51
|
Nagy M, Mastenbroek TG, Mattheij NJA, de Witt S, Clemetson KJ, Kirschner J, Schulz AS, Vraetz T, Speckmann C, Braun A, Cosemans JMEM, Zieger B, Heemskerk JWM. Variable impairment of platelet functions in patients with severe, genetically linked immune deficiencies. Haematologica 2017; 103:540-549. [PMID: 29242293 PMCID: PMC5830379 DOI: 10.3324/haematol.2017.176974] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/07/2017] [Indexed: 11/09/2022] Open
Abstract
In patients with dysfunctions of the Ca2+ channel ORAI1, stromal interaction molecule 1 (STIM1) or integrin-regulating kindlin-3 (FERMT3), severe immunodeficiency is frequently linked to abnormal platelet activity. In this paper, we studied platelet responsiveness by multiparameter assessment of whole blood thrombus formation under high-shear flow conditions in 9 patients, including relatives, with confirmed rare genetic mutations of ORAI1, STIM1 or FERMT3. In platelets isolated from 5 out of 6 patients with ORAI1 or STIM1 mutations, store-operated Ca2+ entry (SOCE) was either completely or partially defective compared to control platelets. Parameters of platelet adhesion and aggregation on collagen microspots were impaired for 4 out of 6 patients, in part related to a low platelet count. For 4 patients, platelet adhesion/aggregation and procoagulant activity on von Willebrand Factor (VWF)/rhodocytin and VWF/fibrinogen microspots were impaired independently of platelet count, and were partly correlated with SOCE deficiency. Measurement of thrombus formation at low shear rate confirmed a greater impairment of platelet functionality in the ORAI1 patients than in the STIM1 patient. For 3 patients/relatives with a FERMT3 mutation, all parameters of thrombus formation were strongly reduced regardless of the microspot. Bone marrow transplantation, required by 2 patients, resulted in overall improvement of platelet function. We concluded that multiparameter assessment of whole blood thrombus formation in a surface-dependent way can detect: i) additive effects of low platelet count and impaired platelet functionality; ii) aberrant ORAI1-mediated Ca2+ entry; iii) differences in platelet activation between patients carrying the same ORAI1 mutation; iv) severe platelet function impairment linked to a FERMT3 mutation and bleeding history.
Collapse
Affiliation(s)
- Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Tom G Mastenbroek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Nadine J A Mattheij
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Susanne de Witt
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | | | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Germany
| | - Ansgar S Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Centre Ulm, Germany
| | - Thomas Vraetz
- Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency and Department of Pediatrics and Adolescent Medicine, Medical Centre, University of Freiburg, Germany
| | - Attila Braun
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Centre, University of Würzburg, Germany
| | - Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Barbara Zieger
- Center for Chronic Immunodeficiency and Department of Pediatrics and Adolescent Medicine, Medical Centre, University of Freiburg, Germany
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
52
|
Hematopoietic stem cell transplantation for the treatment of leukocyte adhesion deficiency type III. Pediatr Neonatol 2017; 58:560-561. [PMID: 28827066 DOI: 10.1016/j.pedneo.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022] Open
|
53
|
Abstract
PURPOSE OF REVIEW Since the discovery of the lack of kindlin-3 expression as the reason for the immunopathology leukocyte adhesion deficiency III syndrome, the role of kindlin-3 in inflammatory processes was investigated in a numerous studies. This review gives an overview about recent findings regarding the role of kindlin-3 in neutrophil activation and recruitment. RECENT FINDINGS Kindlin-3, together with talin-1, contributes essentially to the activation of β2-integrins in neutrophils. During inside-out signaling, kindlin-3 binds to the β-cytoplasmic integrin tail and is indispensable for the integrin conformational shift into the high-affinity ligand binding conformation, but not for the intermediate (extended) conformation. During outside-in signaling (as a consequence of integrin ligand binding) kindlin-3 interacts with distinct signaling molecules and is required for cell-autonomous functions like migration and spreading. SUMMARY Leukocyte adhesion deficiency III syndrome, which is caused by absence of kindlin-3, is a rarely occurring disease. However, the investigation of the clinical symptoms as well as the underlying molecular mechanisms gave rise to a huge amount of new insights into the processes of integrin activation in neutrophils and the consequences of defects in these processes.
Collapse
|
54
|
Gao J, Huang M, Lai J, Mao K, Sun P, Cao Z, Hu Y, Zhang Y, Schulte ML, Jin C, Wang J, White GC, Xu Z, Ma YQ. Kindlin supports platelet integrin αIIbβ3 activation by interacting with paxillin. J Cell Sci 2017; 130:3764-3775. [PMID: 28954813 DOI: 10.1242/jcs.205641] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Kindlins play an important role in supporting integrin activation by cooperating with talin; however, the mechanistic details remain unclear. Here, we show that kindlins interacted directly with paxillin and that this interaction could support integrin αIIbβ3 activation. An exposed loop in the N-terminal F0 subdomain of kindlins was involved in mediating the interaction. Disruption of kindlin binding to paxillin by structure-based mutations significantly impaired the function of kindlins in supporting integrin αIIbβ3 activation. Both kindlin and talin were required for paxillin to enhance integrin activation. Interestingly, a direct interaction between paxillin and the talin head domain was also detectable. Mechanistically, paxillin, together with kindlin, was able to promote the binding of the talin head domain to integrin, suggesting that paxillin complexes with kindlin and talin to strengthen integrin activation. Specifically, we observed that crosstalk between kindlin-3 and the paxillin family in mouse platelets was involved in supporting integrin αIIbβ3 activation and in vivo platelet thrombus formation. Taken together, our findings uncover a novel mechanism by which kindlin supports integrin αIIbβ3 activation, which might be beneficial for developing safer anti-thrombotic therapies.
Collapse
Affiliation(s)
- Juan Gao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Ming Huang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Jingjing Lai
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Kaijun Mao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Peisen Sun
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Zhongyuan Cao
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Youpei Hu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Yingying Zhang
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China
| | - Marie L Schulte
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Chaozhi Jin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing 102206, China
| | - Gilbert C White
- Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| | - Zhen Xu
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA
| | - Yan-Qing Ma
- Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai 200444, China .,Blood Research Institute, Blood Center of Wisconsin, Wisconsin, WI 53226, USA.,Department of Biochemistry, Medical College of Milwaukee, Wisconsin, WI 53226, USA
| |
Collapse
|
55
|
Structural basis of kindlin-mediated integrin recognition and activation. Proc Natl Acad Sci U S A 2017; 114:9349-9354. [PMID: 28739949 DOI: 10.1073/pnas.1703064114] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kindlins and talins are integrin-binding proteins that are critically involved in integrin activation, an essential process for many fundamental cellular activities including cell-matrix adhesion, migration, and proliferation. As FERM-domain-containing proteins, talins and kindlins, respectively, bind different regions of β-integrin cytoplasmic tails. However, compared with the extensively studied talin, little is known about how kindlins specifically interact with integrins and synergistically enhance their activation by talins. Here, we determined crystal structures of kindlin2 in the apo-form and the β1- and β3-integrin bound forms. The apo-structure shows an overall architecture distinct from talins. The complex structures reveal a unique integrin recognition mode of kindlins, which combines two binding motifs to provide specificity that is essential for integrin activation and signaling. Strikingly, our structures uncover an unexpected dimer formation of kindlins. Interrupting dimer formation impairs kindlin-mediated integrin activation. Collectively, the structural, biochemical, and cellular results provide mechanistic explanations that account for the effects of kindlins on integrin activation as well as for how kindlin mutations found in patients with Kindler syndrome and leukocyte-adhesion deficiency may impact integrin-mediated processes.
Collapse
|
56
|
Gazendam RP, van de Geer A, Roos D, van den Berg TK, Kuijpers TW. How neutrophils kill fungi. Immunol Rev 2017; 273:299-311. [PMID: 27558342 DOI: 10.1111/imr.12454] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophils play a critical role in the prevention of invasive fungal infections. Whereas mouse studies have demonstrated the role of various neutrophil pathogen recognition receptors (PRRs), signal transduction pathways, and cytotoxicity in the murine antifungal immune response, much less is known about the killing of fungi by human neutrophils. Recently, novel primary immunodeficiencies have been identified in patients with a susceptibility to fungal infections. These human 'knock-out' neutrophils expand our knowledge to understand the role of PRRs and signaling in human fungal killing. From the studies with these patients it is becoming clear that neutrophils employ fundamentally distinct mechanisms to kill Candida albicans or Aspergillus fumigatus.
Collapse
Affiliation(s)
- Roel P Gazendam
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annemarie van de Geer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
57
|
Abstract
Heritable platelet function disorders (PFDs) are genetically heterogeneous and poorly characterized. Pathogenic variants in RASGRP2, which encodes calcium and diacylglycerol-regulated guanine exchange factor I (CalDAG-GEFI), have been reported previously in 3 pedigrees with bleeding and reduced platelet aggregation responses. To better define the phenotype associated with pathogenic RASGRP2 variants, we compared high-throughput sequencing and phenotype data from 2042 cases in pedigrees with unexplained bleeding or platelet disorders to data from 5422 controls. Eleven cases harbored 11 different, previously unreported RASGRP2 variants that were biallelic and likely pathogenic. The variants included 5 high-impact variants predicted to prevent CalDAG-GEFI expression and 6 missense variants affecting the CalDAG-GEFI CDC25 domain, which mediates Rap1 activation during platelet inside-out αIIbβ3 signaling. Cases with biallelic RASGRP2 variants had abnormal mucocutaneous, surgical, and dental bleeding from childhood, requiring ≥1 blood or platelet transfusion in 78% of cases. Platelets displayed reduced aggregation in response to adenosine 5'-diphosphate and epinephrine, but variable aggregation defects with other agonists. There were no other consistent clinical or laboratory features. These data enable definition of human CalDAG-GEFI deficiency as a nonsyndromic, recessive PFD associated with a moderate or severe bleeding phenotype and complex defects in platelet aggregation.
