51
|
Yang S, Zhao J, Huang S, Shu B, Yang R, Chen L, Xu Y, Xie J, Liu X, Jia J, Qi S. Reduced hydration-induced decreased caveolin-1 expression causes epithelial-to-mesenchymal transition. Am J Transl Res 2020; 12:8067-8083. [PMID: 33437382 PMCID: PMC7791524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
The reduced hydration environment induced by disruption of epithelial barrier function after injury results in excessive scarring, but the underlying mechanisms are poorly understood. We demonstrated that exposing keratinocytes to a reduced hydration environment causes epithelial-to-mesenchymal transition (EMT) and induces caveolin-1-dependent downregulation of E-cadherin. Reduced caveolin-1 expression and increased Snail expression are associated with low expression levels of E-cadherin. Caveolin-1 downregulation increases the transcriptional activity of β-catenin-TCF/LEF-1, and overexpression of caveolin-1 inhibits EMT that results from reduced hydration. Our findings suggest a role for caveolin-1 downregulation in linking aberrant EMT to the reduced hydration environment: findings that may lead to new developments in the prevention and treatment of hypertrophic scar.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Jingling Zhao
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Shixin Huang
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Bin Shu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery, The First People’s Hospital of FoshanFoshan, China
| | - Lei Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Yingbin Xu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Julin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Xusheng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| | - Ji Jia
- Department of Anesthesiology, General Hospital of Southern Theatre Command of PLAGuangzhou, China
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
52
|
Mardani M, Sadeghzadeh A, Tanideh N, Andisheh-Tadbir A, Lavaee F, Zarei M, Moayedi J. The effects of adipose tissue-derived stem cells seeded onto the curcumin-loaded collagen scaffold in healing of experimentally- induced oral mucosal ulcers in rat. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1618-1627. [PMID: 33489037 PMCID: PMC7811821 DOI: 10.22038/ijbms.2020.48698.11171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/12/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Various therapeutic approaches, including stem-cell-based strategies and tissue engineering, have been proposed for oral ulcerative lesions. We investigated the effects of adipose tissue-derived stem cells (ADSCs) seeded onto the curcumin-loaded collagen scaffold in the mucosal healing of oral ulcers in rats. MATERIALS AND METHODS The current experimental study was conducted on 40 male Sprague-Dawley rats. Oral ulcers were created over both sides of buccal mucosa, and the rats were randomly divided into four equal groups: 1) an untreated group (negative control); 2) Teriadent-treated group (positive control); 3) group treated with curcumin-loaded collagen scaffold; and 4) group received the ADSCs (3 × 106 cells) seeded onto the curcumin-loaded collagen scaffold. Rats were sacrificed on 3rd and 7th day after ulceration for histopathological examination as well as measurement of tissue levels of myeloperoxidase (MPO), superoxide dismutase (SOD), and Interleukin-1 beta (IL-1β) activity. RESULTS Compared with the negative control, the tissue levels of MPO and IL-1β were significantly decreased in all treated groups (P<0.0001); however, the SOD activity was elevated (P<0.0001). The highest SOD activity as well as the lowest MPO and IL-1β levels were observed in the ADSCs-curcumin-loaded collagen scaffold group. The ulcer healing process at 3rd and 7th day follow-up was much more progressed in the ADSCs-curcumin-loaded collagen scaffold group in comparison with the untreated group (P=0.037 and P=0.004, respectively). CONCLUSION According to the findings of this study, ADSCs seeded onto the curcumin-loaded collagen scaffold seems to have a promising potential for oral ulcer healing applications.
Collapse
Affiliation(s)
- Maryam Mardani
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azita Sadeghzadeh
- Postgraduate Student, Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azadeh Andisheh-Tadbir
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Pathology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Lavaee
- Oral and Dental Disease Research Center, Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Zarei
- West Pomeranian University of Technology, Szczecin, Department of Polymer and Biomaterials Science, Al. Piastow 45, 71-311 Szczecin, Poland
| | - Javad Moayedi
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
53
|
Bryja A, Sujka-Kordowska P, Konwerska A, Ciesiółka S, Wieczorkiewicz M, Bukowska D, Antosik P, Bryl R, Skowroński MT, Jaśkowski JM, Mozdziak P, Angelova Volponi A, Shibli JA, Kempisty B, Dyszkiewicz-Konwińska M. New Gene Markers Involved in Molecular Processes of Tissue Repair, Response to Wounding and Regeneration Are Differently Expressed in Fibroblasts from Porcine Oral Mucosa during Long-Term Primary Culture. Animals (Basel) 2020; 10:ani10111938. [PMID: 33105567 PMCID: PMC7690285 DOI: 10.3390/ani10111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Wound healing and vascularization mechanisms are key steps in the complex morphological process of tissue reconstruction. Additionally, these processes in the oral cavity are more rapid than in the skin and result in less scar formation. Epithelial cells and fibroblasts play an important role in the process of wound healing. In our study, we focused on fibroblasts and monitored changes in gene expression during their in vitro culture. Based on the analysis, we distinguished three groups of processes that play important roles in tissue regeneration: response to wounding, wound healing and vascularization. We identified genes that were involved in all three processes. These genes could be selected as tissue specific repair markers for oral fibroblasts. Abstract The mechanisms of wound healing and vascularization are crucial steps of the complex morphological process of tissue reconstruction. In addition to epithelial cells, fibroblasts play an important role in this process. They are characterized by dynamic proliferation and they form the stroma for epithelial cells. In this study, we have used primary cultures of oral fibroblasts, obtained from porcine buccal mucosa. Cells were maintained long-term in in vitro conditions, in order to investigate the expression profile of the molecular markers involved in wound healing and vascularization. Based on the Affymetrix assays, we have observed three ontological groups of markers as wound healing group, response to wounding group and vascularization group, represented by different genes characterized by their expression profile during long-term primary in vitro culture (IVC) of porcine oral fibroblasts. Following the analysis of gene expression in three previously identified groups of genes, we have identified that transforming growth factor beta 1 (TGFB1), ITGB3, PDPN, and ETS1 are involved in all three processes, suggesting that these genes could be recognized as markers of repair specific for oral fibroblasts within the porcine mucosal tissue.
Collapse
Affiliation(s)
- Artur Bryja
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
| | - Patrycja Sujka-Kordowska
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
- Department of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Góra, Poland
| | - Aneta Konwerska
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
| | - Sylwia Ciesiółka
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.W.); (M.T.S.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (D.B.); (J.M.J.)
| | - Paweł Antosik
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
| | - Mariusz T. Skowroński
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (M.W.); (M.T.S.)
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland; (D.B.); (J.M.J.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ana Angelova Volponi
- Department of Craniofacial Development and Stem Cell Biology, King’s College University of London, London WC2R 2LS, UK;
| | - Jamil A. Shibli
- Department of Periodontology and Oral Implantology, Dental Research Division, University of Guarulhos, Guarulhos SP 07030-010, Brazil;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
- Department of Histology and Embryology, Poznan University of Medical Science, 60-781 Poznań, Poland; (P.S.-K.); (A.K.); (S.C.)
- Department of Veterinary Surgery, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland;
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
- Correspondence: ; Tel.: +48-61-8546418
| | - Marta Dyszkiewicz-Konwińska
- Department of Anatomy, Poznan University of Medical Science, 60-781 Poznań, Poland; (A.B.); (R.B.); (M.D.-K.)
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| |
Collapse
|
54
|
Wilgus TA. Inflammation as an orchestrator of cutaneous scar formation: a review of the literature. PLASTIC AND AESTHETIC RESEARCH 2020; 7:54. [PMID: 33123623 PMCID: PMC7592345 DOI: 10.20517/2347-9264.2020.150] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammation is a key phase in the cutaneous wound repair process. The activation of inflammatory cells is critical for preventing infection in contaminated wounds and results in the release of an array of mediators, some of which stimulate the activity of keratinocytes, endothelial cells, and fibroblasts to aid in the repair process. However, there is an abundance of data suggesting that the strength of the inflammatory response early in the healing process correlates directly with the amount of scar tissue that will eventually form. This review will summarize the literature related to inflammation and cutaneous scar formation, highlight recent discoveries, and discuss potential treatment modalities that target inflammation to minimize scarring.
Collapse
Affiliation(s)
- Traci A Wilgus
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
55
|
Parker S, Anagnostaki E, Mylona V, Cronshaw M, Lynch E, Grootveld M. Systematic Review of Post-Surgical Laser-Assisted Oral Soft Tissue Outcomes Using Surgical Wavelengths Outside the 650-1350 nm Optical Window. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:591-606. [PMID: 33026973 DOI: 10.1089/photob.2020.4847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Objective: To explore via systematic review the validation of uneventful post-surgical healing, associated with shorter and longer laser wavelength applications in minor oral surgery procedures. Methods: From April 28 to May 11, 2020, PubMed, Cochrane Database of Systemic Reviews, and Google Scholar search engines were applied to identify human clinical trials of photobiomodulation (PBM) therapy in clinical dentistry. The searches were carried out with reference to (1) dental laser wavelengths shorter than 650 nm; (2) wavelengths localized within the 2780-2940 nm; and (3) the 9300-10,600 nm range. Selected articles were further assessed by three independent reviewers for strict compliance with PRISMA guidelines and modified Cochrane Risk of Bias to determine eligibility. Results: Using selection filters of randomized clinical trials, moderate/low risk of bias, and the applied period, and following PRISMA guidelines, 25 articles were selected and examined. A risk of bias was completed, where 11 out of 25 publications were classified as low risk of bias, and 14 out of 25 were classified as medium risk status. In total, 6 out of 13 (46% of) studies comparing the examined laser wavelengths with scalpel-based treatment showed positive results, whereas 6 out of 13 (46%) showed no difference, and only 1 out of 13 (7.7%) presented a negative outcome. In addition, 5 out of 6 (83% of) studies comparing the examined laser wavelengths with other diodes (808-980 nm) showed positive results, whereas 1 out of 6 (17%) had negative outcomes. Conclusions: A detailed and blinded examination of published studies has been undertaken, applying strict criteria to demonstrate research outcome data, which suggests positive or at worst neutral comparatives when a given laser wavelength system is used against an alternative control therapy. As such, substantiated evidence for laser surgery in delivering uneventful healing and analgesic effects, as an expression of a PBM-like (quasi-PBM) influence, has been shown.
