51
|
Jayasundara SDP, Perera SSN, Malavige GN, Jayasinghe S. Mathematical modelling and a systems science approach to describe the role of cytokines in the evolution of severe dengue. BMC SYSTEMS BIOLOGY 2017; 11:34. [PMID: 28284213 PMCID: PMC5346240 DOI: 10.1186/s12918-017-0415-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 03/02/2017] [Indexed: 01/05/2023]
Abstract
Background Dengue causes considerable morbidity and mortality in Sri Lanka. Inflammatory mediators such as cytokines, contribute to its evolution from an asymptotic infection to severe forms of dengue. The majority of previous studies have analysed the association of individual cytokines with clinical disease severity. In contrast, we view evolution to Dengue Haemorrhagic Fever as the behaviour of a complex dynamic system. We therefore, analyse the combined effect of multiple cytokines that interact dynamically with each other in order to generate a mathematical model to predict occurrence of Dengue Haemorrhagic Fever. We expect this to have predictive value in detecting severe cases and improve outcomes. Platelet activating factor (PAF), Sphingosine 1- Phosphate (S1P), IL-1β, TNFα and IL-10 are used as the parameters for the model. Hierarchical clustering is used to detect factors that correlated with each other. Their interactions are mapped using Fuzzy Logic mechanisms with the combination of modified Hamacher and OWA operators. Trapezoidal membership functions are developed for each of the cytokine parameters and the degree of unfavourability to attain Dengue Haemorrhagic Fever is measured. Results The accuracy of this model in predicting severity level of dengue is 71.43% at 96 h from the onset of illness, 85.00% at 108 h and 76.92% at 120 h. A region of ambiguity is detected in the model for the value range 0.36 to 0.51. Sensitivity analysis indicates that this is a robust mathematical model. Conclusions The results show a robust mathematical model that explains the evolution from dengue to its serious forms in individual patients with high accuracy. However, this model would have to be further improved by including additional parameters and should be validated on other data sets. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0415-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S D Pavithra Jayasundara
- Research and Development Centre for Mathematical Modelling, University of Colombo, Colombo, Sri Lanka.
| | - S S N Perera
- Research and Development Centre for Mathematical Modelling, University of Colombo, Colombo, Sri Lanka
| | | | - Saroj Jayasinghe
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
52
|
Oliveira RADS, Cordeiro MT, Moura PMMFD, Baptista Filho PNB, Braga-Neto UDM, Marques ETDA, Gil LHVG. Serum cytokine/chemokine profiles in patients with dengue fever (DF) and dengue hemorrhagic fever (FHD) by using protein array. J Clin Virol 2017; 89:39-45. [PMID: 28242509 DOI: 10.1016/j.jcv.2017.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND DENV infection can induce different clinical manifestations varying from mild forms to dengue fever (DF) or the severe hemorrhagic fever (DHF). Several factors are involved in the progression from DF to DHF. No marker is available to predict this progression. Such biomarker could allow a suitable medical care at the beginning of the infection, improving patient prognosis. OBJECTIVES The aim of this study was to compare the serum expression levels of acute phase proteins in a well-established cohort of dengue fever (DF) and dengue hemorrhagic fever (DHF) patients, in order to individuate a prognostic marker of diseases severity. STUDY DESIGN The serum levels of 36 cytokines, chemokines and acute phase proteins were determined in DF and DHF patients and compared to healthy volunteers using a multiplex protein array and near-infrared (NIR) fluorescence detection. Serum levels of IL-1ra, IL-23, MIF, sCD40 ligand, IP-10 and GRO-α were also determined by ELISA. RESULTS At the early stages of infection, GRO-α and IP-10 expression levels were different in DF compared to DHF patients. Besides, GRO-α was positively correlated with platelet counts and IP-10 was negatively correlated with total protein levels. CONCLUSIONS These findings suggest that high levels of GRO-α during acute DENV infection may be associated with a good prognosis, while high levels of IP-10 may be a warning sign of infection severity.
Collapse
Affiliation(s)
| | - Marli Tenório Cordeiro
- Departamento de Virologia, Centro de Pesquisas Aggeu Magalhães-Fundação Oswaldo Cruz-Fiocruz, Recife, PE, Brazil
| | | | | | | | - Ernesto Torres de Azevedo Marques
- Departamento de Virologia, Centro de Pesquisas Aggeu Magalhães-Fundação Oswaldo Cruz-Fiocruz, Recife, PE, Brazil; Department of Infectious Diseases and Microbiology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
53
|
Perdomo-Celis F, Salgado DM, Narváez CF. Levels of Circulating Tumor Necrosis Factor-α in Children with Symptomatic Dengue Evaluated by ELISA and Bead-Based Assays. Viral Immunol 2017; 30:45-53. [DOI: 10.1089/vim.2016.0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
| | - Doris M. Salgado
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
- Departamento de Pediatría, Hospital Universitario de Neiva, Neiva, Colombia
| | - Carlos F. Narváez
- Programa de Medicina, Facultad de Salud, Universidad Surcolombiana, Neiva, Colombia
| |
Collapse
|
54
|
Markers of dengue severity: a systematic review of cytokines and chemokines. J Gen Virol 2016; 97:3103-3119. [DOI: 10.1099/jgv.0.000637] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
55
|
Santos ACMD, de Moura EL, Ferreira JM, Santos BRCD, Alves VDM, de Farias KF, de Souza Figueiredo EVM. Meta-Analysis of the Relationship between TNF-α (−308G/A) and IL-10 (−819C/T) Gene Polymorphisms and Susceptibility to Dengue. Immunol Invest 2016; 46:201-220. [DOI: 10.1080/08820139.2016.1248560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ana Caroline Melo dos Santos
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Maceio, Brazil
| | - Edilson Leite de Moura
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Maceio, Brazil
| | - Jean Moisés Ferreira
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Maceio, Brazil
| | | | | | - Karol Fireman de Farias
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Maceio, Brazil
| | - Elaine Virgínia Martins de Souza Figueiredo
- Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Brazil
- Laboratory of Molecular Biology and Gene Expression, Federal University of Alagoas, Maceio, Brazil
| |
Collapse
|
56
|
