51
|
Bobrus-Chociej A, Daniluk U, Alifier M, Stasiak-Barmuta A, Kaczmarski MG. Alterations of lymphocyte subpopulations and TGF-β in children with transient or persistent cow’s milk allergy. FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1387234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Anna Bobrus-Chociej
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Urszula Daniluk
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Marek Alifier
- Department of Clinical Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Stasiak-Barmuta
- Department of Clinical Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maciej Gustaw Kaczmarski
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
52
|
Harnessing Advances in T Regulatory Cell Biology for Cellular Therapy in Transplantation. Transplantation 2017; 101:2277-2287. [PMID: 28376037 DOI: 10.1097/tp.0000000000001757] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular therapy with CD4FOXP3 T regulatory (Treg) cells is a promising strategy to induce tolerance after solid-organ transplantation or prevent graft-versus-host disease after transfer of hematopoietic stem cells. Treg cells currently used in clinical trials are either polyclonal, donor- or antigen-specific. Aside from variations in isolation and expansion protocols, however, most therapeutic Treg cell-based products are much alike. Ongoing basic science work has provided considerable new insight into multiple facets of Treg cell biology, including their stability, homing, and functional specialization; integrating these basic science discoveries with clinical efforts will support the development of next-generation therapeutic Treg cells with enhanced efficacy. In this review, we summarize recent advances in knowledge of how Treg cells home to lymphoid and peripheral tissues, and control antibody production and tissue repair. We also discuss newly appreciated pathways that modulate context-specific Treg cell function and stability. Strategies to improve and tailor Treg cells for cell therapy to induce transplantation tolerance are highlighted.
Collapse
|
53
|
Rezende BM, Athayde RM, Gonçalves WA, Resende CB, Teles de Tolêdo Bernardes P, Perez DA, Esper L, Reis AC, Rachid MA, Castor MGME, Cunha TM, Machado FS, Teixeira MM, Pinho V. Inhibition of 5-lipoxygenase alleviates graft-versus-host disease. J Exp Med 2017; 214:3399-3415. [PMID: 28947611 PMCID: PMC5679175 DOI: 10.1084/jem.20170261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/24/2017] [Accepted: 08/18/2017] [Indexed: 01/26/2023] Open
Abstract
Rezende et al. report that the transplant of 5-lipoxygenase (5-LO)−deficient leukocytes protects mice from GVHD. Treatment with the 5-LO inhibitor zileuton or a LTB4 antagonist at the initial phase of the transplant achieves similar protective effects. 5-LO is a crucial contributor to tissue damage in GVHD. Leukotriene B4 (LTB4), a proinflammatory mediator produced by the enzyme 5-lipoxygenase (5-LO), is associated with the development of many inflammatory diseases. In this study, we evaluated the participation of the 5-LO/LTB4 axis in graft-versus-host disease (GVHD) pathogenesis by transplanting 5-LO–deficient leukocytes and investigated the effect of pharmacologic 5-LO inhibition by zileuton and LTB4 inhibition by CP-105,696. Mice that received allogeneic transplant showed an increase in nuclear 5-LO expression in splenocytes, indicating enzyme activation after GVHD. Mice receiving 5-LO–deficient cell transplant or zileuton treatment had prolonged survival, reduced GVHD clinical scores, reduced intestinal and liver injury, and decreased levels of serum and hepatic LTB4. These results were associated with inhibition of leukocyte recruitment and decreased production of cytokines and chemokines. Treatment with CP-105,696 achieved similar effects. The chimerism or the beneficial graft-versus-leukemia response remained unaffected. Our data provide evidence that the 5-LO/LTB4 axis orchestrates GVHD development and suggest it could be a target for the development of novel therapeutic strategies for GVHD treatment.
Collapse
Affiliation(s)
- Barbara Maximino Rezende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Rayssa Maciel Athayde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - William Antônio Gonçalves
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Carolina Braga Resende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Priscila Teles de Tolêdo Bernardes
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Denise Alves Perez
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Lísia Esper
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Alesandra Côrte Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Milene Alvarenga Rachid
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Marina Gomes Miranda E Castor
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Thiago Mattar Cunha
- Departamento de Farmacologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Fabiana Simão Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
54
|
Mohr F, Fischer JC, Nikolaus M, Stemberger C, Dreher S, Verschoor A, Haas T, Poeck H, Busch DH. Minimally manipulated murine regulatory T cells purified by reversible Fab Multimers are potent suppressors for adoptive T-cell therapy. Eur J Immunol 2017; 47:2153-2162. [DOI: 10.1002/eji.201747137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/13/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Fabian Mohr
- Institute for Medical Microbiology; Immunology and Hygiene; Technische Universität München (TUM); Munich Germany
| | - Julius Clemens Fischer
- Klinik und Poliklinik für Innere Medizin III; Klinikum Rechts der Isar; TUM; Munich Germany
| | - Marc Nikolaus
- Institute for Medical Microbiology; Immunology and Hygiene; Technische Universität München (TUM); Munich Germany
| | - Christian Stemberger
- Focus Group “Clinical Cell Processing and Purification”; Institute for Advanced Study, TUM; Munich Germany
- Juno Cell Therapeutics; formerly Stage Cell Therapeutics; Munich Germany
| | - Stefan Dreher
- Focus Group “Clinical Cell Processing and Purification”; Institute for Advanced Study, TUM; Munich Germany
- Juno Cell Therapeutics; formerly Stage Cell Therapeutics; Munich Germany
| | - Admar Verschoor
- Institute for Medical Microbiology; Immunology and Hygiene; Technische Universität München (TUM); Munich Germany
- Institut für Systemische Entzündungsforschung; Universität zu Lübeck; Lübeck Germany
| | - Tobias Haas
- Institute for Medical Microbiology; Immunology and Hygiene; Technische Universität München (TUM); Munich Germany
- Klinik und Poliklinik für Innere Medizin III; Klinikum Rechts der Isar; TUM; Munich Germany
| | - Hendrik Poeck
- Klinik und Poliklinik für Innere Medizin III; Klinikum Rechts der Isar; TUM; Munich Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology; Immunology and Hygiene; Technische Universität München (TUM); Munich Germany
- Focus Group “Clinical Cell Processing and Purification”; Institute for Advanced Study, TUM; Munich Germany
- National Center for Infection Research (DZIF); Munich Germany
| |
Collapse
|
55
|
He X, Koenen HJ, Slaats JH, Joosten I. Stabilizing human regulatory T cells for tolerance inducing immunotherapy. Immunotherapy 2017; 9:735-751. [PMID: 28771099 DOI: 10.2217/imt-2017-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many autoimmune diseases develop as a consequence of an altered balance between autoreactive immune cells and suppressive FOXP3+ Treg. Restoring this balance through amplification of Treg represents a promising strategy to treat disease. However, FOXP3+ Treg might become unstable especially under certain inflammatory conditions, and might transform into proinflammatory cytokine-producing cells. The issue of heterogeneity and instability of Treg has caused considerable debate in the field and has important implications for Treg-based immunotherapy. In this review, we discuss how Treg stability is defined and what the molecular mechanisms underlying the maintenance of FOXP3 expression and the regulation of Treg stability are. Also, we elaborate on current strategies used to stabilize human Treg for clinical purposes. This review focuses on human Treg, but considering that cell-intrinsic mechanisms to regulate Treg stability in mice and in humans might be similar, data derived from mice studies are also discussed in this paper.
Collapse
Affiliation(s)
- Xuehui He
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,College of Computer Science, Qinghai Normal University, Xining, Qinghai, China
| | - Hans Jpm Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen Hr Slaats
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
56
|
Single and combined effect of retinoic acid and rapamycin modulate the generation, activity and homing potential of induced human regulatory T cells. PLoS One 2017; 12:e0182009. [PMID: 28746369 PMCID: PMC5529012 DOI: 10.1371/journal.pone.0182009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Adoptive transfer of CD4+CD25+FOXP3+ regulatory T cells (Treg cells) has been successfully utilized to treat graft versus host disease and represents a promising strategy for the treatment of autoimmune diseases and transplant rejection. The aim of this study was to evaluate the effects of all-trans retinoic acid (atRA) and rapamycin (RAPA) on the number, phenotype, homing markers expression, DNA methylation, and function of induced human Treg cells in short-term cultures. Naive T cells were polyclonally stimulated and cultured for five days in the presence of different combinations of IL-2, TGF-β1, atRA and RAPA. The resulting cells were characterized by the expression of FOXP3, activation, surface and homing markers. Methylation of the Conserved Non-coding Sequence 2 was also evaluated. Functional comparison of the different culture conditions was performed by suppression assays in vitro. Culturing naive human T cells with IL-2/TGFβ1 resulted in the generation of 54.2% of Treg cells (CD4+CD25+FOXP3+) whereas the addition of 100 nM atRA increased the yield of Treg cells to 66% (p = 0.0088). The addition of RAPA did not increase the number of Treg cells in any of these settings. Treg cells generated in the presence of atRA had an increased expression of the β7 integrin to nearly 100% of the generated Treg cells, while RAPA treated cells showed enhanced expression of CXCR4. The differential expression of homing molecules highlights the possibility of inducing Treg cells with differential organ-specific homing properties. Neither atRA nor RAPA had an effect on the highly methylated CNS2 sites, supporting reports that their contribution to the lineage stability of Treg cells is not mediated by methylation changes in this locus. Treg cells generated in the presence of RAPA show the most potent suppression effect on the proliferation of effector cells.
Collapse
|
57
|
Revenfeld ALS, Bæk R, Jørgensen MM, Varming K, Stensballe A. Induction of a Regulatory Phenotype in CD3+ CD4+ HLA-DR+ T Cells after Allogeneic Mixed Lymphocyte Culture; Indications of Both Contact-Dependent and -Independent Activation. Int J Mol Sci 2017; 18:ijms18071603. [PMID: 28737722 PMCID: PMC5536089 DOI: 10.3390/ijms18071603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022] Open
Abstract
Although the observation of major histocompatibility complex II (MHCII) receptors on T cells is longstanding, the explanation for this occurrence remains enigmatic. Reports of an inducible, endogenous expression exist, as do studies demonstrating a protein acquisition from other cells by mechanisms including vesicle transfer. Irrespective of origin, the presence of the human MHCII isotype, human leukocyte antigen DR (HLA-DR), potentially identifies a regulatory T cell population. Using an allogeneic mixed lymphocyte culture (MLC) to induce an antigen-specific immune response, the role of antigen-presenting cells (APCs) for the presence of HLA-DR on cluster of differentiation 3(CD3)+ CD4+ T cells was evaluated. Moreover, a functional phenotype was established for these T cells. It was demonstrated that APCs were essential for HLA-DR on CD3+ CD4+ T cells. Additionally, a regulatory T cell phenotype was induced in CD3+ CD4+ HLA-DR+ responder T cells with an expression of CD25, CTLA-4, CD62L, PD-1, and TNFRII. This phenotype was induced both with and without physical T cell:APC contact, which could reveal novel indications about its functionality. To further investigate contact-independent communication, a phenotype of the small cell-derived vesicles from the MLCs was determined. Yet heterogeneous, this vesicle phenotype displayed contact-dependent differences, providing clues about their intended function in cellular communication.
Collapse
Affiliation(s)
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, DK-9000 Aalborg, Denmark.