Collapse
Affiliation(s)
- Steven Parker
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Eugenia Anagnostaki
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Valina Mylona
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom
| | - Mark Cronshaw
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom.,School of Dentistry, College of Medical and Dental Sciences, Birmingham University, Birmingham, United Kingdom
| | - Edward Lynch
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom.,School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Martin Grootveld
- School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicester, United Kingdom.,School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
56
|
Wang Y, Tatakis DN. Integrative mRNA/miRNA expression analysis in healing human gingiva. J Periodontol 2020; 92:863-874. [PMID: 32857863 DOI: 10.1002/jper.20-0397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are implicated in the epigenetic regulation of complex biological processes. Their possible role in human oral wound healing, a process that differs from cutaneous wound healing by being faster and typically scar-free, has been unexplored. This report presents the miRNA expression profile of experimental human oral wounds and an integrative analysis of mRNA/miRNA expression. METHODS Nine healthy volunteers provided standardized normal and 5-day healing palatal biopsies, used for next generation miRNA and mRNA sequencing analysis, correlation and network analysis, real-time PCR (qPCR) and immunohistochemistry. RESULTS On average, 169 significantly regulated precursor miRNAs were detected, including 21 novel miRNAs, selectively confirmed by PCR. Hsa-miR-223-3p and hsa-miR-124-3p were, respectively, the most up- and downregulated miRNAs in healing gingiva. Hsa-miR-124-3p had the most predicted mRNA target interactions, with angiogenesis-related genes the most enriched. Correlation analysis showed the highest correlation between hsa-miR-181a-3p and SERPINB1; hsa-miR-223-5p and SLC2A3; hsa-miR-1301 and MS4A7. In addition, SERPINB1 mRNA had the most associations with differentially regulated miRNAs. IL33 was the only cytokine significantly correlated with miRNAs (ρ > 0.95). qPCR and immunohistochemistry verified the significant upregulation of SERPINB1 and IL33 in healing gingiva. CONCLUSIONS This study is the first to report on the miRNome of healing human gingiva and to provide an integrative analysis of miRNA/mRNA expression during human oral wound healing; the results offer novel insights into the participating molecular mechanisms and raise the possibility of SERPINB1 and IL-33 as potential wound healing therapeutic targets.
Collapse
Affiliation(s)
- Yun Wang
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
57
|
Atkuru S, Muniraj G, Sudhaharan T, Chiam KH, Wright GD, Sriram G. Cellular ageing of oral fibroblasts differentially modulates extracellular matrix organization. J Periodontal Res 2020; 56:108-120. [PMID: 32969036 DOI: 10.1111/jre.12799] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/10/2020] [Accepted: 08/09/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Ageing is associated with an impaired cellular function that can affect tissue architecture and wound healing in gingival and periodontal tissues. However, the impact of oral fibroblast ageing on the structural organization of the extracellular matrix (ECM) proteins is poorly understood. Hence, in this study, we investigated the impact of cellular ageing of oral fibroblasts on the production and structural organization of collagen and other ECM proteins. METHODS Oral fibroblasts were serially subcultured, and replicative cellular senescence was assessed using population doubling time, Ki67 counts and expression of P21WAFI . The production and structural organization of ECM proteins were assessed at early (young-oFB) and late (aged-oFB) passages. The thickness and pattern of collagen produced by live cultures of young- and aged-oFB were assessed using a label-free and non-invasive second harmonic generation (SHG)-based multiphoton imaging. Expression of other ECM proteins (fibronectin, fibrillin, collagen-IV and laminins) was evaluated using immunocytochemistry and confocal microscopy-based depth profile analysis. RESULTS Aged-oFB displayed a higher population doubling time, lower Ki67+ cells and higher expression of P21WAFI indicative of slower proliferation rate and senescence phenotype. SHG imaging demonstrated that young-oFB produced a thick, interwoven network of collagen fibres, while the aged-oFB produced thin and linearly organized collagen fibres. Similarly, analysis of immunostained cultures showed that young-oFB produced a rich, interwoven mesh of fibronectin, fibrillin and collagen-IV fibres. In contrast, the aged-oFB produced linearly organized fibronectin, fibrillin and collagen-IV fibres. Lastly, there was no observable difference in production and organization of laminins among the young- and aged-oFB. CONCLUSION Our results suggest that oral fibroblast ageing impairs ECM production and more importantly the organization of ECM fibres, which could potentially impair wound healing in the elderly.
Collapse
Affiliation(s)
- Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore City, Singapore
| | - Giridharan Muniraj
- Faculty of Dentistry, National University of Singapore, Singapore City, Singapore
| | - Thankiah Sudhaharan
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Keng-Hwee Chiam
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Graham Daniel Wright
- A*STAR Microscopy Platform, Research Support Centre, Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
58
|
Carvalheiro T, Garcia S, Pascoal Ramos MI, Giovannone B, Radstake TRDJ, Marut W, Meyaard L. Leukocyte Associated Immunoglobulin Like Receptor 1 Regulation and Function on Monocytes and Dendritic Cells During Inflammation. Front Immunol 2020; 11:1793. [PMID: 32973751 PMCID: PMC7466540 DOI: 10.3389/fimmu.2020.01793] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022] Open
Abstract
Inhibitory receptors are crucial immune regulators and are essential to prevent exacerbated responses, thus contributing to immune homeostasis. Leukocyte associated immunoglobulin like receptor 1 (LAIR-1) is an immune inhibitory receptor which has collagen and collagen domain containing proteins as ligands. LAIR-1 is broadly expressed on immune cells and has a large availability of ligands in both circulation and tissues, implicating a need for tight regulation of this interaction. In the current study, we sought to examine the regulation and function of LAIR-1 on monocyte, dendritic cell (DC) and macrophage subtypes, using different in vitro models. We found that LAIR-1 is highly expressed on intermediate monocytes as well as on plasmacytoid DCs. LAIR-1 is also expressed on skin immune cells, mainly on tissue CD14+ cells, macrophages and CD1c+ DCs. In vitro, monocyte and type-2 conventional DC stimulation leads to LAIR-1 upregulation, which may reflect the importance of LAIR-1 as negative regulator under inflammatory conditions. Indeed, we demonstrate that LAIR-1 ligation on monocytes inhibits toll like receptor (TLR)4 and Interferon (IFN)-α- induced signals. Furthermore, LAIR-1 is downregulated on GM-CSF and IFN-γ monocyte-derived macrophages and monocyte-derived DCs. In addition, LAIR-1 triggering during monocyte derived-DC differentiation results in significant phenotypic changes, as well as a different response to TLR4 and IFN-α stimulation. This indicates a role for LAIR-1 in skewing DC function, which impacts the cytokine expression profile of these cells. In conclusion, we demonstrate that LAIR-1 is consistently upregulated on monocytes and DC during the inflammatory phase of the immune response and tends to restore its expression during the resolution phase. Under inflammatory conditions, LAIR-1 has an inhibitory function, pointing toward to a potential intervention opportunity targeting LAIR-1 in inflammatory conditions.
Collapse
Affiliation(s)
- Tiago Carvalheiro
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Samuel Garcia
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Rheumatology & Immuno-Mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain.,Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - M Inês Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Barbara Giovannone
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Department of Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Wioleta Marut
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.,Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
59
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020; 11:1695. [PMID: 32849592 PMCID: PMC7427103 DOI: 10.3389/fimmu.2020.01695] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R. Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K. Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M. Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G. Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O. Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States
- Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W. Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
60
|
Ma D, Chen L, Shi J, Zhao Y, Vasani S, Chen K, Romana‐Souza B, Henkin J, DiPietro LA. Pigment epithelium‐derived factor attenuates angiogenesis and collagen deposition in hypertrophic scars. Wound Repair Regen 2020; 28:684-695. [DOI: 10.1111/wrr.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Da Ma
- Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital Guanghua School of Stomatology, SunYat‐sen University Guangzhou Guangdong China
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Shruti Vasani
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Kevin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Bruna Romana‐Souza
- Tissue Repair Laboratory State University of Rio de Janeiro Rio de Janeiro Brazil
| | - Jack Henkin
- Center for Developmental Therapeutics and Department of Chemistry Northwestern University Evanston Illinois USA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
61
|
Distinct differences in hypoxic responses between human oral mucosa and skin fibroblasts in a 3D collagen matrix. In Vitro Cell Dev Biol Anim 2020; 56:452-479. [PMID: 32588253 DOI: 10.1007/s11626-020-00458-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 02/03/2023]
Abstract
The differences between oral mucosa and skin wound healing involving hypoxic responses of fibroblasts are poorly elucidated. In this study, we aimed to study the different hypoxic responses between oral and skin fibroblasts embedded in a three-dimensional (3D) collagen matrix to address the early stage of wound healing. Primary oral mucosa fibroblasts (OMFs) obtained from the retromolar area and skin fibroblasts (SFs) obtained from the abdomen were cultured in the 3D 'floating model' under either 21%, 5% or 1% O2 for 2 days. Cell viability under hypoxia was higher in the OMFs than in the SFs. Collagen gel contraction was suppressed under hypoxic conditions in both fibroblasts, consistent with the reduction of alpha smooth muscle actin expression, except for SFs under 1% O2. Subsequently, their gene expression profiles between 21 and 1% O2 concentrations were compared via microarray technology, and the expression profiles of the extracellular matrix (ECM)-associated proteins, including matrix metalloproteinases and collagens, were evaluated. The OMFs were more susceptible to 1% O2, and more of their genes were downregulated than the SFs'. Although the production and expression levels of ECM-associated proteins in both fibroblasts diminished under hypoxia, those levels in OMFs were significantly higher than those in SFs. In the case of single origin OMFs and SFs, our findings suggest that OMFs possess a higher baseline production capacity of several ECM-associated proteins than SFs, except type III collagen. The intrinsic hypoxic responses of OMFs may be attributed to a more favourable wound healing in oral mucosa.
Collapse
|
62
|
Wietecha MS, Pensalfini M, Cangkrama M, Müller B, Jin J, Brinckmann J, Mazza E, Werner S. Activin-mediated alterations of the fibroblast transcriptome and matrisome control the biomechanical properties of skin wounds. Nat Commun 2020; 11:2604. [PMID: 32451392 PMCID: PMC7248062 DOI: 10.1038/s41467-020-16409-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Matrix deposition is essential for wound repair, but when excessive, leads to hypertrophic scars and fibrosis. The factors that control matrix deposition in skin wounds have only partially been identified and the consequences of matrix alterations for the mechanical properties of wounds are largely unknown. Here, we report how a single diffusible factor, activin A, affects the healing process across scales. Bioinformatics analysis of wound fibroblast transcriptome data combined with biochemical and histopathological analyses of wounds and functional in vitro studies identify that activin promotes pro-fibrotic gene expression signatures and processes, including glycoprotein and proteoglycan biosynthesis, collagen deposition, and altered collagen cross-linking. As a consequence, activin strongly reduces the wound and scar deformability, as identified by a non-invasive in vivo method for biomechanical analysis. These results provide mechanistic insight into the roles of activin in wound repair and fibrosis and identify the functional consequences of alterations in the wound matrisome at the biomechanical level. The relationship between histopathology, gene expression, and biochemical and mechanical properties of wounds is largely unknown. Here, the authors show that activin A alters wound healing at multiple levels by promoting pro-fibrotic gene expression and matrix deposition, thereby affecting biomechanical properties of skin wounds.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Marco Pensalfini
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Michael Cangkrama
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Bettina Müller
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland
| | - Juyoung Jin
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Jürgen Brinckmann
- Department of Dermatology, University of Lübeck, 23562, Lübeck, Germany.,Institute of Virology and Cell Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092, Zurich, Switzerland. .,EMPA, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland.