Collapse
|
58
|
Yipp BG, Kim JH, Lima R, Zbytnuik LD, Petri B, Swanlund N, Ho M, Szeto VG, Tak T, Koenderman L, Pickkers P, Tool ATJ, Kuijpers TW, van den Berg TK, Looney MR, Krummel MF, Kubes P. The Lung is a Host Defense Niche for Immediate Neutrophil-Mediated Vascular Protection. Sci Immunol 2017. [PMID: 28626833 DOI: 10.1126/sciimmunol.aam8929] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bloodstream infection is a hallmark of sepsis, a medically emergent condition requiring rapid treatment. However, upregulation of host defense proteins through toll-like receptors and NFκB requires hours after endotoxin detection. Using confocal pulmonary intravital microscopy, we identified that the lung provides a TLR4-Myd88-and abl tyrosine kinase-dependent niche for immediate CD11b-dependent neutrophil responses to endotoxin and Gram-negative bloodstream pathogens. In an in vivo model of bacteremia, neutrophils crawled to and rapidly phagocytosed Escherichia coli sequestered to the lung endothelium. Therefore, the lung capillaries provide a vascular defensive niche whereby endothelium and neutrophils cooperate for immediate detection and capture of disseminating pathogens.
Collapse
Affiliation(s)
- Bryan G Yipp
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jung Hwan Kim
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronald Lima
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lori D Zbytnuik
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Björn Petri
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nick Swanlund
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - May Ho
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vivian G Szeto
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tamar Tak
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Leo Koenderman
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anton T J Tool
- Department of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, VU Medical Center, Amsterdam, The Netherlands
| | - Mark R Looney
- Departments of Medicine and Laboratory Medicine, University of California, San Francisco, 513 Parnassus Avenue, HSW512, California 94143-0511, USA
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143-0511, USA
| | - Paul Kubes
- Department of Critical Care, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mouse Phenomics Resource Laboratory, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
59
|
Palagano E, Slatter MA, Uva P, Menale C, Villa A, Abinun M, Sobacchi C. Hematopoietic stem cell transplantation corrects osteopetrosis in a child carrying a novel homozygous mutation in the FERMT3 gene. Bone 2017; 97:126-129. [PMID: 28095295 DOI: 10.1016/j.bone.2017.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/22/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
Osteopetrosis (OPT) is a rare skeletal disorder with phenotypic and genotypic heterogeneity: a variety of clinical features besides the bony defect may be present, and at least ten different genes are known to be involved in the disease pathogenesis. In the framework of this heterogeneity, we report the clinical description of a neonate, first child of consanguineous parents, who had osteoclast-rich osteopetrosis and bone marrow failure in early life, but no other usual classical features of infantile malignant OPT, such as visual or hearing impairments. Because of the severe presentation at birth, the patient received Hematopoietic Stem Cell Transplantation (HSCT) at 2months of age with successful outcome. Post-HSCT genetic investigation by means of exome sequencing identified a novel homozygous mutation in the Fermitin Family Member 3 (FERMT3) gene, which was predicted to disrupt the functionality of its protein product kindlin 3. Our report provides information relevant to physicians for recognizing patients with one of the rarest forms of infantile malignant OPT, and clearly demonstrates that HSCT cures kindlin 3 deficiency with severe phenotype.
Collapse
Affiliation(s)
- Eleonora Palagano
- Humanitas Clinical and Research Institute, Rozzano, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Mary A Slatter
- Bone Marrow Transplantation Unit, Great North Children's Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Italy
| | - Ciro Menale
- Humanitas Clinical and Research Institute, Rozzano, Italy; CNR-IRGB, Milan Unit, Milan, Italy
| | - Anna Villa
- Humanitas Clinical and Research Institute, Rozzano, Italy; CNR-IRGB, Milan Unit, Milan, Italy
| | - Mario Abinun
- Bone Marrow Transplantation Unit, Great North Children's Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Cristina Sobacchi
- Humanitas Clinical and Research Institute, Rozzano, Italy; CNR-IRGB, Milan Unit, Milan, Italy
| |
Collapse
|
60
|
Kuijpers TW, Tool ATJ, van der Bijl I, de Boer M, van Houdt M, de Cuyper IM, Roos D, van Alphen F, van Leeuwen K, Cambridge EL, Arends MJ, Dougan G, Clare S, Ramirez-Solis R, Pals ST, Adams DJ, Meijer AB, van den Berg TK. Combined immunodeficiency with severe inflammation and allergy caused by ARPC1B deficiency. J Allergy Clin Immunol 2016; 140:273-277.e10. [PMID: 27965109 DOI: 10.1016/j.jaci.2016.09.061] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/09/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Blood Cell Research, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands.
| | - Anton T J Tool
- Department of Blood Cell Research, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Ivo van der Bijl
- Department of Blood Cell Research, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Martin de Boer
- Department of Blood Cell Research, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Michel van Houdt
- Department of Blood Cell Research, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Iris M de Cuyper
- Department of Blood Cell Research, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Department of Blood Cell Research, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Floris van Alphen
- Department of Plasma Proteins, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Department of Blood Cell Research, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma L Cambridge
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Mark J Arends
- Division of Pathology, Centre for Comparative Pathology, Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Simon Clare
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - Steven T Pals
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Alexander B Meijer
- Department of Plasma Proteins, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
61
|
Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, Mead D, Bouman H, Riveros-Mckay F, Kostadima MA, Lambourne JJ, Sivapalaratnam S, Downes K, Kundu K, Bomba L, Berentsen K, Bradley JR, Daugherty LC, Delaneau O, Freson K, Garner SF, Grassi L, Guerrero J, Haimel M, Janssen-Megens EM, Kaan A, Kamat M, Kim B, Mandoli A, Marchini J, Martens JHA, Meacham S, Megy K, O'Connell J, Petersen R, Sharifi N, Sheard SM, Staley JR, Tuna S, van der Ent M, Walter K, Wang SY, Wheeler E, Wilder SP, Iotchkova V, Moore C, Sambrook J, Stunnenberg HG, Di Angelantonio E, Kaptoge S, Kuijpers TW, Carrillo-de-Santa-Pau E, Juan D, Rico D, Valencia A, Chen L, Ge B, Vasquez L, Kwan T, Garrido-Martín D, Watt S, Yang Y, Guigo R, Beck S, Paul DS, Pastinen T, Bujold D, Bourque G, Frontini M, Danesh J, Roberts DJ, Ouwehand WH, Butterworth AS, Soranzo N. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell 2016; 167:1415-1429.e19. [PMID: 27863252 PMCID: PMC5300907 DOI: 10.1016/j.cell.2016.10.042] [Citation(s) in RCA: 806] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 09/13/2016] [Accepted: 10/21/2016] [Indexed: 02/02/2023]
Abstract
Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.
Collapse
Affiliation(s)
- William J Astle
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge CB2 0SR, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Heather Elding
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Tao Jiang
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Dave Allen
- Blood Research Group, NHS Blood and Transplant, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9BQ, UK
| | - Dace Ruklisa
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Forvie Site, Robinson Way, Cambridge CB2 0SR, UK
| | - Alice L Mann
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Daniel Mead
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Heleen Bouman
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Fernando Riveros-Mckay
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Myrto A Kostadima
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John J Lambourne
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Suthesh Sivapalaratnam
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Haematology, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Road, London, London E1 1BB, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Kousik Kundu
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Lorenzo Bomba
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Kim Berentsen
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - John R Bradley
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0QQ, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge CB2 0QQ, UK
| | - Louise C Daugherty
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Olivier Delaneau
- Département de Génétique et Développement (GEDEV), University of Geneva, 1211 Geneve 4, Switzerland
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, 3000 Leuven, Belgium
| | - Stephen F Garner
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Jose Guerrero
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Matthias Haimel
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0QQ, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Eva M Janssen-Megens
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Anita Kaan
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Mihir Kamat
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Bowon Kim
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Amit Mandoli
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Jonathan Marchini
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Joost H A Martens
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Stuart Meacham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Jared O'Connell
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Romina Petersen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Nilofar Sharifi
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Simon M Sheard
- UK Biobank Ltd., 1-4 Spectrum Way, Adswood, Stockport SK3 0SA, UK
| | - James R Staley
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Salih Tuna
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK
| | - Martijn van der Ent
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Klaudia Walter
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Shuang-Yin Wang
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Eleanor Wheeler
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Steven P Wilder
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Valentina Iotchkova
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carmel Moore
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Jennifer Sambrook
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Faculty of Science, Nijmegen 6525GA, the Netherlands
| | - Emanuele Di Angelantonio
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Stephen Kaptoge
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK
| | - Taco W Kuijpers
- Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Location H7-230, Meibergdreef 9, Amsterdam 1105AZ, the Netherlands; Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Plesmanlaan 125, Amsterdam, 1066CX, the Netherlands
| | - Enrique Carrillo-de-Santa-Pau
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - David Juan
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Daniel Rico
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alfonso Valencia
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Lu Chen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Bing Ge
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - Louella Vasquez
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Tony Kwan
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - Diego Garrido-Martín
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader, 88, Barcelona 8003, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10- 12, Barcelona 8002, Spain
| | - Stephen Watt
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Ying Yang
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK
| | - Roderic Guigo
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader, 88, Barcelona 8003, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10- 12, Barcelona 8002, Spain; Computational Genomics, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Carrer del Dr. Aiguader, 88, Barcelona 8003, Spain
| | - Stephan Beck
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Dirk S Paul
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6BT, UK
| | - Tomi Pastinen
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - David Bujold
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - Guillaume Bourque
- Human Genetics, McGill University, 740 Dr. Penfield, Montreal, QC H3A 0G1, Canada
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Danesh
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge University Hospitals, Cambridge CB2 0QQ, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - David J Roberts
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK; Department of Haematology, Churchill Hospital, Headington, Oxford OX3 7LE, UK.