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, DK-9000 Aalborg, Denmark.
| | - Kim Varming
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, DK-9000 Aalborg, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Laboratory for Medical Mass Spectrometry, Fredrik Bajersvej 7E, 9100 Aalborg, Denmark.
| |
Collapse
|
58
|
Memory T cells: A helpful guard for allogeneic hematopoietic stem cell transplantation without causing graft-versus-host disease. Hematol Oncol Stem Cell Ther 2017. [PMID: 28636890 DOI: 10.1016/j.hemonc.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (AHSCT) and the major cause of nonrelapse morbidity and mortality of AHSCT. In AHSCT, donor T cells facilitate hematopoietic stem cell (HSC) engraftment, contribute to anti-infection immunity, and mediate graft-versus-leukemia (GVL) responses. However, activated alloreactive T cells also attack recipient cells in vital organs, leading to GVHD. Different T-cell subsets, including naïve T (TN) cells, memory T (TM) cells, and regulatory T (Treg) cells mediate different forms of GVHD and GVL; TN cells mediate severe GVHD, whereas TM cells do not cause GVHD, but preserve T-cell function including GVL. In addition, metabolic reprogramming controls T-cell differentiation and activation in these disease states. This minireview focuses on the role and the related mechanisms of TM cells in AHSCT, and the potential manipulation of T cells in AHSCT.
Collapse
|
59
|
Skert C, Perucca S, Chiarini M, Giustini V, Sottini A, Ghidini C, Martellos S, Cattina F, Rambaldi B, Cancelli V, Malagola M, Turra A, Polverelli N, Bernardi S, Imberti L, Russo D. Sequential monitoring of lymphocyte subsets and of T-and-B cell neogenesis indexes to identify time-varying immunologic profiles in relation to graft-versus-host disease and relapse after allogeneic stem cell transplantation. PLoS One 2017; 12:e0175337. [PMID: 28399164 PMCID: PMC5388479 DOI: 10.1371/journal.pone.0175337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/24/2017] [Indexed: 11/19/2022] Open
Abstract
T and B lymphocyte subsets have been not univocally associated to Graft-versus-host disease (GVHD) and relapse of hematological malignancies after stem cell transplantation (SCT). Their sequential assessment together with B and T cell neogenesis indexes has been not thoroughly analysed in relation to these changing and interrelated immunologic/clinic events yet. Lymphocyte subsets in peripheral blood (PB) and B and T cell neogenesis indexes were analysed together at different time points in a prospective study of 50 patients. Principal component analysis (PCA) was used as first step of multivariate analysis to address issues related to a high number of variables versus a relatively low number of patients. Multivariate analysis was completed by Fine-Gray proportional hazard regression model. PCA identified 3 clusters of variables (PC1-3), which correlated with acute GVHD: PC1 (pre-SCT: KRECs≥6608/ml, unswitched memory B <2.4%, CD4+TCM cells <45%; HR 0.5, p = 0.001); PC2 (at aGVHD onset: CD4+>44%, CD8+TCM cells>4%; HR 1.9, p = 0.01), and PC3 (at aGVHD onset: CD4+TEMRA<1, total Treg<4, TregEM <2 cells/μl; HR 0.5, p = 0.002). Chronic GVHD was associated with one PC (TregEM <2 cells/μl at day+28, CD8+TEMRA<43% at day+90, immature B cells<6 cells/μl and KRECs<11710/ml at day+180; HR 0.4, P = 0.001). Two PC correlated with relapse: PC1 (pre-SCT: CD4+ <269, CD4+TCM <120, total Treg <18, TregCM <8 cells/μl; HR 4.0, p = 0.02); PC2 (pre-SCT mature CD19+ >69%, switched memory CD19+ = 0 cells and KRECs<6614/ml at +90; HR 0.1, p = 0.008). All these immunologic parameters were independent indicators of chronic GVHD and relapse, also considering the possible effect of previous steroid-therapy for acute GVHD. Specific time-varying immunologic profiles were associated to GVHD and relapse. Pre-SCT host immune-microenvironment and changes of B cell homeostasis could influence GVH- and Graft-versus-Tumor reactions. The paradoxical increase of EM Treg in PB of patients with GVHD could be explained by their compartmentalization outside lymphoid tissues, which are of critical relevance for regulation of GVH reactions.
Collapse
Affiliation(s)
- Cristina Skert
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
- * E-mail:
| | - Simone Perucca
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Marco Chiarini
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Viviana Giustini
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Alessandra Sottini
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Claudia Ghidini
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Stefano Martellos
- Department of Life Sciences, Research Unit of Biodiversity Informatics, University of Trieste, Trieste, Italy
| | - Federica Cattina
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Benedetta Rambaldi
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Valeria Cancelli
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Michele Malagola
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Alessandro Turra
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Nicola Polverelli
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| | - Simona Bernardi
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Luisa Imberti
- Centro Ricerca Emato-oncologica AIL (CREA), Spedali Civili of Brescia, Brescia, Italy
| | - Domenico Russo
- Chair of Haematology, Stem Cell Transplantation Unit, University of Brescia, Brescia, Italy
| |
Collapse
|
60
|
da Silva MB, da Cunha FF, Terra FF, Camara NOS. Old game, new players: Linking classical theories to new trends in transplant immunology. World J Transplant 2017; 7:1-25. [PMID: 28280691 PMCID: PMC5324024 DOI: 10.5500/wjt.v7.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/16/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023] Open
Abstract
The evolutionary emergence of an efficient immune system has a fundamental role in our survival against pathogenic attacks. Nevertheless, this same protective mechanism may also establish a negative consequence in the setting of disorders such as autoimmunity and transplant rejection. In light of the latter, although research has long uncovered main concepts of allogeneic recognition, immune rejection is still the main obstacle to long-term graft survival. Therefore, in order to define effective therapies that prolong graft viability, it is essential that we understand the underlying mediators and mechanisms that participate in transplant rejection. This multifaceted process is characterized by diverse cellular and humoral participants with innate and adaptive functions that can determine the type of rejection or promote graft acceptance. Although a number of mediators of graft recognition have been described in traditional immunology, recent studies indicate that defining rigid roles for certain immune cells and factors may be more complicated than originally conceived. Current research has also targeted specific cells and drugs that regulate immune activation and induce tolerance. This review will give a broad view of the most recent understanding of the allogeneic inflammatory/tolerogenic response and current insights into cellular and drug therapies that modulate immune activation that may prove to be useful in the induction of tolerance in the clinical setting.
Collapse
|
61
|
Ting HA, Schaller MA, de Almeida Nagata DE, Rasky AJ, Maillard IP, Lukacs NW. Notch Ligand Delta-like 4 Promotes Regulatory T Cell Identity in Pulmonary Viral Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:1492-1502. [PMID: 28077598 DOI: 10.4049/jimmunol.1601654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
Abstract
Regulatory T (Treg) cells establish tolerance, prevent inflammation at mucosal surfaces, and regulate immunopathology during infectious responses. Recent studies have shown that Delta-like ligand 4 (Dll4) was upregulated on APC after respiratory syncytial virus (RSV) infection, and its inhibition leads to exaggerated immunopathology. In the present study, we outline the role of Dll4 in Treg cell differentiation, stability, and function in RSV infection. We found that Dll4 was expressed on CD11b+ pulmonary dendritic cells in the lung and draining lymph nodes in wild-type BALB/c mice after RSV infection. Dll4 neutralization exacerbated RSV-induced disease pathology, mucus production, group 2 innate lymphoid cell infiltration, IL-5 and IL-13 production, as well as IL-17A+ CD4 T cells. Dll4 inhibition decreased the abundance of CD62LhiCD44loFoxp3+ central Treg cells in draining lymph nodes. The RSV-induced disease was accompanied by an increase in Th17-like effector phenotype in Foxp3+ Treg cells and a decrease in granzyme B expression after Dll4 blockade. Finally, Dll4-exposed induced Treg cells maintained the CD62LhiCD44lo central Treg cell phenotype, had increased Foxp3 expression, became more suppressive, and were resistant to Th17 skewing in vitro. These results suggest that Dll4 activation during differentiation sustained Treg cell phenotype and function to control RSV infection.
Collapse
Affiliation(s)
- Hung-An Ting
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Ivan P Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109; and.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109;
| |
Collapse
|
62
|
Le Texier L, Lineburg KE, MacDonald KPA. Harnessing bone marrow resident regulatory T cells to improve allogeneic stem cell transplant outcomes. Int J Hematol 2016; 105:153-161. [PMID: 27943115 DOI: 10.1007/s12185-016-2161-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
Regulatory T cells (Treg) are a suppressive T cell population which play a crucial role in the establishment of tolerance after stem cell transplantation (SCT) by controlling the effector T cell responses that drive acute and chronic GVHD. The BM compartment is enriched in a highly suppressive, activated/memory autophagy-dependent Treg population, which contributes to the HSC engraftment and the control of GVHD. G-CSF administration releases Treg from the BM through disruption of the CXCR4/SDF-1 axis and further improves Treg survival following SCT through the induction of autophagy. However, AMD3100 is more efficacious in mobilizing these Treg highlighting the potential for optimized mobilization regimes to produce more tolerogenic grafts. Notably, the disruption of adhesive interaction between integrins and their ligands contributes to HSC mobilization and may be relevant for BM Treg. Importantly, the Tregs in the BM niche contribute to maintenance of the HSC niche and appear required for optimal control of GVHD post-transplant. Although poorly studied, the BM Treg appear phenotypically and functionally unique to Treg in the periphery. Understanding the requirements for maintaining the enrichment, function and survival of BM Treg needs to be further investigated to improve therapeutic strategies and promote tolerance after SCT.