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland.
| |
Collapse
|
63
|
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted pathogen, and high-risk HPVs contribute to 5% of human cancers, including 25% of head and neck squamous cell carcinomas (HNSCCs). Despite the significant role played by HPVs in HNSCC, there is currently no available in vivo system to model the process from papillomavirus infection to virus-induced HNSCC. In this paper, we describe an infection-based HNSCC model, utilizing a mouse papillomavirus (MmuPV1), which naturally infects laboratory mice. Infections of the tongue epithelium of two immunodeficient strains with MmuPV1 caused high-grade squamous dysplasia with early signs of invasive carcinoma over the course of 4 months. When combined with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO), MmuPV1 caused invasive squamous cell carcinoma (SCC) on the tongue of both immunodeficient and immunocompetent mice. These tumors expressed markers of papillomavirus infection and HPV-associated carcinogenesis. This novel preclinical model provides a valuable new means to study how natural papillomavirus infections contribute to HNSCC.IMPORTANCE The species specificity of papillomavirus has limited the development of an infection-based animal model to study HPV-associated head and neck carcinogenesis. Our study presents a novel in vivo model using the mouse papillomavirus MmuPV1 to study papillomavirus-associated head and neck cancer. In our model, MmuPV1 infects and causes lesions in both immunodeficient and genetically immunocompetent strains of mice. These virally induced lesions carry features associated with both HPV infections and HPV-associated carcinogenesis. Combined with previously identified cancer cofactors, MmuPV1 causes invasive squamous cell carcinomas in mice. This model provides opportunities for basic and translational studies of papillomavirus infection-based head and neck disease.
Collapse
|
64
|
Leonardo TR, Shi J, Chen D, Trivedi HM, Chen L. Differential Expression and Function of Bicellular Tight Junctions in Skin and Oral Wound Healing. Int J Mol Sci 2020; 21:ijms21082966. [PMID: 32340108 PMCID: PMC7216202 DOI: 10.3390/ijms21082966] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 01/20/2023] Open
Abstract
Bicellular tight junctions are multiprotein complexes that are required for maintenance of barrier function and fence function in epithelial tissues. Wound healing in the oral cavity leads to minimal scar formation compared to the skin, and the precise mechanisms for this regenerative response remain to be elucidated. We hypothesized that oral and skin tissues express a different tight junction repertoire both at baseline and during the wound healing response, and that these molecules may be critical to the differential repair between the two tissues. We re-analyzed a mouse skin and palate epithelium microarray dataset to identify the tight junction repertoire of these tissue types. We then re-analyzed a skin and tongue wound healing microarray dataset to see how expression levels of tight junction genes change over time in response to injury. We performed in vitro scratch assays on human oral and skin keratinocyte cell lines to assay for tight junction expression over time, tight junction expression in response to lipopolysaccharide and histamine treatment, and the effects of siRNA knockdown of claudin 1 or occludin on migration and proliferation. Our data showed that oral and skin epithelium expressed different tight junction genes at baseline and during the wound healing response. Knockdown of claudin 1 or occludin led to changes in proliferation and migration in human skin keratinocytes but not oral keratinocytes. Furthermore, we also showed that skin keratinocytes were more permeable than oral keratinocytes upon histamine treatment. In conclusion, this study highlights a specific subset of functional tight junction genes that are differentially expressed between the oral and skin tissues, which may contribute to the mechanisms leading to distinct healing phenotypes in response to injury in the two tissues.
Collapse
Affiliation(s)
- Trevor R. Leonardo
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08854, USA; (D.C.); (H.M.T.)
| | - Harsh M. Trivedi
- Colgate-Palmolive Company, Piscataway, NJ 08854, USA; (D.C.); (H.M.T.)
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Correspondence: ; Tel.: +1-312-413-5387; Fax: +1-312-996-0943
| |
Collapse
|
65
|
Time course analysis of large-scale gene expression in incised muscle using correspondence analysis. PLoS One 2020; 15:e0230737. [PMID: 32210454 PMCID: PMC7094855 DOI: 10.1371/journal.pone.0230737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
Studying the time course of gene expression in injured skeletal muscle would help to estimate the timing of injuries. In this study, we investigated large-scale gene expression in incision-injured mouse skeletal muscle by DNA microarray using correspondence analysis (CA). Biceps femoris muscle samples were collected 6, 12, and 24 hours after injury, and RNA was extracted and prepared for microarray analysis. On a 2-dimensional plot by CA, the genes (row score coordinate) located farther from each time series (column score coordinate) had more upregulation at particular times. Each gene was situated in 6 subdivided triangular areas according to the magnitude of the relationship of the fold change (FC) value at each time point compared to the control. In each area, genes for which the ratios of two particular FC values were close to 1 were distributed along the two border lines. There was a tendency for genes whose FC values were almost equal to be distributed near the intersection of these 6 areas. Therefore, the gene marker candidates for estimation of the timing of injuries were detectable according to the location on the CA plot. Moreover, gene sets created by a specific gene and its surrounding genes were composed of genes that showed similar or identical fluctuation patterns to the specific gene. In various analyses on these sets, significant gene ontology term and pathway activity may reflect changes in specific genes. In conclusion, analyses of gene sets based on CA plots is effective for investigation of the time-dependent fluctuation in gene expression after injury.
Collapse
|
66
|
Dorschner RA, Lee J, Cohen O, Costantini T, Baird A, Eliceiri BP. ECRG4 regulates neutrophil recruitment and CD44 expression during the inflammatory response to injury. SCIENCE ADVANCES 2020; 6:eaay0518. [PMID: 32195341 PMCID: PMC7065879 DOI: 10.1126/sciadv.aay0518] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/16/2019] [Indexed: 05/15/2023]
Abstract
The complex molecular microenvironment of the wound bed regulates the duration and degree of inflammation in the wound repair process, while its dysregulation leads to impaired healing. Understanding factors controlling this response provides therapeutic targets for inflammatory disease. Esophageal cancer-related gene 4 (ECRG4) is a candidate chemokine that is highly expressed on leukocytes. We used ECRG4 knockout (KO) mice to establish that the absence of ECRG4 leads to defective neutrophil recruitment with a delay in wound healing. An in vitro human promyelocyte model identified an ECRG4-mediated suppression of the hyaluronic acid receptor, CD44, a key receptor mediating inflammation resolution. In ECRG4 KO mouse leukocytes, there was an increase in CD44 expression, consistent with a model in which ECRG4 negatively regulates CD44 levels. Therefore, we propose a previously unidentified mechanism in which ECRG4 regulates early neutrophil recruitment and subsequent CD44-mediated resolution of inflammation.
Collapse
Affiliation(s)
- Robert A. Dorschner
- Department of Dermatology, University of California, San Diego, San Diego, CA, USA
| | - Jisook Lee
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | - Olga Cohen
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | - Todd Costantini
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | - Andrew Baird
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| | - Brian P. Eliceiri
- Division of Trauma, Surgical Critical Care and Burn, Department of Surgery, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
67
|
Site-Specific Expression Pattern of PIWI-Interacting RNA in Skin and Oral Mucosal Wound Healing. Int J Mol Sci 2020; 21:ijms21020521. [PMID: 31947648 PMCID: PMC7013508 DOI: 10.3390/ijms21020521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/11/2020] [Indexed: 12/24/2022] Open
Abstract
The oral mucosa exhibits exceptional healing capability when compared to skin. Recent studies suggest that intrinsic differences in coding genes and regulatory small non-coding RNA (sncRNA) genes (e.g., microRNAs) may underlie the exceptional healing that occurs in the oral mucosa. Here, we investigate the role of a novel class of sncRNA-Piwi-interacting RNA (piRNA)-in the tissue-specific differential response to injury. An abundance of piRNAs was detected in both skin and oral mucosal epithelium during wound healing. The expression of PIWI genes (the obligate binding partners of piRNAs) was also detected in skin and oral wound healing. This data suggested that PIWI-piRNA machinery may serve an unknown function in the highly orchestrated wound healing process. Furthermore, unique tissue-specific piRNA profiles were obtained in the skin and oral mucosal epithelium, and substantially more changes in piRNA expression were observed during skin wound healing than oral mucosal wound healing. Thus, we present the first clue suggesting a role of piRNA in wound healing, and provide the first site-specific piRNA profile of skin and oral mucosal wound healing. These results serve as a foundation for the future investigation of the functional contribution(s) of piRNA in wound repair and tissue regeneration.
Collapse
|
68
|
Gawriluk TR, Simkin J, Hacker CK, Kimani JM, Kiama SG, Ezenwa VO, Seifert AW. Complex Tissue Regeneration in Mammals Is Associated With Reduced Inflammatory Cytokines and an Influx of T Cells. Front Immunol 2020. [PMID: 32849592 DOI: 10.3389/fimmu.2020.01695/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
While mammals tend to repair injuries, other adult vertebrates like salamanders and fish regenerate damaged tissue. One prominent hypothesis offered to explain an inability to regenerate complex tissue in mammals is a bias during healing toward strong adaptive immunity and inflammatory responses. Here we directly test this hypothesis by characterizing part of the immune response during regeneration in spiny mice (Acomys cahirinus and Acomys percivali) vs. fibrotic repair in Mus musculus. By directly quantifying cytokines during tissue healing, we found that fibrotic repair was associated with a greater release of pro-inflammatory cytokines (i.e., IL-6, CCL2, and CXCL1) during acute inflammation in the wound microenvironment. However, reducing inflammation via COX-2 inhibition was not sufficient to reduce fibrosis or induce a regenerative response, suggesting that inflammatory strength does not control how an injury heals. Although regeneration was associated with lower concentrations of many inflammatory markers, we measured a comparatively larger influx of T cells into regenerating ear tissue and detected a local increase in the T cell associated cytokines IL-12 and IL-17 during the proliferative phase of regeneration. Taken together, our data demonstrate that a strong adaptive immune response is not antagonistic to regeneration and that other mechanisms likely explain the distribution of regenerative ability in vertebrates.
