resulting in successful tissue regeneration. In this regard, various cell sources such as tendon fibroblasts and adult tissue-derived stem cells have been isolated, characterized, and investigated for regenerating rotator cuff tendons. Likewise, numerous scaffolds with varying architecture, geometry, and mechanical characteristics of biologic and synthetic origin have been developed. Furthermore, these scaffolds have been also fabricated with biochemical cues (growth factors and small molecules), facilitating tissue regeneration. In this Review, various strategies to regenerate rotator cuff tendons using stem cells, advanced materials, and factors in the setting of physical forces under the Regenerative Engineering paradigm are described.
Collapse
Affiliation(s)
- Ganesh Narayanan
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Lakshmi S Nair
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut 06030, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States.,Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| |
Collapse
|
76
|
Growth factor delivery strategies for rotator cuff repair and regeneration. Int J Pharm 2018; 544:358-371. [PMID: 29317260 DOI: 10.1016/j.ijpharm.2018.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 12/21/2022]
Abstract
The high incidence of degenerative tears and prevalence of retears (20-95%) after surgical repair makes rotator cuff injuries a significant health problem. This high retear rate is attributed to the failure of the repaired tissue to regenerate the native tendon-to-bone insertion (enthesis). Biological augmentation of surgical repair such as autografts, allografts, and xenografts are confounded by donor site morbidity, immunogenicity, and disease transmission, respectively. In contrast, these risks may be alleviated via growth factor therapy, which can actively influence the healing environment to promote functional repair. Several challenges have to be overcome before growth factor delivery can translate into clinical practice such as the selection of optimal growth factor(s) or combination, identification of the most efficient stage and duration of delivery, and the design considerations for the delivery device. Emerging insight into the injury-repair microenvironment and our understanding of growth factor mechanisms in healing are informing the design of advanced delivery scaffolds to effectively treat rotator cuff tears. Here, we review potential growth factor candidates, design parameters and material selection for growth factor delivery, innovative and dynamic delivery scaffolds, and novel therapeutic targets from tendon and developmental biology for the structural and functional healing of rotator cuff repair.
Collapse
|
77
|
Yan Z, Yin H, Nerlich M, Pfeifer CG, Docheva D. Boosting tendon repair: interplay of cells, growth factors and scaffold-free and gel-based carriers. J Exp Orthop 2018; 5:1. [PMID: 29330711 PMCID: PMC5768579 DOI: 10.1186/s40634-017-0117-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
Background Tendons are dense connective tissues and critical components for the integrity and function of the musculoskeletal system. Tendons connect bone to muscle and transmit forces on which locomotion entirely depends. Due to trauma, overuse and age-related degeneration, many people suffer from acute or chronic tendon injuries. Owing to their hypovascularity and hypocellularity, tendinopathies remain a substantial challenge for both clinicians and researchers. Surgical treatment includes suture or transplantation of autograft, allograft or xenograft, and these serve as the most common technique for rescuing tendon injuries. However, the therapeutic efficacies are limited by drawbacks including inevitable donor site morbidity, poor graft integration, adhesion formations and high rates of recurrent tearing. This review summarizes the literature of the past 10 y concerning scaffold-free and gel-based approaches for treating tendon injuries, with emphasis on specific advantages of such modes of application, as well as the obtained results regarding in vitro and in vivo tenogenesis. Results The search was focused on publications released after 2006 and 83 articles have been analysed. The main results are summarizing and discussing the clear advantages of scaffold-free and hydrogels carriers that can be functionalized with cells alone or in combination with growth factors. Conclusion The improved understanding of tissue resident adult stem cells has made a significant progress in recent years as well as strategies to steer their fate toward tendon lineage, with the help of growth factors, have been identified. The field of tendon tissue engineering is exploring diverse models spanning from hard scaffolds to gel-based and scaffold-free approaches seeking easier cell delivery and integration in the site of injury. Still, the field needs to consider a multifactorial approach that is based on the combination and fine-tuning of chemical and biomechanical stimuli. Taken together, tendon tissue engineering has now excellent foundations and enters the period of precision and translation to models with clinical relevance on which better treatment options of tendon injuries can be shaped up.
