51
|
Shurin MR, Ma Y, Keskinov AA, Zhao R, Lokshin A, Agassandian M, Shurin GV. BAFF and APRIL from Activin A-Treated Dendritic Cells Upregulate the Antitumor Efficacy of Dendritic Cells In Vivo. Cancer Res 2016; 76:4959-69. [PMID: 27364554 DOI: 10.1158/0008-5472.can-15-2668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
The members of the TGFβ superfamily play a key role in regulating developmental and homeostasis programs by controlling differentiation, proliferation, polarization, and survival of different cell types. Although the role of TGFβ1 in inflammation and immunity is well evident, the contribution of other TGFβ family cytokines in the modulation of the antitumor immune response remains less documented. Here we show that activin A triggers SMAD2 and ERK1/2 pathways in dendritic cells (DC) expressing type I and II activin receptors, and upregulates production of the TNFα family cytokines BAFF (TALL-1, TNFSF13B) and APRIL (TALL-2, TNFSF13A), which is blocked by SMAD2 and ERK1/2 inhibitors, respectively. BAFF and APRIL derived from activin A-treated DCs upregulate proliferation and survival of T cells expressing the corresponding receptors, BAFF-R and TACI. In vivo, activin A-stimulated DCs demonstrate a significantly increased ability to induce tumor-specific CTLs and inhibit the growth of melanoma and lung carcinoma, which relies on DC-derived BAFF and APRIL, as knockdown of the BAFF and APRIL gene expression in activin A-treated DCs blocks augmentation of their antitumor potential. Although systemic administration of activin A, BAFF, or APRIL for the therapeutic purposes is not likely due to the pluripotent effects on malignant and nonmalignant cells, our data open a novel opportunity for improving the efficacy of DC vaccines. In fact, a significant augmentation of the antitumor activity of DC pretreated with activin A and the proven role of DC-derived BAFF and APRIL in the induction of antitumor immunity in vivo support this direction. Cancer Res; 76(17); 4959-69. ©2016 AACR.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Yang Ma
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Anton A Keskinov
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ruijing Zhao
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Anna Lokshin
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Marianna Agassandian
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
52
|
Miyamoto Y, Hanna DL, Zhang W, Baba H, Lenz HJ. Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment. Clin Cancer Res 2016; 22:3999-4004. [PMID: 27340276 DOI: 10.1158/1078-0432.ccr-16-0495] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022]
Abstract
Cancer cachexia is a multifactorial syndrome characterized by an ongoing loss of skeletal muscle mass, which negatively affects quality of life and portends a poor prognosis. Numerous molecular substrates and mechanisms underlie the dysregulation of skeletal muscle synthesis and degradation observed in cancer cachexia, including proinflammatory cytokines (TNFα, IL1, and IL6), and the NF-κB, IGF1/AKT/mTOR, and myostatin/activin-SMAD pathways. Recent preclinical and clinical studies have demonstrated that anti-cachexia drugs (such as MABp1 and soluble receptor antagonist of myostatin/activin) not only prevent muscle wasting but also may prolong overall survival. In this review, we focus on the significance of cachexia signaling in patients with cancer and highlight promising drugs targeting tumor cachexia in clinical development. Clin Cancer Res; 22(16); 3999-4004. ©2016 AACR.
Collapse
Affiliation(s)
- Yuji Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Diana L Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
53
|
Link AS, Zheng F, Alzheimer C. Activin Signaling in the Pathogenesis and Therapy of Neuropsychiatric Diseases. Front Mol Neurosci 2016; 9:32. [PMID: 27242425 PMCID: PMC4861723 DOI: 10.3389/fnmol.2016.00032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 01/29/2023] Open
Abstract
Activins are members of the transforming growth factor β (TGFβ) family and serve as multifunctional regulatory proteins in many tissues and organs. In the brain, activin A, which is formed by two disulfide-linked βA subunits, is recognized as the predominant player in activin signaling. Over the last years, considerable progress has been made in elucidating novel and unexpected functions of activin in the normal and diseased brain and in deciphering the underlying molecular mechanisms. Initially identified as a neurotrophic and protective factor during development and in several forms of acute injury, the scope of effects of activin A in the adult central nervous system (CNS) has been considerably broadened by now. Here, we will highlight recent findings that bear significance for a better understanding of the pathogenesis of various neuropsychiatric diseases and might hold promise for novel therapeutic strategies. While the basal level of activin A in the adult brain is low, significant short-term up-regulation occurs in response to increased neuronal activity. In fact, brief exposure to an enriched environment (EE) is already sufficient to considerably strengthen activin signaling. Enhancement of this pathway tunes the performance of glutamatergic and GABAergic synapses in a fashion that impacts on cognitive functions and affective behavior, counteracts death-inducing signals through extrasynaptic NMDA receptors (NMDARs), and stimulates adult neurogenesis in the hippocampus. We will discuss how impaired activin signaling is involved in anxiety disorders, depression, drug dependence, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and how reinforcement of activin signaling might be exploited for therapeutic interventions.
Collapse
Affiliation(s)
- Andrea S Link
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|
54
|
Sangkop F, Singh G, Rodrigues E, Gold E, Bahn A. Uric acid: a modulator of prostate cells and activin sensitivity. Mol Cell Biochem 2016; 414:187-99. [PMID: 26910779 DOI: 10.1007/s11010-016-2671-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
Abstract
Elevated serum uric acid (SUA) or urate is associated with inflammation and gout. Recent evidence has linked urate to cancers, but little is known about urate effects in prostate cancer. Activins are inflammatory cytokines and negative growth regulators in the prostate. A hallmark of prostate cancer progression is activin insensitivity; however, mechanisms underlying this are unclear. We propose that elevated SUA is associated with prostate cancer counteracting the growth inhibitory effects of activins. The expression of activins A and B, urate transporter GLUT9 and tissue urate levels were examined in human prostate disease. Intracellular and secreted urate and GLUT9 expression were assessed in human prostate cancer cell lines. Furthermore, the effects of urate and probenecid, a known urate transport inhibitor, were determined in combination with activin A. Activin A expression was increased in low-grade prostate cancer, whereas activin B expression was reduced in high-grade prostate cancer. Intracellular urate levels decreased in all prostate pathologies, while GLUT9 expression decreased in benign prostatic hyperplasia, prostatitis and high-grade prostate cancer. Activin responsive LNCaP cells had higher intracellular and lower secreted urate levels than activin-insensitive PC3 cells. GLUT9 expression in prostate cancer cells was progressively lower than in prostate epithelial cells. Elevated extracellular urate was growth promoting in vitro, which was abolished by the gout medication probenecid, and it antagonized the growth inhibitory effects of activins. This study shows for the first time that a change in plasma or intracellular urate levels, possibly involving GLUT9 and a urate efflux transporter, has an impact on prostate cancer cell growth, and that lowering SUA levels in prostate cancer is likely to be therapeutically beneficial.
Collapse
Affiliation(s)
- Febbie Sangkop
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Geeta Singh
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Ely Rodrigues
- Department of Physiology, University of Otago, PO Box 913, Dunedin, 9054, New Zealand
| | - Elspeth Gold
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Andrew Bahn
- Department of Physiology, University of Otago, PO Box 913, Dunedin, 9054, New Zealand.
| |
Collapse
|
55
|
Coutinho LM, Vieira EL, Dela Cruz C, Casalechi M, Teixeira AL, Del Puerto HL, Reis FM. Apoptosis modulation by activin A and follistatin in human endometrial stromal cells. Gynecol Endocrinol 2016; 32:161-5. [PMID: 26494397 DOI: 10.3109/09513590.2015.1103222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activin A is a growth factor that stimulates decidualization and is abundantly expressed in endometrial proliferative disorders. Nevertheless, whether it directly affects endometrial cell survival is still unknown. This study investigated the effects of activin A on total death and apoptosis rates and on tumor necrosis factor (TNF) release by human endometrial stromal cells (HESC). We performed a controlled prospective in vitro study using primary HESC cultures obtained from healthy reproductive age women (n = 11). Cells were treated with medium alone (control) or activin A (25 ng/mL) or activin A (25 ng/mL) and its antagonist follistatin (250 ng/mL). Apoptosis and total cell death were measured by flow cytometry, while TNF concentrations in culture media were quantified by ELISA. Activin A decreased the percentage of apoptotic/dead cells from 31% to 22% (p < 0.05, paired t-test) and reduced TNF levels in culture medium by 14%, but there was no linear correlation between TNF release and apoptotic rates. Both effects of activin A were reversed by follistatin. These findings indicate that activin A promotes HESC survival, possibly by a TNF-independent pathway. This mechanism may be critical to the actions of activin A upon stromal cell growth and differentiation in physiology and disease.
Collapse
Affiliation(s)
- Larissa M Coutinho
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Erica L Vieira
- b Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Cynthia Dela Cruz
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Maíra Casalechi
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Antonio L Teixeira
- b Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Helen L Del Puerto
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Fernando M Reis
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| |
Collapse
|
56
|
A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells. Sci Rep 2015; 5:17297. [PMID: 26616277 PMCID: PMC4663490 DOI: 10.1038/srep17297] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022] Open
Abstract
The human intestinal epithelium is a useful model for pharmacological studies of absorption, metabolism, drug interactions, and toxicology, as well as for studies of developmental biology. We established a rapid and cost effective system for differentiation of human induced pluripotent stem (iPS) cells into definitive endoderm (DE) cells. In the presence of dimethyl sulfoxide (DMSO), a low concentration of Activin at 6.25 ng/ml is sufficient to give a similar differentiation efficiency with that using Activin at 100 ng/ml at the presence of Wnt activator. In the presence of DMSO, Activin at low concentration triggered hiPS cells to undergo differentiation through G1 arrest, reduce apoptosis, and potentiate activation of downstream targets, such as SMAD2 phosphorylation and SOX17 expression. This increased differentiation into CDX2 + SOX17 + DE cells. The present differentiation procedure therefore permits rapid and efficient derivation of DE cells, capable of differentiating into intestinal epithelium upon BIO and DAPT treatment and of giving rise to functional cells, such as enterocytes.