Collapse
Affiliation(s)
- Thomas R Gawriluk
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - Corin K Hacker
- Department of Biology, University of Kentucky, Lexington, KY, United States
| | - John M Kimani
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Stephen G Kiama
- Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Vanessa O Ezenwa
- Odum School of Ecology, University of Georgia, Athens, GA, United States.,Department of Infectious Disease, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States.,Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
69
|
Uttagomol J, Ahmad US, Rehman A, Huang Y, Laly AC, Kang A, Soetaert J, Chance R, Teh MT, Connelly JT, Wan H. Evidence for the Desmosomal Cadherin Desmoglein-3 in Regulating YAP and Phospho-YAP in Keratinocyte Responses to Mechanical Forces. Int J Mol Sci 2019; 20:ijms20246221. [PMID: 31835537 PMCID: PMC6940936 DOI: 10.3390/ijms20246221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Desmoglein 3 (Dsg3) plays a crucial role in cell-cell adhesion and tissue integrity. Increasing evidence suggests that Dsg3 acts as a regulator of cellular mechanotransduction, but little is known about its direct role in mechanical force transmission. The present study investigated the impact of cyclic strain and substrate stiffness on Dsg3 expression and its role in mechanotransduction in keratinocytes. A direct comparison was made with E-cadherin, a well-characterized mechanosensor. Exposure of oral and skin keratinocytes to equiaxial cyclic strain promoted changes in the expression and localization of junction assembly proteins. The knockdown of Dsg3 by siRNA blocked strain-induced junctional remodeling of E-cadherin and Myosin IIa. Importantly, the study demonstrated that Dsg3 regulates the expression and localization of yes-associated protein (YAP), a mechanosensory, and an effector of the Hippo pathway. Furthermore, we showed that Dsg3 formed a complex with phospho-YAP and sequestered it to the plasma membrane, while Dsg3 depletion had an impact on both YAP and phospho-YAP in their response to mechanical forces, increasing the sensitivity of keratinocytes to the strain or substrate rigidity-induced nuclear relocation of YAP and phospho-YAP. Plakophilin 1 (PKP1) seemed to be crucial in recruiting the complex containing Dsg3/phospho-YAP to the cell surface since its silencing affected Dsg3 junctional assembly with concomitant loss of phospho-YAP at the cell periphery. Finally, we demonstrated that this Dsg3/YAP pathway has an influence on the expression of YAP1 target genes and cell proliferation. Together, these findings provide evidence of a novel role for Dsg3 in keratinocyte mechanotransduction.
Collapse
Affiliation(s)
- Jutamas Uttagomol
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Ambreen Rehman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Yunying Huang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Ana C. Laly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.C.L.); (J.S.); (J.T.C.)
| | - Angray Kang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Jan Soetaert
- Centre for Cell Biology and Cutaneous Research, Blizard Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.C.L.); (J.S.); (J.T.C.)
| | - Randy Chance
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
| | - John T. Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute; Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (A.C.L.); (J.S.); (J.T.C.)
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (J.U.); (U.S.A.); (A.R.); (Y.H.); (A.K.); (R.C.); (M.-T.T.)
- Correspondence: ; Tel.: +(44)-020-7882-7139; Fax: +(44)-020-7882-7137
| |
Collapse
|
70
|
Khodayari Moez E, Hajihosseini M, Andrews JL, Dinu I. Longitudinal linear combination test for gene set analysis. BMC Bioinformatics 2019; 20:650. [PMID: 31822265 PMCID: PMC6902471 DOI: 10.1186/s12859-019-3221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/13/2019] [Indexed: 11/12/2022] Open
Abstract
Background Although microarray studies have greatly contributed to recent genetic advances, lack of replication has been a continuing concern in this area. Complex study designs have the potential to address this concern, though they remain undervalued by investigators due to the lack of proper analysis methods. The primary challenge in the analysis of complex microarray study data is handling the correlation structure within data while also dealing with the combination of large number of genetic measurements and small number of subjects that are ubiquitous even in standard microarray studies. Motivated by the lack of available methods for analysis of repeatedly measured phenotypic or transcriptomic data, herein we develop a longitudinal linear combination test (LLCT). Results LLCT is a two-step method to analyze multiple longitudinal phenotypes when there is high dimensionality in response and/or explanatory variables. Alternating between calculating within-subjects and between-subjects variations in two steps, LLCT examines if the maximum possible correlation between a linear combination of the time trends and a linear combination of the predictors given by the gene expressions is statistically significant. A generalization of this method can handle family-based study designs when the subjects are not independent. This method is also applicable to time-course microarray, with the ability to identify gene sets that exhibit significantly different expression patterns over time. Based on the results from a simulation study, LLCT outperformed its alternative: pathway analysis via regression. LLCT was shown to be very powerful in the analysis of large gene sets even when the sample size is small. Conclusions This self-contained pathway analysis method is applicable to a wide range of longitudinal genomics, proteomics, metabolomics (OMICS) data, allows adjusting for potentially time-dependent covariates and works well with unbalanced and incomplete data. An important potential application of this method could be time-course linkage of OMICS, an attractive possibility for future genetic researchers. Availability: R package of LLCT is available at: https://github.com/its-likeli-jeff/LLCT
Collapse
|
71
|
Iglesias-Bartolome R, Uchiyama A, Molinolo AA, Abusleme L, Brooks SR, Callejas-Valera JL, Edwards D, Doci C, Asselin-Labat ML, Onaitis MW, Moutsopoulos NM, Gutkind JS, Morasso MI. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci Transl Med 2019; 10:10/451/eaap8798. [PMID: 30045979 DOI: 10.1126/scitranslmed.aap8798] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/13/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022]
Abstract
Oral mucosal wound healing has long been regarded as an ideal system of wound resolution. However, the intrinsic characteristics that mediate optimal healing at mucosal surfaces are poorly understood, particularly in humans. We present a unique comparative analysis between human oral and cutaneous wound healing using paired and sequential biopsies during the repair process. Using molecular profiling, we determined that wound-activated transcriptional networks are present at basal state in the oral mucosa, priming the epithelium for wound repair. We show that oral mucosal wound-related networks control epithelial cell differentiation and regulate inflammatory responses, highlighting fundamental global mechanisms of repair and inflammatory responses in humans. The paired comparative analysis allowed for the identification of differentially expressed SOX2 (sex-determining region Y-box 2) and PITX1 (paired-like homeodomain 1) transcriptional regulators in oral versus skin keratinocytes, conferring a unique identity to oral keratinocytes. We show that SOX2 and PITX1 transcriptional function has the potential to reprogram skin keratinocytes to increase cell migration and improve wound resolution in vivo. Our data provide insights into therapeutic targeting of chronic and nonhealing wounds based on greater understanding of the biology of healing in human mucosal and cutaneous environments.
Collapse
Affiliation(s)
- Ramiro Iglesias-Bartolome
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.,Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Akihiko Uchiyama
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Alfredo A Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Loreto Abusleme
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA
| | - Juan Luis Callejas-Valera
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dean Edwards
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - Colleen Doci
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | | | - Mark W Onaitis
- Moores Cancer Center, University California, San Diego, La Jolla, CA 92093, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA
| | - J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA. .,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
72
|
Miao Q, Hill MC, Chen F, Mo Q, Ku AT, Ramos C, Sock E, Lefebvre V, Nguyen H. SOX11 and SOX4 drive the reactivation of an embryonic gene program during murine wound repair. Nat Commun 2019; 10:4042. [PMID: 31492871 PMCID: PMC6731344 DOI: 10.1038/s41467-019-11880-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 08/08/2019] [Indexed: 01/08/2023] Open
Abstract
Tissue injury induces changes in cellular identity, but the underlying molecular mechanisms remain obscure. Here, we show that upon damage in a mouse model, epidermal cells at the wound edge convert to an embryonic-like state, altering particularly the cytoskeletal/extracellular matrix (ECM) components and differentiation program. We show that SOX11 and its closest relative SOX4 dictate embryonic epidermal state, regulating genes involved in epidermal development as well as cytoskeletal/ECM organization. Correspondingly, postnatal induction of SOX11 represses epidermal terminal differentiation while deficiency of Sox11 and Sox4 accelerates differentiation and dramatically impairs cell motility and re-epithelialization. Amongst the embryonic genes reactivated at the wound edge, we identify fascin actin-bundling protein 1 (FSCN1) as a critical direct target of SOX11 and SOX4 regulating cell migration. Our study identifies the reactivated embryonic gene program during wound repair and demonstrates that SOX11 and SOX4 play a central role in this process.
Collapse
Affiliation(s)
- Qi Miao
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
| | - Matthew C Hill
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Fengju Chen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Department of Biostatistics & Bioinformatics, H. Lee Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Amy T Ku
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Carlos Ramos
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, 91054, Erlangen, Germany
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopedic Surgery, Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Hoang Nguyen
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, BCM 505, Houston, TX, 77030, USA.
| |
Collapse
|
73
|
Early Wound Healing Score (EHS): An Intra- and Inter-Examiner Reliability Study. Dent J (Basel) 2019; 7:dj7030086. [PMID: 31480586 PMCID: PMC6784738 DOI: 10.3390/dj7030086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/15/2019] [Accepted: 08/29/2019] [Indexed: 01/26/2023] Open
Abstract
The early wound healing score (EHS) was introduced to assess early wound healing of periodontal soft tissues after surgical incision. The purpose of this study is to evaluate the intra- and inter-examiner reliability of the EHS. Six examiners with different levels of training and clinical focus were enrolled. Each examiner was trained on the use of the EHS before starting the study. Thereafter, 63 photographs of three different types of surgical incisions taken at day 1, 3 or 7 post-operatively were independently evaluated according to the proposed assessment method. A two-way random intra-class correlation coefficient (ICC) and 95% confidence interval (CI) were used to analyze the intra- and inter-examiner reliability for the EHS. The inter-examiner reliability for the EHS was 0.828 (95% CI: 0.767–0.881). The intra-examiner reliability ranged between 0.826 (95% CI: 0.728–0.891) and 0.915 (95% CI: 0.856–0.950). The results therefore show an “almost perfect agreement” for intra- and inter-examiner reliability. The EHS provides a system for reproducible repeated ratings for the early healing assessment of incisions of periodontal soft tissues. Even when used by examiners with different clinical experience and specialty, it shows a high correlation coefficient.
Collapse
|
74
|
Chen L, Simões A, Chen Z, Zhao Y, Wu X, Dai Y, DiPietro LA, Zhou X. Overexpression of the Oral Mucosa-Specific microRNA-31 Promotes Skin Wound Closure. Int J Mol Sci 2019; 20:ijms20153679. [PMID: 31357577 PMCID: PMC6696114 DOI: 10.3390/ijms20153679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.
Collapse
Affiliation(s)
- Lin Chen
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alyne Simões
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
- Oral Biology Laboratory, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, 05508-000 São Paulo, SP, Brazil
| | - Zujian Chen
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yan Zhao
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xinming Wu
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Graduate College, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Luisa A DiPietro
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Graduate College, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Xiaofeng Zhou
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Graduate College, University of Illinois at Chicago, Chicago, IL 60607, USA.
- UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
75
|
Ballestas SA, Turner TC, Kamalakar A, Stephenson YC, Willett NJ, Goudy SL, Botchwey EA. Improving hard palate wound healing using immune modulatory autotherapies. Acta Biomater 2019; 91:209-219. [PMID: 31029828 DOI: 10.1016/j.actbio.2019.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023]
Abstract
Oral cavity wound healing occurs in an environment that sustains ongoing physical trauma and is rich in bacteria. Despite this, injuries to the mucosal surface often heal faster than cutaneous wounds and leave less noticeable scars. Patients undergoing cleft palate repair have a high degree of wound healing complications with up to 60% experiencing oronasal fistula (ONF) formation. In this study, we developed a mouse model of hard palate mucosal injury, to study the endogenous injury response during oral cavity wound healing and ONF formation. Immunophenotyping of the inflammatory infiltrate following hard palate injury showed delayed recruitment of non-classical LY6Clo monocytes and failure to resolve inflammation. To induce a pro-regenerative inflammatory response, delivery of FTY720 nanofiber scaffolds following hard palate mucosal injury promoted complete ONF healing and was associated with increased LY6Clo monocytes and pro-regenerative M2 macrophages. Alteration in gene expression with FTY720 delivery included increased Sox2 expression, reduction in pro-inflammatory IL-1, IL-4 and IL-6 and increased pro-regenerative IL-10 expression. Increased keratinocyte proliferation during ONF healing was observed at day 5 following FTY720 delivery. Our results show that local delivery of FTY720 from nanofiber scaffolds in the oral cavity enhances healing of ONF, occurring through multiple immunomodulatory mechanisms. STATEMENT OF SIGNIFICANCE: Wound healing complications occur in up to 60% of patients undergoing cleft palate repair where an oronasal fistula (ONF) develops, allowing food and air to escape from the nose. Using a mouse model of palate mucosal injury, we explored the role of immune cell infiltration during ONF formation. Delivery of FTY720, an immunomodulatory drug, using a nanofiber scaffold into the ONF was able to attract anti-inflammatory immune cells following injury that enhanced the reepithelization process. ONF healing at day 5 following FTY720 delivery was associated with altered inflammatory and epithelial transcriptional gene expression, increased anti-inflammatory immune cell infiltration, and increased proliferation. These findings demonstrate the potential efficacy of immunoregenerative therapies to improve oral cavity wound healing.
Collapse
|
76
|
Pratsinis H, Mavrogonatou E, Kletsas D. Scarless wound healing: From development to senescence. Adv Drug Deliv Rev 2019; 146:325-343. [PMID: 29654790 DOI: 10.1016/j.addr.2018.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/21/2022]
Abstract
An essential element of tissue homeostasis is the response to injuries, cutaneous wound healing being the most studied example. In the adults, wound healing aims at quickly restoring the barrier function of the skin, leading however to scar, a dysfunctional fibrotic tissue. On the other hand, in fetuses a scarless tissue regeneration takes place. During ageing, the wound healing capacity declines; however, in the absence of comorbidities a higher quality in tissue repair is observed. Senescent cells have been found to accumulate in chronic unhealed wounds, but more recent reports indicate that their transient presence may be beneficial for tissue repair. In this review data on skin wound healing and scarring are presented, covering the whole spectrum from early embryonic development to adulthood, and furthermore until ageing of the organism.
Collapse
|
77
|
Simões A, Chen L, Chen Z, Zhao Y, Gao S, Marucha PT, Dai Y, DiPietro LA, Zhou X. Differential microRNA profile underlies the divergent healing responses in skin and oral mucosal wounds. Sci Rep 2019; 9:7160. [PMID: 31073224 PMCID: PMC6509259 DOI: 10.1038/s41598-019-43682-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
Oral mucosal wounds heal faster than skin wounds, yet the role of microRNAs in this differential healing has never been examined. To delineate the role of microRNAs in this site-specific injury response, we first compared the microRNAome of uninjured skin and oral mucosa in mice. A total of 53 tissue-specific microRNAs for skin and oral mucosa epithelium were identified. The most striking difference was the high abundance of miR-10a/b in skin (accounting for 21.10% of the skin microRNAome) as compared to their low expression in oral mucosa (2.87%). We further examined the dynamic changes of microRNAome throughout the time course of skin and oral mucosal wound healing. More differentially expressed microRNAs were identified in skin wounds than oral wounds (200 and 33, respectively). More specifically, miR-10a/b was significantly down-regulated in skin but not oral wounds. In contrast, up-regulation of miR-21 was observed in both skin and oral wounds. The therapeutic potential of miR-10b and miR-21 in accelerating wound closure was demonstrated in in vitro assays and in a murine skin wound model. Thus, we provided the first site-specific microRNA profile of skin and oral mucosal wound healing, and demonstrate the feasibility of a microRNA-based therapy for promoting wound closure.
Collapse
Affiliation(s)
- Alyne Simões
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Oral Biology Laboratory, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Lin Chen
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Zujian Chen
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Zhao
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shang Gao
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Phillip T Marucha
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,College of Dentistry, Oregon Health and Sciences University, Portland, OR, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Luisa A DiPietro
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Graduate College, University of Illinois at Chicago, Chicago, IL, USA.
| | - Xiaofeng Zhou
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Graduate College, University of Illinois at Chicago, Chicago, IL, USA. .,UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
78
|
Chen L, Wang J, Li S, Yu Z, Liu B, Song B, Su Y. The clinical dynamic changes of macrophage phenotype and function in different stages of human wound healing and hypertrophic scar formation. Int Wound J 2019; 16:360-369. [PMID: 30440110 PMCID: PMC7948805 DOI: 10.1111/iwj.13041] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 02/02/2023] Open
Abstract
The pathogenesis of hypertrophic scar (HS) is still poorly understood. Macrophages, especially the polarisation of that to M1 or M2, play a pivotal role in control of the degree of scar formation. Profiling of macrophage phenotypes in human specimens during long-term period of wound healing and HS formation may provide valuable clinical evidence for understanding the pathology of human scars. Human wound and HS specimens were collected, the macrophage phenotype was identified by immunofluorescence, and biomarkers and cytokines associated with M1 and M2 macrophages were detected by RT-PCR. The correlation between the macrophage phenotype and HS characteristics was analysed by linear regression analyses. We found excessive and persistent infiltration by M1 macrophages around the blood vessels in the superficial layer of the dermis at early wound tissues, whereas M2 macrophages predominated in later wound tissues and the proliferative phase of HS and were scattered throughout the dermis. The density of M1 macrophages was positively correlated with mRNA expression levels of tumour necrosis factor-alpha (TNF-α) and IL-6. The density of M2 macrophages was positively correlated with ARG1 and negatively correlated with the duration of HS. The sequential infiltration by M1 macrophage and M2 macrophages in human wound and HS tissues was confirmed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Jianzhang Wang
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Shengxu Li
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhou Yu
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Bei Liu
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Baoqiang Song
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Yingjun Su
- Department of Plastic and Reconstructive Surgery, Xijing HospitalFourth Military Medical UniversityXi'anChina
| |
Collapse
|
79
|
desJardins-Park HE, Mascharak S, Chinta MS, Wan DC, Longaker MT. The Spectrum of Scarring in Craniofacial Wound Repair. Front Physiol 2019; 10:322. [PMID: 30984020 PMCID: PMC6450464 DOI: 10.3389/fphys.2019.00322] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Fibrosis is intimately linked to wound healing and is one of the largest causes of wound-related morbidity. While scar formation is the normal and inevitable outcome of adult mammalian cutaneous wound healing, scarring varies widely between different anatomical sites. The spectrum of craniofacial wound healing spans a particularly diverse range of outcomes. While most craniofacial wounds heal by scarring, which can be functionally and aesthetically devastating, healing of the oral mucosa represents a rare example of nearly scarless postnatal healing in humans. In this review, we describe the typical wound healing process in both skin and the oral cavity. We present clinical correlates and current therapies and discuss the current state of research into mechanisms of scarless healing, toward the ultimate goal of achieving scarless adult skin healing.
Collapse
Affiliation(s)
- Heather E. desJardins-Park
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Malini S. Chinta
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
80
|
Gao X, Petricoin EF, Ward KR, Goldberg SR, Duane TM, Bonchev D, Arodz T, Diegelmann RF. Network proteomics of human dermal wound healing. Physiol Meas 2018; 39:124002. [PMID: 30524050 DOI: 10.1088/1361-6579/aaee19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The healing of wounds is critical in protecting the human body against environmental factors. The mechanisms involving protein expression during this complex physiological process have not been fully elucidated. APPROACH Here, we use reverse-phase protein microarrays (RPPA) involving 94 phosphoproteins to study tissue samples from tubes implanted in healing dermal wounds in seven human subjects tracked over two weeks. We compare the proteomic profiles to proteomes of controls obtained from skin biopsies from the same subjects. MAIN RESULTS Compared to previous proteomic studies of wound healing, our approach focuses on wound tissue instead of wound fluid, and has the sensitivity to go beyond measuring only highly abundant proteins. To study the temporal dynamics of networks involved in wound healing, we applied two network analysis methods that integrate the experimental results with prior knowledge about protein-protein physical and regulatory interactions, as well as higher-level biological processes and associated pathways. SIGNIFICANCE We uncovered densely connected networks of proteins that are up- or down-regulated during human wound healing, as well as their relationships to microRNAs and to proteins outside of our set of targets that we measured with proteomic microarrays.
Collapse
Affiliation(s)
- Xi Gao
- Department of Computer Science, School of Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Shi J, Barakat M, Chen D, Chen L. Bicellular Tight Junctions and Wound Healing. Int J Mol Sci 2018; 19:ijms19123862. [PMID: 30518037 PMCID: PMC6321209 DOI: 10.3390/ijms19123862] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Bicellular tight junctions (TJs) are intercellular junctions comprised of a variety of transmembrane proteins including occludin, claudins, and junctional adhesion molecules (JAMs) as well as intracellular scaffold proteins such as zonula occludens (ZOs). TJs are functional, intercellular structures that form a barrier between adjacent cells, which constantly seals and unseals to control the paracellular passage of molecules. They are primarily present in the epithelial and endothelial cells of all tissues and organs. In addition to their well-recognized roles in maintaining cell polarity and barrier functions, TJs are important regulators of signal transduction, which modulates cell proliferation, migration, and differentiation, as well as some components of the immune response and homeostasis. A vast breadth of research data is available on TJs, but little has been done to decipher their specific roles in wound healing, despite their primary distribution in epithelial and endothelial cells, which are essential contributors to the wound healing process. Some data exists to indicate that a better understanding of the functions and significance of TJs in healing wounds may prove crucial for future improvements in wound healing research and therapy. Specifically, recent studies demonstrate that occludin and claudin-1, which are two TJ component proteins, are present in migrating epithelial cells at the wound edge but are absent in chronic wounds. This indicates that functional TJs may be critical for effective wound healing. A tremendous amount of work is needed to investigate their roles in barrier function, re-epithelialization, angiogenesis, scar formation, and in the interactions between epithelial cells, endothelial cells, and immune cells both in the acute wound healing process and in non-healing wounds. A more thorough understanding of TJs in wound healing may shed new light on potential research targets and reveal novel strategies to enhance tissue regeneration and improve wound repair.
