51
|
Weingarten J, Weingarten M, Wegner M, Volknandt W. APP-A Novel Player within the Presynaptic Active Zone Proteome. Front Mol Neurosci 2017; 10:43. [PMID: 28265241 PMCID: PMC5316543 DOI: 10.3389/fnmol.2017.00043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
The amyloid precursor protein (APP) was discovered in the 1980s as the precursor protein of the amyloid A4 peptide. The amyloid A4 peptide, also known as A-beta (Aβ), is the main constituent of senile plaques implicated in Alzheimer's disease (AD). In association with the amyloid deposits, increasing impairments in learning and memory as well as the degeneration of neurons especially in the hippocampus formation are hallmarks of the pathogenesis of AD. Within the last decades much effort has been expended into understanding the pathogenesis of AD. However, little is known about the physiological role of APP within the central nervous system (CNS). Allocating APP to the proteome of the highly dynamic presynaptic active zone (PAZ) identified APP as a novel player within this neuronal communication and signaling network. The analysis of the hippocampal PAZ proteome derived from APP-mutant mice demonstrates that APP is tightly embedded in the underlying protein network. Strikingly, APP deletion accounts for major dysregulation within the PAZ proteome network. Ca2+-homeostasis, neurotransmitter release and mitochondrial function are affected and resemble the outcome during the pathogenesis of AD. The observed changes in protein abundance that occur in the absence of APP as well as in AD suggest that APP is a structural and functional regulator within the hippocampal PAZ proteome. Within this review article, we intend to introduce APP as an important player within the hippocampal PAZ proteome and to outline the impact of APP deletion on individual PAZ proteome subcommunities.
Collapse
Affiliation(s)
- Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Goethe University Frankfurt am Main, Germany
| | - Melanie Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Goethe University Frankfurt am Main, Germany
| | - Martin Wegner
- Department of Molecular Bioinformatics, Goethe University Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
52
|
Criscuolo C, Fontebasso V, Middei S, Stazi M, Ammassari-Teule M, Yan SS, Origlia N. Entorhinal Cortex dysfunction can be rescued by inhibition of microglial RAGE in an Alzheimer's disease mouse model. Sci Rep 2017; 7:42370. [PMID: 28205565 PMCID: PMC5304222 DOI: 10.1038/srep42370] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
The Entorhinal cortex (EC) has been implicated in the early stages of Alzheimer's disease (AD). In particular, spreading of neuronal dysfunction within the EC-Hippocampal network has been suggested. We have investigated the time course of EC dysfunction in the AD mouse model carrying human mutation of amyloid precursor protein (mhAPP) expressing human Aβ. We found that in mhAPP mice plasticity impairment is first observed in EC superficial layer and further affected with time. A selective impairment of LTP was observed in layer II horizontal connections of EC slices from 2 month old mhAPP mice, whereas at later stage of neurodegeneration (6 month) basal synaptic transmission and LTD were also affected. Accordingly, early synaptic deficit in the mhAPP mice were associated with a selective impairment in EC-dependent associative memory tasks. The introduction of the dominant-negative form of RAGE lacking RAGE signalling targeted to microglia (DNMSR) in mhAPP mice prevented synaptic and behavioural deficit, reducing the activation of stress related kinases (p38MAPK and JNK). Our results support the involvement of the EC in the development and progression of the synaptic and behavioural deficit during amyloid-dependent neurodegeneration and demonstrate that microglial RAGE activation in presence of Aβ-enriched environment contributes to the EC vulnerability.
Collapse
Affiliation(s)
- Chiara Criscuolo
- Neuroscience Institute, Italian National Research Council, Pisa, 56100 Pisa, Italy
| | - Veronica Fontebasso
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, 00143 Roma, Italy
| | - Silvia Middei
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, 00143 Roma, Italy
- Santa Lucia Foundation, Roma 00143, Italy
| | - Martina Stazi
- Neuroscience Institute, Italian National Research Council, Pisa, 56100 Pisa, Italy
| | - Martine Ammassari-Teule
- Institute of Cell Biology and Neurobiology, Italian National Research Council, Roma, 00143 Roma, Italy
- Santa Lucia Foundation, Roma 00143, Italy
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66045, USA
| | - Nicola Origlia
- Neuroscience Institute, Italian National Research Council, Pisa, 56100 Pisa, Italy
| |
Collapse
|
53
|
Mockett BG, Richter M, Abraham WC, Müller UC. Therapeutic Potential of Secreted Amyloid Precursor Protein APPsα. Front Mol Neurosci 2017; 10:30. [PMID: 28223920 PMCID: PMC5293819 DOI: 10.3389/fnmol.2017.00030] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/25/2017] [Indexed: 11/26/2022] Open
Abstract
Cleavage of the amyloid precursor protein (APP) by α-secretase generates an extracellularly released fragment termed secreted APP-alpha (APPsα). Not only is this process of interest due to the cleavage of APP within the amyloid-beta sequence, but APPsα itself has many physiological properties that suggest its great potential as a therapeutic target. For example, APPsα is neurotrophic, neuroprotective, neurogenic, a stimulator of protein synthesis and gene expression, and enhances long-term potentiation (LTP) and memory. While most early studies have been conducted in vitro, effectiveness in animal models is now being confirmed. These studies have revealed that either upregulating α-secretase activity, acutely administering APPsα or chronic delivery of APPsα via a gene therapy approach can effectively treat mouse models of Alzheimer's disease (AD) and other disorders such as traumatic head injury. Together these findings suggest the need for intensifying research efforts to harness the therapeutic potential of this multifunctional protein.