Collapse
Affiliation(s)
- Laetitia Le Texier
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Katie E Lineburg
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Kelli P A MacDonald
- The Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
63
|
Wang L, Zhao P, Song L, Yan F, Shi C, Li Y, Han M, Lan K. Correlation of Tc17 cells at early stages after allogeneic hematopoietic stem cell transplantation with acute graft-versus-host disease. Int Immunopharmacol 2016; 41:122-126. [DOI: 10.1016/j.intimp.2016.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
|
64
|
Manzoor F, Johnson MC, Li C, Samulski RJ, Wang B, Tisch R. β-cell-specific IL-35 therapy suppresses ongoing autoimmune diabetes in NOD mice. Eur J Immunol 2016; 47:144-154. [PMID: 27859048 DOI: 10.1002/eji.201646493] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/03/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022]
Abstract
IL-35 is a recently identified cytokine exhibiting potent immunosuppressive properties. The therapeutic potential and effects of IL-35 on pathogenic T effector cells (Teff) and Foxp3+ Treg, however, are ill defined. We tested the capacity of IL-35 to suppress ongoing autoimmunity in NOD mice. For this purpose, an adeno-associated virus vector in which IL-35 transgene expression is selectively targeted to β cells via an insulin promoter (AAV8mIP-IL35) was used. AAV8mIP-IL35 vaccination of NOD mice at a late preclinical stage of type 1 diabetes (T1D) suppressed β-cell autoimmunity and prevented diabetes onset. Numbers of islet-resident conventional CD4+ and CD8+ T cells, and DCs were reduced within 4 weeks of AAV8mIP-IL35 treatment. The diminished islet T-cell pool correlated with suppressed proliferation, and a decreased frequency of IFN-γ-expressing Teff. Ectopic IL-35 also reduced islet Foxp3+ Treg numbers and proliferation, and protection was independent of induction/expansion of adaptive islet immunoregulatory T cells. These findings demonstrate that IL-35-mediated suppression is sufficiently robust to block established β-cell autoimmunity, and support the use of IL-35 to treat T1D and other T-cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Fatima Manzoor
- Department of Microbiology & Immunology, Chapel Hill, NC, USA
| | - Mark C Johnson
- Department of Microbiology & Immunology, Chapel Hill, NC, USA
| | - Chengwen Li
- Gene Therapy Center, Chapel Hill, NC, USA.,Department of Pharmacology, Chapel Hill, NC, USA
| | - R Jude Samulski
- Gene Therapy Center, Chapel Hill, NC, USA.,Department of Pharmacology, Chapel Hill, NC, USA
| | - Bo Wang
- Department of Microbiology & Immunology, Chapel Hill, NC, USA
| | - Roland Tisch
- Department of Microbiology & Immunology, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
65
|
Kadivar M, Petersson J, Svensson L, Marsal J. CD8αβ+ γδ T Cells: A Novel T Cell Subset with a Potential Role in Inflammatory Bowel Disease. THE JOURNAL OF IMMUNOLOGY 2016; 197:4584-4592. [PMID: 27849165 DOI: 10.4049/jimmunol.1601146] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/13/2016] [Indexed: 01/27/2023]
Abstract
γδ T cells have been attributed a wide variety of functions, which in some cases may appear as contradictory. To better understand the enigmatic biology of γδ T cells it is crucial to define the constituting subpopulations. γδ T cells have previously been categorized into two subpopulations: CD8αα+ and CD8- cells. In this study we have defined and characterized a novel subset of human γδ T-cells expressing CD8αβ. These CD8αβ+ γδ T cells differed from the previously described γδ T cell subsets in several aspects, including the degree of enrichment within the gut mucosa, the activation status in blood, the type of TCRδ variant used in blood, and small but significant differences in their response to IL-2 stimulation. Furthermore, the novel subset expressed cytotoxic mediators and CD69, and produced IFN-γ and TNF-α. In patients with active inflammatory bowel disease the mucosal frequencies of CD8αβ+ γδ T cells were significantly lower as compared with healthy controls, correlated negatively with the degree of disease activity, and increased to normal levels as a result of anti-TNF-α therapy. In conclusion, our results demonstrate that CD8αβ+ γδ T cells constitute a novel lymphocyte subset, which is strongly enriched within the gut and may play an important role in gut homeostasis and mucosal healing in inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Julia Petersson
- Immunology Section, Lund University, S-22184 Lund, Sweden; and
| | - Lena Svensson
- Immunology Section, Lund University, S-22184 Lund, Sweden; and
| | - Jan Marsal
- Immunology Section, Lund University, S-22184 Lund, Sweden; and .,Department of Gastroenterology, Skåne University Hospital, S-22185 Lund, Sweden
| |
Collapse
|
66
|
Bar-Or A, Steinman L, Behne JM, Benitez-Ribas D, Chin PS, Clare-Salzler M, Healey D, Kim JI, Kranz DM, Lutterotti A, Martin R, Schippling S, Villoslada P, Wei CH, Weiner HL, Zamvil SS, Smith TJ, Yeaman MR. Restoring immune tolerance in neuromyelitis optica: Part II. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e277. [PMID: 27648464 PMCID: PMC5015540 DOI: 10.1212/nxi.0000000000000277] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMO/SD) and its clinical variants have at their core the loss of immune tolerance to aquaporin-4 and perhaps other autoantigens. The characteristic phenotype is disruption of astrocyte function and demyelination of spinal cord, optic nerves, and particular brain regions. In this second of a 2-part article, we present further perspectives regarding the pathogenesis of NMO/SD and how this disease might be amenable to emerging technologies aimed at restoring immune tolerance to disease-implicated self-antigens. NMO/SD appears to be particularly well-suited for these strategies since aquaporin-4 has already been identified as the dominant autoantigen. The recent technical advances in reintroducing immune tolerance in experimental models of disease as well as in humans should encourage quantum leaps in this area that may prove productive for novel therapy. In this part of the article series, the potential for regulatory T and B cells is brought into focus, as are new approaches to oral tolerization. Finally, a roadmap is provided to help identify potential issues in clinical development and guide applications in tolerization therapy to solving NMO/SD through the use of emerging technologies. Each of these perspectives is intended to shine new light on potential cures for NMO/SD and other autoimmune diseases, while sparing normal host defense mechanisms.
Collapse
Affiliation(s)
- Amit Bar-Or
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Larry Steinman
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Jacinta M Behne
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Daniel Benitez-Ribas
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Peter S Chin
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Michael Clare-Salzler
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Donald Healey
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - James I Kim
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - David M Kranz
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Andreas Lutterotti
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Roland Martin
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Sven Schippling
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Pablo Villoslada
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Cheng-Hong Wei
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Howard L Weiner
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Scott S Zamvil
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Terry J Smith
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| | - Michael R Yeaman
- Neuroimmunology Unit and Experimental Therapeutics Program (A.B.-O.), Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Department of Neurology (L.S.), Stanford University School of Medicine, Palo Alto; The Guthy-Jackson Charitable Foundation (J.M.B.), San Diego, CA; Department of Gastroenterology (D.B.-R., P.V.), Hospital Clínic, CIBERehd and Center of Neuroimmunology & Inflammatory Bowel Disease, Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Genentech, Inc. (P.S.C.), South San Francisco, CA; Department of Pathology (M.C.-S.), University of Florida School of Medicine, Gainesville; Opexa Therapeutics (D.H.), The Woodlands, TX; Department of Surgery (J.I.K.), Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Department of Biochemistry (D.M.K.), University of Illinois, Urbana; Neuroimmunology and MS Research (A.L., R.M., S.S.), Department of Neurology, University Hospital Zurich, University Zurich, Switzerland; Ann Romney Center for Neurologic Diseases (H.L.W.), Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Neurology and Program in Immunology (S.S.Z.), University of California, San Francisco School of Medicine; Department of Ophthalmology and Visual Sciences (T.J.S.), Kellogg Eye Center, and Division of Metabolism, Endocrine and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor; Department of Medicine (M.R.Y.), Divisions of Molecular Medicine & Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles; and Harbor-UCLA Medical Center & LABioMed at Harbor-UCLA Medical Center (M.R.Y.), Torrance, CA
| |
Collapse
|
67
|
Boieri M, Shah P, Dressel R, Inngjerdingen M. The Role of Animal Models in the Study of Hematopoietic Stem Cell Transplantation and GvHD: A Historical Overview. Front Immunol 2016; 7:333. [PMID: 27625651 PMCID: PMC5003882 DOI: 10.3389/fimmu.2016.00333] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow transplantation (BMT) is the only therapeutic option for many hematological malignancies, but its applicability is limited by life-threatening complications, such as graft-versus-host disease (GvHD). The last decades have seen great advances in the understanding of BMT and its related complications; in particular GvHD. Animal models are beneficial to study complex diseases, as they allow dissecting the contribution of single components in the development of the disease. Most of the current knowledge on the therapeutic mechanisms of BMT derives from studies in animal models. Parallel to BMT, the understanding of the pathophysiology of GvHD, as well as the development of new treatment regimens, has also been supported by studies in animal models. Pre-clinical experimentation is the basis for deep understanding and successful improvements of clinical applications. In this review, we retrace the history of BMT and GvHD by describing how the studies in animal models have paved the way to the many advances in the field. We also describe how animal models contributed to the understanding of GvHD pathophysiology and how they are fundamental for the discovery of new treatments.
Collapse
Affiliation(s)
- Margherita Boieri
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Pranali Shah
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Marit Inngjerdingen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
68
|
Alsuliman A, Appel SH, Beers DR, Basar R, Shaim H, Kaur I, Zulovich J, Yvon E, Muftuoglu M, Imahashi N, Kondo K, Liu E, Shpall EJ, Rezvani K. A robust, good manufacturing practice-compliant, clinical-scale procedure to generate regulatory T cells from patients with amyotrophic lateral sclerosis for adoptive cell therapy. Cytotherapy 2016; 18:1312-24. [PMID: 27497700 DOI: 10.1016/j.jcyt.2016.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/21/2016] [Accepted: 06/16/2016] [Indexed: 01/01/2023]
Abstract
Regulatory T cells (Tregs) play a fundamental role in the maintenance of self-tolerance and immune homeostasis. Defects in Treg function and/or frequencies have been reported in multiple disease models. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder affecting upper and lower motor neurons. Compelling evidence supports a neuroprotective role for Tregs in this disease. Indeed, rapid progression in ALS patients is associated with decreased FoxP3 expression and Treg frequencies. Thus, we propose that strategies to restore Treg number and function may slow disease progression in ALS. In this study, we developed a robust, Good Manufacturing Practice (GMP)-compliant procedure to enrich and expand Tregs from ALS patients. Tregs isolated from these patients were phenotypically similar to those from healthy individuals but were impaired in their ability to suppress T-cell effector function. In vitro expansion of Tregs for 4 weeks in the presence of GMP-grade anti-CD3/CD28 beads, interleukin (IL)-2 and rapamcyin resulted in a 25- to 200-fold increase in their number and restored their immunoregulatory activity. Collectively, our data facilitate and support the implementation of clinical trials of adoptive therapy with ex vivo expanded and highly suppressive Tregs in patients with ALS.
Collapse
Affiliation(s)
- Abdullah Alsuliman
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA; Stem Cell & Tissue Re-engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Stanley H Appel
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - David R Beers
- Peggy and Gary Edwards ALS Laboratory, Department of Neurology, Houston Methodist Neurological Institute, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Rafet Basar
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Hila Shaim
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Indresh Kaur
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jane Zulovich
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Eric Yvon
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Muharrem Muftuoglu
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Nobuhiko Imahashi
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Kayo Kondo
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Enli Liu
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth J Shpall
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA
| | - Katayoun Rezvani
- Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
69
|
Fu H, Ward EJ, Marelli-Berg FM. Mechanisms of T cell organotropism. Cell Mol Life Sci 2016; 73:3009-33. [PMID: 27038487 PMCID: PMC4951510 DOI: 10.1007/s00018-016-2211-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
Abstract
Protective immunity relies upon T cell differentiation and subsequent migration to target tissues. Similarly, immune homeostasis requires the localization of regulatory T cells (Tregs) to the sites where immunity takes place. While naïve T lymphocytes recirculate predominantly in secondary lymphoid tissue, primed T cells and activated Tregs must traffic to the antigen rich non-lymphoid tissue to exert effector and regulatory responses, respectively. Following priming in draining lymph nodes, T cells acquire the 'homing receptors' to facilitate their access to specific tissues and organs. An additional level of topographic specificity is provided by T cells receptor recognition of antigen displayed by the endothelium. Furthermore, co-stimulatory signals (such as those induced by CD28) have been shown not only to regulate T cell activation and differentiation, but also to orchestrate the anatomy of the ensuing T cell response. We here review the molecular mechanisms supporting trafficking of both effector and regulatory T cells to specific antigen-rich tissues.
Collapse
Affiliation(s)
- Hongmei Fu
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Eleanor Jayne Ward
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Federica M Marelli-Berg
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
70
|
Peripheral tolerance can be modified by altering KLF2-regulated Treg migration. Proc Natl Acad Sci U S A 2016; 113:E4662-70. [PMID: 27462110 DOI: 10.1073/pnas.1605849113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tregs are essential for maintaining peripheral tolerance, and thus targeting these cells may aid in the treatment of autoimmunity and cancer by enhancing or reducing suppressive functions, respectively. Before these cells can be harnessed for therapeutic purposes, it is necessary to understand how they maintain tolerance under physiologically relevant conditions. We now report that transcription factor Kruppel-like factor 2 (KLF2) controls naive Treg migration patterns via regulation of homeostatic and inflammatory homing receptors, and that in its absence KLF2-deficient Tregs are unable to migrate efficiently to secondary lymphoid organs (SLOs). Diminished Treg trafficking to SLOs is sufficient to initiate autoimmunity, indicating that SLOs are a primary site for maintaining peripheral tolerance under homeostatic conditions. Disease severity correlates with impaired Treg recruitment to SLOs and, conversely, promotion of Tregs into these tissues can ameliorate autoimmunity. Moreover, stabilizing KLF2 expression within the Treg compartment enhances peripheral tolerance by diverting these suppressive cells from tertiary tissues into SLOs. Taken together, these results demonstrate that peripheral tolerance is enhanced or diminished through modulation of Treg trafficking to SLOs, a process that can be controlled by adjusting KLF2 protein levels.