Collapse
Affiliation(s)
- Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - May Barakat
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| | - Dandan Chen
- Colgate-Palmolive Company, Piscataway, NJ 08855, USA.
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina Street, Chicago, IL 60612, USA.
| |
Collapse
|
82
|
Du H, Zhou Y, Suo Y, Liang X, Chai B, Duan R, Huang X, Li Q. CCN1 accelerates re-epithelialization by promoting keratinocyte migration and proliferation during cutaneous wound healing. Biochem Biophys Res Commun 2018; 505:966-972. [PMID: 30361094 DOI: 10.1016/j.bbrc.2018.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Re-epithelialization is an essential part of wound healing and has a prominent influence on the prognosis. CCN family member 1 (CCN1 or Cysteine-rich 61, CYR61), a matricellular protein, has a potential role in the wound healing process. However, its role in re-epithelialization remains unclear. The aim of this study was to determine the expression of CCN1 in the epidermis and its effect on keratinocytes during re-epithelialization. CCN1 expression in the wounded skin was analyzed using microarray data from GEO database and detected by immunofluorescence. The results showed upregulated CCN1 during the early stages of wound healing. Human primary keratinocytes were treated with recombinant human CCN1. The results showed that CCN1 promoted keratinocyte migration and proliferation. Moreover, a full-thickness mouse skin wound model and a superficial second-degree burn mouse model treated intracutaneously with CCN1 were used for in vivo studies. Topical treatment with CCN1 protein accelerated wound closure and re-epithelialization. Additionally, longer newly-formed epithelium tongue and elevated expression of PCNA and Ki67 were detected in the CCN1-treated group 4 days post-burn. These results indicate that CCN1 accelerates re-epithelialization by promoting keratinocyte migration and proliferation, and may serve as a novel target to promote re-epithelialization.
Collapse
Affiliation(s)
- Hengyu Du
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Yiwen Zhou
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Yingjun Suo
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Xiao Liang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Bangda Chai
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Ran Duan
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China
| | - Xiaolu Huang
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, PR China.
| |
Collapse
|
83
|
Napavichayanun S, Ampawong S, Harnsilpong T, Angspatt A, Aramwit P. Inflammatory reaction, clinical efficacy, and safety of bacterial cellulose wound dressing containing silk sericin and polyhexamethylene biguanide for wound treatment. Arch Dermatol Res 2018; 310:795-805. [PMID: 30302557 DOI: 10.1007/s00403-018-1871-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 11/24/2022]
Abstract
Bacterial cellulose wound dressings containing silk sericin and PHMB (BCSP) were developed in our previous studies. It had good physical properties, efficacy, and safety. For further use as a medical material, this dressing was investigated for its efficacy and safety in split-thickness skin graft (STSG) donor-site wound treatment compared to Bactigras® (control). Moreover, the inflammatory responses to both dressings were also deeply investigated. For in vivo study, expressions of anti-inflammatory cytokines were intensely considered in the tissue interfacing area. The result showed that IL-4 and TGF-β from BCSP-treated tissue had advantages over Bactigras®-treated tissue at 14 and 21 days post-implantation. For clinical study, a single-blinded, randomized controlled study was generated. The half of STSG donor site wound was randomly assigned to cover with BCSP or Bactigras®. Twenty-one patients with 32 STSG donor site wounds were enrolled. The results showed that wound-healing time was not significantly different in both dressings. However, wound quality of BCSP was better than Bactigras® at healing time and after 1 month (p < 0.05). The pain scores of BCSP-treated wound were statistically significant lower than Bactigras®-treated wound (p < 0.05). No sign of infection or adverse event was observed after treatment with both dressings. In conclusion, the inflammation responses of the dressing were clearly clarified. The advantages of BCSP were wound-quality improvement, pain reduction, and infection protection without adverse events. It was fit to be used as the alternative treatment of STSG donor site wound.
Collapse
Affiliation(s)
- Supamas Napavichayanun
- Bioactive Resources for Innovative Clinical Applications Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok, 10330, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tavornchai Harnsilpong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok, 10330, Thailand
| | - Apichai Angspatt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok, 10330, Thailand.
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Chulalongkorn University, Bangkok, Thailand. .,Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, PhayaThai Road, Phatumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
84
|
Muliaditan T, Caron J, Okesola M, Opzoomer JW, Kosti P, Georgouli M, Gordon P, Lall S, Kuzeva DM, Pedro L, Shields JD, Gillett CE, Diebold SS, Sanz-Moreno V, Ng T, Hoste E, Arnold JN. Macrophages are exploited from an innate wound healing response to facilitate cancer metastasis. Nat Commun 2018; 9:2951. [PMID: 30054470 PMCID: PMC6063977 DOI: 10.1038/s41467-018-05346-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tumour-associated macrophages (TAMs) play an important role in tumour progression, which is facilitated by their ability to respond to environmental cues. Here we report, using murine models of breast cancer, that TAMs expressing fibroblast activation protein alpha (FAP) and haem oxygenase-1 (HO-1), which are also found in human breast cancer, represent a macrophage phenotype similar to that observed during the wound healing response. Importantly, the expression of a wound-like cytokine response within the tumour is clinically associated with poor prognosis in a variety of cancers. We show that co-expression of FAP and HO-1 in macrophages results from an innate early regenerative response driven by IL-6, which both directly regulates HO-1 expression and licenses FAP expression in a skin-like collagen-rich environment. We show that tumours can exploit this response to facilitate transendothelial migration and metastatic spread of the disease, which can be pharmacologically targeted using a clinically relevant HO-1 inhibitor.
Collapse
Affiliation(s)
- Tamara Muliaditan
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Jonathan Caron
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Mary Okesola
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - James W Opzoomer
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Paris Kosti
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Mirella Georgouli
- Tumour Plasticity Laboratory, Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Peter Gordon
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Sharanpreet Lall
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Desislava M Kuzeva
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Luisa Pedro
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Cambridge, CB2 0XZ, UK
| | - Jacqueline D Shields
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Cambridge, CB2 0XZ, UK
| | - Cheryl E Gillett
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Sandra S Diebold
- National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Victoria Sanz-Moreno
- Tumour Plasticity Laboratory, Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Tony Ng
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK
| | - Esther Hoste
- Unit for Cellular and Molecular Pathophysiology, VIB Center for Inflammation Research, B-9052, Ghent-Zwijnaarde, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, B-9052, Belgium
| | - James N Arnold
- School of Cancer and Pharmaceutical Sciences, King's College London, Faculty of Life Sciences and Medicine, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
85
|
The Mucosal Scarring Index: reliability of a new composite index for assessing scarring following oral surgery. Clin Oral Investig 2018; 23:1209-1215. [DOI: 10.1007/s00784-018-2535-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
|
86
|
CCN4/WISP1 controls cutaneous wound healing by modulating proliferation, migration and ECM expression in dermal fibroblasts via α5β1 and TNFα. Matrix Biol 2018; 68-69:533-546. [PMID: 29330021 DOI: 10.1016/j.matbio.2018.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 02/01/2023]
Abstract
Understanding the mechanisms that control cutaneous wound healing is crucial to successfully manage repair of damaged skin. The goal of the current study was to uncover novel extracellular matrix (ECM) components that control the wound healing process. Full thickness skin defects were created in mice and used to show CCN4 up-regulation during wound-healing as early as 1 day after surgery, suggesting a role in inflammation and subsequent dermal migration and proliferation. To determine how CCN4 could regulate wound healing we used Ccn4-KO mice and showed they had delayed wound closure accompanied by reduced expression of Col1a1 and Fn mRNA. Boyden chamber assays using Ccn4-deficient dermal fibroblasts showed they have reduced migration and proliferation compared to WT counterparts. To confirm CCN4 has a role in proliferation and migration of dermal cells, siRNA knockdown and transduction of CCN4 adenoviral transduction were used and resulted in reduced or enhanced migration of human adult dermal fibroblast (hADF) cells respectively. The induced migration of the dermal fibroblasts by CCN4 appears to work via α5β1 integrin receptors that further stimulates down-stream ERK/JNK signaling. The regulation of CCN4 by TNF-α prompted us look further at their potential relationship. Treatment of hADFs with CCN4 and TNF-α alone or together showed CCN4 counteracted the inhibition of TNF-α on COL1A1 and FN mRNA expression and the stimulation of TNF-α on MMP-1 and MMP3 mRNA expression. CCN4 appeared to counterbalance the effects of TNF-α by inhibiting downstream NF-κB/p-65 signaling. Taken together we show CCN4 stimulates dermal fibroblast cell migration, proliferation and inhibits TNF-α stimulation, all of which could regulate wound healing.
Collapse
|
87
|
Laser Capture Microdissection of Epithelium from a Wound Healing Model for MicroRNA Analysis. Methods Mol Biol 2018; 1733:225-237. [PMID: 29435937 DOI: 10.1007/978-1-4939-7601-0_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
MicroRNAs are ~22 nucleotide-long noncoding RNAs influencing many cellular processes (including wound healing) by their regulatory functions on gene expression. The ability to analyze microRNA in different cells at the wound site is essential for understanding the critical role(s) of microRNA during various phases of wound healing. Laser capture micro-dissection (LCM) is an effective method to distinguish between relevant and non-relevant cells or tissues and enables the researcher to obtain homogeneous, ultra-pure samples from heterogeneous starting material. We present here our protocol for procuring epithelial cells from a mouse wound healing model using a Leica LMD7000 Laser Microdissection system, as well as the RNA isolation and downstream microRNA analysis. Using this method, researchers can selectively and routinely analyze regions of interest down to single cells to obtain results that are relevant, reproducible, and specific.