Collapse
|
57
|
Bauer J, Ozden O, Akagi N, Carroll T, Principe DR, Staudacher JJ, Spehlmann ME, Eckmann L, Grippo PJ, Jung B. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer 2015; 14:182. [PMID: 26497569 PMCID: PMC4619565 DOI: 10.1186/s12943-015-0456-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/16/2015] [Indexed: 02/08/2023] Open
Abstract
Background Understanding cell signaling pathways that contribute to metastatic colon cancer is critical to risk stratification in the era of personalized therapeutics. Here, we dissect the unique involvement of mitogenic pathways in a TGFβ or activin-induced metastatic phenotype of colon cancer. Method Mitogenic signaling/growth factor receptor status and p21 localization were correlated in primary colon cancers and intestinal tumors from either AOM/DSS treated ACVR2A (activin receptor 2) −/− or wild type mice. Colon cancer cell lines (+/− SMAD4) were interrogated for ligand-induced PI3K and MEK/ERK pathway activation and downstream protein/phospho-isoform expression/association after knockdown and pharmacologic inhibition of pathway members. EMT was assessed using epithelial/mesenchymal markers and migration assays. Results In primary colon cancers, loss of nuclear p21 correlated with upstream activation of activin/PI3K while nuclear p21 expression was associated with TGFβ/MEK/ERK pathway activation. Activin, but not TGFβ, led to PI3K activation via interaction of ACVR1B and p85 independent of SMAD4, resulting in p21 downregulation. In contrast, TGFβ increased p21 via MEK/ERK pathway through a SMAD4-dependent mechanism. While activin induced EMT via PI3K, TGFβ induced EMT via MEK/ERK activation. In vivo, loss of ACVR2A resulted in loss of pAkt, consistent with activin-dependent PI3K signaling. Conclusion Although activin and TGFβ share growth suppressive SMAD signaling in colon cancer, they diverge in their SMAD4-independent pro-migratory signaling utilizing distinct mitogenic signaling pathways that affect EMT. p21 localization in colon cancer may determine a dominant activin versus TGFβ ligand signaling phenotype warranting further validation as a therapeutic biomarker prior to targeting TGFβ family receptors. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0456-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Bauer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Ozkan Ozden
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Naomi Akagi
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Timothy Carroll
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Daniel R Principe
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Jonas J Staudacher
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Martina E Spehlmann
- Department of Internal Medicine III, Cardiology and Angiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, CA, USA
| | - Paul J Grippo
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA
| | - Barbara Jung
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, 840 South Wood Street, 738A CSB, Chicago, IL, 60612, USA.
| |
Collapse
|
58
|
Bufalino A, Cervigne NK, de Oliveira CE, Fonseca FP, Rodrigues PC, Macedo CCS, Sobral LM, Miguel MC, Lopes MA, Leme AFP, Lambert DW, Salo TA, Kowalski LP, Graner E, Coletta RD. Low miR-143/miR-145 Cluster Levels Induce Activin A Overexpression in Oral Squamous Cell Carcinomas, Which Contributes to Poor Prognosis. PLoS One 2015; 10:e0136599. [PMID: 26317418 PMCID: PMC4552554 DOI: 10.1371/journal.pone.0136599] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Deregulated expression of activin A is reported in several tumors, but its biological functions in oral squamous cell carcinoma (OSCC) are unknown. Here, we investigate whether activin A can play a causal role in OSCCs. Activin A expression was assessed by qPCR and immunohistochemistry in OSCC tissues. Low activin A-expressing cells were treated with recombinant activin A and assessed for apoptosis, proliferation, adhesion, migration, invasion and epithelial-mesenchymal transition (EMT). Those phenotypes were also evaluated in high activin A-expressing cells treated with follistatin (an activin A antagonist) or stably expressing shRNA targeting activin A. Transfections of microRNA mimics were performed to determine whether the overexpression of activin A is regulated by miR-143/miR-145 cluster. Activin A was overexpressed in OSCCs in comparison with normal oral mucosa, and high activin A levels were significantly associated with lymph node metastasis, tumor differentiation and poor survival. High activin A levels promoted multiple properties associated with malignant transformation, including decreased apoptosis and increased proliferation, migration, invasion and EMT. Both miR-143 and miR-145 were markedly downregulated in OSCC cell lines and in clinical specimens, and inversely correlated to activin A levels. Forced expression of miR-143 and miR-145 in OSCC cells significantly decreased the expression of activin A. Overexpression of activin A in OSCCs, which is controlled by downregulation of miR-143/miR-145 cluster, regulates apoptosis, proliferation and invasiveness, and it is clinically correlated with lymph node metastasis and poor survival.
Collapse
Affiliation(s)
- Andreia Bufalino
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | - Nilva K. Cervigne
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | | | - Felipe Paiva Fonseca
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | | | | | - Lays Martin Sobral
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | - Marcia Costa Miguel
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
- Department of Dentistry, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| | - Marcio Ajudarte Lopes
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | | | - Daniel W. Lambert
- Integrated Biosciences, School of Clinical Dentistry and Sheffield Cancer Centre, University of Sheffield, Sheffield, United Kingdom
| | - Tuula A. Salo
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
- Department of Diagnostics and Oral Medicine, Institute of Dentistry and Oulu University Hospital and Medical Research Center, University of Oulu, Oulu and Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A. C. Camargo Cancer Center, São Paulo-SP, Brazil
| | - Edgard Graner
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
| | - Ricardo D. Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba-SP, Brazil
- * E-mail:
| |
Collapse
|
59
|
Link AS, Kurinna S, Havlicek S, Lehnert S, Reichel M, Kornhuber J, Winner B, Huth T, Zheng F, Werner S, Alzheimer C. Kdm6b and Pmepa1 as Targets of Bioelectrically and Behaviorally Induced Activin A Signaling. Mol Neurobiol 2015. [PMID: 26215835 DOI: 10.1007/s12035-015-9363-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The transforming growth factor-β (TGF-β) family member activin A exerts multiple neurotrophic and protective effects in the brain. Activin also modulates cognitive functions and affective behavior and is a presumed target of antidepressant therapy. Despite its important role in the injured and intact brain, the mechanisms underlying activin effects in the CNS are still largely unknown. Our goal was to identify the first target genes of activin signaling in the hippocampus in vivo. Electroconvulsive seizures, a rodent model of electroconvulsive therapy in humans, were applied to C57BL/6J mice to elicit a strong increase in activin A signaling. Chromatin immunoprecipitation experiments with hippocampal lysates subsequently revealed that binding of SMAD2/3, the intracellular effectors of activin signaling, was significantly enriched at the Pmepa1 gene, which encodes a negative feedback regulator of TGF-β signaling in cancer cells, and at the Kdm6b gene, which encodes an epigenetic regulator promoting transcriptional plasticity. Underlining the significance of these findings, activin treatment also induced PMEPA1 and KDM6B expression in human forebrain neurons generated from embryonic stem cells suggesting interspecies conservation of activin effects in mammalian neurons. Importantly, physiological stimuli such as provided by environmental enrichment proved already sufficient to engender a rapid and significant induction of activin signaling concomitant with an upregulation of Pmepa1 and Kdm6b expression. Taken together, our study identified the first target genes of activin signaling in the brain. With the induction of Kdm6b expression, activin is likely to gain impact on a presumed epigenetic regulator of activity-dependent neuronal plasticity.
Collapse
Affiliation(s)
- Andrea S Link
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Svitlana Kurinna
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven Havlicek
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054, Erlangen, Germany
- Present address: Stem Cell and Regenerative Biology, Genome Institute of Singapore, A*STAR, 60 Biopolis Street, 138672, Singapore, Singapore
| | - Sandra Lehnert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Beate Winner
- IZKF Junior Research Group and BMBF Research Group Neuroscience, IZKF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstr. 6, 91054, Erlangen, Germany
| | - Tobias Huth
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.
| |
Collapse
|
60
|
Nabissi M, Morelli MB, Amantini C, Liberati S, Santoni M, Ricci-Vitiani L, Pallini R, Santoni G. Cannabidiol stimulates Aml-1a-dependent glial differentiation and inhibits glioma stem-like cells proliferation by inducing autophagy in a TRPV2-dependent manner. Int J Cancer 2015; 137:1855-69. [DOI: 10.1002/ijc.29573] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/15/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Massimo Nabissi
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
| | - Maria Beatrice Morelli
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
- Department of Molecular Medicine; Sapienza University; Rome Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine; University of Camerino; Camerino Italy
| | - Sonia Liberati
- Department of Molecular Medicine; Sapienza University; Rome Italy
| | - Matteo Santoni
- Clinica Di Oncologia Medica; AOU Ospedali Riuniti-Università Politecnica Delle Marche; Ancona Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine; Istituto Superiore Di Sanità; Rome Italy
| | - Roberto Pallini
- Department of Neurosurgery; Università Cattolica Del Sacro Cuore; Rome Italy
| | - Giorgio Santoni
- Section of Experimental Medicine, School of Pharmacy; University of Camerino; Camerino Italy
| |
Collapse
|
61
|
Abstract
OBJECTIVE The aim of this study was to investigate the effects of nerve growth factor (NGF) neutralization on synthesis and secretion of activin A (Act-A) and betacellulin (BTC) from primary β cells and the importance of these relations for β-cell proliferation. METHODS β Cells were isolated from euglycemic and streptozotocin-induced (75 mg/kg) hyperglycemic rats and treated with NGF neutralization antibody. The gene expression levels of Act-A and BTC in the primary β cells were evaluated using quantitative real-time polymerase chain reaction. The cellular and secreted levels of Act-A and BTC proteins were estimated using Western blot analysis. RESULTS Nerve growth factor neutralization (1) reduced β-cell proliferation, (2) decreased Act-A at gene expression and protein levels while increasing its secretion from β cells, and (3) increased BTC at gene expression level while mildly decreasing its cellular protein level and secretion from β cells. Nerve growth factor neutralization specifically affected β cells of hyperglycemic rats. CONCLUSIONS These findings indicate that NGF is an important regulator for the synthesis and secretion of Act-A and BTC from the β cells. Moreover, the results suggested that β-cell proliferation decreased through NGF neutralization is possibly related to decreased BTC and increased Act-A secretion from β cells of hyperglycemic rats.