Collapse
Affiliation(s)
- Zexing Yan
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Heyong Yin
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Michael Nerlich
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian G Pfeifer
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Denitsa Docheva
- Laboratory of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany. .,Director of Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
78
|
Xu K, Sun Y, Kh Al-Ani M, Wang C, Sha Y, Sung KP, Dong N, Qiu X, Yang L. Synergistic promoting effects of bone morphogenetic protein 12/connective tissue growth factor on functional differentiation of tendon derived stem cells and patellar tendon window defect regeneration. J Biomech 2017; 66:95-102. [PMID: 29174694 DOI: 10.1016/j.jbiomech.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Current study investigated bone morphogenetic protein 12 (BMP12) and connective tissue growth factor (CTGF) activate tendon derived stem cells (TDSCs) tenogenic differentiation, and promotion of injured tendon regeneration. TDSCs were transfected with BMP12 and CTGF via recombinant adenovirus (Ad) infection. Gene transfection efficiency, cell viability and cytotoxicity, tenogenic gene expression, collagen I/III synthesis were evaluated in vitro. For the in vivo study, the transfected cells were transplanted into the rat patellar tendon window defect. At weeks 2 and 8 of post-surgery, the repaired tendon tissues were harvested for histological and biomechanical examinations. The transfected TDSCs revealed relatively stable transfection efficiency (80-90%) with active cell viability means while rare cytotoxicity in each group. During days 1 and 5, BMP12 and CTGF transfection caused tenogenic differentiation genes activation in TDSCs: type I/III collagen, tenascin-C, and scleraxis were all up-regulated, whereas osteogenic, adipogenic, and chondrogenic markers were all down-regulated respectively. In addition, BMP12 and CTGF overexpression significantly promote type I/III collagen synthesis. After in vivo transplantation, at 2 and 8 weeks post-surgery, BMP12, CTGF and co-transfection groups showed more integrated tendon tissue structure versus control, meanwhile, the ultimate failure loads and Young's were all higher than control. Remarkably, at 8 weeks post-surgery, the biomechanical properties of co-transfection group was approaching to normal rat patellar tendon, moreover, the ratio of type III/I collagen maintained about 20% in each transfection group, meanwhile, the type I collagen were significantly increased with co-transfection treatment. In conclusion, BMP12 and CTGF transfection stimulate tenogenic differentiation of TDSCs. The synergistic effects of simultaneous transfection of both may significantly promoted rat patellar tendon window defect regeneration.
Collapse
Affiliation(s)
- Kang Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yanjun Sun
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Mohanad Kh Al-Ani
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China; Tikrit Universtiy, Collagen of Medicine, Department of Microbiology, P.O. Box (45) Salahaddin Province, Tikrit, Iraq
| | - Chunli Wang
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yongqiang Sha
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Kl Paul Sung
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Li Yang
- National Innovation and Attracting Talents "111" Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
79
|
Tenomodulin is essential for prevention of adipocyte accumulation and fibrovascular scar formation during early tendon healing. Cell Death Dis 2017; 8:e3116. [PMID: 29022912 PMCID: PMC5682675 DOI: 10.1038/cddis.2017.510] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
Tenomodulin (Tnmd) is the best-known mature marker for tendon and ligament lineage cells. It is important for tendon maturation, running performance and has key implications for the resident tendon stem/progenitor cells (TSPCs). However, its exact functions during the tendon repair process still remain elusive. Here, we established an Achilles tendon injury model in a Tnmd knockout (Tnmd−/−) mouse line. Detailed analyses showed not only a very different scar organization with a clearly reduced cell proliferation and expression of certain tendon-related genes, but also increased cell apoptosis, adipocyte and blood vessel accumulation in the early phase of tendon healing compared with their wild-type (WT) littermates. In addition, Tnmd−/− tendon scar tissue contained augmented matrix deposition of biglycan, cartilage oligomeric matrix protein (Comp) and fibronectin, altered macrophage profile and reduced numbers of CD146-positive cells. In vitro analysis revealed that Tnmd−/− TSPCs exhibited significantly reduced migration and proliferation potential compared with that of WT TSPCs. Furthermore, Tnmd−/− TSPCs had accelerated adipogenic differentiation accompanied with significantly increased peroxisome proliferator-activated receptor gamma (Pparγ) and lipoprotein lipase (Lpl) mRNA levels. Thus, our results demonstrate that Tnmd is required for prevention of adipocyte accumulation and fibrovascular scar formation during early tendon healing.