Collapse
|
88
|
Buskermolen JK, Reijnders CMA, Spiekstra SW, Steinberg T, Kleverlaan CJ, Feilzer AJ, Bakker AD, Gibbs S. Development of a Full-Thickness Human Gingiva Equivalent Constructed from Immortalized Keratinocytes and Fibroblasts. Tissue Eng Part C Methods 2017; 22:781-91. [PMID: 27406216 PMCID: PMC4991602 DOI: 10.1089/ten.tec.2016.0066] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organotypic models make it possible to investigate the unique properties of oral mucosa in vitro. For gingiva, the use of human primary keratinocytes (KC) and fibroblasts (Fib) is limited due to the availability and size of donor biopsies. The use of physiologically relevant immortalized cell lines would solve these problems. The aim of this study was to develop fully differentiated human gingiva equivalents (GE) constructed entirely from cell lines, to compare them with the primary cell counterpart (Prim), and to test relevance in an in vitro wound healing assay. Reconstructed gingiva epithelium on a gingiva fibroblast-populated collagen hydrogel was constructed from cell lines (keratinocytes: TERT or HPV immortalized; fibroblasts: TERT immortalized) and compared to GE-Prim and native gingiva. GE were characterized by immunohistochemical staining for proliferation (Ki67), epithelial differentiation (K10, K13), and basement membrane (collagen type IV and laminin 5). To test functionality of GE-TERT, full-thickness wounds were introduced. Reepithelialization, fibroblast repopulation of hydrogel, metabolic activity (MTT assay), and (pro-)inflammatory cytokine release (enzyme-linked immunosorbent assay) were assessed during wound closure over 7 days. Significant differences in basal KC cytokine secretion (IL-1α, IL-18, and CXCL8) were only observed between KC-Prim and KC-HPV. When Fib-Prim and Fib-TERT were stimulated with TNF-α, no differences were observed regarding cytokine secretion (IL-6, CXCL8, and CCL2). GE-TERT histology, keratin, and basement membrane protein expression very closely represented native gingiva and GE-Prim. In contrast, the epithelium of GE made with HPV-immortalized KC was disorganized, showing suprabasal proliferating cells, limited keratinocyte differentiation, and the absence of basement membrane proteins. When a wound was introduced into the more physiologically relevant GE-TERT model, an immediate inflammatory response (IL-6, CCL2, and CXCL8) was observed followed by complete reepithelialization. Seven days after wounding, tissue integrity, metabolic activity, and cytokine levels had returned to the prewounded state. In conclusion, immortalized human gingiva KC and fibroblasts can be used to make physiologically relevant GE, which resemble either the healthy gingiva or a neoplastic disease model. These organotypic models will provide valuable tools to investigate oral mucosa biology and can also be used as an animal alternative for drug targeting, vaccination studies, microbial biofilm studies, and testing new therapeutics.
Collapse
Affiliation(s)
- Jeroen K Buskermolen
- 1 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands .,2 Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | | | - Sander W Spiekstra
- 3 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| | - Thorsten Steinberg
- 4 Department of Oral Biotechnology, University Medical Center Freiburg , Freiburg, Germany
| | - Cornelis J Kleverlaan
- 2 Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Albert J Feilzer
- 2 Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Astrid D Bakker
- 1 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- 1 Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , MOVE Research Institute Amsterdam, Amsterdam, The Netherlands .,3 Department of Dermatology, VU University Medical Centre , Amsterdam, The Netherlands
| |
Collapse
|
89
|
Roh JL, Lee J, Kim EH, Shin D. Plasticity of oral mucosal cell sheets for accelerated and scarless skin wound healing. Oral Oncol 2017; 75:81-88. [PMID: 29224829 DOI: 10.1016/j.oraloncology.2017.10.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/27/2017] [Accepted: 10/28/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Wound healing is generally faster and associated with less scarring in the oral mucosa than in the skin. Although rarely studied, oral mucosa equivalents may contribute to rapid, scarless cutaneous wound healing. Therefore, we examined the potential utility of our newly developed oral mucosal cell sheet in skin wound healing. MATERIALS AND METHODS Oral mucosa and skin samples were obtained from surgical patients and Sprague-Dawley rats. Keratinocytes and fibroblasts were primarily cultured for in vitro cell expansion. Mucosa and skin equivalents were produced with a mixture of cultured fibroblasts and autologous fibrin from plasma and seeding keratinocytes. Mucosal and skin cell sheets were transplanted in full-thickness excisional wounds of rat skin with control wounds. Gross, histological, and molecular characteristics of wound healing according to different postsurgical days were compared in control and cell sheet-covered wounds. RESULTS Keratinocytes and fibroblasts derived from the oral mucosa were cultured faster than those derived from the skin. The in vitro-engineered oral mucosa and skin equivalents were successfully produced using complete autologous mucosa or skin and plasma fibrin, showing similarity to the histological characteristics of the skin or mucosa. In the in vivo rat model, the oral mucosal and skin cell sheet promoted wound healing with early wound closure and less scarring. The cell sheet-treated wounds showed lower TGF-β1, α-smooth muscle actin, and fibronectin mRNA expression than the control wounds. CONCLUSIONS The oral mucosal cell sheet demonstrated in vivo tissue plasticity through good adaptation to skin wounds, contributing to accelerated and scarless healing.
Collapse
Affiliation(s)
- Jong-Lyel Roh
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Jaewang Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun Hye Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Daiha Shin
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
90
|
Kang S, Kufta K, Sollecito TP, Panchal N. A treatment algorithm for the management of intraoral burns: A narrative review. Burns 2017; 44:1065-1076. [PMID: 29032979 DOI: 10.1016/j.burns.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 11/19/2022]
Abstract
Oral mucosa follows a distinctly different trajectory of wound healing than skin. Although there are contemporary guidelines regarding treatment of burns to the skin, there is no standard of care specific to intraoral burns. This narrative review proposes an evidence-based treatment algorithm for the management of intraoral burns. Data was collated through a comprehensive review of the literature and only included studies that have reported particular success with favorable short- and long-term prognoses. In order to critically appraise the strength of the treatment recommendations, the GRADE criteria was applied to each arm of the algorithm. The algorithm was initially subdivided into the four primary etiologies of intraoral burns - thermogenic, cryogenic, chemical, electrical. Our findings emphasize the importance of conservative modalities of intra-oral burn treatment.
Collapse
Affiliation(s)
- Steve Kang
- University of Pennsylvania School of Dental Medicine, Robert Schattner Center, Oral Surgery Clinic, 240 S. 40th Street, Philadelphia, PA 19104, United States.
| | - Kenneth Kufta
- University of Pennsylvania School of Dental Medicine, Robert Schattner Center, Oral Surgery Clinic, 240 S. 40th Street, Philadelphia, PA 19104, United States; University of Pennsylvania Health System, Perelman Center for Advanced Medicine, South Pavilion, 4th Floor, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Thomas P Sollecito
- University of Pennsylvania School of Dental Medicine, Robert Schattner Center, Oral Surgery Clinic, 240 S. 40th Street, Philadelphia, PA 19104, United States; University of Pennsylvania Health System, Perelman Center for Advanced Medicine, South Pavilion, 4th Floor, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States.
| | - Neeraj Panchal
- University of Pennsylvania School of Dental Medicine, Robert Schattner Center, Oral Surgery Clinic, 240 S. 40th Street, Philadelphia, PA 19104, United States; University of Pennsylvania Health System, Perelman Center for Advanced Medicine, South Pavilion, 4th Floor, 3400 Civic Center Boulevard, Philadelphia, PA 19104, United States; Philadelphia Veterans Affairs Medical Center, University of Pennsylvania Presbyterian Medical Center, 565 Wright Saunders, 51 N. 39th Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
91
|
Chen L, DiPietro LA. Toll-Like Receptor Function in Acute Wounds. Adv Wound Care (New Rochelle) 2017; 6:344-355. [PMID: 29062591 DOI: 10.1089/wound.2017.0734] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 02/07/2023] Open
Abstract
Significance: Inflammation is an integral part of immune response and supports optimal wound healing in adults. Inflammatory cells such as neutrophils, macrophages, dendritic cells, lymphocytes, and mast cells produce important cytokines, chemokines, and growth factors. These immune cells interact with keratinocytes, fibroblasts, and endothelial cells (ECs), as well as the extracellular matrix within a complicated network that promotes and regulates wound healing. Aberrant and persistent inflammation may result in delayed wound healing, scar formation, or chronic wounds. Targeting the molecules involved in the inflammatory response may have great potential therapeutic value. Recent Advances and Critical Issues: Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated molecular patterns from microbes or danger-associated molecular patterns from damaged cells. The discovery of TLRs sheds new light on the mechanism by which the inflammatory or innate immune response is initiated in wound healing. Convincing evidence now shows that multiple types of cells, including infiltrating or resident inflammatory cells, keratinocytes, fibroblasts, and ECs, express specific types of TLRs. Experimental reduction of certain TLRs or treatment of wounds with TLR ligands has been shown to affect wound healing. A better understanding of the involvement of TLRs in the innate immune response during skin wound healing may suggest novel strategies to improve the quality of tissue repair. Future Directions: Despite the indisputable role of TLRs in regulating the immune response in acute wound healing, the functions of TLRs that are relevant to human wound healing and chronic wounds are poorly understood.
Collapse
Affiliation(s)
- Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
92
|
Manils J, Fischer H, Climent J, Casas E, García-Martínez C, Bas J, Sukseree S, Vavouri T, Ciruela F, de Anta JM, Tschachler E, Eckhart L, Soler C. Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying keratinocytes without activating inflammatory responses. Sci Rep 2017; 7:11902. [PMID: 28928425 PMCID: PMC5605544 DOI: 10.1038/s41598-017-12308-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/06/2017] [Indexed: 01/19/2023] Open
Abstract
The cornification of keratinocytes on the surface of skin and oral epithelia is associated with the degradation of nuclear DNA. The endonuclease DNase1L2 and the exonuclease Trex2 are expressed specifically in cornifying keratinocytes. Deletion of DNase1L2 causes retention of nuclear DNA in the tongue epithelium but not in the skin. Here we report that lack of Trex2 results in the accumulation of DNA fragments in the cytoplasm of cornifying lingual keratinocytes and co-deletion of DNase1L2 and Trex2 causes massive accumulation of DNA fragments throughout the cornified layers of the tongue epithelium. By contrast, cornification-associated DNA breakdown was not compromised in the epidermis. Aberrant retention of DNA in the tongue epithelium was associated neither with enhanced expression of DNA-driven response genes, such as Ifnb, Irf7 and Cxcl10, nor with inflammation. Of note, the expression of Tlr9, Aim2 and Tmem173, key DNA sensor genes, was markedly lower in keratinocytes and keratinocyte-built tissues than in macrophages and immune tissues, and DNA-driven response genes were not induced by introduction of DNA in keratinocytes. Altogether, our results indicate that DNase1L2 and Trex2 cooperate in the breakdown and degradation of DNA during cornification of lingual keratinocytes and aberrant DNA retention is tolerated in the oral epithelium.
Collapse
Affiliation(s)
- Joan Manils
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,The Francis Crick Institute-Mill Hill Laboratory, London, NW7 1AA, United Kingdom
| | - Heinz Fischer
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.,Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, Austria
| | - Joan Climent
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Departament d'Immunologia, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eduard Casas
- Program of Predictive and Personalized Medicine of Cancer (PMPPC) - Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain
| | - Celia García-Martínez
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Bas
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Departament d'Immunologia, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Supawadee Sukseree
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Tanya Vavouri
- Program of Predictive and Personalized Medicine of Cancer (PMPPC) - Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Francisco Ciruela
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Maria de Anta
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Concepció Soler
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
93
|
Vescarelli E, Pilloni A, Dominici F, Pontecorvi P, Angeloni A, Polimeni A, Ceccarelli S, Marchese C. Autophagy activation is required for myofibroblast differentiation during healing of oral mucosa. J Clin Periodontol 2017. [PMID: 28646601 DOI: 10.1111/jcpe.12767] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIM It is known that periodontal tissues heal faster that skin, and gingiva in particular heal without scar formation. The mechanisms regulating this behaviour are still unclear. The aim of our work was to compare wound healing in oral mucosa and gingiva, investigating the role of α-smooth muscle actin (αSMA)-expressing myofibroblasts and autophagy. MATERIALS AND METHODS Biopsies were obtained from seven patients immediately before and 24 hr after vertical releasing incision in oral mucosa and attached gingiva. Both whole biopsies and primary cultures of fibroblasts derived from the same tissues were subjected to immunofluorescence, Western blot and quantitative real-time PCR analyses. RESULTS We demonstrated that in oral mucosa, characterized by partially fibrotic outcome during repair, the activation of autophagy determined an increase in αSMA and collagen 1a1 production. Conversely, wound healing did not stimulate autophagy in attached gingiva, and subsequently, no increase in myofibroblast differentiation and collagen deposition could be seen, thus justifying its scarless outcome. CONCLUSIONS The elucidation of the differential regulation of autophagy in periodontal tissues and its correlation with myofibroblast differentiation and fibrotic outcome could allow the identification of new molecules involved in periodontal healing and the development of new surgical approaches for periodontal treatment that could improve the outcome of postoperative wounds.