Collapse
|
71
|
Zou X, Lin X, Luo W, Wei J. Donor-Derived Regulatory T Cells Attenuate the Severity of Acute Graft-Versus-Host Disease after Cord Blood Transplantation. TOHOKU J EXP MED 2016; 239:193-202. [PMID: 27356468 DOI: 10.1620/tjem.239.193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Allogeneic peripheral blood stem cell transplantation (allo-PBSCT) is a curative therapy for some types of hematological disorders. However, allo-PBSCT is commonly complicated with acute graft-versus-host disease (aGVHD), characterized by host tissues being attacked by the grafted donor lymphocytes due to disparities of human leukocyte antigen (HLA) between the donor and host. By contrast, cord blood transplantation (CBT) is typically associated with low-grade severity of aGVHD, but the underlying mechanisms remain unclear. Donor-derived CD4(+) alloreactive T cells (ATs) are of a specific lymphocyte subset, which can be activated by the recipient's HLA, and play a crucial role in the onset of aGVHD. In the present study, we aimed to explore the difference in the property of CD4(+) ATs between cord blood (CB) and adult peripheral blood (APB). We thus found that CB and APB CD4(+) ATs contained not only effector T cells (Teffs) that execute aGVHD, but also a distinct subset of FoxP3(+) regulatory T cells (Tregs) that may alleviate aGVHD. Importantly, CB CD4(+) ATs contained higher percentage of FoxP3(+) Tregs, compared to APB CD4(+) ATs (P < 0.001), while lower percentage of Teffs (Th1, Th2 and Th17 cells) was detected in CB CD4(+) ATs (P < 0.05, P < 0.001 and P < 0.05, respectively). Our findings suggest that FoxP3(+) Tregs in CB CD4(+) ATs may contribute to attenuating the severity of aGVHD observed after CBT.
Collapse
Affiliation(s)
- Xingli Zou
- Department of Rheumatology and Hematology, Affiliated Hospital of North Sichuan Medical College
| | | | | | | |
Collapse
|
72
|
Dioszeghy V, Mondoulet L, Puteaux E, Dhelft V, Ligouis M, Plaquet C, Dupont C, Benhamou PH. Differences in phenotype, homing properties and suppressive activities of regulatory T cells induced by epicutaneous, oral or sublingual immunotherapy in mice sensitized to peanut. Cell Mol Immunol 2016; 14:770-782. [PMID: 27063469 PMCID: PMC5596241 DOI: 10.1038/cmi.2016.14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022] Open
Abstract
Allergen-specific immunotherapy has been proposed as an attractive strategy to actively treat food allergy using the following three different immunotherapy routes: oral (OIT), sublingual (SLIT) and epicutaneous (EPIT) immunotherapy. Regulatory T cells (Tregs) have been shown to have a pivotal role in the mechanisms of immunotherapy. The aim of this study was to compare the phenotype and function of Tregs induced in peanut-sensitized BALB/c mice using these three routes of treatment. We show that although EPIT, OIT and SLIT were all able to effectively desensitize peanut-sensitized mice, they induced different subsets of Tregs. Foxp3+ Tregs were induced by the three treatment routes but with greater numbers induced by EPIT. EPIT and OIT also increased the level of LAP+ Tregs, whereas SLIT induced IL-10+ cells. The suppressive activity of EPIT-induced Tregs did not depend on IL-10 but required CTLA-4, whereas OIT acted through both mechanisms and SLIT was strictly dependent on IL-10. Moreover, the three routes influenced the homing properties of induced Tregs differently, with a larger repertoire of chemokine receptors expressed by EPIT-induced Tregs compared with OIT- and SLIT- induced cells, resulting in different protective consequences against allergen exposure. Furthermore, whereas OIT- or SLIT-induced Tregs lost their suppressive activities after treatment was discontinued, the suppressive activities of EPIT-induced Tregs were still effective 8 weeks after the end of treatment, suggesting the induction of a more long-lasting tolerance. In summary, EPIT, OIT and SLIT mediated desensitization through the induction of different subsets of Tregs, leading to important differences in the subsequent protection against allergen exposure and the possible induction of tolerance.
Collapse
Affiliation(s)
| | | | - Emilie Puteaux
- Research Department, DBV Technologies, Paris, 92220, France
| | | | | | | | - Christophe Dupont
- Pédiatrie-Gastroentérologie, Université Paris Descartes &APHP-Hôpital Necker, Paris, 75743, France
| | | |
Collapse
|
73
|
Canavan JB, Scottà C, Vossenkämper A, Goldberg R, Elder MJ, Shoval I, Marks E, Stolarczyk E, Lo JW, Powell N, Fazekasova H, Irving PM, Sanderson JD, Howard JK, Yagel S, Afzali B, MacDonald TT, Hernandez-Fuentes MP, Shpigel NY, Lombardi G, Lord GM. Developing in vitro expanded CD45RA+ regulatory T cells as an adoptive cell therapy for Crohn's disease. Gut 2016; 65:584-94. [PMID: 25715355 PMCID: PMC4819603 DOI: 10.1136/gutjnl-2014-306919] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 12/23/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Thymus-derived regulatory T cells (Tregs) mediate dominant peripheral tolerance and treat experimental colitis. Tregs can be expanded from patient blood and were safely used in recent phase 1 studies in graft versus host disease and type 1 diabetes. Treg cell therapy is also conceptually attractive for Crohn's disease (CD). However, barriers exist to this approach. The stability of Tregs expanded from Crohn's blood is unknown. The potential for adoptively transferred Tregs to express interleukin-17 and exacerbate Crohn's lesions is of concern. Mucosal T cells are resistant to Treg-mediated suppression in active CD. The capacity for expanded Tregs to home to gut and lymphoid tissue is unknown. METHODS To define the optimum population for Treg cell therapy in CD, CD4(+)CD25(+)CD127(lo)CD45RA(+) and CD4(+)CD25(+)CD127(lo)CD45RA(-) Treg subsets were isolated from patients' blood and expanded in vitro using a workflow that can be readily transferred to a good manufacturing practice background. RESULTS Tregs can be expanded from the blood of patients with CD to potential target dose within 22-24 days. Expanded CD45RA(+) Tregs have an epigenetically stable FOXP3 locus and do not convert to a Th17 phenotype in vitro, in contrast to CD45RA(-) Tregs. CD45RA(+) Tregs highly express α4β7 integrin, CD62L and CC motif receptor 7 (CCR7). CD45RA(+) Tregs also home to human small bowel in a C.B-17 severe combined immune deficiency (SCID) xenotransplant model. Importantly, in vitro expansion enhances the suppressive ability of CD45RA(+) Tregs. These cells also suppress activation of lamina propria and mesenteric lymph node lymphocytes isolated from inflamed Crohn's mucosa. CONCLUSIONS CD4(+)CD25(+)CD127(lo)CD45RA(+) Tregs may be the most appropriate population from which to expand Tregs for autologous Treg therapy for CD, paving the way for future clinical trials.
Collapse
Affiliation(s)
- James B Canavan
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Cristiano Scottà
- Medical Research Council Centre for Transplantation, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Immunoregulation and Immune Intervention, King's College London, London, UK
| | - Anna Vossenkämper
- Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - Rimma Goldberg
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Matthew J Elder
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| | - Irit Shoval
- The Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Ellen Marks
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| | - Emilie Stolarczyk
- National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Jonathan W Lo
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| | - Nick Powell
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Henrieta Fazekasova
- Medical Research Council Centre for Transplantation, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Immunoregulation and Immune Intervention, King's College London, London, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Jeremy D Sanderson
- Department of Gastroenterology, Guy's & St Thomas’ NHS Foundation Trust, London, UK
| | - Jane K Howard
- National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Division of Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Simcha Yagel
- Department of Obstetrics & Gynaecology, Hadassah University Hospital, Jerusalem, Israel
| | - Behdad Afzali
- Medical Research Council Centre for Transplantation, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Immunoregulation and Immune Intervention, King's College London, London, UK
| | - Thomas T MacDonald
- Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | - Maria P Hernandez-Fuentes
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| | - Nahum Y Shpigel
- The Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Giovanna Lombardi
- Medical Research Council Centre for Transplantation, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK,Department of Immunoregulation and Immune Intervention, King's College London, London, UK
| | - Graham M Lord
- Medical Research Council Centre for Transplantation, King's College London, London, UK,Department of Experimental Immunobiology, King's College London, London, UK,National Institute for Health Research Biomedical Research Centre at Guy's and St. Thomas’ NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
74
|
Stokes J, Hoffman EA, Zeng Y, Larmonier N, Katsanis E. Post-transplant bendamustine reduces GvHD while preserving GvL in experimental haploidentical bone marrow transplantation. Br J Haematol 2016; 174:102-16. [PMID: 27030315 DOI: 10.1111/bjh.14034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Abstract
Advances in haploidentical bone marrow transplantation (h-BMT) have drastically broadened the treatment options for patients requiring BMT. The possibility of significantly reducing the complications resulting from graft-versus-host disease (GvHD) with the administration of post-transplant cyclophosphamide (PT-CY) has substantially improved the efficacy and applicability of T cell-replete h-BMT. However, higher frequency of disease recurrence remains a major challenge in h-BMT with PT-CY. There is a critical need to identify novel strategies to prevent GvHD while sparing the graft-versus-leukaemia (GvL) effect in h-BMT. To this end, we evaluated the impact of bendamustine (BEN), given post-transplant, on GvHD and GvL using clinically relevant murine h-BMT models. We provide results indicating that post-transplant bendamustine (PT-BEN) alleviates GvHD, significantly improving survival, while preserving engraftment and GvL effects. We further document that PT-BEN can mitigate GvHD even in the absence of Treg. Our results also indicate that PT-BEN is less myelosuppressive than PT-CY, significantly increasing the number and proportion of CD11b(+) Gr-1(hi) cells, while decreasing lymphoid cells. In vitro we observed that BEN enhances the suppressive function of myeloid-derived suppressor cells (MDSCs) while impairing the proliferation of T- and B-cells. These results advocate for the consideration of PT-BEN as a new therapeutic platform for clinical implementation in h-BMT.
Collapse
Affiliation(s)
- Jessica Stokes
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Emely A Hoffman
- Department of Pediatrics, University of Arizona, Tucson, Arizona
| | - Yi Zeng
- Department of Pediatrics, University of Arizona, Tucson, Arizona.,University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Nicolas Larmonier
- Department of Pediatrics, University of Arizona, Tucson, Arizona.,Department of Immunobiology, University of Arizona, Tucson, Arizona.,University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, Arizona.,Department of Immunobiology, University of Arizona, Tucson, Arizona.,Department of Medicine, University of Arizona, Tucson, Arizona.,Department of Pathology, University of Arizona, Tucson, Arizona.,University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
75
|
Edinger M. Driving allotolerance: CAR-expressing Tregs for tolerance induction in organ and stem cell transplantation. J Clin Invest 2016; 126:1248-50. [PMID: 26999608 DOI: 10.1172/jci86827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regulatory T cells (Tregs) modulate the function of a variety of immune cells and are critical for maintaining self-tolerance and preventing the development of autoimmune disease. Due to their ability to suppress effector T cells, Tregs have been increasingly explored for clinical use to suppress alloresponses. While this approach has been promising in preclinical models and early clinical trials, widespread clinical use of Tregs has been limited by the low number of these cells in the periphery and the unknown frequency of allo-responsive Tregs. In this issue of the JCI, MacDonald and colleagues transduced human Tregs with a chimeric antigen receptor (CAR) that targets the HLA class I molecule A2. These CAR-expressing T cells were readily activated via CAR stimulation and exerted potent immunosuppressive effects when stimulated in vitro. In a murine model of hematopoietic stem cell transplantation, CAR-modified Tregs were more effective in preventing the development of graft-versus-host disease compared with polyclonal Tregs. The results of this study lay the groundwork for the further evaluation of CAR-expressing Tregs in the prevention or treatment of transplant complications.