Collapse
|
80
|
Tokunaga T, Karasugi T, Arimura H, Yonemitsu R, Sakamoto H, Ide J, Mizuta H. Enhancement of rotator cuff tendon-bone healing with fibroblast growth factor 2 impregnated in gelatin hydrogel sheets in a rabbit model. J Shoulder Elbow Surg 2017; 26:1708-1717. [PMID: 28506489 DOI: 10.1016/j.jse.2017.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Application of fibroblast growth factor 2 (FGF-2) may improve the healing response after rotator cuff (RC) surgical repair. This study aimed to determine whether FGF-2-impregnated gelatin hydrogel sheet (GHS) incorporation into the bony trough on the greater tuberosity facilitates healing after RC surgical repair in rabbits. METHODS We assigned 120 adult male Japanese white rabbits treated with unilateral surgery for supraspinatus tendon repair into the following groups: suture-only group (suture); suture and GHS with phosphate-buffered saline (carrier); suture and GHS with 3 µg of FGF-2 (F3); and suture and GHS with 30 µg of FGF-2 (F30). The effect of FGF-2 was assessed using histologic, biomechanical, and microcomputed tomography evaluations at 2, 6, and 12 weeks. RESULTS At 12 weeks, loose fibrovascular tissues emerged at the repair site in the suture and carrier groups and dense tendon-like tissues in the F3 and F30 groups, which demonstrated significantly higher ultimate load-to-failure and stress-to-failure at 12 weeks than that in the suture and carrier groups. Microcomputed tomography imaging showed ectopic calcification formation in some specimens from each group. Appearances or frequencies were similar among groups. The histologic and biomechanical effects of FGF-2 on RC healing were obvious at ≥6 weeks postoperatively. CONCLUSION FGF-2-impregnated GHS incorporation into the bony trough on the greater tuberosity before RC surgical repair is feasible and results in histologic and biomechanical improvements during RC healing in rabbits. No detrimental effect on ectopic calcification was observed.
Collapse
Affiliation(s)
- Takuya Tokunaga
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Tatsuki Karasugi
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hitoshi Arimura
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuji Yonemitsu
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Sakamoto
- Department of Mechanical System Engineering, Doshisha University, Kyoto, Japan
| | - Junji Ide
- Department of Advanced Joint Reconstructive Surgery, Kumamoto University Hospital, Kumamoto, Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
81
|
Effect of Footprint Preparation on Tendon-to-Bone Healing: A Histologic and Biomechanical Study in a Rat Rotator Cuff Repair Model. Arthroscopy 2017; 33:1482-1492. [PMID: 28606577 DOI: 10.1016/j.arthro.2017.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/05/2017] [Accepted: 03/29/2017] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare the histologic and biomechanical effects of 3 different footprint preparations for repair of tendon-to-bone insertions and to assess the behavior of bone marrow-derived cells in each method of insertion repair. METHODS We randomized 81 male Sprague-Dawley rats and green fluorescent protein-bone marrow chimeric rats into 3 groups. In group A, we performed rotator cuff repair after separating the supraspinatus tendon from the greater tuberosity and removing the residual tendon tissue. In group B, we also drilled 3 holes into the footprint. The native fibrocartilage was preserved in groups A and B. In group C, we excavated the footprint until the cancellous bone was exposed. Histologic repair of the tendon-to-bone insertion, behavior of the bone marrow-derived cells, and ultimate force to failure were examined postoperatively. RESULTS The areas of metachromasia in groups A, B, and C were 0.033 ± 0.019, 0.089 ± 0.022, and 0.002 ± 0.001 mm2/mm2, respectively, at 4 weeks and 0.029 ± 0.022, 0.090 ± 0.039, and 0.003 ± 0.001 mm2/mm2, respectively, at 8 weeks. At 4 and 8 weeks postoperatively, significantly higher cartilage matrix production was observed in group B than in group C (4 weeks, P = .002; 8 weeks, P < .001). In green fluorescent protein-bone marrow chimeric rats in group B, bone marrow-derived chondrogenic cells infiltrated the fibrocartilage layer. Ultimate force to failure was significantly higher in group B (19.7 ± 3.4 N) than in group C (16.7 ± 2.0 N) at 8 weeks (P = .031). CONCLUSIONS Drilling into the footprint and preserving the fibrocartilage improved the quality of repair tissue and biomechanical strength at the tendon-to-bone insertion after rotator cuff repair in an animal model. CLINICAL RELEVANCE Drilling into the footprint and preserving the fibrocartilage can enhance repair of tendon-to-bone insertions. This method may be clinically useful in rotator cuff repair.