Taylor A, Foo SS, Bruzzone R, Dinh LV, King NJC, Mahalingam S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol Rev 2016; 268:340-64. [PMID: 26497532 PMCID: PMC7165974 DOI: 10.1111/imr.12367] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sensitization of the humoral immune response to invading viruses and production of antiviral antibodies forms part of the host antiviral repertoire. Paradoxically, for a number of viral pathogens, under certain conditions, antibodies provide an attractive means of enhanced virus entry and replication in a number of cell types. Known as antibody‐dependent enhancement (ADE) of infection, the phenomenon occurs when virus‐antibody immunocomplexes interact with cells bearing complement or Fc receptors, promoting internalization of the virus and increasing infection. Frequently associated with exacerbation of viral disease, ADE of infection presents a major obstacle to the prevention of viral disease by vaccination and is thought to be partly responsible for the adverse effects of novel antiviral therapeutics such as intravenous immunoglobulins. There is a growing body of work examining the intracellular signaling pathways and epitopes responsible for mediating ADE, with a view to aiding rational design of antiviral strategies. With in vitro studies also confirming ADE as a feature of infection for a growing number of viruses, challenges remain in understanding the multilayered molecular mechanisms of ADE and its effect on viral pathogenesis.
Collapse
Affiliation(s)
- Adam Taylor
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Suan-Sin Foo
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| | - Luan Vu Dinh
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Nicholas J C King
- Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Qld, Australia
| |
Collapse
|
57
|
Cytokine Profile of Children Hospitalized with Virologically-Confirmed Dengue during Two Phase III Vaccine Efficacy Trials. PLoS Negl Trop Dis 2016; 10:e0004830. [PMID: 27459266 PMCID: PMC4961416 DOI: 10.1371/journal.pntd.0004830] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/17/2016] [Indexed: 01/29/2023] Open
Abstract
Background Two large-scale efficacy studies with the recombinant yellow fever-17D–dengue virus, live-attenuated, tetravalent dengue vaccine (CYD-TDV) candidate undertaken in Asia (NCT01373281) and Latin America (NCT01374516) demonstrated significant protection against dengue disease during two years’ active surveillance (active phase). Long-term follow up of participants for breakthrough disease leading to hospitalization is currently ongoing (hospital phase). Methodology/Principal findings We assessed the cytokine profile in acute sera from selected participants hospitalized (including during the active phase) up to the beginning of the second year of long-term follow up for both studies. The serum concentrations of 38 cytokines were measured in duplicate using the Milliplex Human Cytokine MAGNETIC BEAD Premixed 38 Plex commercial kit (Millipore, Billerica, MA, USA). Partial least squares discriminant analyses did not reveal any difference in the overall cytokine profile of CYD-TDV and placebo recipients hospitalized for breakthrough dengue regardless of stratification used. In addition, there was no difference in the cytokine profile for breakthrough dengue among those aged <9 years versus those aged ≥ 9 years. Conclusions/Significance These exploratory findings show that CYD-TDV does not induce a particular immune profile versus placebo, corroborating the clinical profile observed. A live-attenuated, tetravalent dengue vaccine (CYD-TDV) has been shown to provide protection against dengue disease in two large-scale, placebo-controlled, phase III efficacy studies. Continued surveillance of study participants was subsequently undertaken to better define longer term vaccine efficacy and safety. A yet unexplained higher incidence of hospitalization for dengue disease was observed among children aged <9 years in year 3 of follow up. While the clinical outcome of the hospitalized cases was similar between CYD-TDV and placebo recipients, it was important to further investigate whether the immune profile induced by breakthrough infection differed between the two study groups. We compared the profile of 38 cytokines, chemokines and growth factors in acute phase sera collected from participants with breakthrough disease in the two groups. No difference in overall profile was observed between CYD-TDV and placebo recipients. Similarly, no difference in the cytokine profile for breakthrough dengue was observed between those aged <9 years and those aged ≥ 9 years. Based on these analyzed factors, our study shows that CYD-TDV does not induce an overall altered immunological profile with breakthrough disease compared with placebo, in agreement with the similar clinical pictures and viremia observed in the two groups.
Collapse
|
58
|
Patterns and causes of liver involvement in acute dengue infection. BMC Infect Dis 2016; 16:319. [PMID: 27391896 PMCID: PMC4938910 DOI: 10.1186/s12879-016-1656-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Background Liver involvement in acute dengue infection is frequently observed and sometimes leads to acute liver failure, with fatal outcomes. Many factors are thought to contribute to liver dysfunction, including hypoxic injury due to decreased perfusion, direct damage by the virus and immune mediated injury. In this study, we sought to identify the pattern in the change in liver enzymes throughout the illness and its association with the degree of viraemia, onset and extent of plasma leakage and inflammatory mediators. Methods Serial daily blood samples were obtained from 55 adult patients with acute dengue from the time of admission to discharge and the liver function tests, viral loads and cytokines were assessed. The onset and extent of fluid leakage was measured by daily ultrasound examinations and all clinical and laboratory features were serially recorded. Results Aspartate transaminase (AST), alanine transaminase (ALT) and gamma glutamyl transferase (GGT) levels were elevated in patients with dengue infection throughout the illness. The highest AST levels were seen on day 6 of illness and both AST and GGT levels were significantly higher in patients with severe dengue (SD), when compared to those with non-severe dengue (NSD) on day 5 and 6 of illness. Three patients with SD had AST and ALT values of >1000/IU in the absence of any fluid leakage or a rise in the haematocrit (≥20 %). The peak of the AST levels and the lowest serum albumin levels were seen 24 h before the maximum fluid leakage and 24 h after the peak in viraemia. Both serum IL-10 and IL-17 levels were elevated during early illness and were significantly higher in those with SD when compared to NSD. Conclusion Dengue associated liver injury appears to peak around day 6 and 7. Therefore, liver function tests done at earlier dates might not reflect the extent of liver involvement in acute infection. Since severe liver involvement can occur in the absence of fluid leakage, after the peak viraemia, and since it is associated with high IL-17 and IL-10 levels, possible immune mechanisms leading to hepatic damage should be investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1656-2) contains supplementary material, which is available to authorized users.