Collapse
|
76
|
Patterson SJ, Pesenacker AM, Wang AY, Gillies J, Mojibian M, Morishita K, Tan R, Kieffer TJ, Verchere CB, Panagiotopoulos C, Levings MK. T regulatory cell chemokine production mediates pathogenic T cell attraction and suppression. J Clin Invest 2016; 126:1039-51. [PMID: 26854929 DOI: 10.1172/jci83987] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023] Open
Abstract
T regulatory cells (Tregs) control immune homeostasis by preventing inappropriate responses to self and nonharmful foreign antigens. Tregs use multiple mechanisms to control immune responses, all of which require these cells to be near their targets of suppression; however, it is not known how Treg-to-target proximity is controlled. Here, we found that Tregs attract CD4+ and CD8+ T cells by producing chemokines. Specifically, Tregs produced both CCL3 and CCL4 in response to stimulation, and production of these chemokines was critical for migration of target T cells, as Tregs from Ccl3-/- mice, which are also deficient for CCL4 production, did not promote migration. Moreover, CCR5 expression by target T cells was required for migration of these cells to supernatants conditioned by Tregs. Tregs deficient for expression of CCL3 and CCL4 were impaired in their ability to suppress experimental autoimmune encephalomyelitis or islet allograft rejection in murine models. Moreover, Tregs from subjects with established type 1 diabetes were impaired in their ability to produce CCL3 and CCL4. Together, these results demonstrate a previously unappreciated facet of Treg function and suggest that chemokine secretion by Tregs is a fundamental aspect of their therapeutic effect in autoimmunity and transplantation.
Collapse
MESH Headings
- Adolescent
- Adoptive Transfer
- Animals
- Cell Proliferation
- Cells, Cultured
- Chemokine CCL3/biosynthesis
- Chemokine CCL3/metabolism
- Chemokine CCL4/biosynthesis
- Chemokine CCL4/metabolism
- Chemotaxis, Leukocyte
- Child
- Child, Preschool
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Female
- Humans
- Infant
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, CCR5/physiology
- T-Lymphocytes, Regulatory/physiology
Collapse
|
77
|
Grygorowicz MA, Biernacka M, Bujko M, Nowak E, Rymkiewicz G, Paszkiewicz-Kozik E, Borycka IS, Bystydzienski Z, Walewski J, Markowicz S. Human regulatory T cells suppress proliferation of B lymphoma cells. Leuk Lymphoma 2016; 57:1903-20. [DOI: 10.3109/10428194.2015.1121260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
78
|
Riese SB, Buscher K, Enders S, Kuehne C, Tauber R, Dernedde J. Structural requirements of mono- and multivalent L-selectin blocking aptamers for enhanced receptor inhibition in vitro and in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:901-908. [PMID: 26772426 DOI: 10.1016/j.nano.2015.12.379] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/28/2015] [Accepted: 12/24/2015] [Indexed: 01/08/2023]
Abstract
UNLABELLED L-selectin mediates extravasation of leukocytes from blood into the surrounding tissue during inflammation and is therefore a therapeutical target in certain overwhelming immune reactions. In this study, we characterized an L-selectin specific blocking DNA aptamer with respect to nucleotide composition and target binding. Introduction of deletions and nucleotide exchanges resulted in an optimized DNA sequence but preservation of the IC50 in the low nanomolar range. The inhibitory potential was significantly increased when the aptamer was displayed as a di- and trimer connected via appropriate linker length. Similar to monoclonal antibodies, trimer yielded picomolar IC50 values in a competitive binding assay. In comparison to the monovalent aptamer, the trivalent assembly reduced PBMC interactions to L-selectin ligands 90-fold under shear and exerted superior inhibition of PBMC rolling in vivo. In conclusion, our work demonstrates the feasibility of optimizing aptamer sequences and shows that multivalent ligand presentation enables superior adhesion receptor targeting. FROM THE CLINICAL EDITOR During inflammation, leukocytes extravasate from blood vessels under chemotaxic signals. The presence of L-selectin on endothelium acts as a mediator for the extravasation process. In this study, the authors investigated an L-selectin specific blocking DNA aptamer in various forms, as inhibitors to leukocyte binding and extravasation. This new approach confirmed the potential use of aptamers in clinical setting.
Collapse
Affiliation(s)
- Sebastian B Riese
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Konrad Buscher
- Institute for Physiological Chemistry Pathobiochemistry, University of Muenster, Muenster, Germany; Department of Nephrology and Rheumatology, University Hospital Muenster, Muenster, Germany.
| | - Sven Enders
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Christian Kuehne
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Rudolf Tauber
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
79
|
Florek M, Schneidawind D, Pierini A, Baker J, Armstrong R, Pan Y, Leveson-Gower D, Negrin R, Meyer E. Freeze and Thaw of CD4+CD25+Foxp3+ Regulatory T Cells Results in Loss of CD62L Expression and a Reduced Capacity to Protect against Graft-versus-Host Disease. PLoS One 2015; 10:e0145763. [PMID: 26693907 PMCID: PMC4691201 DOI: 10.1371/journal.pone.0145763] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/08/2015] [Indexed: 11/18/2022] Open
Abstract
The adoptive transfer of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in murine models of allogeneic hematopoietic cell transplantation (HCT) has been shown to protect recipient mice from lethal acute graft-versus-host disease (GVHD) and this approach is being actively investigated in human clinical trials. Here, we examined the effects of cryopreservation on Tregs. We found that freeze and thaw of murine and human Tregs is associated with reduced expression of L-selectin (CD62L), which was previously established to be an important factor that contributes to the in vivo protective effects of Tregs. Frozen and thawed murine Tregs showed a reduced capacity to bind to the CD62L binding partner MADCAM1 in vitro as well as an impaired homing to secondary lymphoid organs in vivo. Upon adoptive transfer frozen and thawed Tregs failed to protect against lethal GVHD compared with fresh Tregs in a murine model of allogeneic HCT across major histocompatibility barriers. In summary, the direct administration of adoptively transferred frozen and thawed Tregs adversely affects their immunosuppressive potential which is an important factor to consider in the clinical implementation of Treg immunotherapies.
Collapse
Affiliation(s)
- Mareike Florek
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Dominik Schneidawind
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Department of Medicine II, Eberhard Karls University, Tübingen, Germany
- * E-mail:
| | - Antonio Pierini
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
- Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Randall Armstrong
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Yuqiong Pan
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Dennis Leveson-Gower
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Robert Negrin
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Everett Meyer
- Division of Blood and Marrow Transplantation, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
80
|
Hahn SA, Bellinghausen I, Trinschek B, Becker C. Translating Treg Therapy in Humanized Mice. Front Immunol 2015; 6:623. [PMID: 26697017 PMCID: PMC4677486 DOI: 10.3389/fimmu.2015.00623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/30/2015] [Indexed: 12/30/2022] Open
Abstract
Regulatory T cells (Treg) control immune cell function as well as non-immunological processes. Their far-reaching regulatory activities suggest their functional manipulation as a means to sustainably and causally intervene with the course of diseases. Preclinical tools and strategies are however needed to further test and develop interventional strategies outside the human body. “Humanized” mouse models consisting of mice engrafted with human immune cells and tissues provide new tools to analyze human Treg ontogeny, immunobiology, and therapy. Here, we summarize the current state of humanized mouse models as a means to study human Treg function at the molecular level and to design strategies to harness these cells for therapeutic purposes.
Collapse
Affiliation(s)
- Susanne A Hahn
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University , Mainz , Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University , Mainz , Germany
| | - Bettina Trinschek
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University , Mainz , Germany
| | - Christian Becker
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University , Mainz , Germany
| |
Collapse
|
81
|
Inoue T, Ikegame K, Kaida K, Okada M, Yoshihara S, Tamaki H, Fujimori Y, Soma T, Ogawa H. Host Foxp3+CD4+ Regulatory T Cells Act as a Negative Regulator of Dendritic Cells in the Peritransplantation Period. THE JOURNAL OF IMMUNOLOGY 2015; 196:469-83. [PMID: 26621858 DOI: 10.4049/jimmunol.1402950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/26/2015] [Indexed: 12/31/2022]
Abstract
Host Foxp3+CD4+ regulatory T cells (Tregs) have been shown to suppress graft-versus-host disease (GVHD) in experimental bone marrow transplantation (BMT) models; however, the detailed mechanism is unknown. To address this issue, we established a murine MHC-haploidentical BMT model (BDF1 (H-2b/d) → B6C3F1 (H-2b/k)), in which transplantation following conditioning with high-dose (13 Gy) or low-dose (5 Gy) total body irradiation corresponds to myeloablative stem cell transplantation (MAST) or reduced-intensity stem cell transplantation (RIST) BMT. All MAST recipients died of GVHD within 70 d, whereas RIST recipients developed almost no GVHD and survived for at least 3 mo. In this BMT model, we investigated the kinetics of immune cells in the mesenteric lymph nodes because GVHD was most prominent in the intestines. Host Tregs that survived after total body irradiation could proliferate transiently by day 4. Comparing the kinetics of immune cells among MAST, RIST, and anti-CD25 mAb-treated RIST, we found that the transiently surviving host Tregs were fully functional, closely contacted with host dendritic cells (DCs), and significantly restrained the maturation (CD80 and CD86 expression) of DCs in a dose-dependent manner. There was a positive correlation between the ratio of DCs to host Tregs and the extent of maturation of DCs. Host Tregs suppressed alloresponse mainly by contact inhibition. Host Tregs are already active in lymph nodes before transplantation and restrain the maturation of host DCs, thereby dampening the ability of DCs to activate allogeneic donor T cells and consequently reducing the magnitude of graft-versus-host reaction. Thus, host Tregs are negative regulators of host DCs that act in the peritransplantation period.
Collapse
Affiliation(s)
- Takayuki Inoue
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Katsuji Kaida
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Masaya Okada
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Satoshi Yoshihara
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Hiroya Tamaki
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Yoshihiro Fujimori
- Department of Transfusion Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan
| | - Toshihiro Soma
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| | - Hiroyasu Ogawa
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Hyogo 663-8501, Japan; and
| |
Collapse
|
82
|
Lei H, Kuchenbecker L, Streitz M, Sawitzki B, Vogt K, Landwehr-Kenzel S, Millward J, Juelke K, Babel N, Neumann A, Reinke P, Volk HD. Human CD45RA(-) FoxP3(hi) Memory-Type Regulatory T Cells Show Distinct TCR Repertoires With Conventional T Cells and Play an Important Role in Controlling Early Immune Activation. Am J Transplant 2015; 15:2625-35. [PMID: 25988290 DOI: 10.1111/ajt.13315] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/10/2015] [Accepted: 03/15/2015] [Indexed: 01/25/2023]
Abstract
Adoptive immunotherapy with regulatory T cells (Treg) is a new option to promote immune tolerance following solid organ transplantation (SOT). However, Treg from elderly patients awaiting transplantation are dominated by the CD45RA(-) CD62L(+) central memory type Treg subset (TregCM), and the yield of well-characterized and stable naïve Treg (TregN) is low. It is, therefore, important to determine whether these TregCM are derived from the thymus and express high stability, suppressive capacity and a broad antigen repertoire like TregN. In this study, we showed that TregCM use a different T cell receptor (TCR) repertoire from conventional T cells (Tconv), using next-generation sequencing of all 24 Vβ families, with an average depth of 534 677 sequences. This showed almost no contamination with induced Treg. Furthermore, TregCM showed enhanced suppressive activity on Tconv at early checkpoints of immune activation controlling activation markers expression and cytokine secretion, but comparable inhibition of proliferation. Following in vitro expansion under mTOR inhibition, TregCM expanded equally as well as TregN without losing their function. Despite relatively limited TCR repertoire, TregCM also showed specific alloresponse, although slightly reduced compared to TregN. These results support the therapeutic usefulness of manufacturing Treg products from CD45RA(-) CD62L(+) Treg-enriched starting material to be applied for adoptive Treg therapy.
