51
|
Liao J, Li JZ, Xu J, Xu Y, Wen WP, Zheng L, Li L. High S100A9 + cell density predicts a poor prognosis in hepatocellular carcinoma patients after curative resection. Aging (Albany NY) 2021; 13:16367-16380. [PMID: 34157683 PMCID: PMC8266308 DOI: 10.18632/aging.203162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
S100A9 is differentially expressed in various cell types and is associated with the development, progression and metastasis of various cancers. However, the expression, distribution, and clinical significance of S100A9 in hepatocellular carcinoma (HCC) remain unclear. In the present study, The Cancer Genome Atlas (TCGA) database was used to examine S100A9 gene expression in HCC; we found that S100A9 expression was associated with HCC prognosis. In addition, S100A9 protein expression was assessed by immunohistochemistry analysis of tissues from 382 HCC patients. We found that the infiltration of S100A9+ cells in both tumor and nontumor tissues could predict poor overall survival (P = 0.0329, tumor; P = 0.0003, nontumor) and a high recurrence risk (P = 0.0387, tumor; P = 0.0015, nontumor) in our tissue microarray analysis. Furthermore, immunofluorescence double staining revealed that the primary S100A9-expressing cells in adjacent nontumoral tissue were CD15+ neutrophils, and both CD68+ macrophages and CD15+ neutrophils expressed S100A9 in HCC tumor tissues. Taken together, the results suggest that high S100A9+ cell density predicts a poor prognosis in HCC patients, and S100A9 expression could potentially serve as an independent prognostic marker for HCC.
Collapse
Affiliation(s)
- Jing Liao
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.,Division of Head and Neck Surgery, Department of Otorhinolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jin-Zhu Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jing Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yongquan Xu
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei-Ping Wen
- Division of Head and Neck Surgery, Department of Otorhinolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Limin Zheng
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lian Li
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
52
|
Chaudhary H, Iashchishyn IA, Romanova NV, Rambaran MA, Musteikyte G, Smirnovas V, Holmboe M, Ohlin CA, Svedružić ŽM, Morozova-Roche LA. Polyoxometalates as Effective Nano-inhibitors of Amyloid Aggregation of Pro-inflammatory S100A9 Protein Involved in Neurodegenerative Diseases. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26721-26734. [PMID: 34080430 PMCID: PMC8289188 DOI: 10.1021/acsami.1c04163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pro-inflammatory and amyloidogenic S100A9 protein is central to the amyloid-neuroinflammatory cascade in neurodegenerative diseases. Polyoxometalates (POMs) constitute a diverse group of nanomaterials, which showed potency in amyloid inhibition. Here, we have demonstrated that two selected nanosized niobium POMs, Nb10 and TiNb9, can act as potent inhibitors of S100A9 amyloid assembly. Kinetics analysis based on ThT fluorescence experiments showed that addition of either Nb10 or TiNb9 reduces the S100A9 amyloid formation rate and amyloid quantity. Atomic force microscopy imaging demonstrated the complete absence of long S100A9 amyloid fibrils at increasing concentrations of either POM and the presence of only round-shaped and slightly elongated aggregates. Molecular dynamics simulation revealed that both Nb10 and TiNb9 bind to native S100A9 homo-dimer by forming ionic interactions with the positively charged Lys residue-rich patches on the protein surface. The acrylamide quenching of intrinsic fluorescence showed that POM binding does not perturb the Trp 88 environment. The far and near UV circular dichroism revealed no large-scale perturbation of S100A9 secondary and tertiary structures upon POM binding. These indicate that POM binding involves only local conformational changes in the binding sites. By using intrinsic and 8-anilino-1-naphthalene sulfonate fluorescence titration experiments, we found that POMs bind to S100A9 with a Kd of ca. 2.5 μM. We suggest that the region, including Lys 50 to Lys 54 and characterized by high amyloid propensity, could be the key sequences involved in S1009 amyloid self-assembly. The inhibition and complete hindering of S100A9 amyloid pathways may be used in the therapeutic applications targeting the amyloid-neuroinflammatory cascade in neurodegenerative diseases.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | - Igor A. Iashchishyn
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | - Nina V. Romanova
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | | | - Greta Musteikyte
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Michael Holmboe
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - C. André Ohlin
- Department
of Chemistry, Umeå University, 90187 Umeå, Sweden
| | | | - Ludmilla A. Morozova-Roche
- Department
of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
- . Tel.: +46736205283. Fax: +46907865283
| |
Collapse
|
53
|
Fisher DAC, Fowles JS, Zhou A, Oh ST. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol 2021; 12:683401. [PMID: 34140953 PMCID: PMC8204249 DOI: 10.3389/fimmu.2021.683401] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling of the bone marrow niche in a manner that promotes malignant over non-malignant hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized to include hyperactivation of inflammatory signaling and overproduction of inflammatory cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-β, and possibly other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone. MF also features extramedullary hematopoiesis and progression to bone marrow failure, both of which may be mediated in part by responses to cytokines. In MF, elevated levels of individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis factor (TNF, also known as TNFα), may underlie malignant clonal dominance, based on results from mouse models. Human PV and ET, as well as MF, harbor overproduction of multiple cytokines, above what is observed in normal aging, which can lead to cellular signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or MPL kinases. Evidence that NFκB pathway signaling is frequently hyperactivated in a pan-hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes that MPNs are pan-hematopoietic diseases, which remodel the bone marrow milieu to favor persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF neither reliably reduces malignant clonal burden nor eliminates cytokine elevations, suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs can therefore contribute to the development of more effective therapy.
Collapse
Affiliation(s)
- Daniel Arthur Corpuz Fisher
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Jared Scott Fowles
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Amy Zhou
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Stephen Tracy Oh
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
54
|
Overexpression of S100A9 in tumor stroma contribute to immune evasion of NK/T cell lymphoma and predict poor response rate. Sci Rep 2021; 11:11220. [PMID: 34045609 PMCID: PMC8160340 DOI: 10.1038/s41598-021-90794-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
NK/T cell lymphoma (NKTCL) represents an aggressive lymphoid malignancy characterized by dismal prognosis. Immune-checkpoint blockade has shown promising efficacy in NKTCL. However, the molecular mechanisms underlying immune evasion in NKTCL have never been explored. Here, proteomic analysis was used to identify the differentially expressed proteins between NKTCL patients and healthy individuals. We found that S100A9, an immunosuppressive molecule, was much higher in NKTCL patients both in serum and tumor stroma. Elevated level of S100A9 was associated with advanced stage, poor overall response and early recurrence. Moreover, percentage of myeloid-derived suppressor cells (MDSCs) in peripheral blood was positively correlated with levels of S100A9. Low concentration of S100A9 promoted proliferation of NKTCL cells, while did not affect cell apoptosis and cell cycles. Furthermore, programmed death ligand 1 (PD-L1) expression on NKTCL cells was up-regulated by S100A9 through activation of ERK1/2 signaling. Inhibition of ERK1/2 signaling significantly decreased tumor growth and PD-L1 expression induced by S100A9. In conclusion, our research firstly identified S100A9 as an immune suppressor in the tumorigenesis of NKTCL via accumulation of MDSCs and upregulation of PD-L1 expression. S100A9 may serve as a potential target to increase the efficacy of immunotherapy in NKTCL.
Collapse
|
55
|
Xavier A, Cesaro A. Impact of Exercise Intensity on Calprotectin Levels in Healthy Volunteers and Patients with Inflammatory Rheumatic Diseases. Life (Basel) 2021; 11:377. [PMID: 33922149 PMCID: PMC8143494 DOI: 10.3390/life11050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Exercise influences inflammatory response and immune system performance. The regular practice of a moderate activity positively regulates immunity and the inflammatory process, while intensive training depresses it and enhances inflammatory marker secretion. Calprotectin is involved in the inflammatory process, promoting neutrophil recruitment, cell degranulation, and inflammatory mediators. Furthermore, calprotectin has been associated with various inflammatory diseases, including inflammatory rheumatic diseases. The present review explores the effect of exercise on calprotectin levels in both healthy and inflammatory rheumatic conditions. Data show that the intensity duration and the type of exercise modulate calprotectin levels and participant inflammatory status. The exact role of calprotectin in the exercise response is yet unknown. Calprotectin could constitute an interesting biomarker for monitoring both the effect of exercise on the inflammatory process in healthy volunteers and the efficiency of exercise treatment programs in a patient with inflammatory rheumatic disease.