Collapse
Affiliation(s)
- Bruce G. Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Max Richter
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| | - Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Ulrike C. Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| |
Collapse
|
54
|
Wild K, August A, Pietrzik CU, Kins S. Structure and Synaptic Function of Metal Binding to the Amyloid Precursor Protein and its Proteolytic Fragments. Front Mol Neurosci 2017; 10:21. [PMID: 28197076 PMCID: PMC5281630 DOI: 10.3389/fnmol.2017.00021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/16/2017] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is ultimately linked to the amyloid precursor protein (APP). However, current research reveals an important synaptic function of APP and APP-like proteins (APLP1 and 2). In this context various neurotrophic and neuroprotective functions have been reported for the APP proteolytic fragments sAPPα, sAPPβ and the monomeric amyloid-beta peptide (Aβ). APP is a metalloprotein and binds copper and zinc ions. Synaptic activity correlates with a release of these ions into the synaptic cleft and dysregulation of their homeostasis is linked to different neurodegenerative diseases. Metal binding to APP or its fragments affects its structure and its proteolytic cleavage and therefore its physiological function at the synapse. Here, we summarize the current data supporting this hypothesis and provide a model of how these different mechanisms might be intertwined with each other.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH), University of Heidelberg Heidelberg, Germany
| | - Alexander August
- Division of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz Mainz, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| |
Collapse
|
55
|
Cacciottolo M, Wang X, Driscoll I, Woodward N, Saffari A, Reyes J, Serre ML, Vizuete W, Sioutas C, Morgan TE, Gatz M, Chui HC, Shumaker SA, Resnick SM, Espeland MA, Finch CE, Chen JC. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry 2017; 7:e1022. [PMID: 28140404 PMCID: PMC5299391 DOI: 10.1038/tp.2016.280] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 12/13/2022] Open
Abstract
Exposure to particulate matter (PM) in the ambient air and its interactions with APOE alleles may contribute to the acceleration of brain aging and the pathogenesis of Alzheimer's disease (AD). Neurodegenerative effects of particulate air pollutants were examined in a US-wide cohort of older women from the Women's Health Initiative Memory Study (WHIMS) and in experimental mouse models. Residing in places with fine PM exceeding EPA standards increased the risks for global cognitive decline and all-cause dementia respectively by 81 and 92%, with stronger adverse effects in APOE ɛ4/4 carriers. Female EFAD transgenic mice (5xFAD+/-/human APOE ɛ3 or ɛ4+/+) with 225 h exposure to urban nanosized PM (nPM) over 15 weeks showed increased cerebral β-amyloid by thioflavin S for fibrillary amyloid and by immunocytochemistry for Aβ deposits, both exacerbated by APOE ɛ4. Moreover, nPM exposure increased Aβ oligomers, caused selective atrophy of hippocampal CA1 neurites, and decreased the glutamate GluR1 subunit. Wildtype C57BL/6 female mice also showed nPM-induced CA1 atrophy and GluR1 decrease. In vitro nPM exposure of neuroblastoma cells (N2a-APP/swe) increased the pro-amyloidogenic processing of the amyloid precursor protein (APP). We suggest that airborne PM exposure promotes pathological brain aging in older women, with potentially a greater impact in ɛ4 carriers. The underlying mechanisms may involve increased cerebral Aβ production and selective changes in hippocampal CA1 neurons and glutamate receptor subunits.