Collapse
|
59
|
Santos Souza HF, da Silva Almeida B, Boscardin SB. Early dengue virus interactions: the role of dendritic cells during infection. Virus Res 2016; 223:88-98. [PMID: 27381061 DOI: 10.1016/j.virusres.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Dengue is an acute infectious disease caused by dengue virus (DENV) that affects approximately 400 million people annually, being the most prevalent human arthropod-borne disease. DENV infection causes a wide variety of clinical manifestations that range from asymptomatic to dengue fever, and in some cases may evolve to the more severe dengue hemorrhagic fever and dengue shock syndrome. The exact reasons why some patients do not have symptoms while others develop the severe forms of disease are still elusive, but gathered evidence showed correlation between a secondary infection with a heterologous DENV serotype and the occurrence of severe symptoms. Despite several advances, the mechanisms of DENV infection are still not completely elucidated, and efforts have been made to understand the development of immunity and/or pathology to DENV. When a mosquito transmits DENV, the virus is initially deposited in the skin, where mononuclear phagocytic cells, such as dendritic cells (DCs), become infected. DCs play a critical role in the induction of immune responses, as they are able to rapidly detect pathogen-associated molecular patterns, endocytose and process antigens, and efficiently activate naïve-T and B cells. Recent findings have shown that DCs serve as DENV targets, but they are also important mediators of immunity against the virus. In this review, we will briefly discuss DENV infection pathogenesis, and introduce DCs as central players in the induction of anti-DENV immune responses. Then, we will review in more detail how DENV interacts with and is sensed by DCs, with particular emphasis in two classes of receptors implicated in viral entry.
Collapse
Affiliation(s)
- Higo Fernando Santos Souza
- Laboratory of Antigen Targeting Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bianca da Silva Almeida
- Laboratory of Antigen Targeting Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; National Institute of Science and Technology in Vaccines, Belo Horizonte, Brazil.
| |
Collapse
|
60
|
Zhao L, Huang X, Hong W, Qiu S, Wang J, Yu L, Zeng Y, Tan X, Zhang F. Slow resolution of inflammation in severe adult dengue patients. BMC Infect Dis 2016; 16:291. [PMID: 27301555 PMCID: PMC4908683 DOI: 10.1186/s12879-016-1596-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/26/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The pathogenesis of severe dengue has not been fully elucidated. The inflammatory response plays a critical role in the outcome of dengue disease. METHODS In this study, we investigated the levels of 17 important inflammation mediators in plasma collected from mild or severe adult dengue patients at different time points to understand the contribution of inflammation to disease severity and to seek experimental evidence to optimize the existing clinical treatment strategies. Patients were simply classified as mild and severe dengue according to the 2009 WHO classification. Plasma was collected on day 3-5, 6-7, 8-10 and 14-17 of illness. Levels of 17 inflammation mediators including TNF-α, IL-1α, IFN-γ, IL-6, IFN-α, MIF, IL-10, IL-1RA, IL-8, IP-10, MCP-1, RANTES, GRO, eotaxin-1, sICAM-1 and sVCAM-1 were determined by a multiplex Luminex® system. Different trends of inflammation mediators throughout the disease were compared between mild and severe patients. RESULTS Inflammation mediators including IL-1α, IFN-γ, IL-10, IL-8, IP-10, MCP-1 and sVCAM-1 displayed significant differences on day 8-10 of illness between mild and severe dengue patients. Their concentrations were higher in severe patients than mild ones at the same time points. Moreover, those cytokines decreased gradually in mild patients but not in severe patients. CONCLUSION Our results revealed the coexistence of excessive inflammatory response and slow resolution of inflammation in severe adult dengue patients. Hence suppression and/or pro-resolution of inflammation could be a potential therapeutic approach for treatment of severe dengue.
Collapse
Affiliation(s)
- Lingzhai Zhao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Xiuyan Huang
- Department of Immunobiology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenxin Hong
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Shuang Qiu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Jian Wang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China
| | - Yaoying Zeng
- Department of Immunobiology, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Xinghua Tan
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China.