Collapse
Affiliation(s)
| | - Annabelle Cesaro
- I3MTO (Imagerie Multimodale Multiéchelle et Modélisation du Tissu Osseux et Articulaire)/EA 4708, Université d’Orléans, 45000 Orléans, France;
| |
Collapse
|
56
|
Ren X, Wen W, Fan X, Hou W, Su B, Cai P, Li J, Liu Y, Tang F, Zhang F, Yang Y, He J, Ma W, He J, Wang P, Cao Q, Chen F, Chen Y, Cheng X, Deng G, Deng X, Ding W, Feng Y, Gan R, Guo C, Guo W, He S, Jiang C, Liang J, Li YM, Lin J, Ling Y, Liu H, Liu J, Liu N, Liu SQ, Luo M, Ma Q, Song Q, Sun W, Wang G, Wang F, Wang Y, Wen X, Wu Q, Xu G, Xie X, Xiong X, Xing X, Xu H, Yin C, Yu D, Yu K, Yuan J, Zhang B, Zhang P, Zhang T, Zhao J, Zhao P, Zhou J, Zhou W, Zhong S, Zhong X, Zhang S, Zhu L, Zhu P, Zou B, Zou J, Zuo Z, Bai F, Huang X, Zhou P, Jiang Q, Huang Z, Bei JX, Wei L, Bian XW, Liu X, Cheng T, Li X, Zhao P, Wang FS, Wang H, Su B, Zhang Z, Qu K, Wang X, Chen J, Jin R, Zhang Z. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 2021; 184:1895-1913.e19. [PMID: 33657410 PMCID: PMC7857060 DOI: 10.1016/j.cell.2021.01.053] [Citation(s) in RCA: 454] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Xianwen Ren
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Wen Wen
- National Center for Liver Cancer, Second Military Medical University, Shanghai 200003, China; Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200003, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai 200003, China
| | - Xiaoying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhong Hou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Bin Su
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Pengfei Cai
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Jiesheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yang Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Fei Tang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Fan Zhang
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Yu Yang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jiangping He
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Wenji Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Pingping Wang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, China
| | - Qiqi Cao
- National Center for Liver Cancer, Second Military Medical University, Shanghai 200003, China; Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200003, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai 200003, China
| | - Fangjin Chen
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Yuqing Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Xuelian Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Xilong Deng
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| | - Wenyu Ding
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Rui Gan
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Weiqiang Guo
- Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China
| | - Shuai He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chen Jiang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Juanran Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yi-Min Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Yun Ling
- Department of Infectious Disease, Shanghai Public Health Clinical Center, Shanghai 201052, China
| | - Haofei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jianwei Liu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Nianping Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Shu-Qiang Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meng Luo
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, China
| | - Qiang Ma
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qibing Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - GaoXiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Feng Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaofeng Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Gang Xu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiaowei Xie
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xinxin Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xudong Xing
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China
| | - Hao Xu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Chonghai Yin
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongdong Yu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Kezhuo Yu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jin Yuan
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China
| | - Biao Zhang
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Peipei Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, the First Hospital Affiliated to USTC, Hefei, Anhui 230036, China; Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Peidong Zhao
- Analytical Biosciences Beijing Limited, Beijing 100084, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wei Zhou
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Sujuan Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Zhong
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuye Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Lin Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Bin Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jiahua Zou
- Cancer Center, Huanggang Hospital of Traditional Chinese Medicine, Huanggang 438000, China
| | - Zengtao Zuo
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Qinghua Jiang
- Center for Bioinformatics, School of Life Science and Technology, Harbin Institute of Technology, China.
| | - Zhiwei Huang
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, 150080 Harbin, China.
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, the First Hospital Affiliated to USTC, Hefei, Anhui 230036, China.
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing 400038, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), and Department of Pathology, the First Hospital Affiliated to USTC, Hefei, Anhui 230036, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology and National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine and Department of Stem Cell & Regenerative Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China.
| | - Xiangpan Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Pingsen Zhao
- Department of Laboratory Medicine, Yuebei People's Hospital, Shantou University Medical College, Shaoguan 512025, China; Laboratory for Diagnosis of Clinical Microbiology and Infection, Medical Research Center, Shantou University Medical College, Shaoguan 512025, China.
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing 100039, China.
| | - Hongyang Wang
- National Center for Liver Cancer, Second Military Medical University, Shanghai 200003, China; Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200003, China; Ministry of Education (MOE) Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Second Military Medical University, Shanghai 200003, China.
| | - Bing Su
- Shanghai Institute of Immunology, Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China.
| | - Kun Qu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230021, China.
| | - Xiaoqun Wang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiekai Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Ronghua Jin
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
57
|
Pathogenic Roles of S100A8 and S100A9 Proteins in Acute Myeloid and Lymphoid Leukemia: Clinical and Therapeutic Impacts. Molecules 2021; 26:molecules26051323. [PMID: 33801279 PMCID: PMC7958135 DOI: 10.3390/molecules26051323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Deregulations of the expression of the S100A8 and S100A9 genes and/or proteins, as well as changes in their plasma levels or their levels of secretion in the bone marrow microenvironment, are frequently observed in acute myeloblastic leukemias (AML) and acute lymphoblastic leukemias (ALL). These deregulations impact the prognosis of patients through various mechanisms of cellular or extracellular regulation of the viability of leukemic cells. In particular, S100A8 and S100A9 in monomeric, homodimeric, or heterodimeric forms are able to modulate the survival and the sensitivity to chemotherapy of leukemic clones through their action on the regulation of intracellular calcium, on oxidative stress, on the activation of apoptosis, and thanks to their implications, on cell death regulation by autophagy and pyroptosis. Moreover, biologic effects of S100A8/9 via both TLR4 and RAGE on hematopoietic stem cells contribute to the selection and expansion of leukemic clones by excretion of proinflammatory cytokines and/or immune regulation. Hence, the therapeutic targeting of S100A8 and S100A9 appears to be a promising way to improve treatment efficiency in acute leukemias.
Collapse
|
58
|
SETD2 deficiency accelerates MDS-associated leukemogenesis via S100a9 in NHD13 mice and predicts poor prognosis in MDS. Blood 2021; 135:2271-2285. [PMID: 32202636 DOI: 10.1182/blood.2019001963] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
SETD2, the histone H3 lysine 36 methyltransferase, previously identified by us, plays an important role in the pathogenesis of hematologic malignancies, but its role in myelodysplastic syndromes (MDSs) has been unclear. In this study, low expression of SETD2 correlated with shortened survival in patients with MDS, and the SETD2 levels in CD34+ bone marrow cells of those patients were increased by decitabine. We knocked out Setd2 in NUP98-HOXD13 (NHD13) transgenic mice, which phenocopies human MDS, and found that loss of Setd2 accelerated the transformation of MDS into acute myeloid leukemia (AML). Loss of Setd2 enhanced the ability of NHD13+ hematopoietic stem and progenitor cells (HSPCs) to self-renew, with increased symmetric self-renewal division and decreased differentiation and cell death. The growth of MDS-associated leukemia cells was inhibited though increasing the H3K36me3 level by using epigenetic modifying drugs. Furthermore, Setd2 deficiency upregulated hematopoietic stem cell signaling and downregulated myeloid differentiation pathways in the NHD13+ HSPCs. Our RNA-seq and chromatin immunoprecipitation-seq analysis indicated that S100a9, the S100 calcium-binding protein, is a target gene of Setd2 and that the addition of recombinant S100a9 weakens the effect of Setd2 deficiency in the NHD13+ HSPCs. In contrast, downregulation of S100a9 leads to decreases of its downstream targets, including Ikba and Jnk, which influence the self-renewal and differentiation of HSPCs. Therefore, our results demonstrated that SETD2 deficiency predicts poor prognosis in MDS and promotes the transformation of MDS into AML, which provides a potential therapeutic target for MDS-associated acute leukemia.
Collapse
|
59
|
Defrêne J, Berrazouane S, Esparza N, Pagé N, Côté MF, Gobeil S, Aoudjit F, Tessier PA. Deletion of S100a8 and S100a9 Enhances Skin Hyperplasia and Promotes the Th17 Response in Imiquimod-Induced Psoriasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:505-514. [PMID: 33361205 DOI: 10.4049/jimmunol.2000087] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 11/26/2020] [Indexed: 02/04/2023]
Abstract
High concentrations of the damage-associated molecular patterns S100A8 and S100A9 are found in skin and serum from patients suffering from psoriasis, an IL-17-related disease. Notably, although the expression of these proteins correlates with psoriatic disease severity, the exact function of S100A8 and S100A9 in psoriasis pathogenesis remains unclear. In this study, we investigated the role of S100A8 and S100A9 in psoriasis-associated skin hyperplasia and immune responses using S100a8-/- and S100a9-/- mice in an imiquimod-induced model of psoriasis. We found that S100a8-/- and S100a9-/- psoriatic mice exhibit worsened clinical symptoms relative to wild-type mice and increased expression of S100A9 and S100A8 proteins in keratinocytes, respectively. In addition, the loss of S100A8 enhances proliferation of keratinocytes and disrupts keratinocyte differentiation. We further detected elevated production of IL-17A and -F from CD4+ T cells in the absence of S100A8 and S100A9, as well as increased infiltration of neutrophils in the skin. In addition, treatment with anti-IL-17A and -F was found to reduce psoriasis symptoms and skin hyperplasia in S100a8-/- and S100a9-/- mice. These data suggest that S100A8 and S100A9 regulate psoriasis by inhibiting production of IL-17A and -F, thereby, to our knowledge, providing new insights into their biological functions.