Collapse
Affiliation(s)
- M Cacciottolo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - X Wang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - I Driscoll
- Department of Psychology, University of Wisconsin, Milwaukee, WI, USA
| | - N Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - A Saffari
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - J Reyes
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M L Serre
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - W Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C Sioutas
- USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - T E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - M Gatz
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - H C Chui
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine, University of Southern California,, Los Angeles, CA, USA
| | - S A Shumaker
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - S M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - M A Espeland
- Division of Public Health Services, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - C E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - J C Chen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
56
|
Ludewig S, Korte M. Novel Insights into the Physiological Function of the APP (Gene) Family and Its Proteolytic Fragments in Synaptic Plasticity. Front Mol Neurosci 2017; 9:161. [PMID: 28163673 PMCID: PMC5247455 DOI: 10.3389/fnmol.2016.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) is well known to be involved in the pathophysiology of Alzheimer's disease (AD) via its cleavage product amyloid ß (Aß). However, the physiological role of APP, its various proteolytic products and the amyloid precursor-like proteins 1 and 2 (APLP1/2) are still not fully clarified. Interestingly, it has been shown that learning and memory processes represented by functional and structural changes at synapses are altered in different APP and APLP1/2 mouse mutants. In addition, APP and its fragments are implicated in regulating synaptic strength further reinforcing their modulatory role at the synapse. While APLP2 and APP are functionally redundant, the exclusively CNS expressed APLP1, might have individual roles within the synaptic network. The proteolytic product of non-amyloidogenic APP processing, APPsα, emerged as a neurotrophic peptide that facilitates long-term potentiation (LTP) and restores impairments occurring with age. Interestingly, the newly discovered η-secretase cleavage product, An-α acts in the opposite direction, namely decreasing LTP. In this review we summarize recent findings with emphasis on the physiological role of the APP gene family and its proteolytic products on synaptic function and plasticity, especially during processes of hippocampal LTP. Therefore, we focus on literature that provide electrophysiological data by using different mutant mouse strains either lacking full-length or parts of the APP proteins or that utilized secretase inhibitors as well as secreted APP fragments.
Collapse
Affiliation(s)
- Susann Ludewig
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU BraunschweigBraunschweig, Germany; Helmholtz Centre for Infection Research, AG NINDBraunschweig, Germany
| |
Collapse
|
57
|
Laßek M, Weingarten J, Wegner M, Neupärtl M, Array TN, Harde E, Beckert B, Golghalyani V, Ackermann J, Koch I, Müller UC, Karas M, Acker-Palmer A, Volknandt W. APP Deletion Accounts for Age-Dependent Changes in the Bioenergetic Metabolism and in Hyperphosphorylated CaMKII at Stimulated Hippocampal Presynaptic Active Zones. Front Synaptic Neurosci 2017; 9:1. [PMID: 28163681 PMCID: PMC5247443 DOI: 10.3389/fnsyn.2017.00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
Synaptic release sites are characterized by exocytosis-competent synaptic vesicles tightly anchored to the presynaptic active zone (PAZ) whose proteome orchestrates the fast signaling events involved in synaptic vesicle cycle and plasticity. Allocation of the amyloid precursor protein (APP) to the PAZ proteome implicated a functional impact of APP in neuronal communication. In this study, we combined state-of-the-art proteomics, electrophysiology and bioinformatics to address protein abundance and functional changes at the native hippocampal PAZ in young and old APP-KO mice. We evaluated if APP deletion has an impact on the metabolic activity of presynaptic mitochondria. Furthermore, we quantified differences in the phosphorylation status after long-term-potentiation (LTP) induction at the purified native PAZ. We observed an increase in the phosphorylation of the signaling enzyme calmodulin-dependent kinase II (CaMKII) only in old APP-KO mice. During aging APP deletion is accompanied by a severe decrease in metabolic activity and hyperphosphorylation of CaMKII. This attributes an essential functional role to APP at hippocampal PAZ and putative molecular mechanisms underlying the age-dependent impairments in learning and memory in APP-KO mice.
Collapse
Affiliation(s)
- Melanie Laßek
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Martin Wegner
- Molecular Bioinformatics, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Moritz Neupärtl
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | | | - Eva Harde
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-UniversitätFrankfurt, Germany; Max Planck Institute for Brain ResearchFrankfurt, Germany
| | - Benedikt Beckert
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Vahid Golghalyani
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Jörg Ackermann
- Molecular Bioinformatics, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Ina Koch
- Molecular Bioinformatics, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Ulrike C Müller
- Department of Pharmacy and Molecular Biotechnology, University Heidelberg Heidelberg, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-UniversitätFrankfurt, Germany; Max Planck Institute for Brain ResearchFrankfurt, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum and BMLS, Johann Wolfgang Goethe-Universität Frankfurt, Germany
| |
Collapse
|
58
|
Pandey S, Agarwala P, Maiti S. Targeting RNA G-Quadruplexes for Potential Therapeutic Applications. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
59
|
Alves S, Fol R, Cartier N. Gene Therapy Strategies for Alzheimer's Disease: An Overview. Hum Gene Ther 2016; 27:100-7. [PMID: 26838997 DOI: 10.1089/hum.2016.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Key neuropathological hallmarks of Alzheimer's disease (AD) are extracellular amyloid plaques and intracellular accumulation of hyperphosphorylated Tau protein. The mechanisms underlying these neuropathological changes remain unclear. So far, research on AD therapy has had limited success in terms of symptomatic treatments although it has also had several failures for disease-modifying drugs. Gene transfer strategies to the brain have contributed to evaluate in animal models many interesting tracks, some of which should deserve clinical applications in AD patients in the future.