| | - Fuchun Zhang
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
61
|
Serum Metabolomics Reveals Serotonin as a Predictor of Severe Dengue in the Early Phase of Dengue Fever. PLoS Negl Trop Dis 2016; 10:e0004607. [PMID: 27055163 PMCID: PMC4824427 DOI: 10.1371/journal.pntd.0004607] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Effective triage of dengue patients early in the disease course for in- or out-patient management would be useful for optimal healthcare resource utilization while minimizing poor clinical outcome due to delayed intervention. Yet, early prognosis of severe dengue is hampered by the heterogeneity in clinical presentation and routine hematological and biochemical measurements in dengue patients that collectively correlates poorly with eventual clinical outcome. Herein, untargeted liquid-chromatography mass spectrometry metabolomics of serum from patients with dengue fever (DF) and dengue hemorrhagic fever (DHF) in the febrile phase (<96 h) was used to globally probe the serum metabolome to uncover early prognostic biomarkers of DHF. We identified 20 metabolites that are differentially enriched (p<0.05, fold change >1.5) in the serum, among which are two products of tryptophan metabolism-serotonin and kynurenine. Serotonin, involved in platelet aggregation and activation decreased significantly, whereas kynurenine, an immunomodulator, increased significantly in patients with DHF, consistent with thrombocytopenia and immunopathology in severe dengue. To sensitively and accurately evaluate serotonin levels as prognostic biomarkers, we implemented stable-isotope dilution mass spectrometry and used convalescence samples as their own controls. DHF serotonin was significantly 1.98 fold lower in febrile compared to convalescence phase, and significantly 1.76 fold lower compared to DF in the febrile phase of illness. Thus, serotonin alone provided good prognostic utility (Area Under Curve, AUC of serotonin = 0.8). Additionally, immune mediators associated with DHF may further increase the predictive ability than just serotonin alone. Nine cytokines, including IFN-γ, IL-1β, IL-4, IL-8, G-CSF, MIP-1β, FGF basic, TNFα and RANTES were significantly different between DF and DHF, among which IFN-γ ranked top by multivariate statistics. Combining serotonin and IFN-γ improved the prognosis performance (AUC = 0.92, sensitivity = 77.8%, specificity = 95.8%), suggesting this duplex panel as accurate metrics for the early prognosis of DHF.
Collapse
|
62
|
Sei JJ, Waters RA, Kenney M, Barlow JW, Golde WT. Effect of Foot-and-Mouth Disease Virus Infection on the Frequency, Phenotype and Function of Circulating Dendritic Cells in Cattle. PLoS One 2016; 11:e0152192. [PMID: 27008425 PMCID: PMC4805171 DOI: 10.1371/journal.pone.0152192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes one of the most devastating diseases in cloven-hoofed animals. Disease symptoms develop within 2 to 3 days of exposure and include fever and vesicular lesions on the tongue and hooves. Dendritic cells (DC) play an essential role in protective immune responses against pathogens. Therefore, investigating their role during FMDV infection would lead to a better understanding of host-pathogen interactions. In this study, following infection of cattle with FMDV, we investigated the frequency and function of conventional (cDC) and plasmacytoid DC (pDC) in blood by using multi-color flow cytometry. We show that the frequency of cDC and pDC increased following FMDV infection and peaked 3 to 4 days post-infection. During peak viremia, the cattle became lymphopenic, the expression of MHC class II molecules on cDC and pDC was dramatically down-regulated, the processing of exogenous antigen by cDC and pDC was impaired, and there was an increase in IL-10 production by DC and monocytes. Notably, after clearance of FMDV from the blood, MHC class II expression returned to pre-infection levels. Altogether, our study demonstrates that in cattle, FMDV inhibits the function of DC, thereby retarding the initiation of adaptive immune responses, potentially enhancing virus shedding during the acute phase of infection.
Collapse
Affiliation(s)
- Janet J. Sei
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, United States of America
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States of America
| | - Ryan A. Waters
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, United States of America
| | - Mary Kenney
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, United States of America
| | - John W. Barlow
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States of America
| | - William T. Golde
- Plum Island Animal Disease Center, Agricultural Research Service, USDA, Greenport, NY, United States of America
- * E-mail:
| |
Collapse
|
63
|
Singla M, Kar M, Sethi T, Kabra SK, Lodha R, Chandele A, Medigeshi GR. Immune Response to Dengue Virus Infection in Pediatric Patients in New Delhi, India--Association of Viremia, Inflammatory Mediators and Monocytes with Disease Severity. PLoS Negl Trop Dis 2016; 10:e0004497. [PMID: 26982706 PMCID: PMC4794248 DOI: 10.1371/journal.pntd.0004497] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/08/2016] [Indexed: 01/22/2023] Open
Abstract
Dengue virus, a mosquito-borne flavivirus, is a causative agent for dengue infection, which manifests with symptoms ranging from mild fever to fatal dengue shock syndrome. The presence of four serotypes, against which immune cross-protection is short-lived and serotype cross-reactive antibodies that might enhance infection, pose a challenge to further investigate the role of virus and immune response in pathogenesis. We evaluated the viral and immunological factors that correlate with severe dengue disease in a cohort of pediatric dengue patients in New Delhi. Severe dengue disease was observed in both primary and secondary infections. Viral load had no association with disease severity but high viral load correlated with prolonged thrombocytopenia and delayed recovery. Severe dengue cases had low Th1 cytokines and a concurrent increase in the inflammatory mediators such as IL-6, IL-8 and IL-10. A transient increase in CD14+CD16+ intermediate monocytes was observed early in infection. Sorting of monocytes from dengue patient peripheral blood mononuclear cells revealed that it is the CD14+ cells, but not the CD16+ or the T or B cells, that were infected with dengue virus and were major producers of IL-10. Using the Boruta algorithm, reduced interferon-α levels and enhanced aforementioned pro-inflammatory cytokines were identified as some of the distinctive markers of severe dengue. Furthermore, the reduction in the levels of IL-8 and IL-10 were identified as the most significant markers of recovery from severe disease. Our results provide further insights into the immune response of children to primary and secondary dengue infection and help us to understand the complex interplay between the intrinsic factors in dengue pathogenesis. Dengue virus is a human pathogen that causes dengue fever, which can either resolve after mild fever or lead to severe dengue hemorrhagic fever/dengue shock syndrome. The role of dengue virus levels in the blood and the kinetics of infection and immune response that results in severe dengue disease in humans is not well characterized. In this study, we analyzed 97 children with varying degrees of dengue disease, and we show that the dengue virus quantity in blood does not show any significant association with severe disease. However, most severe dengue patients had lower levels of interferons and Th1 cytokines and increased levels of secreted factors such as IL-6, IL-8 and IL-10 that could potentially cause leakage in blood capillaries. Our results indicate that monocytes, which are infected with dengue virus in patients, could possibly play a major role in dengue pathogenesis. Furthermore, using computational analysis we identified association of some of the secreted factors with severe disease and also predicted the markers that could serve as indicators of recovery from severe dengue.