Collapse
Affiliation(s)
- Joan Defrêne
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Sofiane Berrazouane
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Nayeli Esparza
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Nathalie Pagé
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Marie-France Côté
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
| | - Stéphane Gobeil
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada; and
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Philippe A Tessier
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec G1V 4G2, Canada;
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
60
|
Milan T, Celton M, Lagacé K, Roques É, Safa-Tahar-Henni S, Bresson E, Bergeron A, Hebert J, Meshinchi S, Cellot S, Barabé F, Wilhelm BT. Epigenetic changes in human model KMT2A leukemias highlight early events during leukemogenesis. Haematologica 2020; 107:86-99. [PMID: 33375773 PMCID: PMC8719083 DOI: 10.3324/haematol.2020.271619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 11/26/2022] Open
Abstract
Chromosomal translocations involving the KMT2A gene are among the most common genetic alterations found in pediatric acute myeloid leukemias although the molecular mechanisms that initiate the disease remain incompletely defined. To elucidate these initiating events we used a human model system of acute myeloid leukemia driven by the KMT2A-MLLT3 (KM3) fusion. More specifically, we investigated changes in DNA methylation, histone modifications, and chromatin accessibility at each stage of our model system and correlated these with expression changes. We observed the development of a pronounced hypomethyl - ation phenotype in the early stages of leukemic transformation after KM3 addition along with loss of expression of stem-cell-associated genes and skewed expression of other genes, such as S100A8/9, implicated in leukemogenesis. In addition, early increases in the expression of the lysine demethylase KDM4B was functionally linked to these expression changes as well as other key transcription factors. Remarkably, our ATAC-sequencing data showed that there were relatively few leukemia-specific changes and that the vast majority corresponded to open chromatin regions and transcription factor clusters previously observed in other cell types. Integration of the gene expression and epigenetic changes revealed that the adenylate cyclase gene ADCY9 is an essential gene in KM3-acute myeloid leukemia, and suggested the potential for autocrine signaling through the chemokine receptor CCR1 and CCL23 ligand. Collectively, our results suggest that KM3 induces subtle changes in the epigenome while co-opting the normal transcriptional machinery to drive leukemogenesis.
Collapse
Affiliation(s)
- Thomas Milan
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Magalie Celton
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Karine Lagacé
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Élodie Roques
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Safia Safa-Tahar-Henni
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC
| | - Eva Bresson
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Anne Bergeron
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Josée Hebert
- Division of Hematology-Oncology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sonia Cellot
- Department of pediatrics, division of Hematology, Ste-Justine Hospital, Montréal, QC
| | - Frédéric Barabé
- Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec - Université Laval, Québec City, QC, Canada; CHU de Québec - Université Laval - Hôpital Enfant-Jésus; Québec City, QC, Canada; Department of Medicine, Université Laval, Quebec City, QC
| | - Brian T Wilhelm
- Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC.
| |
Collapse
|
61
|
Baakhlagh S, Kashani B, Zandi Z, Bashash D, Moradkhani M, Nasrollahzadeh A, Yaghmaei M, Mousavi SA, Ghaffari SH. Toll-like receptor 4 signaling pathway is correlated with pathophysiological characteristics of AML patients and its inhibition using TAK-242 suppresses AML cell proliferation. Int Immunopharmacol 2020; 90:107202. [PMID: 33278749 DOI: 10.1016/j.intimp.2020.107202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Acute myeloid leukemia (AML) is one of the most severe blood cancers. Many studies have revealed that inflammation has an essential role in the progression of hematopoietic malignancies. Since the toll-like receptor 4 (TLR4) pathway, an important pathway involved in inflammation induction, has previously been associated with solid tumors, we hypothesized that it would be correlated with the pathophysiological characteristics of AML patients and could be considered as an anticancer target. METHOD We evaluated the mRNA expression of TLR4, MyD88, RelB, and NF-кB using qRT-PCR in bone-marrow samples of 40 AML patients categorized into four groups according to prognosis, cell type, age, and drug response. Next, we explored the expression of these genes in three AML cell lines (NB4, U937, and KG-1) and used TAK-242, a specific inhibitor of TLR4, to investigate whether this inhibition could suppress AML cell proliferation using cell-cycle analysis. The effect of TAK-242 on arsenic trioxide (ATO) cytotoxicity was also assessed. RESULT The results of qRT-PCR showed that most genes had higher expression in patients with poor prognosis or drug-resistant statues. They were also overexpressed in patients with less-differentiated cells. Moreover, TAK-242 inhibited cell proliferation of all the cell lines and altered their cell cycle distribution. It could also intensify the cytotoxicity of ATO in combination therapy. CONCLUSION In sum, the TLR4 pathway was related to pathophysiological characteristics of AML and its inhibition using TAK-242 could be considered as a promising treatment strategy in the TLR4 expressing AML cells, individually or in combination with ATO.
Collapse
Affiliation(s)
- Sedigheh Baakhlagh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Malihe Moradkhani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Nasrollahzadeh
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Yaghmaei
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed A Mousavi
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
62
|
Sato Y, Motoyama S, Wakita A, Kawakita Y, Liu J, Nagaki Y, Nanjo H, Ito S, Terata K, Imai K, Minamiya Y. High TLR4 expression predicts a poor prognosis after esophagectomy for advanced thoracic esophageal squamous cell carcinoma. Esophagus 2020; 17:408-416. [PMID: 32170544 DOI: 10.1007/s10388-020-00732-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/04/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Poor oral health is an independent risk factor for upper aerodigestive tract cancers, including esophageal squamous cell carcinoma (ESCC). The pattern recognition receptor Toll-like receptor 4 (TLR4) recognizes lipopolysaccharide in the cell walls of Gram-negative periodontal pathogens associated with the development and progression of ESCC. It is, therefore, plausible that TLR4 plays a crucial role in the pathogenesis of ESCC. METHODS We used an ESCC tissue microarray to confirm expression of TLR4 in patients with ESCC and to determine whether TLR4 expression status correlates with the clinicopathological features of these patients or their prognosis after esophagectomy. We also tested whether the combined expression statuses of TLR4 and TLR3 better correlate with prognosis in these patients than either parameter alone. RESULTS Clinical ESCC samples from all 177 patients tested showed expression of TLR4. Moreover, high TLR4 expression (3 + and 2 +) correlated with poorer 5-year overall survival after esophagectomy than lower TLR4 expression (1 +) (p = 0.0491). Patients showing high TLR4 expression tended to have a poorer prognosis whether treated with surgery alone or with surgery and adjuvant chemotherapy. Univariate and multivariate analyses showed TLR4 expression status to be an independent prognostic factor affecting 5-year overall survival. Patients exhibiting high TLR4 expression with low TLR3 expression had a much poorer prognosis than other patients (p = < 0.0001). CONCLUSION High TLR4 expression predicts a poor prognosis in advanced thoracic ESCC patients after esophagectomy.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan.
| | - Satoru Motoyama
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Akiyuki Wakita
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yuta Kawakita
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Jiajia Liu
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yushi Nagaki
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Hiroshi Nanjo
- Department of Pathology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Satoru Ito
- Department of Pathology, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Kaori Terata
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Kazuhiro Imai
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| | - Yoshihiro Minamiya
- Department of Surgery, Akita University Graduate School of Medicine, Akita, 010-8543, Japan
| |
Collapse
|
63
|
Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther 2020; 5:148. [PMID: 32782280 PMCID: PMC7421905 DOI: 10.1038/s41392-020-00259-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
CD146 was originally identified as a melanoma cell adhesion molecule (MCAM) and highly expressed in many tumors and endothelial cells. However, the evidence that CD146 acts as an adhesion molecule to mediate a homophilic adhesion through the direct interactions between CD146 and itself is still lacking. Recent evidence revealed that CD146 is not merely an adhesion molecule, but also a cellular surface receptor of miscellaneous ligands, including some growth factors and extracellular matrixes. Through the bidirectional interactions with its ligands, CD146 is actively involved in numerous physiological and pathological processes of cells. Overexpression of CD146 can be observed in most of malignancies and is implicated in nearly every step of the development and progression of cancers, especially vascular and lymphatic metastasis. Thus, immunotherapy against CD146 would provide a promising strategy to inhibit metastasis, which accounts for the majority of cancer-associated deaths. Therefore, to deepen the understanding of CD146, we review the reports describing the newly identified ligands of CD146 and discuss the implications of these findings in establishing novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Qingji Xu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nengwei Zhang
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xuemei Du
- Departments of Pathology, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Guangzhong Xu
- Department of Gastrointestinal Hepatobiliary Tumor Surgery, Beijing Shijitan Hospital, Capital Medical University, 100038, Beijing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
64
|
Lee JS, Lee NR, Kashif A, Yang SJ, Nam AR, Song IC, Gong SJ, Hong MH, Kim G, Seok PR, Lee MS, Sung KH, Kim IS. S100A8 and S100A9 Promote Apoptosis of Chronic Eosinophilic Leukemia Cells. Front Immunol 2020; 11:1258. [PMID: 32903598 PMCID: PMC7438788 DOI: 10.3389/fimmu.2020.01258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
S100A8 and S100A9 function as essential factors in inflammation and also exert antitumor or tumorigenic activity depending on the type of cancer. Chronic eosinophilic leukemia (CEL) is a rare hematological malignancy having elevated levels of eosinophils and characterized by the presence of the FIP1L1-PDGFRA fusion gene. In this study, we examined the pro-apoptotic mechanisms of S100A8 and S100A9 in FIP1L1-PDGFRα+ eosinophilic cells and hypereosinophilic patient cells. S100A8 and S100A9 induce apoptosis of the FIP1L1-PDGFRα+ EoL-1 cells via TLR4. The surface TLR4 expression increased after exposure to S100A8 and S100A9 although total TLR4 expression decreased. S100A8 and S100A9 suppressed the FIP1L1-PDGFRα-mediated signaling pathway by downregulating FIP1L1-PDGFRα mRNA and protein expression and triggered cell apoptosis by regulating caspase 9/3 pathway and Bcl family proteins. S100A8 and S100A9 also induced apoptosis of imatinib-resistant EoL-1 cells (EoL-1-IR). S100A8 and S100A9 blocked tumor progression of xenografted EoL-1 and EoL-1-IR cells in NOD-SCID mice and evoked apoptosis of eosinophils derived from hypereosinophilic syndrome as well as chronic eosinophilic leukemia. These findings may contribute to a progressive understanding of S100A8 and S100A9 in the pathogenic and therapeutic mechanism of hematological malignancy.