Collapse
Affiliation(s)
- H Lei
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - L Kuchenbecker
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,International Max Planck Research School for Computational Biology and Scientific Computing, Berlin, Germany
| | - M Streitz
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - B Sawitzki
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - K Vogt
- Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - S Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department of Pediatric Pulmonology and Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - J Millward
- Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), MDC and Charité University Medicine, Berlin, Germany
| | - K Juelke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany
| | - N Babel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - A Neumann
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel.,Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - P Reinke
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department of Nephrology and Intensive Care, Charité University Medicine Berlin, Berlin, Germany
| | - H-D Volk
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Institute of Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
83
|
Müller M, Herrath J, Malmström V. IL-1R1 is expressed on both Helios(+) and Helios(-) FoxP3(+) CD4(+) T cells in the rheumatic joint. Clin Exp Immunol 2015; 182:90-100. [PMID: 26076982 DOI: 10.1111/cei.12668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2015] [Indexed: 01/22/2023] Open
Abstract
Synovial fluid from rheumatic joints displays a well-documented enrichment of forkhead box protein 3 (FoxP3)(+) regulatory T cells (tissue Tregs ). However, we have previously demonstrated that the mere frequency of FoxP3 expressing cells cannot predict suppressive function. Instead, extrinsic factors and the functional heterogeneity of FoxP3(+) Tregs complicate the picture. Here, we investigated FoxP3(+) Tregs from blood and synovial fluid of patients with rheumatic disease in relation to Helios expression by assessing phenotypes, proliferative potential and cytokine production by flow cytometry. Our aim was to investigate the discriminatory potential of Helios when studying FoxP3(+) Tregs in an inflammatory setting. We demonstrate that the majority of the synovial FoxP3(+) CD4(+) T cells in patients with inflammatory arthritis expressed Helios. Helios(+) FoxP3(+) Tregs displayed a classical Treg phenotype with regard to CD25 and cytotoxic T lymphocyte-associated antigen (CTLA)-4 expression and a demethylated Treg -specific demethylated region (TSDR). Furthermore, Helios(+) FoxP3(+) T cells were poor producers of the effector cytokines interferon (IFN)-γ and tumour necrosis factor (TNF), as well as of the anti-inflammatory cytokine interleukin (IL)-10. The less abundant Helios(-) FoxP3(+) T cell subset was also enriched significantly in the joint, displayed a overlapping phenotype to the double-positive Treg cells with regard to CTLA-4 expression, but differed by their ability to secrete IL-10, IFN-γ and TNF upon T cell receptor (TCR) cross-linking. We also demonstrate a striking enrichment of IL-1R1 expression in synovial CD4(+) T cells that was restricted to the CD25-expressing FoxP3 population, but independent of Helios. IL-1R1 expression appears to define a tissue Treg cell phenotype together with the expression of CD25, glucocorticoid-induced TNF receptor family-related gene (GITR) and CTLA-4.
Collapse
Affiliation(s)
- M Müller
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - J Herrath
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - V Malmström
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
84
|
Xiong Y, Bensoussan D, Decot V. Adoptive Immunotherapies After Allogeneic Hematopoietic Stem Cell Transplantation in Patients With Hematologic Malignancies. Transfus Med Rev 2015; 29:259-67. [PMID: 26282736 DOI: 10.1016/j.tmrv.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/01/2015] [Accepted: 07/05/2015] [Indexed: 12/25/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for patients with chemotherapy-resistant hematologic malignancies that are usually fatal in absence of treatment. Hematopoietic stem cell transplantation is associated with significant early and late morbidity and mortality. Graft-versus-host disease, infections, and relapse are the most important causes of mortality after HSCT. Until now, these complications have been managed mainly with pharmacological drugs, but in some situations, this approach clearly shows its limit. As such, there is a significant need for novel therapies for the treatment of complications after allogeneic HSCT. In this review, the currently available adoptive immunotherapies offering an alternative in case of treatment failure of HSCT complications will be described. The results of the main clinical trials based on immune cell infusion will be discussed and the strategies aiming at maximizing cytotoxic T-lymphocyte, regulatory T-cell, natural killer cell, cytokine-induced killer cell, and γδ T-cell efficacies in the context of immunotherapy approaches after allogeneic HSCT in patients with hematologic malignancies will be gathered.
Collapse
Affiliation(s)
- Yu Xiong
- Unité de Thérapie Cellulaire et Tissus, CHU Nancy, Nancy, France; Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Danièle Bensoussan
- Unité de Thérapie Cellulaire et Tissus, CHU Nancy, Nancy, France; Nancy Université, UL-UMR CNRS 7365, Faculté de Médecine, Vandoeuvre-lés-Nancy, Nancy, France
| | - Véronique Decot
- Unité de Thérapie Cellulaire et Tissus, CHU Nancy, Nancy, France; Nancy Université, UL-UMR CNRS 7365, Faculté de Médecine, Vandoeuvre-lés-Nancy, Nancy, France.
| |
Collapse
|
85
|
Pierini A, Colonna L, Alvarez M, Schneidawind D, Nishikii H, Baker J, Pan Y, Florek M, Kim BS, Negrin RS. Donor Requirements for Regulatory T Cell Suppression of Murine Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2015; 195:347-55. [PMID: 25994967 DOI: 10.4049/jimmunol.1402861] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/24/2015] [Indexed: 01/09/2023]
Abstract
Adoptive transfer of freshly isolated natural occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) prevents graft-versus-host disease (GVHD) in several animal models and following hematopoietic cell transplantation (HCT) in clinical trials. Donor-derived Treg have been mainly used, as they share the same MHC with CD4(+) and CD8(+) conventional T cells (Tcon) that are primarily responsible for GVHD. Third party-derived Treg are a promising alternative for cellular therapy, as they can be prepared in advance, screened for pathogens and activity, and banked. We explored MHC disparities between Treg and Tcon in HCT to evaluate the impact of different Treg populations in GVHD prevention and survival. Third-party Treg and donor Treg are equally suppressive in ex vivo assays, whereas both donor and third-party but not host Treg protect from GVHD in allogeneic HCT, with donor Treg being the most effective. In an MHC minor mismatched transplantation model (C57BL/6 → BALB/b), donor and third-party Treg were equally effective in controlling GVHD. Furthermore, using an in vivo Treg depletion mouse model, we found that Treg exert their main suppressive activity in the first 2 d after transplantation. Third-party Treg survive for a shorter period of time after adoptive transfer, but despite the shorter survival, they control Tcon proliferation in the early phases of HCT. These studies provide relevant insights on the mechanisms of Treg-mediated protection from GVHD and support for the use of third-party Treg in clinical trials.
Collapse
Affiliation(s)
- Antonio Pierini
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Lucrezia Colonna
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Maite Alvarez
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Dominik Schneidawind
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Hidekazu Nishikii
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Yuqiong Pan
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Mareike Florek
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Byung-Su Kim
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Robert S Negrin
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305; and
| |
Collapse
|
86
|
Zhao XY, Wang YT, Mo XD, Zhao XS, Wang YZ, Chang YJ, Huang XJ. Higher frequency of regulatory T cells in granulocyte colony-stimulating factor (G-CSF)-primed bone marrow grafts compared with G-CSF-primed peripheral blood grafts. J Transl Med 2015; 13:145. [PMID: 25948100 PMCID: PMC4490623 DOI: 10.1186/s12967-015-0507-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regulatory T cells (Treg) in allografts are important for the prevention of graft-versus-host disease (GVHD) post-transplantation. The aim of this study was to compare the contents of Tregs and effector T cells in granulocyte colony-stimulating factor (G-CSF)-primed bone marrow grafts (G-BM) and peripheral blood grafts (G-PB). METHOD G-BM and G-PB were obtained from 20 allogeneic donors. T-cell subgroups, including conventional T cells and different types of Treg cells, as well as the percentage of Ki67 expression on CD4(+)CD25(high)Foxp3(+) Treg cells, were analyzed using flow cytometry. The levels of interferon-γ (IFN-γ) and interleukin-17 (IL-17) secreted by T cells stimulated with PMA and ionomycin were also determined by flow cytometry. RESULTS The percentage of CD4(+)CD25(high)CD127(-/dim)CD62L(+) Treg cells was significantly higher in the G-BM group, with higher proportions of CD45RA(+) naïve Treg cells and higher expression of CD69 on Treg cells in G-BM (P < 0.05). The percentage of Ki67 expression in CD4(+)CD25(high)Foxp3(+) Treg cells in G-BM was significantly higher than that on G-PB. The suppressive functions of Treg cells in inhibiting T-cell activation were comparable between G-BM and G-PB. The proportions of CD4(+)CD25(-)CD69(+) Treg subsets as well as Th1 cells in G-BM were also significantly higher than those in G-PB (P < 0.001). The proportions of conventional T cells and Th17 effector cells were comparable in G-BM compared with those in G-PB. Thus, the ratio of conventional T cells and CD4(+)CD25(high)CD127(-/dim) regulatory T cells were lower in G-BM than that in G-PB (P = 0.014). CONCLUSION In addition to the much higher T-cell counts in G-PB grafts that may contribute to more severe GVHD, the higher frequency of Treg cells and lower ratio of conventional T cells to Treg cells in G-BM compared with G-PB grafts might reduce GVHD post-transplantation in G-BM compared with G-PB transplantation.
Collapse
Affiliation(s)
- Xiang-Yu Zhao
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China.
| | - Yu-Tong Wang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China.
| | - Xiao-Dong Mo
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China.
| | - Xiao-Su Zhao
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China.
| | - Ya-Zhe Wang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China.
| | - Ying-Jun Chang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 Xizhimen South Street, Beijing, 100044, China. .,Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
| |
Collapse
|
87
|
Velaga S, Ukena SN, Dringenberg U, Alter C, Pardo J, Kershaw O, Franzke A. Granzyme A Is Required for Regulatory T-Cell Mediated Prevention of Gastrointestinal Graft-versus-Host Disease. PLoS One 2015; 10:e0124927. [PMID: 25928296 PMCID: PMC4415808 DOI: 10.1371/journal.pone.0124927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/11/2015] [Indexed: 01/08/2023] Open
Abstract
In our previous work we could identify defects in human regulatory T cells (Tregs) likely favoring the development of graft-versus-host disease (GvHD) following allogeneic stem cell transplantation (SCT). Treg transcriptome analyses comparing GvHD and immune tolerant patients uncovered regulated gene transcripts highly relevant for Treg cell function. Moreover, granzyme A (GZMA) also showed a significant lower expression at the protein level in Tregs of GvHD patients. GZMA induces cytolysis in a perforin-dependent, FAS-FASL independent manner and represents a cell-contact dependent mechanism for Tregs to control immune responses. We therefore analyzed the functional role of GZMA in a murine standard model for GvHD. For this purpose, adoptively transferred CD4+CD25+ Tregs from gzmA-/- mice were analyzed in comparison to their wild type counterparts for their capability to prevent murine GvHD. GzmA-/- Tregs home efficiently to secondary lymphoid organs and do not show phenotypic alterations with respect to activation and migration properties to inflammatory sites. Whereas gzmA-/- Tregs are highly suppressive in vitro, Tregs require GZMA to rescue hosts from murine GvHD, especially regarding gastrointestinal target organ damage. We herewith identify GZMA as critical effector molecule of human Treg function for gastrointestinal immune response in an experimental GvHD model.