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; National Health Service (NHS) Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Nicole Soranzo
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Long Road, Cambridge CB2 0PT, UK; Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1HH, UK; The National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Strangeways Research Laboratory, Wort's Causeway, Cambridge CB1 8RN, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
62
|
Rognoni E, Ruppert R, Fässler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci 2016; 129:17-27. [PMID: 26729028 DOI: 10.1242/jcs.161190] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The kindlin (or fermitin) family of proteins comprises three members (kindlin-1,-2 and -3) of evolutionarily conserved focal adhesion (FA) proteins, whose best-known task is to increase integrin affinity for a ligand (also referred as integrin activation) through binding of β-integrin tails. The consequence of kindlin-mediated integrin activation and integrin-ligand binding is cell adhesion, spreading and migration, assembly of the extracellular matrix (ECM), cell survival, proliferation and differentiation. Another hallmark of kindlins is their involvement in disease. Mutations in the KINDLIN-1 (also known as FERMT1) gene cause Kindler syndrome (KS)--in which mainly skin and intestine are affected, whereas mutations in the KINDLIN-3 (also known as FERMT3) gene cause leukocyte adhesion deficiency type III (LAD III), which is characterized by impaired extravasation of blood effector cells and severe, spontaneous bleedings. Also, aberrant expression of kindlins in various forms of cancer and in tissue fibrosis has been reported. Although the malfunctioning of integrins represent a major cause leading to kindlin-associated diseases, increasing evidence also point to integrin-independent functions of kindlins that play an important role in the pathogenesis of certain disease aspects. Furthermore, isoform-specific kindlin functions have been discovered, explaining, for example, why loss of kindlins differentially affects tissue stem cell homeostasis or tumor development. This Commentary focuses on new and isoform-specific kindlin functions in different tissues and discusses their potential role in disease development and progression.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Raphael Ruppert
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Reinhard Fässler
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
63
|
Abstract
Kindlins are 4.1-ezrin-ridixin-moesin (FERM) domain containing proteins. There are three kindlins in mammals, which share high sequence identity. Kindlin-1 is expressed primarily in epithelial cells, kindlin-2 is widely distributed and is particularly abundant in adherent cells, and kindlin-3 is expressed primarily in hematopoietic cells. These distributions are not exclusive; some cells express multiple kindlins, and transformed cells often exhibit aberrant expression, both in the isoforms and the levels of kindlins. Great interest in the kindlins has emerged from the recognition that they play major roles in controlling integrin function. In vitro studies, in vivo studies of mice deficient in kindlins, and studies of patients with genetic deficiencies of kindlins have clearly established that they regulate the capacity of integrins to mediate their functions. Kindlins are adaptor proteins; their function emanate from their interaction with binding partners, including the cytoplasmic tails of integrins and components of the actin cytoskeleton. The purpose of this review is to provide a brief overview of kindlin structure and function, a consideration of their binding partners, and then to focus on the relationship of each kindlin family member with cancer. In view of many correlations of kindlin expression levels and neoplasia and the known association of integrins with tumor progression and metastasis, we consider whether regulation of kindlins or their function would be attractive targets for treatment of cancer.
Collapse
Affiliation(s)
- Edward F Plow
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mitali Das
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Katarzyna Bialkowska
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Khalid Sossey-Alaoui
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
64
|
Aspergillus Cell Wall Chitin Induces Anti- and Proinflammatory Cytokines in Human PBMCs via the Fc-γ Receptor/Syk/PI3K Pathway. mBio 2016; 7:mBio.01823-15. [PMID: 27247234 PMCID: PMC4895119 DOI: 10.1128/mbio.01823-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chitin is an important cell wall component of Aspergillus fumigatus conidia, of which hundreds are inhaled on a daily basis. Previous studies have shown that chitin has both anti- and proinflammatory properties; however the exact mechanisms determining the inflammatory signature of chitin are poorly understood, especially in human immune cells. Human peripheral blood mononuclear cells were isolated from healthy volunteers and stimulated with chitin from Aspergillus fumigatus Transcription and production of the proinflammatory cytokine interleukin-1β (IL-1β) and the anti-inflammatory cytokine IL-1 receptor antagonist (IL-1Ra) were measured from the cell culture supernatant by quantitative PCR (qPCR) or enzyme-linked immunosorbent assay (ELISA), respectively. Chitin induced an anti-inflammatory signature characterized by the production of IL-1Ra in the presence of human serum, which was abrogated in immunoglobulin-depleted serum. Fc-γ-receptor-dependent recognition and phagocytosis of IgG-opsonized chitin was identified as a novel IL-1Ra-inducing mechanism by chitin. IL-1Ra production induced by chitin was dependent on Syk kinase and phosphatidylinositol 3-kinase (PI3K) activation. In contrast, costimulation of chitin with the pattern recognition receptor (PRR) ligands lipopolysaccharide, Pam3Cys, or muramyl dipeptide, but not β-glucan, had synergistic effects on the induction of proinflammatory cytokines by human peripheral blood mononuclear cells (PBMCs). In conclusion, chitin can have both pro- and anti-inflammatory properties, depending on the presence of pathogen-associated molecular patterns and immunoglobulins, thus explaining the various inflammatory signatures reported for chitin. IMPORTANCE Invasive aspergillosis and allergic aspergillosis are increasing health care problems. Patients get infected by inhalation of the airborne spores of Aspergillus fumigatus A profound knowledge of how Aspergillus and its cell wall components are recognized by the host cell and which type of immune response it induces is necessary to develop target-specific treatment options with less severe side effects than the treatment options to date. There is controversy in the literature about the receptor for chitin in human cells. We identified the Fc-γ receptor and Syk/PI3K pathway via which chitin can induce anti-inflammatory immune responses by inducing IL-1 receptor antagonist in the presence of human immunoglobulins but also proinflammatory responses in the presence of bacterial components. This explains why Aspergillus does not induce strong inflammation just by inhalation and rather fulfills an immune-dampening function. While in a lung coinfected with bacteria, Aspergillus augments immune responses by shifting toward a proinflammatory reaction.
Collapse
|
65
|
The Rap1-RIAM-talin axis of integrin activation and blood cell function. Blood 2016; 128:479-87. [PMID: 27207789 DOI: 10.1182/blood-2015-12-638700] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/07/2016] [Indexed: 12/14/2022] Open
Abstract
Integrin adhesion receptors mediate the adhesion of blood cells, such as leukocytes, to other cells, such as endothelial cells. Integrins also are critical for anchorage of hematopoietic precursors to the extracellular matrix. Blood cells can dynamically regulate the affinities of integrins for their ligands ("activation"), an event central to their functions. Here we review recent progress in understanding the mechanisms of integrin activation with a focus on the functions of blood cells. We discuss how talin binding to the integrin β cytoplasmic domain, in conjunction with the plasma membrane, induces long-range allosteric rearrangements that lead to integrin activation. Second, we review our understanding of how signaling events, particularly those involving Rap1 small guanosine triphosphate (GTP)hydrolases, can regulate the talin-integrin interaction and resulting activation. Third, we review recent findings that highlight the role of the Rap1-GTP-interacting adapter molecule (RIAM), encoded by the APBB1IP gene, in leukocyte integrin activation and consequently in leukocyte trafficking.
Collapse
|
66
|
Bledzka K, Bialkowska K, Sossey-Alaoui K, Vaynberg J, Pluskota E, Qin J, Plow EF. Kindlin-2 directly binds actin and regulates integrin outside-in signaling. J Cell Biol 2016; 213:97-108. [PMID: 27044892 PMCID: PMC4828686 DOI: 10.1083/jcb.201501006] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Bledzka et al. show that kindlin-2 binds actin via its F0 domain, and mutation of this site diminishes cell spreading, revealing a new mechanism by which kindlin-2 regulates cellular responses. Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2+/− mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK47/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK47/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK47/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses.
Collapse
Affiliation(s)
- Kamila Bledzka
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Katarzyna Bialkowska
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Khalid Sossey-Alaoui
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Julia Vaynberg
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Elzbieta Pluskota
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jun Qin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
67
|
Roos D. Complement and phagocytes - A complicated interaction. Mol Immunol 2016; 68:31-4. [PMID: 26597203 DOI: 10.1016/j.molimm.2015.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 01/11/2023]
Abstract
Mohamed Daha and I share a common interest in innate immunity. Working in institutes only 25 miles away from each other, that meant ample opportunity and relevance for collaboration. And so we did. Moreover, we have both been members of boards and councils of Dutch national organizations, and we have also become good friends. In this short recollection, I look back on 40 years of common activities in complement research and friendship.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research and University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
68
|
Ley K, Rivera-Nieves J, Sandborn WJ, Shattil S. Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat Rev Drug Discov 2016; 15:173-83. [PMID: 26822833 PMCID: PMC4890615 DOI: 10.1038/nrd.2015.10] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Integrins are activatable molecules that are involved in adhesion and signalling. Of the 24 known human integrins, 3 are currently targeted therapeutically by monoclonal antibodies, peptides or small molecules: drugs targeting the platelet αIIbβ3 integrin are used to prevent thrombotic complications after percutaneous coronary interventions, and compounds targeting the lymphocyte α4β1 and α4β7 integrins have indications in multiple sclerosis and inflammatory bowel disease. New antibodies and small molecules targeting β7 integrins (α4β7 and αEβ7 integrins) and their ligands are in clinical development for the treatment of inflammatory bowel diseases. Integrin-based therapeutics have shown clinically significant benefits in many patients, leading to continued medical interest in the further development of novel integrin inhibitors. Of note, almost all integrin antagonists in use or in late-stage clinical trials target either the ligand-binding site or the ligand itself.