Collapse
Affiliation(s)
- Ji-Sook Lee
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, South Korea
| | - Na Rae Lee
- Department of Biomedical Laboratory Science, Eulji University School of Medicine, Daejeon, South Korea
| | - Ayesha Kashif
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Seung-Ju Yang
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, South Korea
| | - A Reum Nam
- Department of Biomedical Laboratory Science, Konyang University, Daejeon, South Korea.,Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University School of Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Soo-Jung Gong
- Department of Internal Medicine, Eulji Medical Center, Eulji University School of Medicine, Daejeon, South Korea
| | - Min Hwa Hong
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Geunyeong Kim
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Pu Reum Seok
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | - Kee-Hyung Sung
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| | - In Sik Kim
- Department of Biomedical Laboratory Science, Eulji University School of Medicine, Daejeon, South Korea.,Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Daejeon, South Korea
| |
Collapse
|
65
|
Highly multiplexed proteomic assessment of human bone marrow in acute myeloid leukemia. Blood Adv 2020; 4:367-379. [PMID: 31985806 DOI: 10.1182/bloodadvances.2019001124] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease that is characterized by abnormal clonal proliferation of myeloid progenitor cells found predominantly within the bone marrow (BM) and blood. Recent studies suggest that genetic and phenotypic alterations in the BM microenvironment support leukemogenesis and allow leukemic cells to survive and evade chemotherapy-induced death. However, despite substantial evidence indicating the role of tumor-host interactions in AML pathogenesis, little is known about the complex microenvironment of the BM. To address this, we performed novel proteomic profiling of the noncellular compartment of the BM microenvironment in patients with AML (n = 10) and age- and sex-matched healthy control subjects (n = 10) using an aptamer-based, highly multiplexed, affinity proteomics platform (SOMAscan). We show that proteomic assessment of blood or RNA-sequencing of BM are suboptimal alternate screening strategies to determine the true proteomic composition of the extracellular soluble compartment of AML patient BM. Proteomic analysis revealed that 168 proteins significantly differed in abundance, with 91 upregulated and 77 downregulated in leukemic BM. A highly connected signaling network of cytokines and chemokines, including IL-8, was found to be the most prominent proteomic signature associated with AML in the BM microenvironment. We report the first description of significantly elevated levels of the myelosuppressive chemokine CCL23 (myeloid progenitor inhibitory factor-1) in both AML and myelodysplastic syndrome patients and perform functional experiments supportive of a role in the suppression of normal hematopoiesis. This unique paired RNA-sequencing and proteomics data set provides innovative mechanistic insights into AML and healthy aging and should serve as a useful public resource.
Collapse
|
66
|
Paracatu LC, Schuettpelz LG. Contribution of Aberrant Toll Like Receptor Signaling to the Pathogenesis of Myelodysplastic Syndromes. Front Immunol 2020; 11:1236. [PMID: 32625214 PMCID: PMC7313547 DOI: 10.3389/fimmu.2020.01236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Toll like receptors (TLRs) are a family of pattern recognition receptors that play a central role in the innate immune response. These receptors are expressed on a wide variety of immune and non-immune cells, and they help shape the immune response to infection and injury through the recognition of pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular patterns (DAMPs). Accumulating evidence suggests that, in addition to regulating mature effector immune cells, TLRs can influence the immune response from the level of the hematopoietic stem cell (HSC). HSCs express TLRs, and exposure to TLR ligands influences the cycling, differentiation, and function of HSCs, with chronic TLR stimulation leading to impairment of normal HSC repopulating activity. Moreover, enhanced TLR expression and signaling is associated with myelodysplastic syndromes (MDS), a heterogenous group of HSC disorders characterized by ineffective hematopoiesis and a high risk of transformation to acute leukemias. In this review, we will discuss the role of TLR signaling in the pathogenesis of MDS, focusing on the known direct and indirect effects of this type of signaling on HSCs, the mechanisms of TLR signaling upregulation in MDS, the changes in TLR expression with disease progression, and the therapeutic implications for modulating TLR signaling in the treatment of MDS.
Collapse
Affiliation(s)
- Luana Chiquetto Paracatu
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura G Schuettpelz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
67
|
Pawliński Ł, Tobór E, Suski M, Biela M, Polus A, Kieć-Wilk B. Proteomic biomarkers in Gaucher disease. J Clin Pathol 2020; 74:25-29. [PMID: 32409598 DOI: 10.1136/jclinpath-2020-206580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022]
Abstract
AIMS The research work was conducted to find new biomarkers and potential drug targets in Gaucher disease type 1 (GDt1) by analysing the serum proteins. METHODS This study was an observational, cross-sectional analysis of a group of 12 adult participants: six Gaucher disease (GD) patients and six healthy control. Fasting venous blood underwent proteomics analysis and molecular tests. Over 400 proteins were analysed, and in case of significantly different concentrations between the study and control group, we checked corresponding genes to confirm changes in their expression and consistency with protein alteration. RESULTS We found 31 proteins that significantly differed in concentration between GDt1 patients and a control group. These were mostly proteins involved in the regulation of the inflammatory processes and haemostasis. The levels of proteins such as alpha-1-acid glycoprotein 2, S100-A8/A9, adenyl cyclase-associated protein 1, haptoglobin or translationally controlled tumour protein related to inflammation process were significantly higher in GD patients than in control group, whereas the levels of some proteins such as heavy constant mu and gamma 4 or complement C3/C4 complex involved in humoral response like immunoglobulins were significantly decreased in GD patients. Alteration in two proteins concentration was confirmed in RNA analysis. CONCLUSIONS The work revealed few new targets for further investigation which may be useful in clinical practice for diagnosis, treatment and monitoring GDt1 patients.
Collapse
Affiliation(s)
- Łukasz Pawliński
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| | - Ewa Tobór
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Maria Biela
- Department of Clinical Biochemistry, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University in Krakow Medical College Faculty of Medicine, Krakow, Poland
| | - Beata Kieć-Wilk
- Metabolic Diseases and Diabetology Department, Szpital Uniwersytecki w Krakowie, Kraków, małopolskie, Poland
| |
Collapse
|
68
|
Kasus-Jacobi A, Land CA, Stock AJ, Washburn JL, Pereira HA. Antimicrobial Peptides Derived from the Immune Defense Protein CAP37 Inhibit TLR4 Activation by S100A9. Invest Ophthalmol Vis Sci 2020; 61:16. [PMID: 32298435 PMCID: PMC7401491 DOI: 10.1167/iovs.61.4.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Corneal abrasion is a common eye injury, and its resolution can be seriously complicated by bacterial infection. We showed that topical application of the cationic antimicrobial protein of 37 kDa (CAP37) promotes corneal re-epithelialization in mice, and peptides derived from CAP37 can recapitulate the antibacterial and wound-healing effects of the full-length protein. The current study was designed to identify the molecular mechanisms mediating the wound-healing effect of CAP37 and derived bioactive peptides. Methods We used a TriCEPS-based, ligand-receptor glycocapture method to identify the binding partners of CAP37 on live human corneal epithelial cells using the hTCEpi cell line. We used an ELISA method to confirm binding with identified partners and test the binding with CAP37-derived peptides. We used a reporter cell line to measure activation of the identified membrane receptor by CAP37 and derived peptides. Results We pulled down S100 calcium-binding protein A9 (S100A9) as a binding partner of CAP37 and found that CAP37 and four derived peptides encompassing two regions of CAP37 bind S100A9 with high affinities. We found that CAP37 and the S100A9-binding peptides could also directly interact with the Toll-like receptor 4 (TLR4), a known receptor for S100A9. CAP37 and one peptide partially activated TLR4. The other three peptides did not activate TLR4. Finally, we found that CAP37 and all four peptides could inhibit the activation of TLR4 by S100A9. Conclusions This study identifies a mechanism of action for CAP37 and derived antimicrobial peptides that may restrain inflammatory responses to corneal injury and favor corneal re-epithelialization.
Collapse
Affiliation(s)
- Anne Kasus-Jacobi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Craig A. Land
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Amanda J. Stock
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Jennifer L. Washburn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - H. Anne Pereira
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
69
|
Harman JL, Loes AN, Warren GD, Heaphy MC, Lampi KJ, Harms MJ. Evolution of multifunctionality through a pleiotropic substitution in the innate immune protein S100A9. eLife 2020; 9:e54100. [PMID: 32255429 PMCID: PMC7213983 DOI: 10.7554/elife.54100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/03/2020] [Indexed: 12/16/2022] Open
Abstract
Multifunctional proteins are evolutionary puzzles: how do proteins evolve to satisfy multiple functional constraints? S100A9 is one such multifunctional protein. It potently amplifies inflammation via Toll-like receptor four and is antimicrobial as part of a heterocomplex with S100A8. These two functions are seemingly regulated by proteolysis: S100A9 is readily degraded, while S100A8/S100A9 is resistant. We take an evolutionary biochemical approach to show that S100A9 evolved both functions and lost proteolytic resistance from a weakly proinflammatory, proteolytically resistant amniote ancestor. We identify a historical substitution that has pleiotropic effects on S100A9 proinflammatory activity and proteolytic resistance but has little effect on S100A8/S100A9 antimicrobial activity. We thus propose that mammals evolved S100A8/S100A9 antimicrobial and S100A9 proinflammatory activities concomitantly with a proteolytic 'timer' to selectively regulate S100A9. This highlights how the same mutation can have pleiotropic effects on one functional state of a protein but not another, thus facilitating the evolution of multifunctionality.