Collapse
Affiliation(s)
- Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Kar
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | | | - Sushil K. Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, ICGEB campus, New Delhi, India
| | - Guruprasad R. Medigeshi
- Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- * E-mail:
| |
Collapse
|
64
|
Adikari TN, Gomes L, Wickramasinghe N, Salimi M, Wijesiriwardana N, Kamaladasa A, Shyamali NLA, Ogg GS, Malavige GN. Dengue NS1 antigen contributes to disease severity by inducing interleukin (IL)-10 by monocytes. Clin Exp Immunol 2016; 184:90-100. [PMID: 26621477 DOI: 10.1111/cei.12747] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/20/2023] Open
Abstract
Both dengue NS1 antigen and serum interleukin (IL)-10 levels have been shown to associate with severe clinical disease in acute dengue infection, and IL-10 has also been shown to suppress dengue-specific T cell responses. Therefore, we proceeded to investigate the mechanisms by which dengue NS1 contributes to disease pathogenesis and if it is associated with altered IL-10 production. Serum IL-10 and dengue NS1 antigen levels were assessed serially in 36 adult Sri Lankan individuals with acute dengue infection. We found that the serum IL-10 levels correlated positively with dengue NS1 antigen levels (Spearman's r = 0·47, P < 0·0001), and NS1 also correlated with annexin V expression by T cells in acute dengue (Spearman's r = 0·63, P = 0·001). However, NS1 levels did not associate with the functionality of T cell responses or with expression of co-stimulatory molecules. Therefore, we further assessed the effect of dengue NS1 on monocytes and T cells by co-culturing primary monocytes and peripheral blood mononuclear cells (PBMC), with varying concentrations of NS1 for up to 96 h. Monocytes co-cultured with NS1 produced high levels of IL-10, with the highest levels seen at 24 h, and then declined gradually. Therefore, our data show that dengue NS1 appears to contribute to pathogenesis of dengue infection by inducing IL-10 production by monocytes.
Collapse
Affiliation(s)
- T N Adikari
- Centre for Dengue Research, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | - L Gomes
- Centre for Dengue Research, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | - N Wickramasinghe
- Centre for Dengue Research, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | - M Salimi
- Radcliffe Department of Medicine, MRC Human Immunology Unit, NIHR Biomedical Research Centre, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - N Wijesiriwardana
- Centre for Dengue Research, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | - A Kamaladasa
- Centre for Dengue Research, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | - N L A Shyamali
- Department of Medicine, Faculty of Medical Sciences, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | - G S Ogg
- Radcliffe Department of Medicine, MRC Human Immunology Unit, NIHR Biomedical Research Centre, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - G N Malavige
- Centre for Dengue Research, University of Sri Jayawardanapura, Nugegoda, Sri Lanka.,Radcliffe Department of Medicine, MRC Human Immunology Unit, NIHR Biomedical Research Centre, Weatherall Institute of Molecular Medicine, Oxford, UK
| |
Collapse
|
65
|
Fernando AN, Malavige GN, Perera KLN, Premawansa S, Ogg GS, De Silva AD. Polymorphisms of Transporter Associated with Antigen Presentation, Tumor Necrosis Factor-α and Interleukin-10 and their Implications for Protection and Susceptibility to Severe Forms of Dengue Fever in Patients in Sri Lanka. J Glob Infect Dis 2016; 7:157-64. [PMID: 26752870 PMCID: PMC4693307 DOI: 10.4103/0974-777x.170501] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Context: To date, a clear understanding of dengue disease pathogenesis remains elusive. Some infected individuals display no symptoms while others develop severe life-threatening forms of the disease. It is widely believed that host genetic factors influence dengue severity. Aims: This study evaluates the relationship between certain polymorphisms and dengue severity in Sri Lankan patients. Settings and Design: Polymorphism studies are carried out on genes for; transporter associated with antigen presentation (TAP), promoter of tumor necrosis factor-α (TNF-α), and promoter of interleukin-10 (IL-10). In other populations, TAP1 (333), TAP2 (379), TNF-α (−308), and IL-10 (−1082, −819, −592) have been associated with dengue and a number of different diseases. Data have not been collected previously for these polymorphisms for dengue patients in Sri Lanka. Materials and Methods: The polymorphisms were typed by amplification refractory mutation system polymerase chain reaction in 107 dengue hemorrhagic fever (DHF) patients together with 62 healthy controls. Statistical Analysis Used: Pearson's Chi-square contingency table analysis with Yates′ correction. Results: Neither the TAP nor the IL-10 polymorphisms considered individually can define dengue disease outcome with regard to severity. However, the genotype combination, IL-10 (−592/−819/−1082) CCA/ATA was significantly associated with development of severe dengue in these patients, suggesting a risk factor to developing DHF. Also, identified is the genotype combination IL-10 (−592/−819/−1082) ATA/ATG which suggested a possibility for protection from DHF. The TNF-α (−308) GG genotype was also significantly associated with severe dengue, suggesting a significant risk factor. Conclusions: The results reported here are specific to the Sri Lankan population. Comparisons with previous reports imply that data may vary from population to population.