Collapse
|
62
|
Koszinowski S, Buss K, Kaehlcke K, Krieglstein K. Signaling via the transcriptionally regulated activin receptor 2B is a novel mediator of neuronal cell death during chicken ciliary ganglion development. Int J Dev Neurosci 2015; 41:98-104. [PMID: 25660516 DOI: 10.1016/j.ijdevneu.2015.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 11/25/2022] Open
Abstract
The TGF-β ligand superfamily members activin A and BMP control important aspects of embryonic neuronal development and differentiation. Both are known to bind to activin receptor subtypes IIA (ActRIIA) and IIB, while in the avian ciliary ganglion (CG), so far only ActRIIA-expression has been described. We show that the expression of ACVR2B, coding for the ActRIIB, is tightly regulated during CG development and the knockdown of ACVR2B expression leads to a deregulation in the execution of neuronal apoptosis and therefore affects ontogenetic programmed cell death in vivo. While the differentiation of choroid neurons was impeded in the knockdown, pointing toward a reduction in activin A-mediated neural differentiation signaling, naturally occurring neuronal cell death in the CG was not prevented by follistatin treatment. Systemic injections of the BMP antagonist noggin, on the other hand, reduced the number of apoptotic neurons to a similar extent as ACVR2B knockdown. We therefore propose a novel pathway in the regulation of CG neuron ontogenetic programmed cell death, which could be mediated by BMP and signals via the ActRIIB.
Collapse
Affiliation(s)
- S Koszinowski
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany.
| | - K Buss
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - K Kaehlcke
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany
| | - K Krieglstein
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, D-79104 Freiburg, Germany.
| |
Collapse
|
63
|
Zhu J, Liu F, Wu Q, Liu X. Activin A regulates proliferation, invasion and migration in osteosarcoma cells. Mol Med Rep 2015; 11:4501-7. [PMID: 25634369 DOI: 10.3892/mmr.2015.3284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 01/02/2015] [Indexed: 11/06/2022] Open
Abstract
Activin A is a member of the TGF‑β superfamily. Previous studies have demonstrated that activin A exhibited pluripotent effects in several tumours. However, the roles of activin A signaling in osteosarcoma pathogenesis have not been previously investigated. Therefore, the present study aimed to investigate the effects of activin A on osteosarcoma cell proliferation, invasion and migration. Firstly, the expression of activin A in osteosarcoma cell lines (MG63, SaOS‑2 and U2OS) and a human osteoblastic cell line (hFOB1.19) was detected using reverse transcription quantitative polymerase chain reaction and western blotting. Activin A was upregulated in osteosarcoma cell lines compared with hFOB1.19 cells. To investigate the effects of activin A on osteosarcoma cell proliferation, invasion and migration, MG63 cells were generated in which activin A was either overexpressed or depleted. MTT staining, propidium iodide staining and a Transwell assay were used to analyze the cell cycle, proliferation, invasion and migration of MG63 cells, respectively. The results of the present study revealed that the abilities of proliferation, invasion and migration were suppressed in MG63 cells in which activin A was depleted, while they were enhanced in activin A-overexpressing cells. In conclusion, the results of the present study suggested that activin A may facilitate proliferation, invasion and migration of osteosarcoma cells, and it may therefore be a potential target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fan Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Quanming Wu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiancheng Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
64
|
Kumar SS, Alarfaj AA, Munusamy MA, Singh AJAR, Peng IC, Priya SP, Hamat RA, Higuchi A. Recent developments in β-cell differentiation of pluripotent stem cells induced by small and large molecules. Int J Mol Sci 2014; 15:23418-47. [PMID: 25526563 PMCID: PMC4284775 DOI: 10.3390/ijms151223418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
Collapse
Affiliation(s)
- S Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - A J A Ranjith Singh
- Department of Bioscience, Jacintha Peter College of Arts and Sciences, Ayakudi, Tenkasi, Tamilnadu 627852, India.
| | - I-Chia Peng
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan 32001, Taiwan.
| | - Sivan Padma Priya
- Department of Basic Science and Department of Surgical Sciences, Ajman University of Science and Technology-Fujairah Campus, P.O. Box 9520, Al Fujairah, United Arab Emirates.
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Universities Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Akon Higuchi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
65
|
Lee HY, Li CC, Huang CN, Li WM, Yeh HC, Ke HL, Yang KF, Liang PI, Li CF, Wu WJ. INHBA overexpression indicates poor prognosis in urothelial carcinoma of urinary bladder and upper tract. J Surg Oncol 2014; 111:414-22. [PMID: 25488476 DOI: 10.1002/jso.23836] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/13/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Urothelial carcinoma (UC) originating from the bladder (UBUC) and upper urinary tract (UTUC) is the most common type of urinary tract tumor. While its pathogenesis remains obscured. Computerizing a published transcriptomic database of UBUC (GSE31684), we identified Inhibin, Beta A (INHBA) as the most significant upregulated gene associated with tumor progression among those associated with growth factor activity (GO:0008083). We therefore analyzed the clinicopathological significance of INHBA expression in UC. DESIGN QuantiGene assay was used to detect INHBA transcript level in 36 UTUCs and 30 UBUCs. Immunohistochemistry evaluated by H-score was used to determine INHBA protein expression in 340 UTUCs and 296 UBUCs. INHBA expression was correlated with clinicopathological features and disease-specific survival (DSS) and metastasis-free survival (MeFS). RESULTS Increments of INHBA transcript level was associated with higher pT status in both UTUC and UBUC. INHBA protein overexpression was significantly associated with advanced clinicopathological features in both groups of UC. INHBA overexpression significantly implied inferior DSS (UTUC, P = 0.002; UBUC, P = 0.005) and MeFS (UTUC and UBUC, both P < 0.001) in multivariate analysis. CONCLUSION INHBA overexpression implies adverse clinical outcomes for UC, justifying it is a potential prognostic biomarker and a novel therapeutic target in UC.
Collapse
Affiliation(s)
- Hsiang-Ying Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Engineering TGF-β superfamily ligands for clinical applications. Trends Pharmacol Sci 2014; 35:648-57. [PMID: 25458539 DOI: 10.1016/j.tips.2014.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/11/2022]
Abstract
TGF-β superfamily ligands govern normal tissue development and homeostasis, and their dysfunction is a hallmark of many diseases. These ligands are also well defined both structurally and functionally. This review focuses on TGF-β superfamily ligand engineering for therapeutic purposes, in particular for regenerative medicine and musculoskeletal disorders. We describe the key discovery that structure-guided mutation of receptor-binding epitopes, especially swapping of these epitopes between ligands, results in new ligands with unique functional properties that can be harnessed clinically. Given the promising results with prototypical engineered TGF-β superfamily ligands, and the vast number of such molecules that remain to be produced and tested, this strategy is likely to hold great promise for the development of new biologics.
Collapse
|
67
|
Gao RF, Li ZD, Jiang J, Yang LH, Zhu KT, Lin RX, Li H, Zhao Q, Zhang NS. hARIP2 is a putative growth-promoting factor involved in human colon tumorigenesis. Asian Pac J Cancer Prev 2014; 15:8581-6. [PMID: 25374171 DOI: 10.7314/apjcp.2014.15.20.8581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Activin is a multifunctional growth and differentiation factor of the growth factor-beta (TGF-β) superfamily, which inhibits the proliferation of colon cancer cells. It induces phosphorylation of intracellular signaling molecules (Smads) by interacting with its type I and type II receptors. Previous studies showed that human activin receptor-interacting protein 2 (hARIP2) can reduce activin signaling by interacting with activin type II receptors; however, the activity of hARIP2 in colon cancer has yet to be detailed. In vitro, overexpression of hARIP2 reduced activin-induced transcriptional activity and enhanced cell proliferation and colony formation in human colon cancer HCT8 cells and SW620 cells. Also, hARIP2 promoted colon cancer cell apoptosis, suggesting that a vital role in the initial stage of colon carcinogenesis. In vivo, immunohistochemistry revealed that hARIP2 was expressed more frequently and much more intensely in malignant colon tissues than in controls. These results indicate that hARIP2 is involved in human colon tumorigenesis and could be a predictive maker for colon carcinoma aggressiveness.
Collapse
Affiliation(s)
- Rui-Feng Gao
- Changchun University of Science and Technology, Changchun, China E-mail : , ,
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Zhao B, Chen YG. Regulation of TGF-β Signal Transduction. SCIENTIFICA 2014; 2014:874065. [PMID: 25332839 PMCID: PMC4190275 DOI: 10.1155/2014/874065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/02/2014] [Indexed: 05/30/2023]
Abstract
Transforming growth factor-β (TGF-β) signaling regulates diverse cellular processes, including cell proliferation, differentiation, apoptosis, cell plasticity, and migration. TGF-β signaling can be mediated by Smad proteins or other signaling proteins such as MAP kinases and Akt. TGF-β signaling is tightly regulated at different levels along the pathways to ensure its proper physiological functions in different cells and tissues. Deregulation of TGF-β signaling has been associated with various kinds of diseases, such as cancer and tissue fibrosis. This paper focuses on our recent work on regulation of TGF-β signaling.
Collapse
Affiliation(s)
- Bing Zhao
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
69
|
Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice. PLoS One 2014; 9:e102271. [PMID: 25122137 PMCID: PMC4133190 DOI: 10.1371/journal.pone.0102271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023] Open
Abstract
MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1epi−/−) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1epi−/− and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1epi−/− mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1epi−/− mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1epi−/− keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1epi−/− keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1epi−/− keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1epi−/− keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1epi−/− mice. On the other hand, skin wound healing in 6-month-old Med1epi−/− mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1epi−/− mice, indicating a decreased contribution of hair follicle stem cells to epidermal regeneration after wounding in 6-month-old Med1epi−/− mice. This study sheds light on the novel function of MED1 in keratinocytes and suggests a possible new therapeutic approach for skin wound healing and aging.