Collapse
Affiliation(s)
- Joseph L Harman
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Andrea N Loes
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Gus D Warren
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Maureen C Heaphy
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| | | | - Michael J Harms
- Department of Chemistry and Biochemistry, University of OregonEugeneUnited States
- Institute of Molecular Biology, University of OregonEugeneUnited States
| |
Collapse
|
70
|
Alanazi B, Munje CR, Rastogi N, Williamson AJK, Taylor S, Hole PS, Hodges M, Doyle M, Baker S, Gilkes AF, Knapper S, Pierce A, Whetton AD, Darley RL, Tonks A. Integrated nuclear proteomics and transcriptomics identifies S100A4 as a therapeutic target in acute myeloid leukemia. Leukemia 2020; 34:427-440. [PMID: 31611628 PMCID: PMC6995695 DOI: 10.1038/s41375-019-0596-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/20/2022]
Abstract
Inappropriate localization of proteins can interfere with normal cellular function and drive tumor development. To understand how this contributes to the development of acute myeloid leukemia (AML), we compared the nuclear proteome and transcriptome of AML blasts with normal human CD34+ cells. Analysis of the proteome identified networks and processes that significantly affected transcription regulation including misexpression of 11 transcription factors with seven proteins not previously implicated in AML. Transcriptome analysis identified changes in 40 transcription factors but none of these were predictive of changes at the protein level. The highest differentially expressed protein in AML nuclei compared with normal CD34+ nuclei (not previously implicated in AML) was S100A4. In an extended cohort, we found that over-expression of nuclear S100A4 was highly prevalent in AML (83%; 20/24 AML patients). Knock down of S100A4 in AML cell lines strongly impacted their survival whilst normal hemopoietic stem progenitor cells were unaffected. These data are the first analysis of the nuclear proteome in AML and have identified changes in transcription factor expression or regulation of transcription that would not have been seen at the mRNA level. These data also suggest that S100A4 is essential for AML survival and could be a therapeutic target in AML.
Collapse
Affiliation(s)
- Bader Alanazi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Chinmay R Munje
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, G12 0ZD, UK
| | - Namrata Rastogi
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew J K Williamson
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Samuel Taylor
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Paul S Hole
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Marie Hodges
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Michelle Doyle
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Sarah Baker
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Amanda F Gilkes
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
- Cardiff Experimental and Cancer Medicine Centre (ECMC), School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Steven Knapper
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Andrew Pierce
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, The University of Manchester, Manchester, M20 3LJ, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, Wales, UK.
| |
Collapse
|
71
|
Depicting the genetic architecture of pediatric cancers through an integrative gene network approach. Sci Rep 2020; 10:1224. [PMID: 31988326 PMCID: PMC6985191 DOI: 10.1038/s41598-020-58179-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022] Open
Abstract
The genetic etiology of childhood cancers still remains largely unknown. It is therefore essential to develop novel strategies to unravel the spectrum of pediatric cancer genes. Statistical network modeling techniques have emerged as powerful methodologies for enabling the inference of gene-disease relationship and have been performed on adult but not pediatric cancers. We performed a deep multi-layer understanding of pan-cancer transcriptome data selected from the Treehouse Childhood Cancer Initiative through a co-expression network analysis. We identified six modules strongly associated with pediatric tumor histotypes that were functionally linked to developmental processes. Topological analyses highlighted that pediatric cancer predisposition genes and potential therapeutic targets were central regulators of cancer-histotype specific modules. A module was related to multiple pediatric malignancies with functions involved in DNA repair and cell cycle regulation. This canonical oncogenic module gathered most of the childhood cancer predisposition genes and clinically actionable genes. In pediatric acute leukemias, the driver genes were co-expressed in a module related to epigenetic and post-transcriptional processes, suggesting a critical role of these pathways in the progression of hematologic malignancies. This integrative pan-cancer study provides a thorough characterization of pediatric tumor-associated modules and paves the way for investigating novel candidate genes involved in childhood tumorigenesis.
Collapse
|
72
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|
73
|
CDK2 suppression synergizes with all-trans-retinoic acid to overcome the myeloid differentiation blockade of AML cells. Pharmacol Res 2020; 151:104545. [DOI: 10.1016/j.phrs.2019.104545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
|
74
|
Huang M, Wu R, Chen L, Peng Q, Li S, Zhang Y, Zhou L, Duan L. S100A9 Regulates MDSCs-Mediated Immune Suppression via the RAGE and TLR4 Signaling Pathways in Colorectal Carcinoma. Front Immunol 2019; 10:2243. [PMID: 31620141 PMCID: PMC6759487 DOI: 10.3389/fimmu.2019.02243] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a major component of the immunosuppressive tumor microenvironment (TME) and have been recognized as a contributing factor to inflammation-related cancers. However, the molecular mechanisms of MDSCs accumulation and activation remain elusive. We previously showed that the proinflammatory molecule S100A9 in TME exerts a tumor-promoting effect in colorectal carcinoma (CRC). In this report, we investigated the effect and molecular mechanisms of S100A9 on the accumulation and immunosuppressive function of MDSCs in CRC. Elevated S100A9 and MDSCs were found in tumor tissue and peripheral blood from CRC patients. Circulating S100A9 and MDSCs were positively associated to each other, and both S100A9 and MDSCs were correlated to neoplastic progression. Using a CRC cell line LoVo-induced MDSCs model, we found that S100A9 stimulated chemotaxis and activation but not viability of MDSCs. Mechanistic studies demonstrated that activation of RAGE-mediated p38 MAPK and TLR4-mediated NF-κB signaling pathways were involved in S100A9-induced chemotaxis and MDSCs activation, respectively. Furthermore, ROC analysis showed that combination detection of S100A9 and MDSCs was superior to individual detection of these two factors for diagnosing CRC patients with advanced staging and lymphatic metastasis, which yielded an area under the ROC curve (AUC) of 0.92 with 86.7% sensitivity and 86.4% specificity, and an AUC of 0.82 with 75% sensitivity and 77.1% specificity, respectively. Collectively, our study suggests that the S100A9 plays a pivotal role in immunosuppressive TME by stimulating MDSCs chemotaxis and activation, and combination detection of S100A9 and MDSCs may serve as a potential marker for diagnosis of CRC progression.
Collapse
Affiliation(s)
- Mao Huang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Rui Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Chen
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qi Peng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Shue Li
- Department of Academic Research, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Zhang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lan Zhou
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Liang Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
75
|
Cuartero S, Innes AJ, Merkenschlager M. Towards a Better Understanding of Cohesin Mutations in AML. Front Oncol 2019; 9:867. [PMID: 31552185 PMCID: PMC6746210 DOI: 10.3389/fonc.2019.00867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Classical driver mutations in acute myeloid leukemia (AML) typically affect regulators of cell proliferation, differentiation, and survival. The selective advantage of increased proliferation, improved survival, and reduced differentiation on leukemia progression is immediately obvious. Recent large-scale sequencing efforts have uncovered numerous novel AML-associated mutations. Interestingly, a substantial fraction of the most frequently mutated genes encode general regulators of transcription and chromatin state. Understanding the selective advantage conferred by these mutations remains a major challenge. A striking example are mutations in genes of the cohesin complex, a major regulator of three-dimensional genome organization. Several landmark studies have shown that cohesin mutations perturb the balance between self-renewal and differentiation of hematopoietic stem and progenitor cells (HSPC). Emerging data now begin to uncover the molecular mechanisms that underpin this phenotype. Among these mechanisms is a role for cohesin in the control of inflammatory responses in HSPCs and myeloid cells. Inflammatory signals limit HSPC self-renewal and drive HSPC differentiation. Consistent with this, cohesin mutations promote resistance to inflammatory signals, and may provide a selective advantage for AML progression. In this review, we discuss recent progress in understanding cohesin mutations in AML, and speculate whether vulnerabilities associated with these mutations could be exploited therapeutically.