Collapse
Affiliation(s)
| | - Gathsaurie Neelika Malavige
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; MRC Human Immnology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | | | - Sunil Premawansa
- Department of Zoology, Faculty of Science, University of Colombo, Sri Lanka
| | - Graham S Ogg
- MRC Human Immnology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Aruna Dharshan De Silva
- Genetech Research Institute, Colombo 08, Sri Lanka; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
66
|
Estrada-Jiménez T, Millán-Pérez Peña L, Flores-Mendoza L, Sedeño-Monge V, Santos-López G, Rosas-Murrieta N, Reyes-Carmona S, Terán-Cabanillas E, Hernández J, Herrera-Camacho I, Vallejo-Ruiz V, Reyes-Leyva J. Upregulation of the Suppressors of Cytokine Signaling 1 and 3 Is Associated with Arrest of Phosphorylated-STAT1 Nuclear Importation and Reduced Innate Response in Denguevirus-Infected Macrophages. Viral Immunol 2015; 29:95-104. [PMID: 26709547 DOI: 10.1089/vim.2014.0136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To clarify whether the suppressors of cytokine signaling (SOCS) are associated with denguevirus (DENV) evasion of the antiviral response, we analyzed the expression kinetics of SOCS1 and SOCS3 and of the antiviral genes MxA and OAS during DENV infection of U937 macrophages that were or not treated with interferon (IFN)-α. DENV infection produced a viral titer three times higher in untreated than in IFN-α-treated cells (p < 0.001 at 72 h postinfection [p.i.]). Partial inhibition of DENV replication was associated with reduced expression of MxA and OAS antiviral genes as well as higher SOCS1 and SOCS3 expression in DENV-infected cells than in cells treated only with IFN-α. Complete loss of phosphorylated-signal transducer and activator of transcription (p-STAT)2 and reduced nuclear importation of p-STAT1 were observed in DENV-infected cells compared to IFN-α treatment that induced p-STAT1 and p-STAT2. Our data thus suggest that overexpression of SOCS1 and SOCS3 induced by DENV infection leads to impairment of antiviral response through the inhibition of STAT functionality.
Collapse
Affiliation(s)
- Tania Estrada-Jiménez
- 1 Laboratorio de Virología y Biología Molecular, Centro de Investigación Biomédica de Oriente, HGZ5, Instituto Mexicano del Seguro Social , Metepec, Puebla, México .,2 Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla , Puebla, México
| | - Lourdes Millán-Pérez Peña
- 2 Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla , Puebla, México
| | - Lilian Flores-Mendoza
- 1 Laboratorio de Virología y Biología Molecular, Centro de Investigación Biomédica de Oriente, HGZ5, Instituto Mexicano del Seguro Social , Metepec, Puebla, México
| | - Virginia Sedeño-Monge
- 3 Departamento de Ciencias de la Salud, Universidad Popular Autónoma del Estado de Puebla , Puebla, México
| | - Gerardo Santos-López
- 1 Laboratorio de Virología y Biología Molecular, Centro de Investigación Biomédica de Oriente, HGZ5, Instituto Mexicano del Seguro Social , Metepec, Puebla, México
| | - Nora Rosas-Murrieta
- 2 Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla , Puebla, México
| | - Sandra Reyes-Carmona
- 2 Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla , Puebla, México
| | - Eli Terán-Cabanillas
- 4 Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C. , Hermosillo, Sonora, Mexico
| | - Jesus Hernández
- 4 Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo A.C. , Hermosillo, Sonora, Mexico
| | - Irma Herrera-Camacho
- 2 Laboratorio de Bioquímica y Biología Molecular, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla , Puebla, México
| | - Verónica Vallejo-Ruiz
- 1 Laboratorio de Virología y Biología Molecular, Centro de Investigación Biomédica de Oriente, HGZ5, Instituto Mexicano del Seguro Social , Metepec, Puebla, México
| | - Julio Reyes-Leyva
- 1 Laboratorio de Virología y Biología Molecular, Centro de Investigación Biomédica de Oriente, HGZ5, Instituto Mexicano del Seguro Social , Metepec, Puebla, México
| |
Collapse
|
67
|
John DV, Lin YS, Perng GC. Biomarkers of severe dengue disease - a review. J Biomed Sci 2015; 22:83. [PMID: 26462910 PMCID: PMC4604634 DOI: 10.1186/s12929-015-0191-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 09/25/2015] [Indexed: 12/03/2022] Open
Abstract
Dengue virus infection presents a wide spectrum of manifestations including asymptomatic condition, dengue fever (DF), or severe forms, such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) in affected individuals. The early prediction of severe dengue in patients without any warning signs who may later develop severe DHF is very important to choose appropriate intensive supportive therapy since available vaccines for immunization are yet to be approved. Severe dengue responses include T and B cell activation and apoptosis, cytokine storm, hematologic disorders and complement activation. Cytokines, complement and other unidentified factors may transiently act on the endothelium and alter normal fluid barrier function of the endothelial cells and cause plasma leakage. In this review, the host factors such as activated immune and endothelial cells and their products which can be utilized as biomarkers for severe dengue disease are discussed.