Collapse
Affiliation(s)
- Sarvari Velaga
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sya N. Ukena
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ulrike Dringenberg
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Christina Alter
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Julian Pardo
- Immune Effector Cells Group (ICE), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain
| | - Olivia Kershaw
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anke Franzke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
88
|
Barthlott T, Bosch AJT, Berkemeier C, Nogales-Cadenas R, Jeker LT, Keller MP, Pascual-Montano A, Holländer GA. A subpopulation of CD103(pos) ICOS(pos) Treg cells occurs at high frequency in lymphopenic mice and represents a lymph node specific differentiation stage. Eur J Immunol 2015; 45:1760-71. [PMID: 25752506 DOI: 10.1002/eji.201445235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/16/2015] [Accepted: 03/04/2015] [Indexed: 01/09/2023]
Abstract
Regulatory T (Treg) cells are pivotal for the maintenance of peripheral tolerance by controlling self-reactive, chronic, and homeostatic T-cell responses. Here, we report that the increase in Treg-cell suppressive function observed in lymphopenic mice correlates with the degree of lymphopenia and is caused by a higher frequency of a novel subpopulation of CD103(pos) ICOS(pos) Treg cells. Though present in the thymus, CD103(pos) ICOS(pos) Treg cells are not generated there but recirculate from the periphery to that site. The acquisition and maintenance of this distinctive phenotype requires the LN microenvironment and the in situ availability of antigen. Contrary to conventional effector and other Treg cells, the cellularity of CD103(pos) ICOS(pos) Treg cells is not affected by the absence of IL-7 and thymic stroma lymphopoetin. Given their increased frequency in lymphopenia, the absolute number of CD103(pos) ICOS(pos) Treg cells remains unchanged in the periphery irrespective of a paucity of total Treg cells. We furthermore demonstrate, with cell transfers in mice, that the CD103(pos) ICOS(pos) phenotype represents a LN-specific differentiation stage arrived at by several other Treg-cell subsets. Thus, tissue-specific cues determine the overall potency of the peripheral Treg-cell pool by shaping its subset composition.
Collapse
Affiliation(s)
- Thomas Barthlott
- Pediatric Immunology, Department of Biomedicine, University Children's Hospital of Basel, Basel, Switzerland
| | - Angela J T Bosch
- Pediatric Immunology, Department of Biomedicine, University Children's Hospital of Basel, Basel, Switzerland
| | - Caroline Berkemeier
- Pediatric Immunology, Department of Biomedicine, University Children's Hospital of Basel, Basel, Switzerland
| | - Rubén Nogales-Cadenas
- Functional Bioinformatics Group, National Center for Biotechnology-CSIC, Madrid, Spain
| | - Lukas T Jeker
- Pediatric Immunology, Department of Biomedicine, University Children's Hospital of Basel, Basel, Switzerland
| | - Marcel P Keller
- Pediatric Immunology, Department of Biomedicine, University Children's Hospital of Basel, Basel, Switzerland
| | | | - Georg A Holländer
- Pediatric Immunology, Department of Biomedicine, University Children's Hospital of Basel, Basel, Switzerland.,Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
89
|
Third-party CD4+ invariant natural killer T cells protect from murine GVHD lethality. Blood 2015; 125:3491-500. [PMID: 25795920 DOI: 10.1182/blood-2014-11-612762] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/12/2015] [Indexed: 12/11/2022] Open
Abstract
Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are a potent immunoregulatory T-cell subset in both humans and mice. Here, we explored the role of adoptively transferred third-party CD4(+) iNKT cells for protection from lethal GVHD in a murine model of allogeneic HCT across major histocompatibility barriers. We found that low numbers of CD4(+) iNKT cells from third-party mice resulted in a significant survival benefit with retained graft-versus-tumor effects. In vivo expansion of alloreactive T cells was diminished while displaying a T helper cell 2-biased phenotype. Notably, CD4(+) iNKT cells from third-party mice were as protective as CD4(+) iNKT cells from donor mice although third-party CD4(+) iNKT cells were rejected early after allogeneic HCT. Adoptive transfer of third-party CD4(+) iNKT cells resulted in a robust expansion of donor CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) that were required for protection from lethal GVHD. However, in vivo depletion of myeloid-derived suppressor cells abrogated both Treg expansion and protection from lethal GVHD. Despite the fact that iNKT cells are a rare cell population, the almost unlimited third-party availability and feasibility of in vitro expansion provide the basis for clinical translation.
Collapse
|
90
|
Generation, cryopreservation, function and in vivo persistence of ex vivo expanded cynomolgus monkey regulatory T cells. Cell Immunol 2015; 295:19-28. [PMID: 25732601 DOI: 10.1016/j.cellimm.2015.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 12/16/2022]
Abstract
We expanded flow-sorted Foxp3(+) cynomolgus monkey regulatory T cells (Treg) >1000-fold after three rounds of stimulation with anti-CD3 mAb-loaded artificial antigen-presenting cells, rapamycin (first round only) and IL-2. The expanded Treg maintained their expression of Treg signature markers, CD25, CD27, CD39, Foxp3, Helios, and CTLA-4, as well as CXCR3, which plays an important role in T cell migration to sites of inflammation. In contrast to expanded effector T cells (Teff), expanded Treg produced minimal IFN-γ and IL-17 and no IL-2 and potently suppressed Teff proliferation. Following cryopreservation, thawed Treg were less viable than their freshly-expanded counterparts, although no significant changes in phenotype or suppressive ability were observed. Additional rounds of stimulation/expansion restored maximal viability. Furthermore, adoptively-transferred autologous Treg expanded from cryopreserved second round stocks and labeled with CFSE or VPD450 were detected in blood and secondary lymphoid tissues of normal or immunosuppressed recipients at least two months after their systemic infusion.
Collapse
|
91
|
Theiss-Suennemann J, Jörß K, Messmann JJ, Reichardt SD, Montes-Cobos E, Lühder F, Tuckermann JP, AWolff H, Dressel R, Gröne HJ, Strauß G, Reichardt HM. Glucocorticoids attenuate acute graft-versus-host disease by suppressing the cytotoxic capacity of CD8(+) T cells. J Pathol 2015; 235:646-55. [PMID: 25358639 DOI: 10.1002/path.4475] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/09/2014] [Accepted: 10/29/2014] [Indexed: 01/15/2023]
Abstract
Glucocorticoids (GCs) are released from the adrenal gland during inflammation and help to keep immune responses at bay. Owing to their potent anti-inflammatory activity, GCs also play a key role in controlling acute graft-versus-host disease (aGvHD). Here we demonstrate that mice lacking the glucocorticoid receptor (GR) in T cells develop fulminant disease after allogeneic bone marrow transplantation. In a fully MHC-mismatched model, transfer of GR-deficient T cells resulted in severe aGvHD symptoms and strongly decreased survival times. Histopathological features were aggravated and infiltration of CD8(+) T cells into the jejunum was increased when the GR was not expressed. Furthermore, serum levels of IL-2, IFNγ, and IL-17 were elevated and the cytotoxicity of CD8(+) T cells was enhanced after transfer of GR-deficient T cells. Short-term treatment with dexamethasone reduced cytokine secretion but neither impacted disease severity nor the CTLs' cytolytic capacity. Importantly, in an aGvHD model in which disease development exclusively depends on the presence of CD8(+) T cells in the transplant, transfer of GR-deficient T cells aggravated clinical symptoms and reduced survival times as well. Taken together, our findings highlight that suppression of CD8(+) T-cell function is a crucial mechanism in the control of aGvHD by endogenous GCs.
Collapse
Affiliation(s)
- Jennifer Theiss-Suennemann
- Institute for Cellular and Molecular Immunology, University of Göttingen Medical School, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Phetsouphanh C, Xu Y, Zaunders J. CD4 T Cells Mediate Both Positive and Negative Regulation of the Immune Response to HIV Infection: Complex Role of T Follicular Helper Cells and Regulatory T Cells in Pathogenesis. Front Immunol 2015; 5:681. [PMID: 25610441 PMCID: PMC4285174 DOI: 10.3389/fimmu.2014.00681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B-cells, and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely, regulatory T cells (Tregs) and T follicular helper cells (Tfh). These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B-cell hyperplasia and increased germinal center activity. Antiretroviral therapy may reduce the lymphocyte activation, but not completely, and therefore, there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B-cell, or Treg dysfunction.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - Yin Xu
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - John Zaunders
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
93
|
Hülsdünker J, Zeiser R. Insights into the pathogenesis of GvHD: what mice can teach us about man. ACTA ACUST UNITED AC 2014; 85:2-9. [PMID: 25532439 DOI: 10.1111/tan.12497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Acute graft-vs-host disease (GvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). Most of the knowledge about the biology of GvHD is derived from mouse models of this disease and therefore a critical analysis of potential advantages and disadvantages of the murine GvHD models is important to classify and understand the findings made in these models. The central events leading up to GvHD were characterized in three phases which includes the tissue damage-phase, the T cell priming-phase and the effector-phase, when the disease becomes clinically overt. The role of individual cytokines, chemokines, transcription factor or receptors was studied in these models by using gene deficient or transgenic mice in the donor or recipient compartments. Besides, numerous studies have been performed in these models to prevent or treat GvHD. Several recent clinical trials were all based on previously reported findings from the mouse model of GvHD such as the trials on CCR5-blockade, donor statin treatment, vorinostat treatment or adoptive transfer of regulatory T cells for GvHD prevention. The different mouse models for GvHD and graft-vs-leukemia effects are critically reviewed and their impact on current clinical practice is discussed.
Collapse
Affiliation(s)
- J Hülsdünker
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
94
|
Bin Dhuban K, Kornete M, S Mason E, Piccirillo CA. Functional dynamics of Foxp3⁺ regulatory T cells in mice and humans. Immunol Rev 2014; 259:140-58. [PMID: 24712464 DOI: 10.1111/imr.12168] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Forkhead box protein 3 (Foxp3)(+) regulatory T (Treg) cells are critical mediators for the establishment of self-tolerance and immune homeostasis and for the control of pathology in various inflammatory responses. While Foxp3(+) Treg cells often control immune responses in secondary lymphoid tissues, they must also traffic to and persist within non-lymphoid tissues, where they integrate various environmental cues to coordinate and adapt their effector acitvities in these sites. In recent years, our group has made use of several mouse models, including the non-obese diabetic model of type 1 diabetes, to characterize the factors, which impact the homeostasis, function, and reprogramming potential of Foxp3(+) Treg cells in situ. In addition, our recent work shows that Foxp3(+) Treg cells possess distinct post-transcriptional mechanisms of gene regulation, namely mRNA translation, to modulate tissue-specific inflammatory responses. In humans, there is a pressing need for reliable markers of FOXP3(+) Treg cells and their related function in blood and tissue. Experimental progress in our group has enabled us to discover novel markers of FOXP3(+) Treg cell (dys)function and unique gene signatures that discriminate effector and Treg cells, as well as functional and dysfunctional FOXP3(+) Treg cells.