Collapse
Affiliation(s)
- Klaus Ley
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Drive, La Jolla, Califoria 92037, USA, and the Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 USA
| | - Jesus Rivera-Nieves
- La Jolla Institute for Allergy and the Immunology, 9420 Athena Circle Drive, La Jolla, Califoria 92037, USA, and the Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 USA
| | - William J Sandborn
- Immunology and the Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 USA
| | - Sanford Shattil
- Division of Haematology-Oncology, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093 USA
| |
Collapse
|
69
|
Klapproth S, Moretti FA, Zeiler M, Ruppert R, Breithaupt U, Mueller S, Haas R, Mann M, Sperandio M, Fässler R, Moser M. Minimal amounts of kindlin-3 suffice for basal platelet and leukocyte functions in mice. Blood 2015; 126:2592-600. [PMID: 26438512 DOI: 10.1182/blood-2015-04-639310] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic cells depend on integrin-mediated adhesion and signaling, which is induced by kindlin-3 and talin-1. To determine whether platelet and polymorphonuclear neutrophil (PMN) functions require specific thresholds of kindlin-3, we generated mouse strains expressing 50%, 10%, or 5% of normal kindlin-3 levels. We report that in contrast to kindlin-3-null mice, which die perinatally of severe bleeding and leukocyte adhesion deficiency, mice expressing as little as 5% of kindlin-3 were viable and protected from spontaneous bleeding and infections. However, platelet adhesion and aggregation were reduced in vitro and bleeding times extended. Similarly, leukocyte adhesion, extravasation, and bacterial clearance were diminished. Quantification of protein copy numbers revealed stoichiometric quantities of kindlin-3 and talin-1 in platelets and neutrophils, indicating that reduction of kindlin-3 in our mouse strains progressively impairs the cooperation with talin-1. Our findings show that very low levels of kindlin-3 enable basal platelet and neutrophil functions, whereas in stress situations such as injury and infection, platelets and neutrophils require a maximum of functional integrins that is achieved with high and stoichiometric quantities of kindlin-3 and talin-1.
Collapse
Affiliation(s)
- Sarah Klapproth
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany; Walter Brendel Center for Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Federico A Moretti
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | - Marlis Zeiler
- Max-Planck-Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany; and
| | - Raphael Ruppert
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | - Ute Breithaupt
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, and
| | - Susanna Mueller
- Institute for Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, and
| | - Matthias Mann
- Max-Planck-Institute of Biochemistry, Department of Proteomics and Signal Transduction, Martinsried, Germany; and
| | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Reinhard Fässler
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| | - Markus Moser
- Max-Planck-Institute of Biochemistry, Department of Molecular Medicine, Martinsried, Germany
| |
Collapse
|
70
|
|
71
|
Crazzolara R, Maurer K, Schulze H, Zieger B, Zustin J, Schulz AS. A new mutation in the KINDLIN-3 gene ablates integrin-dependent leukocyte, platelet, and osteoclast function in a patient with leukocyte adhesion deficiency-III. Pediatr Blood Cancer 2015; 62:1677-9. [PMID: 25854317 DOI: 10.1002/pbc.25537] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/09/2015] [Indexed: 01/24/2023]
Abstract
Disabling mutations in integrin-mediated cell signaling have been a major focus of interest over the last decade for patients affected with leukocyte adhesion deficiency-III (LAD-III). In this study, we identified a new C>T point mutation in exon 13 in the FERMT3 gene in an infant diagnosed with LAD-III and showed that KINDLIN-3 expression is required for platelet aggregation and leukocyte function, but also osteoclast-mediated bone resorption. After allogeneic bone marrow transplant, all overt symptoms disappeared. This newly identified mutation along with its novel role in dysregulation of bone homeostasis extends our understanding of KINDLIN-3 in humans.
Collapse
Affiliation(s)
- Roman Crazzolara
- Department for Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Kathrin Maurer
- Department for Pediatrics, Medical University Innsbruck, Innsbruck, Austria
| | - Harald Schulze
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Barbara Zieger
- Department of Paediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Jozef Zustin
- Institute of Pathology, University of Münster, Münster, Germany
| | - Ansgar S Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
72
|
Ruppert R, Moser M, Sperandio M, Rognoni E, Orban M, Liu WH, Schulz AS, Oostendorp RAJ, Massberg S, Fässler R. Kindlin-3-mediated integrin adhesion is dispensable for quiescent but essential for activated hematopoietic stem cells. ACTA ACUST UNITED AC 2015; 212:1415-32. [PMID: 26282877 PMCID: PMC4548061 DOI: 10.1084/jem.20150269] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
Ruppert et al. report that Kindlin-3–mediated integrin activation controls homing of hematopoietic stem cells (HSCs) to the bone marrow (BM) and the retention of activated, but not quiescent, HSCs in the BM niche. Hematopoietic stem cells (HSCs) generate highly dividing hematopoietic progenitor cells (HPCs), which produce all blood cell lineages. HSCs are usually quiescent, retained by integrins in specific niches, and become activated when the pools of HPCs decrease. We report that Kindlin-3–mediated integrin activation controls homing of HSCs to the bone marrow (BM) and the retention of activated HSCs and HPCs but not of quiescent HSCs in their BM niches. Consequently, Kindlin-3–deficient HSCs enter quiescence and remain in the BM when cotransplanted with wild-type hematopoietic stem and progenitor cells (HSPCs), whereas they are hyperactivated and lost in the circulation when wild-type HSPCs are absent, leading to their exhaustion and reduced survival of recipients. The accumulation of HSPCs in the circulation of leukocyte adhesion deficiency type III patients, who lack Kindlin-3, underlines the conserved functions of Kindlin-3 in man and the importance of our findings for human disease.
Collapse
Affiliation(s)
- Raphael Ruppert
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Markus Moser
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Markus Sperandio
- Walter Brendel Center of Experimental Medicine, Ludwig Maximilian University, 80539 Munich, Germany
| | - Emanuel Rognoni
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Martin Orban
- Medical Clinic and Policlinic I, Klinikum der Universität, 80336 Munich, Germany
| | - Wen-Hsin Liu
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ansgar S Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, 89081 Ulm, Germany
| | - Robert A J Oostendorp
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität, 80337 Munich, Germany
| | - Steffen Massberg
- Medical Clinic and Policlinic I, Klinikum der Universität, 80336 Munich, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
73
|
Djaafri I, Khayati F, Menashi S, Tost J, Podgorniak MP, Sadoux A, Daunay A, Teixeira L, Soulier J, Idbaih A, Setterblad N, Fauvel F, Calvo F, Janin A, Lebbé C, Mourah S. A novel tumor suppressor function of Kindlin-3 in solid cancer. Oncotarget 2015; 5:8970-85. [PMID: 25344860 PMCID: PMC4253411 DOI: 10.18632/oncotarget.2125] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Kindlin-3 (FERMT-3) is known to be central in hemostasis and thrombosis control and its deficiency disrupts platelet aggregation and causes Leukocyte Adhesion Deficiency disease. Here we report that Kindlin-3 has a tumor suppressive role in solid cancer. Our present genetic and functional data show that Kindlin-3 is downregulated in several solid tumors by a mechanism involving gene hypermethylation and deletions. In vivo experiments demonstrated that Kindlin-3 knockdown in 2 tumor cell models (breast cancer and melanoma) markedly increases metastasis formation, in accord with the in vitro increase of tumor cell malignant properties. The metastatic phenotype was supported by a mechanism involving alteration in β3-integrin activation including decreased phosphorylation, interaction with talin and the internalization of its active form leading to less cell attachment and more migration/invasion. These data uncover a novel and unexpected tumor suppressor role of Kindin-3 which can influence integrins targeted therapies development.
Collapse
Affiliation(s)
- Ibtissem Djaafri
- Inserm UMR-S 940 Paris, France. Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Farah Khayati
- Inserm UMR-S 940 Paris, France. Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité, Paris, France. AP-HP, Hôpital Saint-Louis, Laboratoire de Pharmacologie-Génétique, Paris, France
| | | | - Jorg Tost
- Laboratory for Epigenetics, Centre National de Génotypage, CEA-Institut de Génomique, Evry, France. Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | | | - Aurelie Sadoux
- Inserm UMR-S 940 Paris, France. AP-HP, Hôpital Saint-Louis, Laboratoire de Pharmacologie-Génétique, Paris, France
| | - Antoine Daunay
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Luis Teixeira
- AP-HP, Hôpital Saint-Louis, Service d'oncologie médicale, Paris, France
| | - Jean Soulier
- Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité, Paris, France. Hematology Laboratory APHP, Saint-Louis Hospital, Paris, France
| | - Ahmed Idbaih
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Neurologie 2-Mazarin, Paris, France. Inserm U 975, Paris, 75013 France, CNRS, UMR, Paris, France
| | - Niclas Setterblad
- Inserm UMR-S 940 Paris, France. Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Françoise Fauvel
- Inserm UMR-S 940 Paris, France. Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Fabien Calvo
- Inserm UMR-S 940 Paris, France. Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Anne Janin
- Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité, Paris, France. Inserm, U728, Paris, France. AP-HP, Hôpital Saint-Louis, Laboratoire de Pathologie, Paris, France
| | - Celeste Lebbé
- Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité, Paris, France. AP-HP, Hôpital Saint-Louis, Département de Dermatologie, Paris, France. Inserm U976, Paris, France
| | - Samia Mourah
- Inserm UMR-S 940 Paris, France. Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
74
|
Leukocyte adhesion deficiency type III: clinical features and treatment with stem cell transplantation. J Pediatr Hematol Oncol 2015; 37:264-8. [PMID: 25072369 DOI: 10.1097/mph.0000000000000228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Leukocyte adhesion deficiency type III (LADIII) is an autosomal recessive disorder that presents with a severe leukocyte adhesion defect and a Glanzmann-type thrombocytopathy. Hematopoietic stem cell transplantation (HSCT)--the only definitive treatment for LADIII--appears to have a high rate of complications. In this study, we describe a new group of patients with LADIII, highlighting further clinical and immunologic aspects of this disease, and reevaluating the effectiveness of HSCT for its treatment. The patients had clinical and laboratory findings consistent with LADIII. Molecular analysis confirmed the presence of a mutation in the kindlin-3 gene. HSCT was carried out in 3 patients and was successful in 2. The diagnosis of LADIII should be considered in all patients who present with recurrent infections and a bleeding diathesis, regardless of the leukocyte count. LADIII is a primary immune deficiency, which can be successfully corrected by bone marrow transplantation if applied early in the course of the disease using appropriate conditioning.
Collapse
|
75
|
Abstract
Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage.