Collapse
Affiliation(s)
- Daisy Vanitha John
- Biotechnology Research Institute, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Guey Chuen Perng
- Center of Infectious Disease and Signaling Research, Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
68
|
Conroy AL, Gélvez M, Hawkes M, Rajwans N, Tran V, Liles WC, Villar-Centeno LA, Kain KC. Host biomarkers are associated with progression to dengue haemorrhagic fever: a nested case-control study. Int J Infect Dis 2015; 40:45-53. [PMID: 26255888 DOI: 10.1016/j.ijid.2015.07.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES Dengue represents the most important arboviral infection worldwide. Onset of circulatory collapse can be unpredictable. Biomarkers that can identify individuals at risk of plasma leakage may facilitate better triage and clinical management. DESIGN Using a nested case-control design, we randomly selected subjects from a prospective cohort study of dengue in Colombia (n=1582). Using serum collected within 96 hours of fever onset, we tested 19 biomarkers by ELISA in cases (developed dengue hemorrhagic fever or dengue shock syndrome (DHF/DSS); n=46), and controls (uncomplicated dengue fever (DF); n=65) and healthy controls (HC); n=15. RESULTS Ang-1 levels were lower and angptl3, sKDR, sEng, sICAM-1, CRP, CXCL10/IP-10, IL-18 binding protein, CHI3L1, C5a and Factor D levels were increased in dengue compared to HC. sICAM-1, sEng and CXCL10/IP-10 were further elevated in subjects who subsequently developed DHF/DSS (p=0.008, p=0.028 and p=0.025, respectively). In a logistic regression model, age (odds ratio (OR) (95% CI): 0.95 (0.92-0.98), p=0.001), hyperesthesia/hyperalgesia (OR; 3.8 (1.4-10.4), p=0.008) and elevated sICAM-1 (>298ng/mL: OR; 6.3 (1.5-25.7), p=0.011) at presentation were independently associated with progression to DHF/DSS. CONCLUSIONS These results suggest that inflammation and endothelial activation are important pathways in the pathogenesis of dengue and sICAM-1 levels may identify individuals at risk of plasma leakage.
Collapse
Affiliation(s)
- Andrea L Conroy
- Sandra A. Rotman Laboratories, Sandra Rotman Centre, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| | - Margarita Gélvez
- Centro de Investigaciones Epidemiológicas, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Michael Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Nimerta Rajwans
- Sandra A. Rotman Laboratories, Sandra Rotman Centre, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| | - Vanessa Tran
- Sandra A. Rotman Laboratories, Sandra Rotman Centre, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, M5G 1L7, Canada.
| | - W Conrad Liles
- University of Washington, Department of Medicine, Seattle, WA, 98195, USA.
| | - Luis Angel Villar-Centeno
- Centro de Investigaciones Epidemiológicas, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia.
| | - Kevin C Kain
- Sandra A. Rotman Laboratories, Sandra Rotman Centre, University Health Network-Toronto General Hospital, University of Toronto, Toronto, ON, M5G 1L7, Canada; Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
69
|
Vascular leakage in dengue hemorrhagic Fever is associated with dengue infected monocytes, monocyte activation/exhaustion, and cytokines production. Int J Vasc Med 2015; 2015:917143. [PMID: 25722892 PMCID: PMC4334930 DOI: 10.1155/2015/917143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/06/2015] [Accepted: 01/11/2015] [Indexed: 12/14/2022] Open
Abstract
The vascular leakage was shown by the increment of hematocrit (Hct), dengue viral infected monocyte, monocyte status, and cytokines production in patients infected with dengue virus. Dengue viral antigens were demonstrated in monocytes (CD14+) from peripheral blood mononuclear cells. The increased levels of Hct, interleukin- (IL-) 10, and tumor necrosis factor-alpha (TNF-α) were detected in dengue fever (DF), dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) patients as compared with other febrile illnesses (OFIs). The highest levels of Hct and IL-10 were detected in DSS patients as compared with other groups (P < 0.05) especially on one day before and after defervescence. The unstimulated and lipopolysaccharide- (LPS-) stimulated monocytes from DSS patients showed the significantly decreased of intracellular IL-1β and TNF-α. In addition, the lowest level of mean fluorescence intensity (MFI) of CD11b expression on monocytes surface in DSS patients was also demonstrated. Furthermore, the negative correlations between IL-10 levels and intracellular IL-1β and MFI of CD11b expression in unstimulated and LPS-stimulated monocytes were also detected. Nevertheless, not only were the relationships between the prominent IL-10 and the suppression of intracellular monocyte secretion, namely, IL-1β, TNF-α, demonstrated but also the effect of vascular leakage was observed.
Collapse
|
70
|
Dengue NS1 antigen as a marker of severe clinical disease. BMC Infect Dis 2014; 14:570. [PMID: 25366086 PMCID: PMC4222370 DOI: 10.1186/s12879-014-0570-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Early detection of complications significantly reduces dengue associated mortality and morbidity. We set out to determine if the NS1 rapid antigen detection test could be used as a point of care test to predict severe disease. METHODS 186 adult patients with confirmed dengue were enrolled during day 3-8 of illness. Clinical and laboratory parameters were recorded during the course of the illness and NS1 antigen levels were determined using both the Panbio dengue early ELISA (Panbio, Australia) and a NS1 rapid antigen detection kit (SD Bioline, South Korea). RESULTS 59.1% of patients presented to hospital on day 5-6 of illness when NS1 antigen positivity was significantly (p = 0.008) associated with severe dengue (odds ratio 3.0, 95% CI 1.39 to 6.47) and the NS1 antigen levels were significantly higher (p = 0.03) in those who went on to develop shock. Serum NS1 antigen levels significantly (p < 0.0001) and inversely correlated with the total white cell counts and lymphocyte counts. The bedside NS1 test showed comparable sensitivity (97.4%) and specificity (93.7%) to the laboratory NS1 test in our setting and cohort. CONCLUSION NS1 antigen positivity is associated with a higher risk of developing severe dengue especially when positive beyond day 5 of illness in our cohort, and while further validation studies are required, the test can therefore potentially be used as a bedside point of care test as a warning sign of severe dengue.