Collapse
Affiliation(s)
- Sandro Alves
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris-Saclay , Orsay, France
| | - Romain Fol
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris-Saclay , Orsay, France
| | - Nathalie Cartier
- INSERM U1169/MIRCen CEA 92265 Fontenay aux Roses and Université Paris-Sud, Université Paris-Saclay , Orsay, France
| |
Collapse
|
60
|
Zou C, Crux S, Marinesco S, Montagna E, Sgobio C, Shi Y, Shi S, Zhu K, Dorostkar MM, Müller UC, Herms J. Amyloid precursor protein maintains constitutive and adaptive plasticity of dendritic spines in adult brain by regulating D-serine homeostasis. EMBO J 2016; 35:2213-2222. [PMID: 27572463 PMCID: PMC5069548 DOI: 10.15252/embj.201694085] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023] Open
Abstract
Dynamic synapses facilitate activity-dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP-KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP-KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP The underlying mechanism of these spine abnormalities in APP-KO mice was ascribed to an impairment in D-serine homeostasis. Extracellular D-serine concentration was significantly reduced in APP-KO mice, coupled with an increase of total D-serine. Strikingly, chronic treatment with exogenous D-serine normalized D-serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP-KO mice. The cognitive deficit observed in APP-KO mice was also rescued by D-serine treatment. These data suggest that APP regulates homeostasis of D-serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.
Collapse
Affiliation(s)
- Chengyu Zou
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Sophie Crux
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University, Munich, Germany
| | - Stephane Marinesco
- INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, team TIGER and AniRA Neurochem Technological platform, Lyon, France
| | - Elena Montagna
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Carmelo Sgobio
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Yuan Shi
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Song Shi
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Kaichuan Zhu
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany
| | - Ulrike C Müller
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Jochen Herms
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Center for Neuropathology and Prion Research, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
61
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
62
|
Physiological role for amyloid precursor protein in adult experience-dependent plasticity. Proc Natl Acad Sci U S A 2016; 113:7912-7. [PMID: 27354516 DOI: 10.1073/pnas.1604299113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Changes in neural circuits after experience-dependent plasticity are brought about by the formation of new circuits via axonal growth and pruning. Here, using a combination of electrophysiology, adeno-associated virus-delivered fluorescent proteins, analysis of mutant mice, and two-photon microscopy, we follow long-range horizontally projecting axons in primary somatosensory cortex before and after selective whisker plucking. Whisker plucking induces axonal growth and pruning of horizontal projecting axons from neurons located in the surrounding intact whisker representations. We report that amyloid precursor protein is crucial for axonal pruning and contributes in a cell autonomous way.