Collapse
|
76
|
Bialkowska K, Byzova TV, Plow EF. Site-specific phosphorylation of kindlin-3 protein regulates its capacity to control cellular responses mediated by integrin αIIbβ3. J Biol Chem 2015; 290:6226-42. [PMID: 25609252 DOI: 10.1074/jbc.m114.634436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The contributions of integrins to cellular responses depend upon their activation, which is regulated by binding of proteins to their cytoplasmic tails. Kindlins are integrin cytoplasmic tail binding partners and are essential for optimal integrin activation, and kindlin-3 fulfills this role in hematopoietic cells. Here, we used human platelets and human erythroleukemia (HEL) cells, which express integrin αIIbβ3, to investigate whether phosphorylation of kindlin-3 regulates integrin activation. When HEL cells were stimulated with thrombopoietin or phorbol 12-myristate 13-acetate (PMA), αIIbβ3 became activated as evidenced by binding of an activation-specific monoclonal antibody and soluble fibrinogen, adherence and spreading on fibrinogen, colocalization of β3 integrin and kindlin-3 in focal adhesions, and enhanced β3 integrin-kindlin-3 association in immunoprecipitates. Kindlin-3 knockdown impaired adhesion and spreading on fibrinogen. Stimulation of HEL cells with agonists significantly increased kindlin-3 phosphorylation as detected by mass spectrometric sequencing. Thr(482) or Ser(484) was identified as a phosphorylation site, which resides in a sequence not conserved in kindlin-1 or kindlin-2. These same residues were phosphorylated in kindlin-3 when platelets were stimulated with thrombin. When expressed in HEL cells, T482A/S484A kindlin-3 decreased soluble ligand binding and cell spreading on fibrinogen compared with wild-type kindlin-3. A membrane-permeable peptide containing residues 476-485 of kindlin-3 was introduced into HEL cells and platelets; adhesion and spreading of both cell types were blunted compared with a scrambled control peptide. These data identify a role of kindlin-3 phosphorylation in integrin β3 activation and provide a basis for functional differences between kindlin-3 and the two other kindlin paralogs.
Collapse
Affiliation(s)
- Katarzyna Bialkowska
- From the Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Tatiana V Byzova
- From the Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward F Plow
- From the Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
77
|
Sp1/Sp3 transcription factors regulate hallmarks of megakaryocyte maturation and platelet formation and function. Blood 2014; 125:1957-67. [PMID: 25538045 DOI: 10.1182/blood-2014-08-593343] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sp1 and Sp3 belong to the specificity proteins (Sp)/Krüppel-like transcription factor family. They are closely related, ubiquitously expressed, and recognize G-rich DNA motifs. They are thought to regulate generic processes such as cell-cycle and growth control, metabolic pathways, and apoptosis. Ablation of Sp1 or Sp3 in mice is lethal, and combined haploinsufficiency results in hematopoietic defects during the fetal stages. Here, we show that in adult mice, conditional pan-hematopoietic (Mx1-Cre) ablation of either Sp1 or Sp3 has minimal impact on hematopoiesis, whereas the simultaneous loss of Sp1 and Sp3 results in severe macrothrombocytopenia. This occurs in a cell-autonomous manner as shown by megakaryocyte-specific (Pf4-Cre) double-knockout mice. We employed flow cytometry, cell culture, and electron microscopy and show that although megakaryocyte numbers are normal in bone marrow and spleen, they display a less compact demarcation membrane system and a striking inability to form proplatelets. Through megakaryocyte transcriptomics and platelet proteomics, we identified several cytoskeleton-related proteins and downstream effector kinases, including Mylk, that were downregulated upon Sp1/Sp3 depletion, providing an explanation for the observed defects in megakaryopoiesis. Supporting this notion, selective Mylk inhibition by ML7 affected proplatelet formation and stabilization and resulted in defective ITAM receptor-mediated platelet aggregation.
Collapse
|
78
|
Sabino F, Hermes O, Egli FE, Kockmann T, Schlage P, Croizat P, Kizhakkedathu JN, Smola H, auf dem Keller U. In vivo assessment of protease dynamics in cutaneous wound healing by degradomics analysis of porcine wound exudates. Mol Cell Proteomics 2014; 14:354-70. [PMID: 25516628 DOI: 10.1074/mcp.m114.043414] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Proteases control complex tissue responses by modulating inflammation, cell proliferation and migration, and matrix remodeling. All these processes are orchestrated in cutaneous wound healing to restore the skin's barrier function upon injury. Altered protease activity has been implicated in the pathogenesis of healing impairments, and proteases are important targets in diagnosis and therapy of this pathology. Global assessment of proteolysis at critical turning points after injury will define crucial events in acute healing that might be disturbed in healing disorders. As optimal biospecimens, wound exudates contain an ideal proteome to detect extracellular proteolytic events, are noninvasively accessible, and can be collected at multiple time points along the healing process from the same wound in the clinics. In this study, we applied multiplexed Terminal Amine Isotopic Labeling of Substrates (TAILS) to globally assess proteolysis in early phases of cutaneous wound healing. By quantitative analysis of proteins and protein N termini in wound fluids from a clinically relevant pig wound model, we identified more than 650 proteins and discerned major healing phases through distinctive abundance clustering of markers of inflammation, granulation tissue formation, and re-epithelialization. TAILS revealed a high degree of proteolysis at all time points after injury by detecting almost 1300 N-terminal peptides in ∼450 proteins. Quantitative positional proteomics mapped pivotal interdependent processing events in the blood coagulation and complement cascades, temporally discerned clotting and fibrinolysis during the healing process, and detected processing of complement C3 at distinct time points after wounding and by different proteases. Exploiting data on primary cleavage specificities, we related candidate proteases to cleavage events and revealed processing of the integrin adapter protein kindlin-3 by caspase-3, generating new hypotheses for protease-substrate relations in the healing skin wound in vivo. The data have been deposited to the ProteomeXchange Consortium with identifier PXD001198.
Collapse
Affiliation(s)
- Fabio Sabino
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Olivia Hermes
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Fabian E Egli
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Tobias Kockmann
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Pascal Schlage
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Pierre Croizat
- §Paul Hartmann AG, Paul Hartmann Strasse 12, 89522 Heidenheim, Germany
| | - Jayachandran N Kizhakkedathu
- ¶University of British Columbia, Department of Pathology and Laboratory Medicine and Department of Chemistry, Centre for Blood Research, 4.401 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Hans Smola
- §Paul Hartmann AG, Paul Hartmann Strasse 12, 89522 Heidenheim, Germany
| | - Ulrich auf dem Keller
- From the ‡ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093 Zurich, Switzerland;
| |
Collapse
|
79
|
Etzioni A. Leukocyte adhesion deficiency III - when integrins activation fails. J Clin Immunol 2014; 34:900-3. [PMID: 25239689 DOI: 10.1007/s10875-014-0094-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Amos Etzioni
- Ruth Children Hospital, Haifa, Rappaport Medical School, Technion, Haifa, Israel,
| |
Collapse
|
80
|
Rozario T, Mead PE, DeSimone DW. Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis. Mech Dev 2014; 133:203-17. [PMID: 25173804 DOI: 10.1016/j.mod.2014.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/03/2014] [Accepted: 07/30/2014] [Indexed: 12/11/2022]
Abstract
The kindlin/fermitin family includes three proteins involved in regulating integrin ligand-binding activity and adhesion. Loss-of-function mutations in kindlins1 and 3 have been implicated in Kindler Syndrome and Leukocyte Adhesion Deficiency III (LAD-III) respectively, whereas kindlin2 null mice are embryonic lethal. Post translational regulation of cell-cell and cell-ECM adhesion has long been presumed to be important for morphogenesis, however, few specific examples of activation-dependent changes in adhesion molecule function in normal development have been reported. In this study, antisense morpholinos were used to reduce expression of individual kindlins in Xenopus laevis embryos in order to investigate their roles in early development. Kindlin1 knockdown resulted in developmental delays, gross malformations of the gut and eventual lethality by tadpole stages. Kindlin2 morphant embryos displayed late stage defects in vascular maintenance and angiogenic branching consistent with kindlin2 loss of function in the mouse. Antisense morpholinos were also used to deplete maternal kindlin2 protein in oocytes and eggs. Embryos lacking maternal kindlin2 arrested at early cleavage stages due to failures in cytokinesis. Kindlin3 morphant phenotypes included defects in epidermal ciliary beating and partial paralysis at tailbud stages but these embryos recovered eventually as morpholino levels decayed. These results indicate a remarkably diverse range of kindlin functions in vertebrate development.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and The Morphogenesis and Regenerative Medicine Institute, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas W DeSimone
- Department of Cell Biology and The Morphogenesis and Regenerative Medicine Institute, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
81
|
Huet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, Calderwood DA. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. J Cell Sci 2014; 127:4308-21. [PMID: 25086068 DOI: 10.1242/jcs.155879] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kindlins are essential FERM-domain-containing focal adhesion (FA) proteins required for proper integrin activation and signaling. Despite the widely accepted importance of each of the three mammalian kindlins in cell adhesion, the molecular basis for their function has yet to be fully elucidated, and the functional differences between isoforms have generally not been examined. Here, we report functional differences between kindlin-2 and -3 (also known as FERMT2 and FERMT3, respectively); GFP-tagged kindlin-2 localizes to FAs whereas kindlin-3 does not, and kindlin-2, but not kindlin-3, can rescue α5β1 integrin activation defects in kindlin-2-knockdown fibroblasts. Using chimeric kindlins, we show that the relatively uncharacterized kindlin-2 F2 subdomain drives FA targeting and integrin activation. We find that the integrin-linked kinase (ILK)-PINCH-parvin complex binds strongly to the kindlin-2 F2 subdomain but poorly to that of kindlin-3. Using a point-mutated kindlin-2, we establish that efficient kindlin-2-mediated integrin activation and FA targeting require binding to the ILK complex. Thus, ILK-complex binding is crucial for normal kindlin-2 function and differential ILK binding contributes to kindlin isoform specificity.