Collapse
Affiliation(s)
- Sergi Cuartero
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Andrew J Innes
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom.,Faculty of Medicine, Centre for Haematology, Imperial College London, London, United Kingdom
| | - Matthias Merkenschlager
- Faculty of Medicine, MRC London Institute of Medical Sciences, Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
76
|
Ledesma-Martínez E, Aguíñiga-Sánchez I, Weiss-Steider B, Rivera-Martínez AR, Santiago-Osorio E. Casein and Peptides Derived from Casein as Antileukaemic Agents. JOURNAL OF ONCOLOGY 2019; 2019:8150967. [PMID: 31582978 PMCID: PMC6754885 DOI: 10.1155/2019/8150967] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/20/2019] [Accepted: 08/04/2019] [Indexed: 12/20/2022]
Abstract
Milk is a heterogeneous lacteal secretion mixture of numerous components that exhibit a wide variety of chemical and functional activities. Casein, the main protein in milk, is composed of α-, β-, and κ-caseins, each of which is important for nutritional value and for promoting the release of cytokines, also are linked to the regulation of haematopoiesis and immune response and inhibit the proliferation and induce the differentiation of leukaemia cells. It has been shown that the digestive process of caseins leads to the release of bioactive peptides that are involved in the regulation of blood pressure and the inhibition or activation of the immune response by serving as agonists or antagonists of opioid receptors, thus controlling the expression of genes that exert epigenetic control. Later, they bind to opioid receptor, block nuclear factor κ-beta, increase the redox potential, and reduce oxidative stress and the pro-inflammatory agents that favour an antioxidant and anti-inflammatory environment. Therefore, the bioactive peptides of casein could be compounds with antileukaemia potential. This review provides a summary of current knowledge about caseins and casein peptides on the immune system as well as their roles in the natural defence against the development of leukaemia and as relevant epigenetic regulators that can help eradicate leukaemia.
Collapse
Affiliation(s)
- Edgar Ledesma-Martínez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - Itzen Aguíñiga-Sánchez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - Benny Weiss-Steider
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - Ana Rocío Rivera-Martínez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| | - Edelmiro Santiago-Osorio
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, FES Zaragoza, National Autonomous University of Mexico, 09230 Mexico City, Mexico
| |
Collapse
|
77
|
Cesaro A, Defrêne J, Lachhab A, Pagé N, Tardif MR, Al-Shami A, Oravecz T, Fortin PR, Daudelin JF, Labrecque N, Aoudjit F, Pelletier M, Tessier PA. Enhanced myelopoiesis and aggravated arthritis in S100a8-deficient mice. PLoS One 2019; 14:e0221528. [PMID: 31437241 PMCID: PMC6705798 DOI: 10.1371/journal.pone.0221528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022] Open
Abstract
Expressed strongly by myeloid cells, damage-associated molecular pattern (DAMP) proteins S100A8 and S100A9 are found in the serum of patients with infectious and autoimmune diseases. Compared to S100A9, the role of S100A8 is controversial. We investigated its biological activity in collagen-induced arthritis using the first known viable and fertile S100a8-deficient (S100a8-/-) mouse. Although comparable to the wild type (WT) in terms of lymphocyte distribution in blood and in the primary and secondary lymphoid organs, S100a8-/- mice had increased numbers of neutrophils, monocytes and dendritic cells in the blood and bone marrow, and these all expressed myeloid markers such as CD11b, Ly6G and CD86 more strongly. Granulocyte-macrophage common precursors were increased in S100a8-/- bone marrow and yielded greater numbers of macrophages and dendritic cells in culture. The animals also developed more severe arthritic disease leading to aggravated osteoclast activity and bone destruction. These findings were correlated with increased inflammatory cell infiltration and cytokine secretion in the paws. This study suggests that S100A8 is an anti-inflammatory DAMP that regulates myeloid cell differentiation, thereby mitigating the development of experimental arthritis.
Collapse
Affiliation(s)
- Annabelle Cesaro
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Quebec city, Quebec, Canada
| | - Joan Defrêne
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Quebec city, Quebec, Canada
| | - Asmaa Lachhab
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Quebec city, Quebec, Canada
| | - Nathalie Pagé
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Quebec city, Quebec, Canada
| | - Mélanie R. Tardif
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Quebec city, Quebec, Canada
| | - Amin Al-Shami
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, United States of America
| | - Tamas Oravecz
- Lexicon Pharmaceuticals, Inc., The Woodlands, Texas, United States of America
| | - Paul R. Fortin
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Quebec city, Quebec, Canada
- Département de médecine, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | | | - Nathalie Labrecque
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, Quebec, Canada
- Department of Medicine and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada
| | - Fawzi Aoudjit
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Quebec city, Quebec, Canada
- Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Martin Pelletier
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Quebec city, Quebec, Canada
- Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
| | - Philippe A. Tessier
- Axe de recherche sur les maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Quebec city, Quebec, Canada
- Département de microbiologie-infectiologie et d’immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
78
|
Brattås MK, Reikvam H, Tvedt THA, Bruserud Ø. Precision medicine for TP53-mutated acute myeloid leukemia. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1644164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
79
|
Yu R, Zhang J, Zang Y, Zeng L, Zuo W, Bai Y, Liu Y, Sun K, Liu Y. iTRAQ-based quantitative protein expression profiling of biomarkers in childhood B-cell and T-cell acute lymphoblastic leukemia. Cancer Manag Res 2019; 11:7047-7063. [PMID: 31440093 PMCID: PMC6664257 DOI: 10.2147/cmar.s210093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose This study screened serum proteins to identify potential biomarkers for childhood B-cell and T-cell acute lymphoblastic leukemia (ALL). Patients and methods Serum collected from 20 newly diagnosed B-cell ALL, 20 T-cell ALL and 20 healthy children. The peptides from these samples were subjected to iTRAQ. Differentially expressed proteins (DEPs) were further validated by ELISA in 24 B-ALL, 24 T-ALL, and 24 healthy children. Results Bioinformatics analysis revealed several pathways, including atherosclerosis signaling, interleukin signaling and production in macrophages and clathrin-mediated endocytosis signaling, that were closely related to childhood T-cell ALL. Furthermore, four selected proteins, namely LRG1, S100A8, SPARC and sL-selectin, were verified by ELISA. These results were consistent with the results of the proteomics analysis. Conclusion Serum S100A8 may serve as new diagnostic biomarkers in childhood B-cell ALL and T-cell ALL.
Collapse
Affiliation(s)
- Runhong Yu
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Jingyu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Yuzhu Zang
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Li Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Wenli Zuo
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan, People's Republic of China
| | - Yanliang Bai
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Yanhui Liu
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Kai Sun
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| |
Collapse
|
80
|
Functional Toll-Like Receptors (TLRs) Are Expressed by a Majority of Primary Human Acute Myeloid Leukemia Cells and Inducibility of the TLR Signaling Pathway Is Associated with a More Favorable Phenotype. Cancers (Basel) 2019; 11:cancers11070973. [PMID: 31336716 PMCID: PMC6678780 DOI: 10.3390/cancers11070973] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease with regard to biological characteristics and receptor expression. Toll-like receptors (TLRs) are upstream to the transcription factor NFκB and part of the innate immune system. They are differentially expressed on AML blasts, and during normal hematopoiesis they initiate myeloid differentiation. In this study, we investigated the response upon TLR stimulation in an AML cohort (n = 83) by measuring the increase of NFκB-mediated cytokine secretion. We observed that TLR4 is readily induced in most patients, while TLR1/2 response was more restricted. General response to TLR stimulation correlated with presence of nucleophosmin gene mutations, increased mRNA expression of proteins, which are part of the TLR signaling pathway and reduced expression of transcription-related proteins. Furthermore, signaling via TLR1/2 appeared to be linked with prolonged patient survival. In conclusion, response upon TLR stimulation, and especially TLR1/2 induction, seems to be part of a more favorable phenotype, which also is characterized by higher basal cytokine secretion and a more mature blast population.
Collapse
|
81
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
82
|
Yang J, Lan J, Du H, Zhang X, Li A, Zhang X, Liu Y, Zhang J, Zhang C, Ding Y, Zhang T. Icariside II induces cell cycle arrest and differentiation via TLR8/MyD88/p38 pathway in acute myeloid leukemia cells. Eur J Pharmacol 2019; 846:12-22. [DOI: 10.1016/j.ejphar.2018.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022]
|
83
|
Yi X, Liu H, Ou Y, Liu M, Zhu L, Chen H, Zhang J. Dominant inflammatory profile of the placenta in a preterm labor mouse model. J Matern Fetal Neonatal Med 2019; 33:1927-1933. [PMID: 30328754 DOI: 10.1080/14767058.2018.1533949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objective: Despite a growing association between inflammation and preterm labor, the underlying mechanisms explaining the development of preterm labor after infection are still poorly understood. Here, we use RNA-sequencing to characterize the transcriptome changes of placenta tissue in a preterm labor mouse model.Materials and methods: On day 15.5 of gestation, BALB/c mice received intrauterine injection of LPS to mimic preterm labor. A comprehensive catalog of genes was obtained using RNA-sequences and followed by bioinformatics analysis. The NOD-like receptor signaling pathway (Nod2, Cxcl1, Cxcl2, and IL-1β) and two downregulated genes (Ctsg and Snca) were selected for validating the results using qPCR analysis.Results: We identified 155 differentially expressed genes (DEGs), 84 biological processes and 45 pathways in the placenta using RNA-seq. Fifty-four biological processes could be categorized as immune-related processes and 33 pathways were mainly related to immune disease and infections. All genes were consistent between the RNA-seq and qPCR analyses.Conclusions: The dominant role for inflammatory biological processes and pathways in placenta can lead to preterm labor.