Collapse
|
82
|
Arimura H, Shukunami C, Tokunaga T, Karasugi T, Okamoto N, Taniwaki T, Sakamoto H, Mizuta H, Hiraki Y. TGF-β1 Improves Biomechanical Strength by Extracellular Matrix Accumulation Without Increasing the Number of Tenogenic Lineage Cells in a Rat Rotator Cuff Repair Model. Am J Sports Med 2017; 45:2394-2404. [PMID: 28586631 DOI: 10.1177/0363546517707940] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Transforming growth factor β1 (TGF-β1) positively regulates the tenogenic marker genes scleraxis ( Scx) and tenomodulin ( Tnmd) in mesenchymal progenitors in vitro. However, little is known about the effect of TGF-β1 on the expression of tenogenic markers during rotator cuff (RC) healing in rats. HYPOTHESIS TGF-β1 improves the biomechanical properties and histological maturity of reparative tissue in a rat RC repair model by stimulating the growth of tenogenic cells. STUDY DESIGN Controlled laboratory study. METHODS Adult male Sprague-Dawley rats (N = 180) underwent unilateral supraspinatus tendon-to-bone surgical repair and were randomly treated with a gelatin hydrogel presoaked in TGF-β1 (100 ng) or phosphate-buffered saline. The effects of TGF-β1 on RC healing were investigated at 2, 4, 6, 8, and 12 weeks postoperatively by immunostaining for proliferating cell nuclear antigen, by real-time reverse transcription polymerase chain reaction and in situ hybridization or immunostaining for enthesis-related markers (SRY-box containing gene 9 [ Sox9], Scx, and Tnmd), and by real-time reverse transcription polymerase chain reaction and immunostaining for type I and III collagen. At 6 and 12 weeks postoperatively, biomechanical testing, micro-computed tomography, and biochemical analysis were also performed. At 2 and 4 weeks postoperatively, mesenchymal stem cell-related markers, phospho-Smad2, and matrix metalloproteinase 9 (MMP-9) and MMP-13 were assessed by immunostaining. RESULTS The TGF-β1-treated group had significantly higher ultimate load to failure and tissue volume at 6 and 12 weeks postoperatively and a higher collagen content at 12 weeks compared with the saline group. Tendon-related gene expression, histological maturity, cell proliferation, and mesenchymal stem cell-related marker immunoreactivity were not affected by exogenously administrated TGF-β1 at all time points. In the TGF-β1-treated group, the percentage of phospho-Smad2-positive cells within the healing tissue increased, whereas the expression of MMP-9 and MMP-13 significantly decreased at 2 and 4 weeks postoperatively. CONCLUSION TGF-β1 enhances formation of tough fibrous tissues at the healing site by inhibiting MMP-9 and MMP-13 expression to increase collagen accumulation but without the growth of tenogenic lineage cells. CLINICAL RELEVANCE These findings suggest that TGF-β1 could be used for enhancing biomechanical strength after RC surgical repair.
Collapse
Affiliation(s)
- Hitoshi Arimura
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Chisa Shukunami
- Department of Mechanical System Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takuya Tokunaga
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuki Karasugi
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nobukazu Okamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Taniwaki
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetoshi Sakamoto
- Department of Mechanical System Engineering, Doshisha University, Kyoto, Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
83
|
Wnt/β-catenin signaling suppresses expressions of Scx, Mkx, and Tnmd in tendon-derived cells. PLoS One 2017; 12:e0182051. [PMID: 28750046 PMCID: PMC5531628 DOI: 10.1371/journal.pone.0182051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
After tendon injuries, biomechanical properties of the injured tendon are not fully recovered in most cases. Modulation of signaling pathways, which are involved in tendon development and tendon repair, is one of attractive modalities to facilitate proper regeneration of the injured tendon. The roles of TGF-β signaling in tendon homeostasis and tendon development have been elucidated. In contrast, the roles of Wnt/β-catenin signaling in tendon remain mostly elusive. We found that the number of β-catenin-positive cells was increased at the injured site, suggesting involvement of Wnt/β-catenin signaling in tendon healing. Activation of Wnt/β-catenin signaling suppressed expressions of tenogenic genes of Scx, Mkx, and Tnmd in rat tendon-derived cells (TDCs) isolated from the Achilles tendons of 6-week old rats. Additionally, activation of Wnt/β-catenin reduced the amounts of Smad2 and Smad3, which are intracellular mediators for TGF-β signaling, and antagonized upregulation of Scx induced by TGF-β signaling in TDCs. We found that Wnt/β-catenin decreased Mkx and Tnmd expressions without suppressing Scx expression in Scx-programmed tendon progenitors. Our studies suggest that Wnt/β-catenin signaling is a repressor for tenogenic gene expressions.