Collapse
Affiliation(s)
| | - Nina N Brahme
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Nikit Kumar
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Srikala Raghavan
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, Karnataka 560065, India
| | - Titus J Boggon
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - David A Calderwood
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
82
|
Xu Z, Chen X, Zhi H, Gao J, Bialkowska K, Byzova TV, Pluskota E, White GC, Liu J, Plow EF, Ma YQ. Direct interaction of kindlin-3 with integrin αIIbβ3 in platelets is required for supporting arterial thrombosis in mice. Arterioscler Thromb Vasc Biol 2014; 34:1961-7. [PMID: 24969775 DOI: 10.1161/atvbaha.114.303851] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Kindlin-3 is a critical supporter of integrin function in platelets. Lack of expression of kindlin-3 protein in patients impairs integrin αIIbβ3-mediated platelet aggregation. Although kindlin-3 has been categorized as an integrin-binding partner, the functional significance of the direct interaction of kindlin-3 with integrin αIIbβ3 in platelets has not been established. Here, we evaluated the significance of the binding of kindlin-3 to integrin αIIbβ3 in platelets in supporting integrin αIIbβ3-mediated platelet functions. APPROACH AND RESULTS We generated a strain of kindlin-3 knockin (K3KI) mice that express a kindlin-3 mutant that carries an integrin-interaction defective substitution. K3KI mice could survive normally and express integrin αIIbβ3 on platelets similar to their wild-type counterparts. Functional analysis revealed that K3KI mice exhibited defective platelet function, including impaired integrin αIIbβ3 activation, suppressed platelet spreading and platelet aggregation, prolonged tail bleeding time, and absence of platelet-mediated clot retraction. In addition, whole blood drawn from K3KI mice showed resistance to in vitro thrombus formation and, as a consequence, K3KI mice were protected from in vivo arterial thrombosis. CONCLUSIONS These observations demonstrate that the direct binding of kindlin-3 to integrin αIIbβ3 is involved in supporting integrin αIIbβ3 activation and integrin αIIbβ3-dependent responses of platelets and consequently contributes significantly to arterial thrombus formation.
Collapse
Affiliation(s)
- Zhen Xu
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Xue Chen
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Huiying Zhi
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Juan Gao
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Katarzyna Bialkowska
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Tatiana V Byzova
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Elzbieta Pluskota
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Gilbert C White
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Junling Liu
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Edward F Plow
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.)
| | - Yan-Qing Ma
- From the Collaborative Research Program for Cell Adhesion Molecules, Shanghai University School of Life Sciences, Shanghai, China (Z.X., J.G., E.F.P., Y.-Q.M.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (Z.X., H.Z., G.C.W., Y.-Q.M.); Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao-Tong University School of Medicine, Shanghai, China (X.C., J.L.); and Department of Molecular Cardiology, Cleveland Clinic, OH (K.B., T.V.B., E.P., E.F.P.).
| |
Collapse
|
83
|
Hugo TB, Heading KL. Leucocyte adhesion deficiency III in a mixed-breed dog. Aust Vet J 2014; 92:299-302. [PMID: 24954630 DOI: 10.1111/avj.12206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Leucocyte adhesion deficiencies are inherited disorders characterised by immunodeficiency leading to recurrent infections and a marked leucocytosis. We describe the clinical characteristics, diagnosis and management of an Australian mixed- breed dog with leucocyte adhesion deficiency III. CASE REPORT A 16-month-old male, neutered, German Shepherd × Rottweiler dog was investigated for pyrexia, persistent leucocytosis, marked periodontal disease, lameness, increased mucosal haemorrhages and poor wound healing. Numerous diagnostics were performed including a leucocyte adhesion deficiency III PCR test, which was positive. The patient was managed with topical pressure at bleeding sites, antibiotics, analgesics and dental prophylaxis when required. DISCUSSION Leucocyte adhesion deficiency III is a rare disorder that manifests because of impaired activation of beta integrins. This results in an absence of neutrophil chemotaxis and adhesion, and platelet dysfunction. Mutations within the KINDLIN3 gene resulting in the absence of the kindlin-3 protein have been identified as the cause of this disease. Leucocyte adhesion deficiency III has previously been reported in humans and a German Shepherd dog. This report describes the first reported case of leucocyte adhesion deficiency III in Australia and the first reported case in a mixed-breed dog worldwide.
Collapse
Affiliation(s)
- T B Hugo
- Melbourne Veterinary Specialist Centre, Glen Waverley, Victoria, Australia.
| | | |
Collapse
|
84
|
Canault M, Ghalloussi D, Grosdidier C, Guinier M, Perret C, Chelghoum N, Germain M, Raslova H, Peiretti F, Morange PE, Saut N, Pillois X, Nurden AT, Cambien F, Pierres A, van den Berg TK, Kuijpers TW, Alessi MC, Tregouet DA. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. ACTA ACUST UNITED AC 2014; 211:1349-62. [PMID: 24958846 PMCID: PMC4076591 DOI: 10.1084/jem.20130477] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
First case of a human RASGRP2 mutation affecting Rap1 activation in platelets and causing severe bleeding. The nature of an inherited platelet disorder was investigated in three siblings affected by severe bleeding. Using whole-exome sequencing, we identified the culprit mutation (cG742T) in the RAS guanyl-releasing protein-2 (RASGRP2) gene coding for calcium- and DAG-regulated guanine exchange factor-1 (CalDAG-GEFI). Platelets from individuals carrying the mutation present a reduced ability to activate Rap1 and to perform proper αIIbβ3 integrin inside-out signaling. Expression of CalDAG-GEFI mutant in HEK293T cells abolished Rap1 activation upon stimulation. Nevertheless, the PKC- and ADP-dependent pathways allow residual platelet activation in the absence of functional CalDAG-GEFI. The mutation impairs the platelet’s ability to form thrombi under flow and spread normally as a consequence of reduced Rac1 GTP-binding. Functional deficiencies were confined to platelets and megakaryocytes with no leukocyte alteration. This contrasts with the phenotype seen in type III leukocyte adhesion deficiency caused by the absence of kindlin-3. Heterozygous did not suffer from bleeding and have normal platelet aggregation; however, their platelets mimicked homozygous ones by failing to undergo normal adhesion under flow and spreading. Rescue experiments on cultured patient megakaryocytes corrected the functional deficiency after transfection with wild-type RASGRP2. Remarkably, the presence of a single normal allele is sufficient to prevent bleeding, making CalDAG-GEFI a novel and potentially safe therapeutic target to prevent thrombosis.
Collapse
Affiliation(s)
- Matthias Canault
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR_S 1062, 13005 Marseille, France Inra, UMR_INRA 1260, 13005 Marseille, France Aix Marseille Université, 13005 Marseille, France
| | - Dorsaf Ghalloussi
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR_S 1062, 13005 Marseille, France Inra, UMR_INRA 1260, 13005 Marseille, France Aix Marseille Université, 13005 Marseille, France
| | - Charlotte Grosdidier
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR_S 1062, 13005 Marseille, France Inra, UMR_INRA 1260, 13005 Marseille, France Aix Marseille Université, 13005 Marseille, France
| | - Marie Guinier
- Post-Genomic Platform of Pitié-Salpêtrière (P3S), Pierre and Marie Curie University, F-75013 Paris, France
| | - Claire Perret
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013 Paris, France Inserm, UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, F-75013 Paris, France ICAN Institute for Cardiometabolism and Nutrition, F-75013 Paris, France
| | - Nadjim Chelghoum
- Post-Genomic Platform of Pitié-Salpêtrière (P3S), Pierre and Marie Curie University, F-75013 Paris, France
| | - Marine Germain
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013 Paris, France Inserm, UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, F-75013 Paris, France ICAN Institute for Cardiometabolism and Nutrition, F-75013 Paris, France
| | - Hana Raslova
- Hématopoïèse Normale et Pathologique, Inserm Médicale U1009, 94805 Villejuif, France
| | - Franck Peiretti
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR_S 1062, 13005 Marseille, France Inra, UMR_INRA 1260, 13005 Marseille, France Aix Marseille Université, 13005 Marseille, France
| | - Pierre E Morange
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR_S 1062, 13005 Marseille, France Inra, UMR_INRA 1260, 13005 Marseille, France Aix Marseille Université, 13005 Marseille, France
| | - Noemie Saut
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR_S 1062, 13005 Marseille, France Inra, UMR_INRA 1260, 13005 Marseille, France Aix Marseille Université, 13005 Marseille, France
| | - Xavier Pillois
- LIRYC, Plateforme Technologique et d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France Inserm, UMR_1034, 33600 Pessac, France
| | | | - François Cambien
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013 Paris, France Inserm, UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, F-75013 Paris, France ICAN Institute for Cardiometabolism and Nutrition, F-75013 Paris, France
| | - Anne Pierres
- Aix Marseille Université, 13005 Marseille, France Inserm, UMR_1067, 13288 Marseille, France CNRS UMR_7333, 13288 Marseille, France
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marie-Christine Alessi
- Institut National de la Santé et de la Recherche Médicale (Inserm), UMR_S 1062, 13005 Marseille, France Inra, UMR_INRA 1260, 13005 Marseille, France Aix Marseille Université, 13005 Marseille, France
| | - David-Alexandre Tregouet
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013 Paris, France Inserm, UMR_S 1166, Team Genomics and Pathophysiology of Cardiovascular Diseases, F-75013 Paris, France ICAN Institute for Cardiometabolism and Nutrition, F-75013 Paris, France
| |
Collapse
|
85
|
Raftery MJ, Lalwani P, Krautkrӓmer E, Peters T, Scharffetter-Kochanek K, Krüger R, Hofmann J, Seeger K, Krüger DH, Schönrich G. β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. ACTA ACUST UNITED AC 2014; 211:1485-97. [PMID: 24889201 PMCID: PMC4076588 DOI: 10.1084/jem.20131092] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
β2 Integrin–mediated systemic release of neutrophil extracellular traps is a novel mechanism of immunopathology associated with hantavirus infection. Rodent-borne hantaviruses are emerging human pathogens that cause severe human disease. The underlying mechanisms are not well understood, as hantaviruses replicate in endothelial and epithelial cells without causing any cytopathic effect. We demonstrate that hantaviruses strongly stimulated neutrophils to release neutrophil extracellular traps (NETs). Hantavirus infection induced high systemic levels of circulating NETs in patients and this systemic NET overflow was accompanied by production of autoantibodies to nuclear antigens. Analysis of the responsible mechanism using neutrophils from β2 null mice identified β2 integrin receptors as a master switch for NET induction. Further experiments suggested that β2 integrin receptors such as complement receptor 3 (CR3) and 4 (CR4) may act as novel hantavirus entry receptors. Using adenoviruses, we confirmed that viral interaction with β2 integrin induced strong NET formation. Collectively, β2 integrin–mediated systemic NET overflow is a novel viral mechanism of immunopathology that may be responsible for characteristic aspects of hantavirus-associated disease such as kidney and lung damage.