Collapse
Affiliation(s)
- Xiaochun Yi
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huixiang Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhua Ou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meilan Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liqiong Zhu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Chen
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Zhang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
84
|
Meng J, Gu F, Fang H, Qu B. Elevated Serum S100A9 Indicated Poor Prognosis in Hepatocellular Carcinoma after Curative Resection. J Cancer 2019; 10:408-415. [PMID: 30719134 PMCID: PMC6360318 DOI: 10.7150/jca.28409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/24/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Previous studies suggest S100A9 is a promising biomarker for prognosis in cancer, including hepatocellular carcinoma (HCC). We examined the utility of serum S100A9 in predicting prognosis in HCC after curative resection. Methods: We conducted a retrospective study of 379 HCC patients who underwent curative resection. Patients were randomly stratified into two independent groups to evaluate the prognostic value of S100A9. S100A9 was determined by ELISA. Results: Patients with advanced disease showed significantly higher S100A9 levels (all P < 0.050). Serum S100A9 was elevated in patients who developed recurrence and death in both training and validation cohorts (all P < 0.050). In the training cohort, patients with higher preoperative S100A9 had a significantly shorter time to recurrence (15.50 vs. 64.00 months, P < 0.001) and decreased overall survival (34.80 months vs. not reached, P < 0.001). Cox regression demonstrated S100A9 was an independent indicator for poor prognosis after resection (both P < 0.050). These results were confirmed by the independent validation cohort. Conclusions: Serum S100A9 is associated with dismal outcomes in HCC patients and can serve as a novel prognostic indicator for HCC patients after resection. Determination of S100A9 might help tailor treatment strategy to improve HCC patient prognosis.
Collapse
Affiliation(s)
- Jun Meng
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, P.R. China
| | - Feng Gu
- Department of Clinical Laboratory, People's Hospital of Shanghai Pudong District, No. 490, Chuan Huan Road South, Chuansha Town, Shanghai 201200, P.R. China
| | - Hua Fang
- Department of Clinical Laboratory, People's Hospital of Shanghai Pudong District, No. 490, Chuan Huan Road South, Chuansha Town, Shanghai 201200, P.R. China
| | - Bin Qu
- Department of Clinical Laboratory, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, P.R. China
| |
Collapse
|
85
|
Bresnick AR. S100 proteins as therapeutic targets. Biophys Rev 2018; 10:1617-1629. [PMID: 30382555 PMCID: PMC6297089 DOI: 10.1007/s12551-018-0471-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
The human genome codes for 21 S100 protein family members, which exhibit cell- and tissue-specific expression patterns. Despite sharing a high degree of sequence and structural similarity, the S100 proteins bind a diverse range of protein targets and contribute to a broad array of intracellular and extracellular functions. Consequently, the S100 proteins regulate multiple cellular processes such as proliferation, migration and/or invasion, and differentiation, and play important roles in a variety of cancers, autoimmune diseases, and chronic inflammatory disorders. This review focuses on the development of S100 neutralizing antibodies and small molecule inhibitors and their potential therapeutic use in controlling disease progression and severity.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
86
|
Wang D, Liu G, Wu B, Chen L, Zeng L, Pan Y. Clinical Significance of Elevated S100A8 Expression in Breast Cancer Patients. Front Oncol 2018; 8:496. [PMID: 30456203 PMCID: PMC6230579 DOI: 10.3389/fonc.2018.00496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the leading cause of female cancer-related death; however, novel biomarkers for predicting cancer recurrence still need to be explored. Aberrant expression of S100A8 has been reported to be related to tumor progression in various cancer types. This study aims to evaluate the clinical significance of S100A8 expression in breast cancer patients. In this study, data from 140 breast cancer patients were retrospectively collected to examine the association between S100A8 expression and clinical prognosis. Increased S100A8 expression was detected in breast cancer patients with relapse. The patients with increased S100A8 levels had significantly shorter disease-free survival (DFS) and overall survival (OS). In a multivariate survival analysis, a high histological grade and an elevated S100A8 level were independent factors associated with poor DFS and OS. Moreover, S100A8 expression was correlated with clinical subtype in breast cancer patients. The results showed that ER-negative and triple-negative breast cancer (TNBC) patients had significantly higher expression of S100A8 than patients with other subtypes. In conclusion, this study identified S100A8 as a potential biomarker for relapse in breast cancer patients.
Collapse
Affiliation(s)
- Dujuan Wang
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, Dongguan, China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Balu Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Li Chen
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, Dongguan, China
| | - Lihua Zeng
- Department of Clinical Pathology, Houjie Hospital of Dongguan, The Affiliated Houjie Hospital of Guangdong Medical University, Dongguan, China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
87
|
Brenner AK, Bruserud Ø. S100 Proteins in Acute Myeloid Leukemia. Neoplasia 2018; 20:1175-1186. [PMID: 30366122 PMCID: PMC6215056 DOI: 10.1016/j.neo.2018.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 01/02/2023] Open
Abstract
The S100 protein family contains 20 functionally expressed members, which are commonly dysregulated in cancer. Their wide range of functions includes cell proliferation, cell differentiation, regulation of transcription factors, inflammation, chemotaxis, and angiogenesis. S100 proteins have in several types of cancer proven to be biomarkers for disease progression and prognosis. Acute myeloid leukemia (AML) is a highly heterogeneous and aggressive disease in which immature myeloblasts replace normal hematopoietic cells in the bone marrow. This review focuses on the S100 protein family members, which commonly are dysregulated in AML, and on the consequences of their dysregulation in the disorder. Like in other cancers, it appears as if S100 proteins are potential biomarkers for leukemogenesis. Furthermore, several S100 members seem to be involved in maintaining the leukemic phenotype. For these reasons, specific S100 proteins might serve as prognostic biomarkers, especially in the patient subset with intermediate/undetermined risk, and as potential targets for patient-adjusted therapy. Because the question of the most suitable candidate S100 biomarkers in AML still is under discussion, because particular AML subgroups lead to specific S100 signatures, and because downstream effects and the significance of co-expression of potential S100 binding partners in AML are not fully elucidated yet, we conclude that a panel of S100 proteins will probably be best suited for prognostic purposes.
Collapse
Affiliation(s)
- Annette K Brenner
- Department of Medicine, Haukeland University Hospital, P.O. Box 1400, 5021 Bergen, Norway; Section for Hematology, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway
| | - Øystein Bruserud
- Department of Medicine, Haukeland University Hospital, P.O. Box 1400, 5021 Bergen, Norway; Section for Hematology, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway.
| |
Collapse
|
88
|
Hu J, Shi B, Liu X, Jiang M, Yuan C, Jiang B, Song Y, Zeng Y, Wang G. The activation of Toll-like receptor 4 reverses tumor differentiation in human glioma U251 cells via Notch pathway. Int Immunopharmacol 2018; 64:33-41. [PMID: 30145468 DOI: 10.1016/j.intimp.2018.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/05/2018] [Accepted: 08/15/2018] [Indexed: 12/23/2022]
Abstract
Toll-like receptors (TLRs) are closely related to cancer. However, the mechanism for TLR regulation of cancer is not fully understood. Our previous studies demonstrated that toll-like receptor (TLR) 4 functions to maintain the un-differential stem cell phenotypes of human endothelial progenitor cells. In this study, we found that human glioma cells expressed several TLRs. The activation of TLR4 by LPS in glioma U251 cells induced the expression of cytokines, including IL-1β, IL-6, IL-8, and TNFα, suggesting the functional expression of TLR4. Nude mouse in vivo studies showed that LPS treatment promoted tumor growth, and decreased mouse survival. But LPS treatment did not promote tumor cell proliferation in vitro. Meanwhile, we found that LPS treatment down-regulated the expression of glial fibrillary acidic protein (GFAP), an important differentiation maker of glioma, at both mRNA and protein levels. TLR4 activation also down-regulated GFAP in glioma Hs683 cells. LPS did not induce the activation of MAPKs, but induced the activation of NF-κB. However, pharmacological inhibition of NF-κB signaling did not reverse the down-regulation of GFAP. Furthermore, we found that LPS induced the activation of Notch pathway, which was MyD88-dependent, and Notch inhibition reversed the down-regulation of GFAP. In addition, LPS treatment up-regulated stem cell makers, including CD34 and CD133. Taken together, these results suggested that in human glioma U251 cells, TLR4 functions to reverse tumor differentiation, and it may be a target for glioma prevention and therapy.
Collapse
Affiliation(s)
- Jinyue Hu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China.
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Xueting Liu
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Manli Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Chuang Yuan
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Binyuan Jiang
- Medical Research Center, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Yinghui Song
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, China; Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Yanhua Zeng
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, China; Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China
| | - Guihua Wang
- Department of Oncology, Changsha Central Hospital, Changsha, Hunan 410004, China; Changsha Cancer Institute, Changsha Central Hospital, Changsha, Hunan 410004, China.
| |
Collapse
|
89
|
Giudice V, Wu Z, Kajigaya S, Fernandez Ibanez MDP, Rios O, Cheung F, Ito S, Young NS. Circulating S100A8 and S100A9 protein levels in plasma of patients with acquired aplastic anemia and myelodysplastic syndromes. Cytokine 2018; 113:462-465. [PMID: 29958797 DOI: 10.1016/j.cyto.2018.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
The alarmin family members S100A8 and S100A9 are acute phase inflammation proteins, but they also have been proposed as biomarkers in many malignant and non-malignant diseases. In this study, circulating S100A8 and S100A9 homodimers and S100A8/A9 heterodimers in plasma were systematically investigated by ELISA in aplastic anemia (AA) and myelodysplastic syndromes (MDS). Plasma was obtained from 58 severe AA (SAA) and 30 MDS patients, and from 47 age- and sex-matched healthy donors. In 40 out of the 58 AA subjects, S100A protein levels were measured before and 6 months after immunosuppressive therapy (IST). No differences were observed in AA patients at diagnosis compared to healthy controls for circulating S100A homodimers and heterodimers. After therapy, SAA-responders showed significantly increased circulating S100A8. Non-responding patients had significantly higher levels of circulating S100A8/A9 compared to responders and healthy controls, but without variations of S100A8 and S100A9 homodimers. In MDS patients, circulating S100A8 was significantly elevated compared to those of AA and/or healthy controls. By Pearson correlation analysis of protein levels and blood counts, multiple correlations were found. However, as S100A8 and S100A9 are abundantly present in white blood cells and platelets, correlations with blood counts likely mirror the higher number of cells in the blood of some patients. In conclusion, our findings indicate that circulating S100A8 is increased in MDS but not in AA, and that may be useful to distinguish these diseases in the differential diagnosis of bone marrow failure syndromes. Clinicaltrials.gov identifiers: NCT00260689, NCT00604201, NCT01328587, NCT01623167, NCT00001620, NCT00001397.