Collapse
|
84
|
Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system. Sci Rep 2017; 7:45010. [PMID: 28327634 PMCID: PMC5361204 DOI: 10.1038/srep45010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is expressed persistently in tendons/ligaments, but transiently in entheseal cartilage. In this study, we generated a novel ScxCre knock-in (KI) allele, by in-frame replacement of most of Scx exon 1 with Cre recombinase (Cre), to drive Cre expression using Scx promoter and to inactivate the endogenous Scx. Reflecting the intensity and duration of endogenous expression, Cre-mediated excision occurs in tendinous and ligamentous tissues persistently expressing Scx. Expression of tenomodulin, a marker of mature tenocytes and ligamentocytes, was almost absent in tendons and ligaments of ScxCre/Cre KI mice lacking Scx to indicate defective maturation. In homozygotes, the transiently Scx-expressing entheseal regions such as the rib cage, patella cartilage, and calcaneus were small and defective and cartilaginous tuberosity was missing. Decreased Sox9 expression and phosphorylation of Smad1/5 and Smad3 were also observed in the developing entheseal cartilage, patella, and deltoid tuberosity of ScxCre/Cre KI mice. These results highlighted the functional importance of both transient and persistent expression domains of Scx for proper integration of the musculoskeletal components.
Collapse
|
85
|
Liu Y, Suen CW, Zhang JF, Li G. Current concepts on tenogenic differentiation and clinical applications. J Orthop Translat 2017; 9:28-42. [PMID: 29662797 PMCID: PMC5822963 DOI: 10.1016/j.jot.2017.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Tendon is a tissue that transmits force from muscle to bone. Chronic or acute tendon injuries are very common, and are always accompanied by pain and a limited range of motion in patients. In clinical settings, management of tendon injuries still remains a big challenge. Cell therapies, such as the application of stem cells for tenogenic differentiation, were suggested to be an ideal strategy for clinical translation. However, there is still a lack of specific methods for tenogenic differentiation due to the limited understanding of tendon biology currently. This review focuses on the summary of current published strategies for tenogenic differentiation, such as the application of growth factors, mechanical stimulation, biomaterials, coculture, or induced pluripotent stem cells. Current clinical applications of stem cells for treatment of tendon injuries and their limitations have also been discussed in this review.
Collapse
Affiliation(s)
- Yang Liu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Wai Suen
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Jin-fang Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Gang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Corresponding author. Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Shatin, New Territories, Hong Kong, China.Department of Orthopaedics and Traumatology and Li Ka Shing Institute of Health SciencesPrince of Wales HospitalThe Chinese University of Hong Kong30-32 Ngan Shing StreetShatinNew TerritoriesHong Kong, China
| |
Collapse
|
86
|
Different combinations of growth factors for the tenogenic differentiation of bone marrow mesenchymal stem cells in monolayer culture and in fibrin-based three-dimensional constructs. Differentiation 2017; 95:44-53. [PMID: 28319735 DOI: 10.1016/j.diff.2017.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022]
Abstract
Tendon injuries are severe burdens in clinics. The poor tendon healing is related to an ineffective response of resident cells and inadequate vascularization. Thanks to the high proliferation and multi-lineage differentiation capability, bone marrow-derived mesenchymal stem cells (BMSCs) are a promising cell source to support the tendon repair. To date, the association of various growth factors to induce the in vitro tenogenic differentiation of multipotent progenitor cells is poorly investigated. This study aimed to investigate the tenogenic differentiation of rabbit BMSCs by testing the combination of bone morphogenetic proteins (BMP-12 and 14) with transforming growth factor beta (TGF-β) and vascular endothelial growth factor (VEGF) both in 2D and 3D cultures within fibrin-based constructs. After 7 and 14 days, the tenogenic differentiation was assessed by analyzing cell metabolism and collagen content, the gene expression of tenogenic markers and the histological cell distribution and collagen deposition within 3D constructs. Our results demonstrated that the association of BMP-14 with TGF-β3 and VEGF enhanced the BMSC tenogenic differentiation both in 2D and 3D cultures. This study supports the use of fibrin as hydrogel-based matrix to generate spheroids loaded with tenogenic differentiated BMSCs that could be used to treat tendon lesions in the future.