Collapse
Affiliation(s)
- Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Department of Pediatric Pneumology and Immunology, and Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Pritesh Lalwani
- Institute of Medical Virology, Helmut-Ruska-Haus, Department of Pediatric Pneumology and Immunology, and Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ellen Krautkrӓmer
- Department of Nephrology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thorsten Peters
- Department of Dermatology and Allergic Diseases, University Hospital Ulm, 89081 Ulm, Germany
| | | | - Renate Krüger
- Institute of Medical Virology, Helmut-Ruska-Haus, Department of Pediatric Pneumology and Immunology, and Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jörg Hofmann
- Institute of Medical Virology, Helmut-Ruska-Haus, Department of Pediatric Pneumology and Immunology, and Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany Division of Virology, Labor Berlin Charité-Vivantes GmbH, 13353 Berlin, Germany
| | - Karl Seeger
- Institute of Medical Virology, Helmut-Ruska-Haus, Department of Pediatric Pneumology and Immunology, and Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Detlev H Krüger
- Institute of Medical Virology, Helmut-Ruska-Haus, Department of Pediatric Pneumology and Immunology, and Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Department of Pediatric Pneumology and Immunology, and Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
86
|
Winograd-Katz SE, Fässler R, Geiger B, Legate KR. The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 2014; 15:273-88. [PMID: 24651544 DOI: 10.1038/nrm3769] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adhesive interactions of cells with their environment through the integrin family of transmembrane receptors have key roles in regulating multiple aspects of cellular physiology, including cell proliferation, viability, differentiation and migration. Consequently, failure to establish functional cell adhesions, and thus the assembly of associated cytoplasmic scaffolding and signalling networks, can have severe pathological effects. The roles of specific constituents of integrin-mediated adhesions, which are collectively known as the 'integrin adhesome', in diverse pathological states are becoming clear. Indeed, the prominence of mutations in specific adhesome molecules in various human diseases is now appreciated, and experimental as well as in silico approaches provide insights into the molecular mechanisms underlying these pathological conditions.
Collapse
Affiliation(s)
- Sabina E Winograd-Katz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kyle R Legate
- 1] Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Center for Nanosciences, Department of Applied Physics, Ludwig-Maximilians University, 80799 Munich, Germany
| |
Collapse
|
87
|
Ye F, Snider AK, Ginsberg MH. Talin and kindlin: the one-two punch in integrin activation. Front Med 2014; 8:6-16. [DOI: 10.1007/s11684-014-0317-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/29/2013] [Indexed: 11/25/2022]
|
88
|
van de Vijver E, Tool ATJ, Sanal Ö, Çetin M, Ünal S, Aytac S, Seeger K, Pagliara D, Rutella S, van den Berg TK, Kuijpers TW. Kindlin-3-independent adhesion of neutrophils from patients with leukocyte adhesion deficiency type III. J Allergy Clin Immunol 2013; 133:1215-8. [PMID: 24342549 DOI: 10.1016/j.jaci.2013.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Edith van de Vijver
- Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; Department of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Anton T J Tool
- Department of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Özden Sanal
- Pediatric Immunology Unit, Hacettepe University, Ankara, Turkey
| | - Mualla Çetin
- Pediatric Hematology Unit, Hacettepe University, Ankara, Turkey
| | - Sule Ünal
- Pediatric Hematology Unit, Hacettepe University, Ankara, Turkey
| | - Selin Aytac
- Pediatric Hematology Unit, Hacettepe University, Ankara, Turkey
| | - Karl Seeger
- Department of Pediatric Oncology/Hematology, Otto-Heubner-Center for Pediatric and Adolescent Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Sergio Rutella
- Department of Pediatric Hematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research, and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Emma Children's Hospital, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
89
|
Langereis JD. Neutrophil integrin affinity regulation in adhesion, migration, and bacterial clearance. Cell Adh Migr 2013; 7:476-81. [PMID: 24430200 DOI: 10.4161/cam.27293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During an infection, neutrophils are the first immune cells to arrive armed to clear the invading pathogen. In order to do so, neutrophils need to transmigrate from the peripheral blood through the endothelial layer toward the site of inflammation. This process is in most cases dependent on integrins, adhesion molecules present on all immune cells. These molecules are functionally regulated by "inside-out" signaling, where stimulus-induced signaling pathways act on the intracellular integrin tail to regulate the activity of the receptor on the outside. Both a change in conformation (affinity) and clustering (avidity/valency) of the receptors occurs and many factors have been linked to regulation of integrins on neutrophils. Control of integrin conformation and clustering is of pivotal importance for proper cell adhesion, migration, and bacterial clearance. Recently, gelsolin was found to be involved in β 1-integrin affinity regulation and cell adhesion. Here, I summarize the role of neutrophil integrin regulation in the essential steps to reach the site of inflammation and clearance of bacterial pathogens.
Collapse
Affiliation(s)
- Jeroen D Langereis
- Department of Microbiology; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
90
|
Futosi K, Fodor S, Mócsai A. Reprint of Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:1185-97. [PMID: 24263067 DOI: 10.1016/j.intimp.2013.11.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/13/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca(2+) signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | | | | |
Collapse
|
91
|
Brahme NN, Harburger DS, Kemp-O'Brien K, Stewart R, Raghavan S, Parsons M, Calderwood DA. Kindlin binds migfilin tandem LIM domains and regulates migfilin focal adhesion localization and recruitment dynamics. J Biol Chem 2013; 288:35604-16. [PMID: 24165133 DOI: 10.1074/jbc.m113.483016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Focal adhesions (FAs), sites of tight adhesion to the extracellular matrix, are composed of clusters of transmembrane integrin adhesion receptors and intracellular proteins that link integrins to the actin cytoskeleton and signaling pathways. Two integrin-binding proteins present in FAs, kindlin-1 and kindlin-2, are important for integrin activation, FA formation, and signaling. Migfilin, originally identified in a yeast two-hybrid screen for kindlin-2-interacting proteins, is a LIM domain-containing adaptor protein found in FAs and implicated in control of cell adhesion, spreading, and migration. By binding filamin, migfilin provides a link between kindlin and the actin cytoskeleton. Here, using a combination of kindlin knockdown, biochemical pulldown assays, fluorescence microscopy, fluorescence resonance energy transfer (FRET), and fluorescence recovery after photobleaching (FRAP), we have established that the C-terminal LIM domains of migfilin dictate its FA localization, shown that these domains mediate an interaction with kindlin in vitro and in cells, and demonstrated that kindlin is important for normal migfilin dynamics in cells. We also show that when the C-terminal LIM domain region is deleted, then the N-terminal filamin-binding region of the protein, which is capable of targeting migfilin to actin-rich stress fibers, is the predominant driver of migfilin localization. Our work details a correlation between migfilin domains that drive kindlin binding and those that drive FA localization as well as a kindlin dependence on migfilin FA recruitment and mobility. We therefore suggest that the kindlin interaction with migfilin LIM domains drives migfilin FA recruitment, localization, and mobility.
Collapse
|
92
|
Kindlin-3 regulates integrin activation and adhesion reinforcement of effector T cells. Proc Natl Acad Sci U S A 2013; 110:17005-10. [PMID: 24089451 DOI: 10.1073/pnas.1316032110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activated T cells use very late antigen-4/α4β1 integrin for capture, rolling on, and firm adhesion to endothelial cells, and use leukocyte function-associated antigen-1/αLβ2 integrin for subsequent crawling and extravasation. Inhibition of α4β1 is sufficient to prevent extravasation of activated T cells and is successfully used to combat autoimmune diseases, such as multiple sclerosis. Here we show that effector T cells lacking the integrin activator Kindlin-3 extravasate and induce experimental autoimmune encephalomyelitis in mice immunized with autoantigen. In sharp contrast, adoptively transferred autoreactive T cells from Kindlin-3-deficient mice fail to extravasate into the naïve CNS. Mechanistically, autoreactive Kindlin-3-null T cells extravasate when the CNS is inflamed and the brain microvasculature expresses high levels of integrin ligands. Flow chamber assays under physiological shear conditions confirmed that Kindlin-3-null effector T cells adhere to high concentrations of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, albeit less efficiently than WT T cells. Although these arrested T cells polarize and start crawling, only few remain firmly adherent over time. Our data demonstrate that the requirement of Kindlin-3 for effector T cells to induce α4β1 and αLβ2 integrin ligand binding and stabilization of integrin-ligand bonds is critical when integrin ligand levels are low, but of less importance when integrin ligand levels are high.