Collapse
Affiliation(s)
- Khalid Bin Dhuban
- Department of Microbiology and Immunology, FOCIS Center of Excellence in Translational Immunology, Microbiome and Disease Tolerance Centre, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | | | | |
Collapse
|
95
|
Mahalingam J, Lin CY, Chiang JM, Su PJ, Chu YY, Lai HY, Fang JH, Huang CT, Lin YC. CD4⁺ T cells expressing latency-associated peptide and Foxp3 are an activated subgroup of regulatory T cells enriched in patients with colorectal cancer. PLoS One 2014; 9:e108554. [PMID: 25268580 PMCID: PMC4182495 DOI: 10.1371/journal.pone.0108554] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/24/2014] [Indexed: 01/29/2023] Open
Abstract
Latency-associated peptide (LAP) - expressing regulatory T cells (Tregs) are important for immunological self-tolerance and immune homeostasis. In order to investigate the role of LAP in human CD4+Foxp3+ Tregs, we designed a cross-sectional study that involved 42 colorectal cancer (CRC) patients. The phenotypes, cytokine-release patterns, and suppressive ability of Tregs isolated from peripheral blood and tumor tissues were analyzed. We found that the population of LAP-positive CD4+Foxp3+ Tregs significantly increased in peripheral blood and cancer tissues of CRC patients as compared to that in the peripheral blood and tissues of healthy subjects. Both LAP+ and LAP− Tregs had a similar effector/memory phenotype. However, LAP+ Tregs expressed more effector molecules, including tumor necrosis factor receptor II, granzyme B, perforin, Ki67, and CCR5, than their LAP− negative counterparts. The in vitro immunosuppressive activity of LAP+ Tregs, exerted via a transforming growth factor-β–mediated mechanism, was more potent than that of LAP− Tregs. Furthermore, the enrichment of LAP+ Treg population in peripheral blood mononuclear cells (PBMCs) of CRC patients correlated with cancer metastases. In conclusion, we found that LAP+ Foxp3+ CD4+ Treg cells represented an activated subgroup of Tregs having more potent regulatory activity in CRC patients. The increased frequency of LAP+ Tregs in PBMCs of CRC patients suggests their potential role in controlling immune response to cancer and presents LAP as a marker of tumor-specific Tregs in CRC patients.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Case-Control Studies
- Colorectal Neoplasms/diagnosis
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Colorectal Neoplasms/pathology
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression Regulation, Neoplastic
- Granzymes/genetics
- Granzymes/immunology
- Humans
- Immune Tolerance
- Immunologic Memory
- Ki-67 Antigen/genetics
- Ki-67 Antigen/immunology
- Lymphatic Metastasis
- Male
- Middle Aged
- Peptides/genetics
- Peptides/immunology
- Perforin/genetics
- Perforin/immunology
- Protein Precursors/genetics
- Protein Precursors/immunology
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/immunology
Collapse
Affiliation(s)
- Jayashri Mahalingam
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Gastroenterology-Hepatology, Linkou Medical Centre, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Gastroenterology-Hepatology, Linkou Medical Centre, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Jy-Ming Chiang
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Colorectal Surgery Section, Department of Surgery, Linkou Medical Centre, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Po-Jung Su
- Department of Hematology-Oncology, Linkou Medical Centre, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Yu-Yi Chu
- Department of Hematology-Oncology, Linkou Medical Centre, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Hsin-Yi Lai
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jian-He Fang
- Department of Gastroenterology-Hepatology, Linkou Medical Centre, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Ching-Tai Huang
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Infectious Diseases, Linkou Medical Centre, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Yung-Chang Lin
- College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Hematology-Oncology, Linkou Medical Centre, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
96
|
Nocentini G, Alunno A, Petrillo MG, Bistoni O, Bartoloni E, Caterbi S, Ronchetti S, Migliorati G, Riccardi C, Gerli R. Expansion of regulatory GITR+CD25 low/-CD4+ T cells in systemic lupus erythematosus patients. Arthritis Res Ther 2014; 16:444. [PMID: 25256257 PMCID: PMC4209023 DOI: 10.1186/s13075-014-0444-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 08/28/2014] [Indexed: 12/20/2022] Open
Abstract
Introduction CD4+CD25low/-GITR+ T lymphocytes expressing forkhead box protein P3 (FoxP3) and showing regulatory activity have been recently described in healthy donors. The objective of the study was to evaluate the proportion of CD4+CD25low/-GITR+ T lymphocytes within CD4+ T cells and compare their phenotypic and functional profile with that of CD4+CD25highGITR− T lymphocytes in systemic lupus erythematosus (SLE) patients. Methods The percentage of CD4+CD25low/-GITR+ cells circulating in the peripheral blood (PB) of 32 patients with SLE and 25 healthy controls was evaluated with flow cytometry. CD4+CD25low/-GITR+ cells were isolated with magnetic separation, and their phenotype was compared with that of CD4+CD25highGITR− cells. Regulatory activity of both cell subsets was tested in autologous and heterologous co-cultures after purification through a negative sorting strategy. Results Results indicated that CD4+CD25low/-GITR+ cells are expanded in the PB of 50% of SLE patients. Expansion was observed only in patients with inactive disease. Phenotypic analysis demonstrated that CD4+CD25low/-GITR+ cells display regulatory T-cell (Treg) markers, including FoxP3, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), transforming growth factor-beta (TGF-β), and interleukin (IL)-10. In contrast, CD4+CD25highGITR− cells appear to be activated and express low levels of Treg markers. Functional experiments demonstrated that CD4+CD25low/-GITR+ cells exert a higher inhibitory activity against both autologous and heterologous cells as compared with CD4+CD25highGITR− cells. Suppression is independent of cell contact and is mediated by IL-10 and TGF-β. Conclusions Phenotypic and functional data demonstrate that in SLE patients, CD4+CD25low/-GITR+ cells are fully active Treg cells, possibly representing peripheral Treg (pTreg) that are expanded in patients with inactive disease. These data may suggest a key role of this T-cell subset in the modulation of the abnormal immune response in SLE. Strategies aimed at expanding this Treg subset for therapeutic purpose deserve to be investigated.
Collapse
|
97
|
Jacobo P, Guazzone VA, Pérez CV, Lustig L. CD4+ Foxp3+ regulatory T cells in autoimmune orchitis: phenotypic and functional characterization. Am J Reprod Immunol 2014; 73:109-25. [PMID: 25164316 DOI: 10.1111/aji.12312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/01/2014] [Indexed: 12/17/2022] Open
Abstract
PROBLEM The phenotype and function of regulatory T (Treg) cells in rats with experimental autoimmune orchitis (EAO) was evaluated. METHOD OF STUDY Distribution of Treg cells in draining lymph nodes from the testis (TLN) and from the site of immunization (ILN) was analysed by immunohistochemistry. The number, phenotype and proliferative response (5-bromo-2'-deoxyuridine incorporation) of Treg cells were evaluated by flow cytometry and Treg cell suppressive activity by in vitro experiments. TGF-β expression was evaluated by immunofluorescence. RESULTS Absolute numbers of Treg cells and BrdU+ Treg cells were increased in LN from experimental compared to normal and control rats. These cells displayed a CD45RC(-), CD62L(-), Helios(+) phenotype. CD4(+) CD25(bright) T cells from TLN of experimental rats were able to suppress T cell-proliferation more efficiently than those derived from normal and control rats. Cells isolated from TLN and ILN expressed TGF-β. CONCLUSION Our results suggest that Treg cells with a memory/activated phenotype proliferate extensively in the inflamed testis and LN of rats with EAO exhibiting an enhanced suppressive capacity. TGF-β may be involved in their suppressive mechanism.
Collapse
Affiliation(s)
- Patricia Jacobo
- Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
98
|
Trzonkowski P, Dukat-Mazurek A, Bieniaszewska M, Marek-Trzonkowska N, Dobyszuk A, Juścińska J, Dutka M, Myśliwska J, Hellmann A. Treatment of graft-versus-host disease with naturally occurring T regulatory cells. BioDrugs 2014; 27:605-14. [PMID: 23813436 PMCID: PMC3832760 DOI: 10.1007/s40259-013-0050-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A significant body of evidence suggests that treatment with naturally occurring CD4+CD25+ T regulatory cells (Tregs) is an appropriate therapy for graft-versus-host disease (GvHD). GvHD is a major complication of bone marrow transplantation in which the transplanted immune system recognizes recipient tissues as a non-self and destroys them. In many cases, this condition significantly deteriorates the quality of life of the affected patients. It is also one of the most important causes of death after bone marrow transplantation. Tregs constitute a population responsible for dominant tolerance to self-tissues in the immune system. These cells prevent autoimmune and allergic reactions and decrease the risk of rejection of allotransplants. For these reasons, Tregs are considered as a cellular drug in GvHD. The results of the first clinical trials with these cells are already available. In this review we present important experimental facts which led to the clinical use of Tregs. We then critically evaluate specific requirements for Treg therapy in GvHD and therapies with Tregs currently under clinical investigation, including our experience and future perspectives on this kind of cellular treatment.
Collapse
Affiliation(s)
- Piotr Trzonkowski
- Department of Clinical Immunology and Transplantology, Medical University of Gdańsk, Ul. Dębinki 1, 80-211, Gdańsk, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Thiolat A, Denys A, Petit M, Biton J, Lemeiter D, Herve R, Lutomski D, Boissier MC, Bessis N. Interleukin-35 gene therapy exacerbates experimental rheumatoid arthritis in mice. Cytokine 2014; 69:87-93. [PMID: 25022966 DOI: 10.1016/j.cyto.2014.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Interleukin (IL)-35 was initially described as an immunosuppressive cytokine specifically produced by CD4(+)FoxP3(+) regulatory T cells (Treg). Since Treg play a major role in autoimmunity control and protect from inflammation, we aimed at evaluating the role of IL-35 in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA), using a non-viral gene transfer strategy. The clinical and histological effect of IL-35 was assessed in mice with CIA receiving an injection of two distinct plasmids encoding IL-35 gene (pIGneo-mIL-35 or pORF-mIL-35) 3 and 18 days after CIA induction. Treg and Th17 were characterized by flow cytometry in the spleen and lymph nodes of treated mice. Our results showed that whatever the plasmid used, IL-35 gene transfer resulted in a statistically significant increase in clinical scores of CIA compared to results with empty plasmid. The underlying cellular mechanisms of this effect were shown to be related to an increased Th17/Treg ratio in the spleen of pORF-mIL-35 treated mice. In conclusion, we show an unexpected but clear exacerbating effect of IL-35 gene transfer in an autoimmune and inflammatory RA model, associated with a modification of the Th17/Treg balance. Altogether, these result shows that this cytokine can promote chronic inflammation.
Collapse
Affiliation(s)
- A Thiolat
- INSERM, U1125, F-93017 Bobigny, France; Sorbonne Paris Cité Université Paris 13, F-93017 Bobigny, France
| | - A Denys
- INSERM, U1125, F-93017 Bobigny, France; Sorbonne Paris Cité Université Paris 13, F-93017 Bobigny, France
| | - M Petit
- INSERM, U1125, F-93017 Bobigny, France; Sorbonne Paris Cité Université Paris 13, F-93017 Bobigny, France
| | - J Biton
- INSERM, U1125, F-93017 Bobigny, France; Sorbonne Paris Cité Université Paris 13, F-93017 Bobigny, France
| | - D Lemeiter
- INSERM, U1125, F-93017 Bobigny, France; Sorbonne Paris Cité Université Paris 13, F-93017 Bobigny, France
| | - R Herve
- INSERM, U1125, F-93017 Bobigny, France; Sorbonne Paris Cité Université Paris 13, F-93017 Bobigny, France
| | - D Lutomski
- UMR 7244, Paris 13 University, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France
| | - M-C Boissier
- INSERM, U1125, F-93017 Bobigny, France; Sorbonne Paris Cité Université Paris 13, F-93017 Bobigny, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Avicenne Hospital, Rheumatology Dpt, F-93009 Bobigny, France
| | - N Bessis
- INSERM, U1125, F-93017 Bobigny, France; Sorbonne Paris Cité Université Paris 13, F-93017 Bobigny, France.
| |
Collapse
|
100
|
Choufi B, Thiant S, Trauet J, Cliquennois M, Cherrel M, Boulanger F, Coiteux V, Magro L, Labalette M, Yakoub-Agha I. Impact de la composition du greffon sur le devenir des patients après une allogreffe de cellules souches hématopoïétiques : corrélation entre proportion des lymphocytes T CD4+ du greffon exprimant le CCR7 et la survenue d’une GVH aiguë. ACTA ACUST UNITED AC 2014; 62:123-8. [DOI: 10.1016/j.patbio.2014.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/19/2014] [Indexed: 01/27/2023]
|