Collapse
Affiliation(s)
- Valentina Giudice
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Zhijie Wu
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Olga Rios
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Foo Cheung
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, MD, USA
| | - Sawa Ito
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
90
|
Mizobuchi H, Fujii W, Isokawa S, Ishizuka K, Wang Y, Watanabe S, Sanjoba C, Matsumoto Y, Goto Y. Exacerbation of hepatic injury during rodent malaria by myeloid-related protein 14. PLoS One 2018; 13:e0199111. [PMID: 29902248 PMCID: PMC6002122 DOI: 10.1371/journal.pone.0199111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022] Open
Abstract
Hepatic dysfunction is one of the clinical features in severe malaria. However, the mechanism of hepatic injury during malaria is still unknown. Myeloid-related protein (MRP) 14 is abundantly expressed by myeloid cells and involved in various inflammatory diseases. We previously reported that serum MRP14 is elevated in mice infected with Plasmodium berghei ANKA. In order to verify whether extracellular MRP14 is involved in the pathology of hepatic injury during rodent malaria, we intravenously administrated recombinant MRP14 (rMRP14) to mice infected with P. berghei ANKA. The administration of rMRP14 did not affect parasite number or hematocrit. On the other hand, the hepatic injury was exacerbated in rMRP14-treated mice, and their serum concentration of hepatic enzymes increased significantly more than PBS-treated controls. Immunohistochemical analysis of the liver showed that more MRP14+ macrophages accumulated in rMRP14-treated mice than PBS-treated controls after infection. The administration of rMRP14 also promotes the up-regulation of pro-inflammatory molecules in the liver, such as iNOS, IL-1β, IL-12, and TNF-α. Even in the absence of Plasmodium infection, administration of rMRP14 could induce the accumulation of MRP14+ macrophages and up-regulation of the pro-inflammatory molecules in the liver of naïve mice. The results indicate that MRP14 promotes the accumulation of MRP14+ cells and the up-regulation of pro-inflammatory molecules and NO, which amplify inflammatory cascade leading to hepatic injury. In conclusion, MRP14 is a one of key molecules for liver inflammation during rodent malaria.
Collapse
Affiliation(s)
- Haruka Mizobuchi
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Wataru Fujii
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shoko Isokawa
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kanna Ishizuka
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yihan Wang
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Sayoko Watanabe
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoshitsugu Matsumoto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Goto
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
91
|
Wang S, Song R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in Inflammation. Front Immunol 2018; 9:1298. [PMID: 29942307 PMCID: PMC6004386 DOI: 10.3389/fimmu.2018.01298] [Citation(s) in RCA: 855] [Impact Index Per Article: 122.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
S100A8 and S100A9 (also known as MRP8 and MRP14, respectively) are Ca2+ binding proteins belonging to the S100 family. They often exist in the form of heterodimer, while homodimer exists very little because of the stability. S100A8/A9 is constitutively expressed in neutrophils and monocytes as a Ca2+ sensor, participating in cytoskeleton rearrangement and arachidonic acid metabolism. During inflammation, S100A8/A9 is released actively and exerts a critical role in modulating the inflammatory response by stimulating leukocyte recruitment and inducing cytokine secretion. S100A8/A9 serves as a candidate biomarker for diagnosis and follow-up as well as a predictive indicator of therapeutic responses to inflammation-associated diseases. As blockade of S100A8/A9 activity using small-molecule inhibitors or antibodies improves pathological conditions in murine models, the heterodimer has potential as a therapeutic target. In this review, we provide a comprehensive and detailed overview of the distribution and biological functions of S100A8/A9 and highlight its application as a diagnostic and therapeutic target in inflammation-associated diseases.
Collapse
Affiliation(s)
- Siwen Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Rui Song
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Ziyi Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaocheng Jing
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Shaoxiong Wang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Xiangya School of Medicine, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Changsha, China
| |
Collapse
|
92
|
Villamón E, González-Fernández J, Such E, Cervera JV, Gozalbo D, Luisa Gil M. Imiquimod inhibits growth and induces differentiation of myeloid leukemia cell lines. Cancer Cell Int 2018; 18:15. [PMID: 29422777 PMCID: PMC5791367 DOI: 10.1186/s12935-018-0515-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022] Open
Abstract
Background The antitumoral effects of different Toll-like receptor (TLRs) agonists is mediated by activating immune responses to suppress tumors growth, although TLR ligands may also have a direct effect on tumoral cells. Given that TLR signaling induces hematopoietic cell differentiations this may serve as a novel differentiation therapeutic approach for AML. Methods We investigated the effects of agonists for the ten human TLRs on the proliferation, apoptosis, cell cycle and differentiation of ten different types of myeloid leukemia cell lines (HL-60, U-937, KG-1, KG-1a, K-562, Kasumi-1, EOL-1, NB4, MOLM-13 and HEL). Proliferation was measured using the CellTiter 96® Aqueous One Solution Cell Proliferation Assay (Promega). Staining and analysis with a flow cytometer was used to identify cell cycle progression and apoptosis. Differentiation was measured by staining cells with the EuroFlow™ antibody panel for AML and analyzed by flow cytometry. FlowJo software was used to analyze the cytometric data. In all experiments, statistical significance was determined by a two-tailed t test. Results The activation of particular TLRs on some cell lines can induce growth inhibition and Imiquimod (a TLR 7 agonist) was the most effective agonist in all leukemic cell lines examined. Imiquimod was able to induce apoptosis, as well as to induce cell cycle alteration and upregulation of myeloid differentiation markers on some of the cell lines tested. Conclusions Our results, together with the known efficacy of Imiquimod against many tumor entities, suggest that Imiquimod can be a potential alternative therapy to AML. This drug has a direct cytotoxic effect on leukemic cells, has the potential to induce differentiation, and can also stimulate the activation of cellular immune responses anti-AML.
Collapse
Affiliation(s)
- Eva Villamón
- 1Department of Hematology, University Hospital La Fe, Valencia, Spain
| | | | - Esperanza Such
- 1Department of Hematology, University Hospital La Fe, Valencia, Spain
| | | | - Daniel Gozalbo
- 2Departamento de Microbiología y Ecología, Universitat de València, Burjasot, Spain.,3Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjasot, Spain
| | - M Luisa Gil
- 2Departamento de Microbiología y Ecología, Universitat de València, Burjasot, Spain.,3Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Burjasot, Spain
| |
Collapse
|
93
|
Hemmati S, Haque T, Gritsman K. Inflammatory Signaling Pathways in Preleukemic and Leukemic Stem Cells. Front Oncol 2017; 7:265. [PMID: 29181334 PMCID: PMC5693908 DOI: 10.3389/fonc.2017.00265] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/20/2017] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are a rare subset of bone marrow cells that usually exist in a quiescent state, only entering the cell cycle to replenish the blood compartment, thereby limiting the potential for errors in replication. Inflammatory signals that are released in response to environmental stressors, such as infection, trigger active cycling of HSCs. These inflammatory signals can also directly induce HSCs to release cytokines into the bone marrow environment, promoting myeloid differentiation. After stress myelopoiesis is triggered, HSCs require intracellular signaling programs to deactivate this response and return to steady state. Prolonged or excessive exposure to inflammatory cytokines, such as in prolonged infection or in chronic rheumatologic conditions, can lead to continued HSC cycling and eventual HSC loss. This promotes bone marrow failure, and can precipitate preleukemic states or leukemia through the acquisition of genetic and epigenetic changes in HSCs. This can occur through the initiation of clonal hematopoiesis, followed by the emergence preleukemic stem cells (pre-LSCs). In this review, we describe the roles of multiple inflammatory signaling pathways in the generation of pre-LSCs and in progression to myelodysplastic syndrome (MDS), myeloproliferative neoplasms, and acute myeloid leukemia (AML). In AML, activation of some inflammatory signaling pathways can promote the cycling and differentiation of LSCs, and this can be exploited therapeutically. We also discuss the therapeutic potential of modulating inflammatory signaling for the treatment of myeloid malignancies.
Collapse
Affiliation(s)
- Shayda Hemmati
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tamanna Haque
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Oncology, Montefiore Medical Center, Bronx, NY, United States
| | - Kira Gritsman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Oncology, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
94
|
|