Collapse
|
87
|
Different culture conditions affect the growth of human tendon stem/progenitor cells (TSPCs) within a mixed tendon cells (TCs) population. J Exp Orthop 2017; 4:8. [PMID: 28244027 PMCID: PMC5328904 DOI: 10.1186/s40634-017-0082-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/10/2017] [Indexed: 12/16/2022] Open
Abstract
Background Tendon resident cells (TCs) are a mixed population made of terminally differentiated tenocytes and tendon stem/progenitor cells (TSPCs). Since the enrichment of progenitors proportion could enhance the effectiveness of treatments based on these cell populations, the interest on the effect of culture conditions on the TSPCs is growing. In this study the clonal selection and the culture in presence or absence of basic fibroblast growth factor (bFGF) were used to assess their influences on the stemness properties and phenotype specific features of tendon cells. Methods Cells cultured with the different methods were analyzed in terms of clonogenic and differentiation abilities, stem and tendon specific genes expression and immunophenotype at passage 2 and passage 4. Results The clonal selection allowed to isolate cells with a higher multi-differentiation potential, but at the same time a lower proliferation rate in comparison to the whole population. Moreover, the clones express a higher amounts of stemness marker OCT4 and tendon specific transcription factor Scleraxis (SCX) mRNA, but a lower level of decorin (DCN). On the other hand, the number of cells obtained by clonal selection was extremely low and most of the clones were unable to reach a high number of passages in cultures. The presence of bFGF influences TCs morphology, enhance their proliferation rate and reduce their clonogenic ability. Interestingly, the expression of CD54, a known mesenchymal stem cell marker, is reduced in presence of bFGF at early passages. Nevertheless, bFGF does not affect the chondrogenic and osteogenic potential of TCs and the expression of tendon specific markers, while it was able to downregulate the OCT4 expression. Conclusion This study showed that clonal selection enhance progenitors content in TCs populations, but the extremely low number of cells produced with this method could represent an insurmountable obstacle to its application in clinical approaches. We observed that the addition of bFGF to the culture medium promotes the maintenance of a higher number of differentiated cells, reducing the proportion of progenitors within the whole population. Overall our findings demonstrated the importance of the use of specific culture protocols to obtain tendon cells for possible clinical applications.
Collapse
|
88
|
Eliasberg CD, Dar A, Jensen AR, Murray IR, Hardy WR, Kowalski TJ, Garagozlo CA, Natsuhara KM, Khan AZ, McBride OJ, Cha PI, Kelley BV, Evseenko D, Feeley BT, McAllister DR, Péault B, Petrigliano FA. Perivascular Stem Cells Diminish Muscle Atrophy Following Massive Rotator Cuff Tears in a Small Animal Model. J Bone Joint Surg Am 2017; 99:331-341. [PMID: 28196035 DOI: 10.2106/jbjs.16.00645] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rotator cuff tears are a common cause of shoulder pain and often necessitate operative repair. Muscle atrophy, fibrosis, and fatty infiltration can develop after rotator cuff tears, which may compromise surgical outcomes. This study investigated the regenerative potential of 2 human adipose-derived progenitor cell lineages in a murine model of massive rotator cuff tears. METHODS Ninety immunodeficient mice were used (15 groups of 6 mice). Mice were assigned to 1 of 3 surgical procedures: sham, supraspinatus and infraspinatus tendon transection (TT), or TT and denervation via suprascapular nerve transection (TT + DN). Perivascular stem cells (PSCs) were harvested from human lipoaspirate and sorted using fluorescence-activated cell sorting into pericytes (CD146 CD34 CD45 CD31) and adventitial cells (CD146 CD34 CD45 CD31). Mice received no injection, injection with saline solution, or injection with pericytes or adventitial cells either at the time of the index procedure ("prophylactic") or at 2 weeks following the index surgery ("therapeutic"). Muscles were harvested 6 weeks following the index procedure. Wet muscle weight, muscle fiber cross-sectional area, fibrosis, and fatty infiltration were analyzed. RESULTS PSC treatment after TT (prophylactic or therapeutic injections) and after TT + DN (therapeutic injections) resulted in less muscle weight loss and greater muscle fiber cross-sectional area than was demonstrated for controls (p < 0.05). The TT + DN groups treated with pericytes at either time point or with adventitial cells at 2 weeks postoperatively had less fibrosis than the TT + DN controls. There was less fatty infiltration in the TT groups treated with pericytes at either time point or with adventitial cells at the time of surgery compared with controls. CONCLUSIONS Our findings demonstrated significantly less muscle atrophy in the groups treated with PSCs compared with controls. This suggests that the use of PSCs may have a role in the prevention of muscle atrophy without leading to increased fibrosis or fatty infiltration. CLINICAL RELEVANCE Improved muscle quality in the setting of rotator cuff tears may increase the success rates of surgical repair and lead to superior clinical outcomes.