Collapse
|
70
|
Walter J, Harder O, Faendrich F, Schulze M. Generation of monocyte-derived insulin-producing cells from non-human primates according to an optimized protocol for the generation of PCMO-derived insulin-producing cells. J Clin Res Pediatr Endocrinol 2014; 6:93-9. [PMID: 24932602 PMCID: PMC4141582 DOI: 10.4274/jcrpe.1284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE The vision of potential autologous cell therapy for the cure of diabetes encourages ongoing research. According to a previously published protocol for the generation of insulin-producing cells from human monocytes, we analyzed whether the addition of growth factors could increase insulin production. This protocol was then transferred to a non-human primate model by using either blood- or spleen-derived monocytes. METHODS Human monocytes were treated to dedifferentiate into programmable cells of monocytic origin (PCMO). In addition to the published protocol, PCMOs were then treated with either activin A, betacellulin, exendin 3 or 4. Cells were characterized by protein expression of insulin, Pdx-1, C-peptide and Glut-2. After identifying the optimal protocol, monocytes from baboon blood were isolated and the procedure was repeated. Spleen monocytes following splenectomy of a live baboon were differentiated and analyzed in the same manner and calculated in number and volume. RESULTS Insulin content of human cells was highest when cells were treated with activin A and their insulin content was 13,000 µU/1 million cells. Insulin-producing cells form primate monocytes could successfully be generated despite using human growth factors and serum. Expression of insulin, Pdx-1, C-peptide and Glut-2 was comparable to that of human neo-islets. Total insulin content of activin A-treated baboon monocytes was 16,000 µU/1 million cells. CONCLUSION We were able to show that insulin-producing cells can be generated from baboon monocytes with human growth factors. The amount generated from one spleen could be enough to cure a baboon from experimentally induced diabetes in an autologous cell transplant setting.
Collapse
Affiliation(s)
- Jessica Walter
- University Hospital Essen, Department of General, Visceral and Transplantation Surgery, Hufelandstrasse 55, 45147 Essen, Germany. E-ma-il:
| | - Ole Harder
- Schleswig Holsetin University Hospital, Campus Kiel, Department of General, Thoracic, Transplantation and Pediatric Surgery, Kiel, Germany
| | - Fred Faendrich
- Schleswig Holsetin University Hospital, Campus Kiel, Department of General, Thoracic, Transplantation and Pediatric Surgery, Kiel, Germany
| | - Maren Schulze
- University Hospital Essen, Department of General, Visceral and Transplantation Surgery, Essen, Germany
,* Address for Correspondence: University Hospital Essen, Department of General, Visceral and Transplantation Surgery, Hufelandstrasse 55, 45147 Essen, Germany Phone: +4920172384003 E-mail:
| |
Collapse
|
71
|
Kelner N, Rodrigues PC, Bufalino A, Fonseca FP, Santos-Silva ARD, Miguel MCC, Pinto CAL, Leme AFP, Graner E, Salo T, Kowalski LP, Coletta RD. Activin A immunoexpression as predictor of occult lymph node metastasis and overall survival in oral tongue squamous cell carcinoma. Head Neck 2014; 37:479-86. [PMID: 24677273 DOI: 10.1002/hed.23627] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 11/04/2013] [Accepted: 02/10/2014] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The presence of regional lymph node metastasis has an important impact on clinical management and prognostication of patients with oral tongue squamous cell carcinoma (SCC). Approximately 30% to 50% of patients with oral tongue SCC have regional metastasis at diagnosis, but the limited sensibility of the current diagnostic methods used for neck staging does not allow detection of all cases, leaving a significant number of undiagnosed metastasis (occult lymph node metastasis). In this study, we evaluated whether clinicopathologic features and immunohistochemical detection of carcinoma-associated fibroblasts (CAFs) and activin A could be predictive markers for occult lymph node metastasis in oral tongue SCC. METHODS One hundred ten patients with primary oral tongue SCC, who were classified with early stage tumor (stage I and II) and received surgical treatment with elective neck dissection, were enrolled in the study. RESULTS Among all examined features, only high immunohistochemical expression of activin A was significantly associated with presence of occult lymph node metastasis (p = .006). Multivariate survival analysis using the Cox proportional hazard model showed that the expression of activin A was an independent marker of reduced overall survival with a 5-year survival of 89.7% for patients with low expression compared to 76.5% for those with high expression (hazard ratio [HR], 2.44; 95% confidence interval [CI], 1.55-3.85; p = .012). CONCLUSION Our results demonstrated that immunodetection of activin A can be useful for prognostication of oral tongue SCC, revealing patients with occult lymph node metastasis and lower overall survival.
Collapse
Affiliation(s)
- Natalie Kelner
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Sengupta D, Bhargava DK, Dixit A, Sahoo BS, Biswas S, Biswas G, Mishra SK. ERRβ signalling through FST and BCAS2 inhibits cellular proliferation in breast cancer cells. Br J Cancer 2014; 110:2144-58. [PMID: 24667650 PMCID: PMC3992508 DOI: 10.1038/bjc.2014.53] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/06/2013] [Accepted: 01/13/2014] [Indexed: 12/11/2022] Open
Abstract
Background: The overexpression of oestrogen-related receptor-β (ERRβ) in breast cancer patients is correlated with improved prognosis and longer relapse-free survival, and the level of ERRβ mRNA is inversely correlated with the S-phase fraction of cells from breast cancer patients. Methods: Chromatin immunoprecipitation (ChIP) cloning of ERRβ transcriptional targets and gel supershift assays identified breast cancer amplified sequence 2 (BCAS2) and Follistatin (FST) as two important downstream genes that help to regulate tumourigenesis. Confocal microscopy, co-immunoprecipitation (CoIP), western blotting and quantitative real-time PCR confirmed the involvement of ERRβ in oestrogen signalling. Results: Overexpressed ERRβ induced FST-mediated apoptosis in breast cancer cells, and E-cadherin expression was also enhanced through upregulation of FST. However, this anti-proliferative signalling function was challenged by ERRβ-mediated BCAS2 upregulation, which inhibited FST transcription through the downregulation of β-catenin/TCF4 recruitment to the FST promoter. Interestingly, ERRβ-mediated upregulation of BCAS2 downregulated the major G1-S transition marker cyclin D1, despite the predictable oncogenic properties of BCAS2. Interpretation: Our study provides the first evidence that ERRβ, which is a coregulator of ERα also acts as a potential tumour-suppressor molecule in breast cancer. Our current report also provides novel insights into the entire cascade of ERRβ signalling events, which may lead to BCAS2-mediated blockage of the G1/S transition and inhibition of the epithelial to mesenchymal transition through FST-mediated regulation of E-cadherin. Importantly, matrix metalloprotease 7, which is a classical mediator of metastasis and E-cadherin cleavage, was also restricted as a result of ERRβ-mediated FST overexpression.
Collapse
Affiliation(s)
- D Sengupta
- Cancer Biology Laboratory, Department of Gene Function and Regulation, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - D K Bhargava
- Cancer Biology Laboratory, Department of Gene Function and Regulation, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - A Dixit
- Drug Design and Discovery, Department of Translational Research and Technology Development, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - B S Sahoo
- Confocal Microscopic Facility, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - S Biswas
- Department of Pathology, Sparsh Hospitals and Critical Care, A/407, Saheed Nagar, Bhubaneswar, Odisha 751007, India
| | - G Biswas
- Department of Medical Oncology, Sparsh Hospitals and Critical Care, A/407, Saheed Nagar, Bhubaneswar, Odisha 751007, India
| | - S K Mishra
- Cancer Biology Laboratory, Department of Gene Function and Regulation, Institute of Life Sciences (an Institute under the Department of Biotechnology, Government of India), Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| |
Collapse
|
73
|
Chen L, Zhang W, Liang HF, Zhou QF, Ding ZY, Yang HQ, Liu WB, Wu YH, Man Q, Zhang BX, Chen XP. Activin A induces growth arrest through a SMAD- dependent pathway in hepatic progenitor cells. Cell Commun Signal 2014; 12:18. [PMID: 24628936 PMCID: PMC3995548 DOI: 10.1186/1478-811x-12-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/08/2014] [Indexed: 02/07/2023] Open
Abstract
Background Activin A, an important member of transforming growth factor-β superfamily, is reported to inhibit proliferation of mature hepatocyte. However, the effect of activin A on growth of hepatic progenitor cells is not fully understood. To that end, we attempted to evaluate the potential role of activin A in the regulation of hepatic progenitor cell proliferation. Results Using the 2-acetaminofluorene/partial hepatectomy model, activin A expression decreased immediately after partial hepatectomy and then increased from the 9th to 15th day post surgery, which is associated with the attenuation of oval cell proliferation. Activin A inhibited oval cell line LE6 growth via activating the SMAD signaling pathway, which manifested as the phosphorylation of SMAD2/3, the inhibition of Rb phosphorylation, the suppression of cyclinD1 and cyclinE, and the promotion of p21WAF1/Cip1 and p15INK4B expression. Treatment with activin A antagonist follistatin or blocking SMAD signaling could diminish the anti-proliferative effect of activin A. By contrast, inhibition of the MAPK pathway did not contribute to this effect. Antagonizing activin A activity by follistatin administration enhanced oval cell proliferation in the 2-acetylaminofluorene/partial hepatectomy model. Conclusion Activin A, acting through the SMAD pathway, negatively regulates the proliferation of hepatic progenitor cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiao-ping Chen
- Hepatic surgery centre, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
74
|
SOX2 Is Regulated Differently from NANOG and OCT4 in Human Embryonic Stem Cells during Early Differentiation Initiated with Sodium Butyrate. Stem Cells Int 2014; 2014:298163. [PMID: 24707296 PMCID: PMC3951062 DOI: 10.1155/2014/298163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/07/2014] [Indexed: 01/04/2023] Open
Abstract
Transcription factors NANOG, OCT4, and SOX2 regulate self-renewal and pluripotency in human embryonic stem (hES) cells; however, their expression profiles during early differentiation of hES cells are unclear. In this study, we used multiparameter flow cytometric assay to detect all three transcription factors (NANOG, OCT4, and SOX2) simultaneously at single cell level and monitored the changes in their expression during early differentiation towards endodermal lineage (induced by sodium butyrate). We observed at least four distinct populations of hES cells, characterized by specific expression patterns of NANOG, OCT4, and SOX2 and differentiation markers. Our results show that a single cell can express both differentiation and pluripotency markers at the same time, indicating a gradual mode of developmental transition in these cells. Notably, distinct regulation of SOX2 during early differentiation events was detected, highlighting the potential importance of this transcription factor for self-renewal of hES cells during differentiation.