Collapse
Affiliation(s)
- Enrica Vescarelli
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Andrea Pilloni
- Section of Periodontology, Sapienza University of Rome, Roma, Italy
| | | | - Paola Pontecorvi
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Antonio Angeloni
- Department of Molecular Medicine, Sapienza University of Rome, Roma, Italy
| | | | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Roma, Italy
| |
Collapse
|
94
|
Mah W, Jiang G, Olver D, Gallant-Behm C, Wiebe C, Hart DA, Koivisto L, Larjava H, Häkkinen L. Elevated CD26 Expression by Skin Fibroblasts Distinguishes a Profibrotic Phenotype Involved in Scar Formation Compared to Gingival Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28641076 DOI: 10.1016/j.ajpath.2017.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Compared to skin, wound healing in oral mucosa is faster and produces less scarring, but the mechanisms involved are incompletely understood. Studies in mice have linked high expression of CD26 to a profibrotic fibroblast phenotype, but this has not been tested in models more relevant for humans. We hypothesized that CD26 is highly expressed by human skin fibroblasts (SFBLs), and this associates with a profibrotic phenotype distinct from gingival fibroblasts (GFBLs). We compared CD26 expression in human gingiva and skin and in gingival and hypertrophic-like scar-forming skin wound healing in a pig model, and used three-dimensional cultures of human GFBLs and SFBLs. In both humans and pigs, nonwounded skin contained abundantly CD26-positive fibroblasts, whereas in gingiva they were rare. During skin wound healing, CD26-positive cells accumulated over time and persisted in forming hypertrophic-like scars, whereas few CD26-positive cells were present in the regenerated gingival wounds. Cultured human SFBLs displayed significantly higher levels of CD26 than GFBLs. This was associated with an increased expression of profibrotic genes and transforming growth factor-β signaling in SFBLs. The profibrotic phenotype of SFBLs partially depended on expression of CD26, but was independent of its catalytic activity. Thus, a CD26-positive fibroblast population that is abundant in human skin but not in gingiva may drive the profibrotic response leading to excessive scarring.
Collapse
Affiliation(s)
- Wesley Mah
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guoqiao Jiang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Olver
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Colin Wiebe
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - David A Hart
- Department of Surgery, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Leeni Koivisto
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
95
|
Wang Y, Tatakis DN. Human gingiva transcriptome during wound healing. J Clin Periodontol 2017; 44:394-402. [PMID: 28005267 DOI: 10.1111/jcpe.12669] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To investigate the gene expression profile of human gingiva following surgical wounding. METHODS Ten volunteers had one side of the palate wounded. Five days later, biopsies were harvested from both wounded (healing gingiva) and contra-lateral site (normal gingiva). Tissue samples were processed for gene expression (RNA-Seq, real-time PCR) and immunohistochemistry. Gene set enrichment/pathway analysis was also performed. RESULTS Seven hundred genes were significantly differentially expressed in healing gingiva. Among genes with >twofold change (FC) in expression, 399 genes were up-regulated and 88 down-regulated, several not previously reported expressed in gingiva. Most increased in expression (≥30-FC) were MMP1, CCL18, SPP1, MUC21, CTHRC1, MMP10, and SERPINE1; most decreased (≥7-FC) were COCH, SIAH3, MT4, IGFL3, KY, and SYT16. Real-time PCR confirmed significantly changed mRNA levels for selective genes tested. Gene set enrichment analysis revealed several significantly enriched biological pathways. Immunohistochemistry confirmed protein expression of MUC21, CTHRC1, CTGF, and SYT16 in normal and healing gingiva. CONCLUSIONS This first comprehensive analysis of the human gingival transcriptome during surgical wound healing offers novel insights into the participating molecular and biological mechanisms. The present results could serve as basis for future investigations into gingival wound healing following surgical, traumatic, or other type of injury.
Collapse
Affiliation(s)
- Yun Wang
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Dimitris N Tatakis
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
96
|
Mund SJK. Mandibular degloving injuries in horses: Considerations and treatment. EQUINE VET EDUC 2016. [DOI: 10.1111/eve.12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- S. J. K. Mund
- Large Animal Clinical Sciences and Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon Canada
| |
Collapse
|
97
|
S100A12 Induced in the Epidermis by Reduced Hydration Activates Dermal Fibroblasts and Causes Dermal Fibrosis. J Invest Dermatol 2016; 137:650-659. [PMID: 27840235 DOI: 10.1016/j.jid.2016.10.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/05/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022]
Abstract
Disruption of the barrier function of skin increases transepidermal water loss and up-regulates inflammatory pathways in the epidermis. Consequently, sustained expression of proinflammatory cytokines from the epidermis is associated with dermal scarring. We found increased expression of S100A12 in the epidermis of human hypertrophic and keloid scar. Exposing a stratified keratinocyte culture to a reduced-hydration environment increased the expression and secretion of S100A12 by nearly 70%, which in turn activated dermal fibroblasts in vitro. Direct treatment of fibroblasts with conditioned medium collected from stratified keratinocyte culture under reduced-hydration conditions activated fibroblasts, shown by up-regulation of α-smooth muscle actin, pro-collagen 1, and F-actin expression. However, this fibroblast activation was not found when S100A12 was knocked down by RNA interference in keratinocytes. Pharmacological blockade of S100A12 receptors, RAGE, or TLR4 inhibited S100A12-induced fibroblast activation. Local delivery of S100A12 resulted in a marked hypertrophic scar formation in a validated rabbit hypertrophic scar model compared with saline control. Our findings indicate that S100A12 functions as a proinflammatory cytokine and suggest that S100A12 is a potential therapeutic target for dermal scarring.
Collapse
|
98
|
Pyter LM, Husain Y, Calero H, McKim DB, Lin HY, Godbout JP, Sheridan JF, Engeland CG, Marucha PT. Tumors Alter Inflammation and Impair Dermal Wound Healing in Female Mice. PLoS One 2016; 11:e0161537. [PMID: 27548621 PMCID: PMC4993492 DOI: 10.1371/journal.pone.0161537] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/08/2016] [Indexed: 12/29/2022] Open
Abstract
Tissue repair is an integral component of cancer treatment (e.g., due to surgery, chemotherapy, radiation). Previous work has emphasized the immunosuppressive effects of tumors on adaptive immunity and has shown that surgery incites cancer metastases. However, the extent to which and how tumors may alter the clinically-relevant innate immune process of wound healing remains an untapped potential area of improvement for treatment, quality of life, and ultimately, mortality of cancer patients. In this study, 3.5 mm full-thickness dermal excisional wounds were placed on the dorsum of immunocompetent female mice with and without non-malignant flank AT-84 murine oral squamous cell carcinomas. Wound closure rate, inflammatory cell number and inflammatory signaling in wounds, and circulating myeloid cell concentrations were compared between tumor-bearing and tumor-free mice. Tumors delayed wound closure, suppressed inflammatory signaling, and altered myeloid cell trafficking in wounds. An in vitro scratch “wounding” assay of adult dermal fibroblasts treated with tumor cell-conditioned media supported the in vivo findings. This study demonstrates that tumors are sufficient to disrupt fundamental and clinically-relevant innate immune functions. The understanding of these underlying mechanisms provides potential for therapeutic interventions capable of improving the treatment of cancer while reducing morbidities and mortality.
Collapse
Affiliation(s)
- Leah M. Pyter
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States of America
- Department of Neuroscience, Ohio State University, Columbus, OH, United States of America
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States of America
- * E-mail:
| | - Yasmin Husain
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Humberto Calero
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Daniel B. McKim
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Hsin-Yun Lin
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, United States of America
| | - Jonathan P. Godbout
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Department of Neuroscience, Ohio State University, Columbus, OH, United States of America
| | - John F. Sheridan
- Institute for Behavioral Medicine Research, Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- Deparment of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, United States of America
| | - Christopher G. Engeland
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Biobehavioral Health and College of Nursing, Pennsylvania State University, University Park, PA, United States of America
| | - Phillip T. Marucha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States of America
- College of Dentistry, Oregon Health and Sciences University, Portland, OR, United States of America
| |
Collapse
|
99
|
TLR3 activation induces S100A7 to regulate keratinocyte differentiation after skin injury. SCIENCE CHINA-LIFE SCIENCES 2016; 60:158-167. [PMID: 27535424 DOI: 10.1007/s11427-016-0027-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/12/2016] [Indexed: 12/19/2022]
Abstract
Human S100A7 (psoriasin) is highly expressed in psoriasis and other inflammatory diseases; however, the function of S100A7 in wound repair remains largely unknown. Here we demonstrated that skin injury increased the expression of S100A7. Damaged cells from wounded skin induced the expression of S100A7 via the activation of Toll-like receptor 3 (TLR3) followed by the activation of p38 MAPK. S100A7, in turn, acted on keratinocytes to induce the expression of terminal differentiation marker gene loricrin through the activation of p38 MAPK and caspase-1. The differentiation of keratinocytes induced by S100A7 resulted in skin stratification, thus efficiently promoting wound closure. Taken together, our results demonstrate that the activation of TLR3 accelerates wound closure via the induction of S100A7 to induce keratinocyte differentiation. These findings also provide new insights into the development of different forms of treatment with skin wounds.
Collapse
|
100
|
Rognoni E, Gomez C, Pisco AO, Rawlins EL, Simons BD, Watt FM, Driskell RR. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing. Development 2016; 143:2522-35. [PMID: 27287810 PMCID: PMC4958333 DOI: 10.1242/dev.131797] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/01/2016] [Indexed: 01/05/2023]
Abstract
New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. Summary: Postnatal mouse skin exhibits a decline in its ability to regenerate hair follicles in the wound bed and this can be partially reversed by inhibiting dermal β-catenin activation.
Collapse
Affiliation(s)
- Emanuel Rognoni
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Celine Gomez
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Angela Oliveira Pisco
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ben D Simons
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| | - Ryan R Driskell
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|