Collapse
Affiliation(s)
- Claire D Eliasberg
- 1Hospital for Special Surgery, New York, NY 2University of California, Los Angeles, Los Angeles, California 3University of Edinburgh, Edinburgh, United Kingdom 4University of California, Davis, Davis, California 5Washington University, St. Louis, Missouri 6University of Southern California, Los Angeles, California 7University of California, San Francisco, San Francisco, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zhang C, Li Q, Deng S, Fu W, Tang X, Chen G, Qin T, Li J. bFGF- and CaPP-Loaded Fibrin Clots Enhance the Bioactivity of the Tendon-Bone Interface to Augment Healing. Am J Sports Med 2016; 44:1972-82. [PMID: 27159301 DOI: 10.1177/0363546516637603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tendon-to-bone healing is a complex and slow process, and the rate of poor healing remains high. In recent years, several new strategies have been developed that enhance tendon-to-bone healing by increasing the bioactivity. Fibrin clots have been widely used to improve tissue healing and tissue engineering, HYPOTHESIS Modified fibrin clots can improve the bioactivity of the tendon-bone interface and histological appearance. STUDY DESIGN Controlled laboratory study. METHODS A total of 27 male New Zealand White rabbits were used. Of these, 3 were used for cell isolation, and the remaining 24 rabbits were divided into 2 groups (12 per group) for an in vivo partial patellectomy study. The setting time, degradation time, and basic fibroblast growth factor (bFGF) and ceramide-activated protein phosphatase (CaPP) release kinetics of bFGF- and CaPP-loaded fibrin clots were modified appropriately for early tendon-to-bone healing. In an in vitro experiment, the bFGF- and CaPP-loaded fibrin clots were assessed for cell migration and proliferation by microscopy, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, and DAPI (4',6-diamidino-2-phenylindole) assay. Quantitative real-time reverse transcription polymerase chain reaction and a Western blot assay were performed to test for an induction effect of the bFGF- and CaPP-loaded fibrin clots. Finally, for the in vivo experiment, the rabbits were divided into 2 treatment groups: one with bFGF- and CaPP-loaded fibrin clots and one without bFGF- and CaPP-loaded fibrin clots after partial patellectomy in patella-patellar tendon sutured sites. A histological evaluation was performed at 2, 4, and 6 weeks after surgery. RESULTS The sitting time and degradation time of the bFGF- and CaPP-loaded fibrin clots were set at 15 seconds and more than 2 weeks, respectively, and the porosity was minimized to achieve the highest levels of cell migration and growth. In the bFGF-CaPP group of the in vitro experiment, cell proliferation increased to a greater extent relative to the control group (P < .05); the mRNA expression of osteopontin, alkaline phosphatase, runt-related transcription factor 2, vascular endothelial growth factor, and collagen type I was upregulated (P < .05); and the relative protein expression of these factors was enhanced (P < .05). In vivo, hematoxylin and eosin staining showed that the tendon-to-bone connections were more mature and more arranged when treated with bFGF- and CaPP-loaded fibrin clots than when untreated, and the histological scores were higher. CONCLUSION bFGF- and CaPP-loaded fibrin clots enhanced cell migration and proliferation and the expression of related genes and proteins, which increased the bioactivity of the tendon-bone interface and resulted in the histological improvement of tendon-to-bone healing. CLINICAL RELEVANCE As fibrin clots have already been used in clinical practice, bFGF- and CaPP-loaded fibrin clots can be further used to augment healing in the early stages of tendon-to-bone healing.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Li
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Senlin Deng
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weili Fu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Chen
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tingwu Qin
- Institute of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
90
|
Abstract
Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation.