Collapse
|
75
|
Cheng JC, Chang HM, Qiu X, Fang L, Leung PCK. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors. Biochem Biophys Res Commun 2013; 443:537-42. [PMID: 24332943 DOI: 10.1016/j.bbrc.2013.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/02/2013] [Indexed: 11/25/2022]
Abstract
Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C>G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Xin Qiu
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Lanlan Fang
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynecology, Child & Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
76
|
Huang YW, Lee WH, Tsai YH, Huang HM. Activin A induction of erythroid differentiation sensitizes K562 chronic myeloid leukemia cells to a subtoxic concentration of imatinib. Am J Physiol Cell Physiol 2013; 306:C37-44. [PMID: 24088895 DOI: 10.1152/ajpcell.00130.2013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem/progenitor cell disorder in which Bcr-Abl oncoprotein inhibits cell differentiation. Differentiation induction is considered an alternative strategy for treating CML. Activin A, a member of the transforming growth factor-β superfamily, induces erythroid differentiation of CML cells through the p38 MAPK pathway. In this study, treatment of the K562 CML stem/progenitor cell line with activin A followed by a subtoxic concentration of the Bcr-Abl inhibitor imatinib strongly induced growth inhibition and apoptosis compared with simultaneous treatment with activin A and imatinib. Imatinib-induced growth inhibition and apoptosis following activin A pretreatment were dose- and time-dependent. Imatinib-induced growth inhibition and apoptosis were also dependent on the pretreatment dose of activin A. More than 90% of the activin A-induced increases in glycophorin A-positive cells were sensitive to imatinib. However, only some of original glycophorin A-positive cells in the activin A treatment group were sensitive to imatinib. Sequential treatment with activin A and imatinib decreased Bcr-Abl, procaspase-3, Mcl-1, and Bcl-xL and also induced cleavage of procaspase-3/poly(ADP-ribose)polymerase. The reduction of erythroid differentiation in p38 MAPK dominant-negative mutants or by short hairpin RNA knockdown of p38 MAPK decreased the growth inhibition and apoptosis mediated by sequential treatment with activin A and imatinib. Furthermore, the same inhibition level of multidrug resistance 1 expression was observed in cells treated with activin A alone, treated sequentially with activin A and imatinib, or treated simultaneously with activin A and imatinib. The p38 MAPK inhibitor SB-203580 can restore activin A-inhibited multidrug resistance 1 expression. Taken together, our results suggest that a subtoxic concentration of imatinib could exhibit strong cytotoxicity against erythroid-differentiated K562 CML cells.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | |
Collapse
|
77
|
Kaiser O, Paasche G, Stöver T, Ernst S, Lenarz T, Kral A, Warnecke A. TGF-beta superfamily member activin A acts with BDNF and erythropoietin to improve survival of spiral ganglion neurons in vitro. Neuropharmacology 2013; 75:416-25. [PMID: 23973291 DOI: 10.1016/j.neuropharm.2013.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/03/2013] [Accepted: 08/08/2013] [Indexed: 01/15/2023]
Abstract
Activins are regulators of embryogenesis, osteogenesis, hormones and neuronal survival. Even though activin receptor type II has been detected in spiral ganglion neurons (SGN), little is known about the role of activins in the inner ear. An activin-mediated neuroprotection is of considerable clinical interest since SGN are targets of electrical stimulation with cochlear implants in hearing impaired patients. Thus, the presence of activin type-I and type-II receptors was demonstrated immunocytochemically and the individual and combined effects of activin A, erythropoietin (EPO) and brain-derived neurotrophic factor (BDNF) on SGN were examined in vitro. SGN isolated from neonatal rats (P 3-5) were cultured in serum-free medium supplemented with activin A, BDNF and EPO. Compared to the negative control, survival rates of SGN were significantly improved when cultivated individually with activin A (p<0.001) and in combination with BDNF (p<0.001). Neither neurite outgrowth nor neuronal survival was influenced by the addition of EPO to activin A-treated neurons. However, when all three factors were added, a significantly (p<0.001) improved neuronal survival was observed (61.2±3.6%) compared to activin A (25.4±2.1%), BDNF (22.8±3.3%) and BDNF+EPO (19.2±1.5%). Under the influence of the EPO-inhibitors, this increase in neuronal survival was blocked. Acting with BDNF and EPO to promote neuronal survival in vitro, activin A presents an interesting factor for pharmacological intervention in the inner ear. The present study demonstrates a synergetic effect of a combined therapy with several trophic factors.
Collapse
Affiliation(s)
- Odett Kaiser
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Timo Stöver
- Department of Otolaryngology, University Hospital, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Stefanie Ernst
- Institute for Biometry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrej Kral
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
78
|
Alves RDAM, Eijken M, Bezstarosti K, Demmers JAA, van Leeuwen JPTM. Activin A suppresses osteoblast mineralization capacity by altering extracellular matrix (ECM) composition and impairing matrix vesicle (MV) production. Mol Cell Proteomics 2013; 12:2890-900. [PMID: 23781072 DOI: 10.1074/mcp.m112.024927] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-β (TGF-β) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP(1)) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration.
Collapse
|
79
|
Sherlock L, McKeegan DEF, Cheng Z, Wathes CM, Wathes DC. Effects of contact dermatitis on hepatic gene expression in broilers. Br Poult Sci 2013; 53:439-52. [PMID: 23130578 DOI: 10.1080/00071668.2012.707310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Severe foot and hock dermatitis in broiler chickens can reduce growth rate and increase susceptibility to bacterial infection, affecting both profitability and welfare. However, little is known about the underlying physiological changes associated with foot and hock lesions. 2. This study compared global hepatic gene expression in control birds and those with ammonia-induced foot and hock lesions using Agilent 44 K chicken oligonucleotide microarrays (8 birds per group). 3. In total, 417 genes were differentially expressed of which 174 could be mapped onto the genome. Genes associated with energy metabolism, thyroid hormone activity and cellular control were affected, while there was also evidence of an up-regulation of genes linked to a pro-inflammatory response. 4. It is conceivable that pain is the underlying cause for the observed changes in energy metabolism genes. 5. Changes in hepatic gene expression provide new information on how a chicken's physiological mechanisms alter to cope with foot and hock lesions. The findings support other data indicating that birds with increased severity of lesions are likely to be in pain and that growth will be compromised. Reduction of the incidence of dermatitis by improved husbandry should therefore benefit both welfare and commercial performance.
Collapse
Affiliation(s)
- L Sherlock
- Royal Veterinary College, University of London, Hatfield, AL9 7TA.
| | | | | | | | | |
Collapse
|
80
|
Ye P, Chen W, Wu J, Huang X, Li J, Wang S, Liu Z, Wang G, Yang X, Zhang P, Lv Q, Xia J. GM-CSF contributes to aortic aneurysms resulting from SMAD3 deficiency. J Clin Invest 2013; 123:2317-31. [PMID: 23585475 DOI: 10.1172/jci67356] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 02/21/2013] [Indexed: 12/24/2022] Open
Abstract
Heterozygous loss-of-function SMAD3 (Mothers against decapentaplegic homolog 3) mutations lead to aneurysm-osteoarthritis syndrome (AOS). In the present study, we found that mice lacking Smad3 had a vascular phenotype similar to AOS, marked by the progressive development of aneurysms. These aneurysms were associated with various pathological changes in transmural inflammatory cell infiltration. Bone marrow transplants from Smad3-/- mice induced aortitis and aortic root dilation in irradiated WT recipient mice. Transplantation of CD4+ T cells from Smad3-/- mice also induced aortitis in Smad3+/+ recipient mice, while depletion of CD4+ T cells in Smad3-/- mice reduced the infiltration of inflammatory cells in the aortic root. Furthermore, IFN-γ deficiency increased, while IL-17 deficiency decreased, disease severity in Smad3+/- mice. Cytokine secretion was measured using a cytokine quantibody array, and Smad3-/- CD4+ T cells secreted more GM-CSF than Smad3+/+ CD4+ T cells. GM-CSF induced CD11b+Gr-1+Ly-6Chi inflammatory monocyte accumulation in the aortic root, but administration of anti-GM-CSF mAb to Smad3-/- mice resulted in significantly less inflammation and dilation in the aortic root. We also identified a missense mutation (c.985A>G) in a family of thoracic aortic aneurysms. Intense inflammatory infiltration and GM-CSF expression was observed in aortas specimens of these patients, suggesting that GM-CSF is potentially involved in the development of AOS.
Collapse
Affiliation(s)
- Ping Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Activin and TGFβ regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal 2013; 25:1556-66. [PMID: 23524334 DOI: 10.1016/j.cellsig.2013.03.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/06/2013] [Accepted: 03/16/2013] [Indexed: 12/26/2022]
Abstract
MicroRNA-181 (miR-181) is a multifaceted miRNA that has been implicated in many cellular processes such as cell fate determination and cellular invasion. While miR-181 is often overexpressed in human tumors, a direct role for this miRNA in breast cancer progression has not yet been characterized. In this study, we found this miRNA to be regulated by both activin and TGFβ. While we found no effect of miR-181 modulation on activin/TGFβ-mediated tumor suppression, our data clearly indicate that miR-181 plays a critical and prominent role downstream of two growth factors, in mediating their pro-migratory and pro-invasive effects in breast cancer cells miR-181 acts as a metastamir in breast cancer. Thus, our findings define a novel role for miR-181 downstream of activin/TGFβ in regulating their tumor promoting functions. Having defined miR-181 as a critical regulator of tumor progression in vitro, our results thus, highlight miR-181 as an important potential therapeutic target in breast cancer.