Collapse
|
71
|
Poole-Smith BK, Gilbert A, Gonzalez AL, Beltran M, Tomashek KM, Ward BJ, Hunsperger EA, Ndao M. Discovery and characterization of potential prognostic biomarkers for dengue hemorrhagic fever. Am J Trop Med Hyg 2014; 91:1218-26. [PMID: 25349378 DOI: 10.4269/ajtmh.14-0193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Half a million patients are hospitalized with severe dengue every year, many of whom would die without timely, appropriate clinical intervention. The majority of dengue cases are uncomplicated; however, 2-5% progress to severe dengue. Severe dengue cases have been reported with increasing frequency over the last 30 years. To discover biomarkers for severe dengue, we used surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to analyze dengue virus positive serum samples from the acute phase of infection. Using this method, 16 proteins were identified as candidate biomarkers for severe dengue. From these 16 biomarkers, three candidates were selected for confirmation by enzyme-linked immunosorbent assay and Western blot: vitronectin (Vtn, 55.1 kDa), hemopexin (Hx, 52.4 kDa), and serotransferrin (Tf, 79.2 kDa). Vitronectin, Hx, and Tf best differentiated between dengue and severe dengue.
Collapse
Affiliation(s)
- B Katherine Poole-Smith
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Alexa Gilbert
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Andrea L Gonzalez
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Manuela Beltran
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Kay M Tomashek
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Brian J Ward
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Elizabeth A Hunsperger
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Momar Ndao
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, Puerto Rico; National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal General Hospital R3-137, Montreal, Quebec H3G 1A4, Canada; 3FQRNT Centre for Host-Parasite Interactions, McGill University, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
72
|
Vivanco-Cid H, Maldonado-Rentería MJ, Sánchez-Vargas LA, Izaguirre-Hernández IY, Hernández-Flores KG, Remes-Ruiz R. Dynamics of interleukin-21 production during the clinical course of primary and secondary dengue virus infections. Immunol Lett 2014; 161:89-95. [PMID: 24858204 DOI: 10.1016/j.imlet.2014.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 04/22/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022]
Abstract
Previous studies have revealed the clinical relevance of pro-inflammatory cytokine production during dengue virus (DENV) infections. In this study, we evaluated the production of interleukin-21 (IL-21), a key soluble mediator mainly produced by CD4+ T cells. The aim of this study was to investigate the role of IL-21 production during the clinical course of primary and secondary DENV infections and the potential association of IL-21 serum levels with the disease pathogenesis. Blood samples from DENV-infected patients were collected on different days after the onset of symptoms. Patients were classified according to their phase of disease (acute vs. convalescent phases), the type of infection (primary vs. secondary), and the clinical severity of their disease (dengue fever (DF) vs. dengue hemorrhagic fever (DHF)). IL-21 levels were measured using a quantitative capture ELISA assay. The levels of IL-21 were significantly elevated in the disease group compared with the control group. IL-21 was detected in primary and secondary DENV infections, with a significantly higher concentration in the convalescent phase of primary infections. IL-21 levels were significantly higher in patients with secondary acute DHF infections when compared with those with secondary acute DF infection. There was a relationship between the elevated serum levels of IL-21 and the production of DENV-specific IgM and IgG antibodies. Taking together, our results show for the first time the involvement of IL-21 during the clinical course of DENV infections. We speculate that IL-21 may play a protective role in the context of the convalescent phase of primary infections and the acute phase of secondary infections.
Collapse
Affiliation(s)
- H Vivanco-Cid
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México; Universidad del Valle de México, campus Villa Rica, Facultad de Medicina "Dr. Porfirio Sosa Zárate", México.
| | - M J Maldonado-Rentería
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - L A Sánchez-Vargas
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | | | - K G Hernández-Flores
- Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana, Veracruz, México
| | - R Remes-Ruiz
- Hospital Regional de Alta Especialidad de Veracruz, Servicios de Salud de Veracruz, México
| |
Collapse
|
73
|
Malavige GN, Ogg GS. T cell responses in dengue viral infections. J Clin Virol 2013; 58:605-11. [PMID: 24220605 DOI: 10.1016/j.jcv.2013.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/04/2013] [Accepted: 10/19/2013] [Indexed: 11/17/2022]
Abstract
Dengue viral infections are the commonest mosquito borne viral infection in the world, affecting more than 100 countries and 390 million individuals annually. Currently, there are no effective antiviral drugs or an effective vaccine to prevent infection. A main hurdle in developing a safe and effective vaccine has been our poor understanding of the complex nature of the protective immune response in acute dengue infection and the presence of four dengue virus (DV) serotypes that are highly homologous. The role of DV specific T cells in the pathogenesis of severe clinical disease in not clear. It has been speculated that highly cross reactive T cells for the previous infecting heterologous DV serotype, which produce pro-inflammatory cytokines, contribute to disease pathogenesis. These cross reactive T cells are believed to be suboptimal in clearing the infection with the current DV-serotype. However, other studies have shown that cross-reactive DV-specific T cells are absent or present in very low frequency during acute infection, appearing only during the convalescent period in the majority of patients. Furthermore, significant apoptosis of T cells occurs in severe acute clinical disease. Overall therefore, it is unclear what role T cells play in contributing to disease pathogenesis during acute dengue infection. Existing data have been complicated by cross-reactivity in T cells assays. These findings can now be re-evaluated in the light of novel technologies to identify serotype-specific T cell responses.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardanapura, Sri Lanka; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre and University of Oxford, OX3 9DS, UK.
| | | |
Collapse
|