Collapse
|
91
|
Heinemeier KM, Lorentzen MP, Jensen JK, Schjerling P, Seynnes OR, Narici MV, Kjaer M. Local trauma in human patellar tendon leads to widespread changes in the tendon gene expression. J Appl Physiol (1985) 2016; 120:1000-10. [DOI: 10.1152/japplphysiol.00870.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023] Open
Abstract
Low cellular activity and slow tissue turnover in human tendon may prolong resolution of tendinopathy. This may be stimulated by moderate localized traumas such as needle penetrations, but whether this results in a widespread cellular response in tendons is unknown. In an initial hypothesis-generating study, a trauma-induced tendon cell activity (increased total RNA and collagen I mRNA) was observed after repeated patellar tendon biopsies in young men. In a subsequent controlled study, 25 young men were treated with two 0.8-mm-diameter needle penetrations [ n = 13, needle-group (NG)] or one 2.1-mm-diameter needle biopsy [ n = 12, biopsy-group (BG)] in one patellar tendon. Four weeks later biopsies were taken from treated (5 mm lateral from trauma site) and contralateral tendons for analyses of RNA content (ribogreen assay), DNA content (PCR based), and gene expression for relevant target genes (Real-time RT-PCR) (NG, n = 11 and BG, n = 8). Intervention increased RNA content, and mRNA expression of collagen I and III and TGF-β1 ( P < 0.05), with biopsy treatment having greatest effect (tendency for RNA and collagen I). Results for DNA content were inconclusive, and no changes were detected in expression of insulin-like growth factor-I, connective tissue growth factor, scleraxis, decorin, fibromodulin, tenascin-C, tenomodulin, VEGFa, CD68, IL-6, MMP12, and MMP13. In conclusion, a moderate trauma to a healthy human tendon (e.g., biopsy sampling) results in a widespread upregulation of tendon cell activity and their matrix protein expression. The findings have implications for design of studies on human tendon and may provide perspectives in future treatment strategies in tendinopathy.
Collapse
Affiliation(s)
- Katja M. Heinemeier
- Department of Biomedical Sciences, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marc P. Lorentzen
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob K. Jensen
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Olivier R. Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway; and
| | - Marco V. Narici
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, United Kingdom
| | - Michael Kjaer
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
92
|
Shukunami C, Yoshimoto Y, Takimoto A, Yamashita H, Hiraki Y. Molecular characterization and function of tenomodulin, a marker of tendons and ligaments that integrate musculoskeletal components. JAPANESE DENTAL SCIENCE REVIEW 2016; 52:84-92. [PMID: 28408960 PMCID: PMC5390337 DOI: 10.1016/j.jdsr.2016.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
Tendons and ligaments are dense fibrous bands of connective tissue that integrate musculoskeletal components in vertebrates. Tendons connect skeletal muscles to the bone and function as mechanical force transmitters, whereas ligaments bind adjacent bones together to stabilize joints and restrict unwanted joint movement. Fibroblasts residing in tendons and ligaments are called tenocytes and ligamentocytes, respectively. Tenomodulin (Tnmd) is a type II transmembrane glycoprotein that is expressed at high levels in tenocytes and ligamentocytes, and is also present in periodontal ligament cells and tendon stem/progenitor cells. Tnmd is related to chondromodulin-1 (Chm1), a cartilage-derived angiogenesis inhibitor, and both Tnmd and Chm1 are expressed in the CD31− avascular mesenchyme. The conserved C-terminal hydrophobic domain of these proteins, which is characterized by the eight Cys residues to form four disulfide bonds, may have an anti-angiogenic function. This review highlights the molecular characterization and function of Tnmd, a specific marker of tendons and ligaments.
Collapse
Affiliation(s)
- Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Aki Takimoto
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Yamashita
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
93
|
Dex S, Lin D, Shukunami C, Docheva D. Tenogenic modulating insider factor: Systematic assessment on the functions of tenomodulin gene. Gene 2016; 587:1-17. [PMID: 27129941 DOI: 10.1016/j.gene.2016.04.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/20/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Tenomodulin (TNMD, Tnmd) is a gene highly expressed in tendon known to be important for tendon maturation with key implications for the residing tendon stem/progenitor cells as well as for the regulation of endothelial cell migration in chordae tendineae cordis in the heart and in experimental tumour models. This review aims at providing an encompassing overview of this gene and its protein. In addition, its known expression pattern as well as putative signalling pathways will be described. A chronological overview of the discovered functions of this gene in tendon and other tissues and cells is provided as well as its use as a tendon and ligament lineage marker is assessed in detail and discussed. Last, information about the possible connections between TNMD genomic mutations and mRNA expression to various diseases is delivered. Taken together this review offers a solid synopsis on the up-to-date information available about TNMD and aids at directing and focusing the future research to fully uncover the roles and implications of this interesting gene.
Collapse
Affiliation(s)
- Sarah Dex
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Dasheng Lin
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany; Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|