Collapse
|
82
|
Leef G, Thomas SM. Molecular communication between tumor-associated fibroblasts and head and neck squamous cell carcinoma. Oral Oncol 2013; 49:381-6. [PMID: 23357526 DOI: 10.1016/j.oraloncology.2012.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 12/16/2022]
Abstract
Over the past few decades, it has become increasingly clear that the lethality of cancers depends on more than the malignant cells themselves. The environment those malignant cells are exposed to is just as important a determinant of their behavior. Head and neck squamous cell carcinoma (HNSCC) is both common and deadly. It is the 6th most frequently occurring cancers, and prognosis is still generally poor. Recent evidence indicates that activated fibroblasts residing within the tumor stroma play a significant role in promoting the aggressive spread often seen in head and neck cancer. Tumor associated fibroblasts (TAFs) have also been implicated in facilitating angiogenesis and suppressing the normal anti-tumor function of immune cells. Studying the signaling molecules involved in these processes will facilitate the development of promising targets and inhibitors to prevent tumor-associated fibroblasts from exerting their reinforcing effects on the tumor. In this article, we review the recent literature on the signals used in tumor associated fibroblast communication, with a focus on potential therapeutic targets. Further, we highlight the lead candidates for TAF-targeted therapeutic interventions. Future anti-cancer strategies may achieve better results than current approaches by targeting the support cells in tumor stroma in addition to the cancerous cells.
Collapse
Affiliation(s)
- George Leef
- Department of Otolaryngology, University of Pittsburgh and University of Pittsburgh Cancer Institute, USA
| | | |
Collapse
|
83
|
Fordyce CA, Patten KT, Fessenden TB, DeFilippis R, Hwang ES, Zhao J, Tlsty TD. Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue phenotypes. Breast Cancer Res 2012; 14:R155. [PMID: 23216814 PMCID: PMC3786321 DOI: 10.1186/bcr3368] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/29/2012] [Indexed: 12/18/2022] Open
Abstract
Introduction Tumors are characterized by alterations in the epithelial and stromal compartments, which both contribute to tumor promotion. However, where, when, and how the tumor stroma develops is still poorly understood. We previously demonstrated that DNA damage or telomere malfunction induces an activin A-dependent epithelial stress response that activates cell-intrinsic and cell-extrinsic consequences in mortal, nontumorigenic human mammary epithelial cells (HMECs and vHMECs). Here we show that this epithelial stress response also induces protumorigenic phenotypes in neighboring primary fibroblasts, recapitulating many of the characteristics associated with formation of the tumor stroma (for example, desmoplasia). Methods The contribution of extrinsic and intrinsic DNA damage to acquisition of desmoplastic phenotypes was investigated in primary human mammary fibroblasts (HMFs) co-cultured with vHMECs with telomere malfunction (TRF2-vHMEC) or in HMFs directly treated with DNA-damaging agents, respectively. Fibroblast reprogramming was assessed by monitoring increases in levels of selected protumorigenic molecules with quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and immunocytochemistry. Dependence of the induced phenotypes on activin A was evaluated by addition of exogenous activin A or activin A silencing. In vitro findings were validated in vivo, in preinvasive ductal carcinoma in situ (DCIS) lesions by using immunohistochemistry and telomere-specific fluorescent in situ hybridization. Results HMFs either cocultured with TRF2-vHMEC or directly exposed to exogenous activin A or PGE2 show increased expression of cytokines and growth factors, deposition of extracellular matrix (ECM) proteins, and a shift toward aerobic glycolysis. In turn, these "activated" fibroblasts secrete factors that promote epithelial cell motility. Interestingly, cell-intrinsic DNA damage in HMFs induces some, but not all, of the molecules induced as a consequence of cell-extrinsic DNA damage. The response to cell-extrinsic DNA damage characterized in vitro is recapitulated in vivo in DCIS lesions, which exhibit telomere loss, heightened DNA damage response, and increased activin A and cyclooxygenase-2 expression. These lesions are surrounded by a stroma characterized by increased expression of α smooth muscle actin and endothelial and immune cell infiltration. Conclusions Thus, synergy between stromal and epithelial interactions, even at the initiating stages of carcinogenesis, appears necessary for the acquisition of malignancy and provides novel insights into where, when, and how the tumor stroma develops, allowing new therapeutic strategies.
Collapse
|
84
|
Akiyama I, Yoshino O, Osuga Y, Izumi G, Urata Y, Hirota Y, Hirata T, Harada M, Koga K, Ogawa K, Kozuma S. Follistatin is induced by IL-1β and TNF-α in stromal cells from endometrioma. Reprod Sci 2012; 20:675-9. [PMID: 23171678 DOI: 10.1177/1933719112463253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of this study is to examine the regulation of follistatin, an activin-binding protein, in endometriosis. Endometrioma stromal cells (EoSCs) were obtained from 9 patients undergoing laparoscopy of the ovarian endometrioma. In cultured EoSCs, interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α), which could induce activin-A, also induced follistatin messenger RNA (mRNA) and protein. The cystic fluid of endometrioma from 8 patients was obtained to measure the concentration of activin-A and follistatin by enzyme-linked immunosorbent assay (ELISA). Also, activin activity in the fluid was examined by erythroid differentiation assay using mouse erythroleukemia F5-5.fl cells. In the cystic fluid of endometrioma, the mean values of activin-A and follistatin concentration were 36.8 ng/mL and 4.0 ng/mL, respectively. In a bioassay, all 8 samples exhibited activin activity, which was equivalent to recombinant activin-A activity of 12.8 ± 1.4 ng/mL. Although follistatin was present in the cystic fluid of endometrioma, the activity of activin, which is an exacerbation factor of endometriosis, was predominant in vivo.
Collapse
Affiliation(s)
- Ikumi Akiyama
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Fields SZ, Parshad S, Anne M, Raftopoulos H, Alexander MJ, Sherman ML, Laadem A, Sung V, Terpos E. Activin receptor antagonists for cancer-related anemia and bone disease. Expert Opin Investig Drugs 2012; 22:87-101. [PMID: 23127248 DOI: 10.1517/13543784.2013.738666] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Antagonists of activin receptor signaling may be beneficial for cancer-related anemia and bone disease caused by malignancies such as multiple myeloma and solid tumors. AREAS COVERED We review evidence of dysregulated signaling by activin receptor pathways in anemia, myeloma-associated osteolysis, and metastatic bone disease, as well as potential involvement in carcinogenesis. We then review properties of activin receptor antagonists in clinical development. EXPERT OPINION Sotatercept is a novel receptor fusion protein that functions as a soluble trap to sequester ligands of activin receptor type IIA (ActRIIA). Preclinically, the murine version of sotatercept increased red blood cells (RBC) in a model of chemotherapy-induced anemia, inhibited tumor growth and metastasis, and exerted anabolic effects on bone in diverse models of multiple myeloma. Clinically, sotatercept increases RBC markedly in healthy volunteers and patients with multiple myeloma. With a rapid onset of action differing from erythropoietin, sotatercept is in clinical development as a potential first-in-class therapeutic for cancer-related anemia, including those characterized by ineffective erythropoiesis as in myelodysplastic syndromes. Anabolic bone activity in early clinical studies and potential antitumor effects make sotatercept a promising therapeutic candidate for multiple myeloma and malignant bone diseases. Antitumor activity has been observed preclinically with small-molecule inhibitors of transforming growth factor-β receptor type I (ALK5) that also antagonize the closely related activin receptors ALK4 and ALK7. LY-2157299, the first such inhibitor to enter clinical studies, has shown an acceptable safety profile so far in patients with advanced cancer. Together, these data identify activin receptor antagonists as attractive therapeutic candidates for multiple diseases.
Collapse
Affiliation(s)
- Scott Z Fields
- Monter Cancer Center, Hofstra North Shore-LIJ School of Medicine, Lake Success, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zhao M, Gao J, Zhu S, Qian L, Wang X, Gao J, Zhang Y, Yu Y, Han W, Wu M. Characterization of activin A in the culture of primitive human umbilical cord blood hematopoietic cells. Biomed Pharmacother 2012; 66:603-6. [PMID: 23089481 DOI: 10.1016/j.biopha.2012.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily controls many physiological processes such as cell proliferation and differentiation, immune responses, wound repair and various endocrine activities. As a member of TGF-β, activin A can maintain the pluripotency of embryonic stem cells. We report here that activin A exhibited cell type-dependent function of expanding the human primitive hematopoietic cells isolated from umbilical cord blood (UCB). However, the multipotency of the cells pretreated with activin A was exhausted in the sequential dilution culture. In conclusion, activin A may not be a key factor, but a regulator, in the multipotency maintenance of primitive hematopoietic cells and the application of activin A in the hematopoietic stem/progenitor cells (HS/PCs) culture expansion remains a significant challenge.
Collapse
Affiliation(s)
- Mei Zhao
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Sawada T, Yamamoto E, Suzuki H, Nojima M, Maruyama R, Shioi Y, Akasaka R, Kamimae S, Harada T, Ashida M, Kai M, Adachi Y, Yamamoto H, Imai K, Toyota M, Itoh F, Sugai T. Association between genomic alterations and metastatic behavior of colorectal cancer identified by array-based comparative genomic hybridization. Genes Chromosomes Cancer 2012; 52:140-9. [PMID: 23073979 DOI: 10.1002/gcc.22013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancers (CRCs) exhibit multiple genetic alterations, including allelic imbalances (copy number alterations, CNAs) at various chromosomal loci. In addition to genetic aberrations, DNA methylation also plays important roles in the development of CRC. To better understand the clinical relevance of these genetic and epigenetic abnormalities in CRC, we performed an integrative analysis of copy number changes on a genome-wide scale and assessed mutations of TP53, KRAS, BRAF, and PIK3CA and DNA methylation of six marker genes in single glands isolated from 39 primary tumors. Array-based comparative genomic hybridization (array-CGH) analysis revealed that genomic losses commonly occurred at 3q26.1, 4q13.2, 6q21.32, 7q34, 8p12-23.3, 15qcen and 18, while gains were commonly found at 1q21.3-23.1, 7p22.3-q34, 13q12.11-14.11, and 20. The total numbers and lengths of the CNAs were significantly associated with the aberrant DNA methylation and Dukes' stages. Moreover, hierarchical clustering analysis of the array-CGH data suggested that tumors could be categorized into four subgroups. Tumors with frequent DNA methylation were most strongly enriched in subgroups with infrequent CNAs. Importantly, Dukes' D tumors were enriched in the subgroup showing the greatest genomic losses, whereas Dukes' C tumors were enriched in the subgroup with the greatest genomic gains. Our data suggest an inverse relationship between chromosomal instability and aberrant methylation and a positive association between genomic losses and distant metastasis and between genomic gains and lymph node metastasis in CRC. Therefore, DNA copy number profiles may be predictive of the metastatic behavior of CRCs.