Collapse
|
93
|
Futosi K, Fodor S, Mócsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol 2013; 17:638-50. [PMID: 23994464 PMCID: PMC3827506 DOI: 10.1016/j.intimp.2013.06.034] [Citation(s) in RCA: 443] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
Neutrophils play a critical role in the host defense against bacterial and fungal infections, but their inappropriate activation also contributes to tissue damage during autoimmune and inflammatory diseases. Neutrophils express a large number of cell surface receptors for the recognition of pathogen invasion and the inflammatory environment. Those include G-protein-coupled chemokine and chemoattractant receptors, Fc-receptors, adhesion receptors such as selectins/selectin ligands and integrins, various cytokine receptors, as well as innate immune receptors such as Toll-like receptors and C-type lectins. The various cell surface receptors trigger very diverse signal transduction pathways including activation of heterotrimeric and monomeric G-proteins, receptor-induced and store-operated Ca2 + signals, protein and lipid kinases, adapter proteins and cytoskeletal rearrangement. Here we provide an overview of the receptors involved in neutrophil activation and the intracellular signal transduction processes they trigger. This knowledge is crucial for understanding how neutrophils participate in antimicrobial host defense and inflammatory tissue damage and may also point to possible future targets of the pharmacological therapy of neutrophil-mediated autoimmune or inflammatory diseases. Neutrophils are crucial players in innate and adaptive immunity. Neutrophils also participate in autoimmune and inflammatory diseases. Various neutrophil receptors recognize pathogens and the inflammatory environment. The various cell surface receptors trigger diverse intracellular signaling. Neutrophil receptors and signaling are potential targets in inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
| | - Szabina Fodor
- Department of Computer Science, Corvinus University of Budapest, 1093 Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary
- Corresponding author at: Department of Physiology, Semmelweis University School of Medicine, Tűzoltó utca 37–47, 1094 Budapest, Hungary. Tel.: + 36 1 459 1500x60 409; fax: + 36 1 266 7480.
| |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW To show that skin symptoms help in the recognition of primary immunodeficiencies (PIDs). To analyze whether recent molecular data help in understanding genotype/phenotype relations. RECENT FINDINGS Erythroderma in Omenn syndrome may be caused by either mutations in genes associated with severe combined immunodeficiency (SCID) in which the generation of some T cells is possible, which results in potentially autoreactive lymphoid clones, or by selective proliferation of revertant CD8 T cells in the skin due to clonal expansion in response to infections or autoantigens.The newborn eczematous eruption, which occurs mainly in the signal-transducer-and-activator-of-transcription-3 (STAT3) variant, helps to differentiate STAT3 from Dedicator of Cytokinesis 8-related Hyper-IgE-syndrome (HIES).Impaired T helper 17 cell (TH17) immunity [HIES and defects of autoimmune regulator element (AIRE), STAT-1, and interleukin17 receptor(IL17(R))] may give rise to localized chronic mucocutaneous candidiasis, whereas a defective innate immune system predisposes to systemic candidiasis [congenital neutropenia, neutrophil dysfunction, and caspase recruitment domain 9 (CARD9) deficiency].Noninfectious granulomas may be the presenting symptom in innate immunity defects [such as chronic granulomatous disease (CGD) or in predominantly humoral immunodeficiencies such as common variable immunodeficiency], as well as ataxia teleangiectasia or rare recombination-activating gene-deficient cases. SUMMARY The skin is important in the diagnosis of PIDs. In particular eczematous lesions, erythroderma, noninfectious granuloma, and microbial manifestations may help to direct further diagnostic laboratory analysis.
Collapse
|
95
|
Das M, Ithychanda S, Qin J, Plow EF. Mechanisms of talin-dependent integrin signaling and crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:579-88. [PMID: 23891718 DOI: 10.1016/j.bbamem.2013.07.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 01/01/2023]
Abstract
Cells undergo dynamic remodeling of the cytoskeleton during adhesion and migration on various extracellular matrix (ECM) substrates in response to physiological and pathological cues. The major mediators of such cellular responses are the heterodimeric adhesion receptors, the integrins. Extracellular or intracellular signals emanating from different signaling cascades cause inside-out signaling of integrins via talin, a cystokeletal protein that links integrins to the actin cytoskeleton. Various integrin subfamilies communicate with each other and growth factor receptors under diverse cellular contexts to facilitate or inhibit various integrin-mediated functions. Since talin is an essential mediator of integrin activation, much of the integrin crosstalk would therefore be influenced by talin. However, despite the existence of an extensive body of knowledge on the role of talin in integrin activation and as a stabilizer of ECM-actin linkage, information on its role in regulating inter-integrin communication is limited. This review will focus on the structure of talin, its regulation of integrin activation and discuss its potential role in integrin crosstalk. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Mitali Das
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Sujay Ithychanda
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Jun Qin
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Edward F Plow
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
96
|
Badolato R. Defects of leukocyte migration in primary immunodeficiencies. Eur J Immunol 2013; 43:1436-40. [DOI: 10.1002/eji.201243155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/07/2013] [Accepted: 04/24/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Raffaele Badolato
- Department of Pediatrics; Institute of Molecular Medicine “Angelo Nocivelli”, University of Brescia, Brescia; Italy
| |
Collapse
|
97
|
Robert P, Touchard D, Bongrand P, Pierres A. Biophysical description of multiple events contributing blood leukocyte arrest on endothelium. Front Immunol 2013; 4:108. [PMID: 23750158 PMCID: PMC3654224 DOI: 10.3389/fimmu.2013.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022] Open
Abstract
Blood leukocytes have a remarkable capacity to bind to and stop on specific blood vessel areas. Many studies have disclosed a key role of integrin structural changes following the interaction of rolling leukocytes with surface-bound chemoattractants. However, the functional significance of structural data and mechanisms of cell arrest are incompletely understood. Recent experiments revealed the unexpected complexity of several key steps of cell-surface interaction: (i) ligand-receptor binding requires a minimum amount of time to proceed and this is influenced by forces. (ii) Also, molecular interactions at interfaces are not fully accounted for by the interaction properties of soluble molecules. (iii) Cell arrest depends on nanoscale topography and mechanical properties of the cell membrane, and these properties are highly dynamic. Here, we summarize these results and we discuss their relevance to recent functional studies of integrin-receptor association in cells from a patient with type III leukocyte adhesion deficiency. It is concluded that an accurate understanding of all physical events listed in this review is needed to unravel the precise role of the multiple molecules and biochemical pathway involved in arrest triggering.
Collapse
Affiliation(s)
- Philippe Robert
- Laboratoire Adhésion and Inflammation, Aix-Marseille Université Marseille, France ; Institut National de la Santé et de la Recherche Médicale Marseille, France ; Centre National de la Recherche Scientifique Marseille, France ; Laboratoire d'Immunologie, Hôpitaux de Marseille, Hôpital de la Conception Marseille, France
| | | | | | | |
Collapse
|
98
|
Abstract
PURPOSE OF REVIEW The leukocyte adhesion deficiency (LAD) syndromes are rare genetically determined conditions with challenging clinical features. These immunodeficiencies also provide insights that are broadly relevant to the biology of leukocytes, platelets, intercellular interactions, and intracellular signaling. Recent discoveries merit their review in the context of existing knowledge. RECENT FINDINGS New activities of β(2) integrins, which are deficient or absent in LAD-I, and new β(2) integrin-dependent functions of neutrophils and other leukocytes have recently been identified. Genetic defects and mechanisms accounting for impaired fucosylation of selectin ligands and defective selectin binding and signaling in LAD-II are now apparent. LAD-III, which presents with bleeding similar to that in Glanzmann thrombasthenia and platelet dysfunction in addition to impaired leukocyte adhesion, is now known to be due to absence of KINDLIN-3, a cytoplasmic protein that acts cooperatively with TALIN-1 in activating β(1), β(2), and β(3) integrins. Understanding of the leukocyte adhesion cascade and interactions of leukocytes with inflamed endothelium, which are impaired in each of the LAD syndromes, continues to be refined. SUMMARY Although LAD syndromes are rare maladies, their investigation is generating new knowledge directly applicable to the diagnosis and care of patients and to fundamental paradigms in immunobiology and hemostasis.
Collapse
|
99
|
Hart R, Stanley P, Chakravarty P, Hogg N. The kindlin 3 pleckstrin homology domain has an essential role in lymphocyte function-associated antigen 1 (LFA-1) integrin-mediated B cell adhesion and migration. J Biol Chem 2013; 288:14852-62. [PMID: 23595985 DOI: 10.1074/jbc.m112.434621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein kindlin 3 is mutated in the leukocyte adhesion deficiency III (LAD-III) disorder, leading to widespread infection due to the failure of leukocytes to migrate into infected tissue sites. To gain understanding of how kindlin 3 controls leukocyte function, we have focused on its pleckstrin homology (PH) domain and find that deletion of this domain eliminates the ability of kindlin 3 to participate in adhesion and migration of B cells mediated by the leukocyte integrin lymphocyte function-associated antigen 1 (LFA-1). PH domains are often involved in membrane localization of proteins through binding to phosphoinositides. We show that the kindlin 3 PH domain has binding affinity for phosphoinositide PI(3,4,5)P3 over PI(4,5)P2. It has a major role in membrane association of kindlin 3 that is enhanced by the binding of LFA-1 to intercellular adhesion molecule 1 (ICAM-1). A splice variant, kindlin 3-IPRR, has a four-residue insert in the PH domain at a critical site that influences phosphoinositide binding by enhancing binding to PI(4,5)P2 as well as by binding to PI(3,4,5)P3. However kindlin 3-IPRR is unable to restore the ability of LAD-III B cells to adhere to and migrate on LFA-1 ligand ICAM-1, potentially by altering the dynamics or PI specificity of binding to the membrane. Thus, the correct functioning of the kindlin 3 PH domain is central to the role that kindlin 3 performs in guiding lymphocyte adhesion and motility behavior, which in turn is required for a successful immune response.
Collapse
Affiliation(s)
- Rosie Hart
- Leukocyte Adhesion Laboratory, Cancer Research United Kingdom London Research Institute, London WC2A 3LY, United Kingdom
| | | | | | | |
Collapse
|
100
|
MAHAWITHITWONG PRAWEJ, OHUCHIDA KENOKI, IKENAGA NAOKI, FUJITA HAYATO, ZHAO MING, KOZONO SHINGO, SHINDO KOJI, OHTSUKA TAKAO, AISHIMA SHINICHI, MIZUMOTO KAZUHIRO, TANAKA MASAO. Kindlin-1 expression is involved in migration and invasion of pancreatic cancer. Int J Oncol 2013; 42:1360-6. [DOI: 10.3892/ijo.2013.1838] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/30/2012] [Indexed: 11/06/2022] Open
|