Collapse
Affiliation(s)
- Takeshi Sawada
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Antsiferova M, Werner S. The bright and the dark sides of activin in wound healing and cancer. J Cell Sci 2012; 125:3929-37. [PMID: 22991378 DOI: 10.1242/jcs.094789] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activin was initially described as a protein that stimulates release of follicle stimulating hormone from the pituitary, and it is well known for its important roles in different reproductive functions. In recent years, this multifunctional factor has attracted the attention of researchers in other fields, as new functions of activin in angiogenesis, inflammation, immunity, fibrosis and cancer have been discovered. Studies from our laboratory have identified activin as a crucial regulator of wound healing and skin carcinogenesis. On the one hand, it strongly accelerates the healing process of skin wounds but, on the other hand, it enhances scar formation and the susceptibility to skin tumorigenesis. Finally, results from several laboratories have revealed that activin enhances tumour formation and/or progression in some other organs, in particular through its effect on the tumour microenvironment, and that it also promotes cancer-induced bone disruption and muscle wasting. These findings provide the basis for the use of activin or its downstream targets for the improvement of impaired wound healing, and of activin antagonists for the prevention and treatment of fibrosis and of malignant tumours that overexpress activin. Here, we summarize the previously described roles of activin in wound healing and scar formation and discuss functional studies that revealed different functions of activin in the pathogenesis of cancer. The relevance of these findings for clinical applications will be highlighted.
Collapse
Affiliation(s)
- Maria Antsiferova
- Department of Biology, Institute of Molecular Health Sciences, ETH Honggerberg, HPL E12, 8093, Zurich, Switzerland.
| | | |
Collapse
|
89
|
Aleman-Muench GR, Mendoza V, Stenvers K, Garcia-Zepeda EA, Lopez-Casillas F, Raman C, Soldevila G. Betaglycan (TβRIII) is expressed in the thymus and regulates T cell development by protecting thymocytes from apoptosis. PLoS One 2012; 7:e44217. [PMID: 22952931 PMCID: PMC3430661 DOI: 10.1371/journal.pone.0044217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
TGF-β type III receptor (TβRIII) is a coreceptor for TGFβ family members required for high-affinity binding of these ligands to their receptors, potentiating their cellular functions. TGF-β [1]–[3], bone morphogenetic proteins (BMP2/4) and inhibins regulate different checkpoints during T cell differentiation. Although TβRIII is expressed on hematopoietic cells, the role of this receptor in the immune system remains elusive. Here, we provide the first evidence that TβRIII is developmentally expressed during T cell ontogeny, and plays a crucial role in thymocyte differentiation. Blocking of endogenous TβRIII in fetal thymic organ cultures led to a delay in DN-DP transition. In addition, in vitro development of TβRIII−/− thymic lobes also showed a significant reduction in absolute thymocyte numbers, which correlated with increased thymocyte apoptosis, resembling the phenotype reported in Inhibin α −/− thymic lobes. These data suggest that Inhibins and TβRIII may function as a molecular pair regulating T cell development.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cytoprotection
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fetus/metabolism
- Gene Expression Regulation, Developmental
- Mice
- Mice, Inbred C57BL
- Organ Culture Techniques
- Proteoglycans/antagonists & inhibitors
- Proteoglycans/deficiency
- Proteoglycans/genetics
- Proteoglycans/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Transforming Growth Factor beta/antagonists & inhibitors
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Stromal Cells/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Thymocytes/cytology
- Thymocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/embryology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- German R. Aleman-Muench
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Valentin Mendoza
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, México
| | - Kaye Stenvers
- Reproductive Development and Cancer laboratory, Prince Henry′s Institute of Medical Research, Clayton, Victoria, Australia
| | - Eduardo A. Garcia-Zepeda
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
| | - Fernando Lopez-Casillas
- Departamento de Biología Celular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, México
| | - Chander Raman
- Departments of Medicine and Microbiology, Division of Clinical Immunology and Rheumatology University of Alabama at Birmingham, Alabama, United States of America
| | - Gloria Soldevila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, México
- * E-mail:
| |
Collapse
|
90
|
Brüning A, Matsingou C, Brem GJ, Rahmeh M, Mylonas I. Inhibin beta E is upregulated by drug-induced endoplasmic reticulum stress as a transcriptional target gene of ATF4. Toxicol Appl Pharmacol 2012; 264:300-4. [PMID: 22935518 DOI: 10.1016/j.taap.2012.08.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 01/13/2023]
Abstract
Inhibins and activins are gonadal peptide hormones of the transforming growth factor-β super family with important functions in the reproductive system. By contrast, the recently identified inhibin βE subunit, primarily expressed in liver cells, appears to exert functions unrelated to the reproductive system. Previously shown downregulation of inhibin βE in hepatoma cells and anti-proliferative effects of ectopic inhibin βE overexpression indicated growth-regulatory effects of inhibin βE. We observed a selective re-expression of the inhibin βE subunit in HepG2 hepatoblastoma cells, MCF7 breast cancer cells, and HeLa cervical cancer cells under endoplasmic reticulum stress conditions induced by tunicamycin, thapsigargin, and nelfinavir. Analysis of XPB1 splicing and ATF4 activation revealed that inhibin βE re-expression was associated with induction of the endoplasmic reticulum stress reaction by these drugs. Transfection of an ATF4 expression plasmid specifically induced inhibin βE expression in HeLa cells and indicates inhibin βE as a hitherto unidentified target gene of ATF4, a key transcription factor of the endoplasmic reticulum stress response. Therefore, the inhibin βE subunit defines not only a new player but also a possible new marker for drug-induced endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ansgar Brüning
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
91
|
Voumvouraki A, Notas G, Koulentaki M, Georgiadou M, Klironomos S, Kouroumalis E. Increased serum activin-A differentiates alcoholic from cirrhosis of other aetiologies. Eur J Clin Invest 2012; 42:815-22. [PMID: 22304651 DOI: 10.1111/j.1365-2362.2012.02647.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Activin-A is a molecule of the TGF superfamily, implicated in liver fibrosis, regeneration and stem cell differentiation. However, data on activins in liver diseases are few. We therefore studied serum levels of activin-A in chronic liver diseases. To identify the origin of activin-A, levels in the hepatic vein were also estimated. MATERIALS AND METHODS Nineteen controls and 162 patients participated in the study: 39 with hepatocellular carcinoma (HCC: 19 viral associated and 20 alcohol associated), 18 with chronic hepatitis C (CHC), 47 with primary biliary cirrhosis (26 PBC stage I-II and 21 stage IV), 22 with alcoholic cirrhosis (AC, hepatic vein blood available in 16), 20 with HCV cirrhosis (hepatic vein blood available in 18) and 16 patients with alcoholic fatty liver with mild to moderate fibrosis but no cirrhosis. RESULTS Activin-A levels were significantly increased (P < 0·001) in serum of patients with AC (median 673 pg/mL, range 449-3279), compared with either controls (149 pg/mL, 91-193) or patients with viral cirrhosis (189 pg/mL, 81-480), CHC (142 pg/mL, 65-559) PBC stage I-II (100 pg/mL, 59-597) and PBC stage IV (104 pg/mL, 81-579). Only patients with AC-associated HCC had significantly increased levels of activin-A (2403 pg/mL, 1561-7220 pg/mL). Activin-A serum levels could accurately discriminate AC from cirrhosis of other aetiologies and noncirrhotic alcoholic fatty liver with fibrosis. CONCLUSIONS Increased serum levels of activin-A only in patients with alcohol-related cirrhosis or HCC suggest a possible role of this molecule in the pathophysiology of AC. Further research is warranted to elucidate its role during the profibrotic process and its possible clinical applications.
Collapse
Affiliation(s)
- Argyro Voumvouraki
- University Hospital Department of Gastroenterology, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | | | | | | | | |
Collapse
|
92
|
Mitsugi S, Ariyoshi W, Okinaga T, Kaneuji T, Kataoka Y, Takahashi T, Nishihara T. Mechanisms involved in inhibition of chondrogenesis by activin-A. Biochem Biophys Res Commun 2012; 420:380-4. [PMID: 22425773 DOI: 10.1016/j.bbrc.2012.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 03/01/2012] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Activin-A, a member of the TGF-β family, is known to be present in bone and cartilage. Although, involvement of the TGF-β family in chondrogenesis has been reported, the mechanism by which activin-A regulates chondrogenesis has not been fully elucidated. The aim of this study was to investigate the effects of activin-A on chondrocyte differentiation in vitro. MATERIALS AND METHODS Monolayer cultures of mouse chondrocyte ATDC cells were pretreated with a variety of inhibitors of major signaling pathways prior to addition of activin-A. The expressions of sox9, runx2, and osterix mRNA were detected using real-time PCR. To determine chondrocyte differentiation, sulfated glycosaminoglycans were stained with Alcian blue. To further elucidate the role of activin-A on chondrogenesis regulation, phosphorylation of Smad2/3, ERK, JNK, and Akt proteins was determined by western blotting. RESULTS Activin-A suppressed the transcription of sox9, runx2, and osterix mRNA, as well as sulfated glycosaminoglycans accumulation. Activin-A also inhibited constitutive phosphorylation of JNK and Akt proteins. Furthermore, inhibition of the JNK and PI3K-Akt pathways by chemical inhibitors suppressed chondrogenesis in ATDC5 cells. CONCLUSIONS These results indicate that activin-A may suppress chondrocyte differentiation in ATDC5 cells via down-regulation of JNK and Akt phosphorylation.
Collapse
Affiliation(s)
- Sho Mitsugi
- Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580, Japan
| | | | | | | | | | | | | |
Collapse
|
93
|
Antsiferova M, Huber M, Meyer M, Piwko-Czuchra A, Ramadan T, MacLeod AS, Havran WL, Dummer R, Hohl D, Werner S. Activin enhances skin tumourigenesis and malignant progression by inducing a pro-tumourigenic immune cell response. Nat Commun 2011; 2:576. [PMID: 22146395 PMCID: PMC3247817 DOI: 10.1038/ncomms1585] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022] Open
Abstract
Activin is an important orchestrator of wound repair, but its potential role in skin carcinogenesis has not been addressed. Here we show using different types of genetically modified mice that enhanced levels of activin in the skin promote skin tumour formation and their malignant progression through induction of a pro-tumourigenic microenvironment. This includes accumulation of tumour-promoting Langerhans cells and regulatory T cells in the epidermis. Furthermore, activin inhibits proliferation of tumour-suppressive epidermal γδ T cells, resulting in their progressive loss during tumour promotion. An increase in activin expression was also found in human cutaneous basal and squamous cell carcinomas when compared with control tissue. These findings highlight the parallels between wound healing and cancer, and suggest inhibition of activin action as a promising strategy for the treatment of cancers overexpressing this factor. Activin is known to have a role in wound healing, but its role in skin cancer is unknown. Antsiferova et al. show that activin is elevated in human skin tumours, and by modulating epidermal immune cells, exacerbates tumour progression in a mouse model of skin cancer.
Collapse
Affiliation(s)
- Maria Antsiferova
- Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Krieglstein K, Zheng F, Unsicker K, Alzheimer C. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci 2011; 34:421-9. [PMID: 21742388 DOI: 10.1016/j.tins.2011.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
It is becoming increasingly clear that members of the transforming growth factor-β (TGF-β) family have roles in the central nervous system that extend beyond their well-established roles as neurotrophic and neuroprotective factors. Recent findings have indicated that the TGF-β signaling pathways are involved in the modulation of both excitatory and inhibitory synaptic transmission in the adult mammalian brain. In this review, we discuss how TGF-β, bone morphogenetic protein and activin signaling at central synapses modulate synaptic plasticity, cognition and affective behavior. We also discuss the implications of these findings for the molecular understanding and potential treatment of neuropsychiatric diseases, such as anxiety, depression and other neurological disorders.
Collapse
Affiliation(s)
- Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
95
|
Gerbaud P, Pidoux G, Guibourdenche J, Pathirage N, Costa JM, Badet J, Frendo JL, Murthi P, Evain-Brion D. Mesenchymal activin-A overcomes defective human trisomy 21 trophoblast fusion. Endocrinology 2011; 152:5017-28. [PMID: 21952245 DOI: 10.1210/en.2011-1193] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Placental development is markedly abnormal in trisomy 21 (T21) pregnancies. We hypothesized that abnormal paracrine cross talk between the fetal mesenchymal core and the trophoblast might be involved in the defect of syncytiotrophoblast formation and function. In a large series of primary cultured human cytotrophoblasts isolated from second-trimester control (n = 44) and T21 placentae (n = 71), abnormal trophoblast fusion and differentiation was observed in more than 90% of T21 cases. We then isolated and cultured villous mesenchymal cells from control (n = 10) and T21 placentae (n = 8) and confirmed their fetal origin. Conditioned medium of control mesenchymal cells overcame the abnormal trophoblast fusion of T21 cytotrophoblasts by activating the TGFβ signaling pathway, as shown by the phosphospecific protein microarray analysis and the use of TGFβ signaling pathway antagonists. Using protein arrays, we further analyzed the cytokines present in the conditioned medium from control and T21 mesenchymal cells. Activin-A was identified as strongly secreted by cells from both sources, but at a significantly (P < 0.01) lower level in the case of T21 mesenchymal cells. Recombinant activin-A stimulated T21 trophoblast fusion. Blocking activin-A antibody inhibited the fusion induced by conditioned medium and exogenous activin-A. Furthermore, follistatin, an activin-A binding protein largely secreted by T21 mesenchymal cells, inhibited the conditioned medium fusogenic activity. These results show that the defective trophoblast fusion and differentiation associated with T21 can be overcome in vitro and reveal the key role of the fetal mesenchymal core in human trophoblast differentiation.
Collapse
Affiliation(s)
- Pascale Gerbaud
- Institut National de la Santé et de la Recherche Médicale Unité 767, 4 Avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
New approaches in the differentiation of human embryonic stem cells and induced pluripotent stem cells toward hepatocytes. Stem Cell Rev Rep 2011; 7:748-59. [PMID: 21336836 PMCID: PMC3137783 DOI: 10.1007/s12015-010-9216-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field.
Collapse
|
97
|
Kim JH, Seo GY, Kim PH. Activin A Stimulates Mouse APCs to Express BAFF via ALK4-Smad3 Pathway. Immune Netw 2011; 11:196-202. [PMID: 22039367 PMCID: PMC3202618 DOI: 10.4110/in.2011.11.4.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/07/2011] [Accepted: 07/13/2011] [Indexed: 12/01/2022] Open
Abstract
Background B cell-activating factor belonging to the TNF family (BAFF) is primarily expressed by macrophages and dendritic cells, and stimulates B cell proliferation, differentiation, survival, and Ig production. In the present study, we explored the effect of activin A on BAFF expression by APCs. Methods To investigate the effect of activin A on BAFF expression by mouse APCs, we measured the level of BAFF expression at the transcriptional and protein levels using RT-PCR and ELISA. Results Activin A markedly enhanced BAFF expression in mouse macrophages and dendritic cells at both the transcriptional and protein levels. SB431542, an activin receptor-like kinase 4 (ALK4) inhibitor, completely abrogated activin A-induced BAFF transcription. Furthermore, overexpression of DN-Smad3 abolished activin-induced BAFF expression at the transcriptional and protein levels. Conclusion These results demonstrate that activin A can enhance BAFF expression through ALK4-Smad3 pathway.
Collapse
Affiliation(s)
- Jae-Hee Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | | | | |
Collapse
|
98
|
Li Y, Kang X, Wang Q. HSP70 decreases receptor-dependent phosphorylation of Smad2 and blocks TGF-β-induced epithelial-mesenchymal transition. J Genet Genomics 2011; 38:111-6. [PMID: 21477782 DOI: 10.1016/j.jgg.2011.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/16/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
Smad2 and Smad3, the intracellular mediators of transforming growth factor β (TGF-β) signaling, are directly phosphorylated by the activated type I receptor kinase, and then shuttle from the cytoplasm into the nucleus to regulate target gene expression. Here, we report that the 70-kDa heat-shock protein (HSP70) interacts with Smad2 and decreases TGF-β signal transduction. Ectopic expression of HSP70 prevents receptor-dependent phosphorylation and nuclear translocation of Smad2, and blocks TGF-β-induced epithelial-mesenchymal transition (EMT) in HaCat cells. Our findings reveal an essential role of HSP70 in TGF-β-induced epithelial-mesenchymal transition (EMT) by impeding Smad2 phosphorylation.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | | | | |
Collapse
|
99
|
Lee HJ, Seo GY, Kim JH, Lee MR, Kim PH. Activin A stimulates mouse macrophages to express APRIL via the Smad3 and ERK/CREB pathways. Immunol Lett 2011; 140:92-6. [PMID: 21784102 DOI: 10.1016/j.imlet.2011.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 12/31/2022]
Abstract
A proliferation-inducing ligand (APRIL) is primarily expressed by macrophages and dendritic cells, and stimulates B cell proliferation, differentiation, survival, and Ig production. In the present study, we investigated the role and signaling mechanisms of activin A in APRIL expression by mouse macrophages. Activin A markedly enhanced APRIL expression in mouse macrophages at both the transcriptional and protein levels. Overexpression of dominant-negative (DN)-Smad3 and SB431542 abrogated activin-induced APRIL transcription. Furthermore, activin A induced Smad3 phosphorylation. These results indicate that activin A enhances APRIL expression through both activin receptor-like kinase 4 (ALK4) and Smad3. In a subsequent analysis of activin A signaling, it was found that PD98059, an extracellular signal-related kinase (ERK) inhibitor, eliminated activin A-induced APRIL expression. On the other hand, overexpression of cAMP responsive element-binding protein (CREB), a molecule downstream of ERK, augmented activin A-induced APRIL expression, and this effect could be abolished by PD98059. This finding that activin A induces ERK and CREB phosphorylation suggests that ERK and CREB act as intermediates in APRIL expression. Taken together, these results demonstrate that activin A can enhance APRIL expression through two different pathways, Smad3 and ERK/CREB.
Collapse
Affiliation(s)
- Hwa-Joung Lee
- Department of Molecular Bioscience, College of Biomedical Science, Chuncheon 200-701, Republic of Korea
| | | | | | | | | |
Collapse
|
100
|
Myofibroblasts in the stroma of oral cancer promote tumorigenesis via secretion of activin A. Oral Oncol 2011; 47:840-6. [PMID: 21727023 DOI: 10.1016/j.oraloncology.2011.06.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/23/2011] [Accepted: 06/10/2011] [Indexed: 12/28/2022]
Abstract
Myofibroblasts are essential during wound healing and are often found in the stroma of oral squamous cell carcinomas (OSCC). Although the molecular mechanisms by which myofibroblasts influence OSCC remain largely unknown, previous studies demonstrated that presence of myofibroblast in OSCC stroma is an important risk factor of patient's shortened survival. Here we showed that some growth factors are produced in higher levels by tumor-associated myofibroblasts compared to tumor-associated fibroblasts, including activin A. Myofibroblast-conditioned media containing activin A significantly increased OSCC cell proliferation and tumor volume, whereas down-regulation of activin A in the conditioned media decreased proliferation. In addition, myofibroblasts induced in vitro invasion of OSCC cells, which was accompanied by an increased production of matrix metalloproteinases (MMP). In vivo, a significant correlation between presence of myofibroblasts and activities of MMP-2 and MMP-9 was observed in OSCC samples. However, blockage of activin A synthesis by myofibroblasts did not affect invasion and MMP production by OSCC cells. Together, our data demonstrate that activin A is required for the proliferative effects of myofibroblasts on OSCC cells. We conclude that myofibroblasts in the stroma of OSCC may influence proliferation and invasion, resulting in more aggressive tumor.
Collapse
|