Collapse
|
63
|
The APP Intracellular Domain Is Required for Normal Synaptic Morphology, Synaptic Plasticity, and Hippocampus-Dependent Behavior. J Neurosci 2016; 35:16018-33. [PMID: 26658856 DOI: 10.1523/jneurosci.2009-15.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The amyloid precursor protein family (APP/APLPs) has essential roles for neuromuscular synapse development and for the formation and plasticity of synapses within the CNS. Despite this, it has remained unclear whether APP mediates its functions primarily as a cell surface adhesion and signaling molecule or via its numerous proteolytic cleavage products. To address these questions, we followed a genetic approach and used APPΔCT15 knockin mice lacking the last 15 amino acids of APP, including the highly conserved YENPTY protein interaction motif. To circumvent functional compensation by the closely related APLP2, these mice were bred to an APLP2-KO background to generate APPΔCT15-DM double mutants. These APPΔCT15-DM mice were partially viable and displayed defects in neuromuscular synapse morphology and function with impairments in the ability to sustain transmitter release that resulted in muscular weakness. In the CNS, we demonstrate pronounced synaptic deficits including impairments in LTP that were associated with deficits in spatial learning and memory. Thus, the APP-CT15 domain provides essential physiological functions, likely via recruitment of specific interactors. Together with the well-established role of APPsα for synaptic plasticity, this shows that multiple domains of APP, including the conserved C-terminus, mediate signals required for normal PNS and CNS physiology. In addition, we demonstrate that lack of the APP-CT15 domain strongly impairs Aβ generation in vivo, establishing the APP C-terminus as a target for Aβ-lowering strategies. SIGNIFICANCE STATEMENT Synaptic dysfunction and cognitive decline are early hallmark features of Alzheimer's disease. Thus, it is essential to elucidate the in vivo function(s) of APP at the synapse. At present, it is unknown whether APP family proteins function as cell surface receptors, or mainly via shedding of their secreted ectodomains, such as neurotrophic APPsα. Here, to dissect APP functional domains, we used APP mutant mice lacking the last 15 amino acids that were crossed onto an APLP2-KO background. These APPΔCT15-DM mice showed defects in neuromuscular morphology and function. Synaptic deficits in the CNS included impairments of synaptic plasticity, spatial learning, and memory. Collectively, this indicates that multiple APP domains, including the C-terminus, are required for normal nervous system function.
Collapse
|
64
|
Laßek M, Weingarten J, Wegner M, Mueller BF, Rohmer M, Baeumlisberger D, Arrey TN, Hick M, Ackermann J, Acker-Palmer A, Koch I, Müller U, Karas M, Volknandt W. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone. PLoS Comput Biol 2016; 12:e1004832. [PMID: 27092780 PMCID: PMC4836664 DOI: 10.1371/journal.pcbi.1004832] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/25/2016] [Indexed: 01/18/2023] Open
Abstract
The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network.
Collapse
Affiliation(s)
- Melanie Laßek
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Jens Weingarten
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Martin Wegner
- Institute for Molecular Bioinformatics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Benjamin F. Mueller
- Institute of Pharmaceutical Chemistry, Cluster of Excellence “Macromolecular Complexes”, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Marion Rohmer
- Institute of Pharmaceutical Chemistry, Cluster of Excellence “Macromolecular Complexes”, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | - Meike Hick
- Department of Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg Germany
| | - Jörg Ackermann
- Institute for Molecular Bioinformatics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Ina Koch
- Institute for Molecular Bioinformatics, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Ulrike Müller
- Department of Pharmacy and Molecular Biotechnology, University Heidelberg, Heidelberg Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Cluster of Excellence “Macromolecular Complexes”, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Walter Volknandt
- Institute for Cell Biology and Neuroscience, Biologicum, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
65
|
Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R. The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury. Aging Dis 2016; 7:163-79. [PMID: 27114849 PMCID: PMC4809608 DOI: 10.14336/ad.2015.0907] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/07/2015] [Indexed: 01/16/2023] Open
Abstract
Despite the significant health and economic burden that traumatic brain injury (TBI) places on society, the development of successful therapeutic agents have to date not translated into efficacious therapies in human clinical trials. Injury to the brain is ongoing after TBI, through a complex cascade of primary and secondary injury events, providing a valuable window of opportunity to help limit and prevent some of the severe consequences with a timely treatment. Of note, it has been suggested that novel treatments for TBI should be multifactorial in nature, mimicking the body's own endogenous repair response. Whilst research has historically focused on the role of the amyloid precursor protein (APP) in the pathogenesis of Alzheimer's disease, recent advances in trauma research have demonstrated that APP offers considerable neuroprotective properties following TBI, suggesting that APP is an ideal therapeutic candidate. Its acute upregulation following TBI has been shown to serve a beneficial role following trauma and has lead to significant advances in understanding the neuroprotective and neurotrophic functions of APP and its metabolites. Research has focused predominantly on the APP derivative sAPPα, which has consistently demonstrated neuroprotective and neurotrophic functions both in vitro and in vivo following various traumatic insults. Its neuroprotective activity has been narrowed down to a 15 amino acid sequence, and this region is linked to both heparan binding and growth-factor-like properties. It has been proposed that APP binds to heparan sulfate proteoglycans to exert its neuroprotective action. APP presents us with a novel therapeutic compound that could overcome many of the challenges that have stalled development of efficacious TBI treatments previously.
Collapse
Affiliation(s)
- Stephanie Plummer
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Corinna Van den Heuvel
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Emma Thornton
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Frances Corrigan
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Roberto Cappai
- Department of Pathology, the University of Melbourne, Victoria, Australia
| |
Collapse
|
66
|
Zhang X, Zhong W, Brankačk J, Weyer SW, Müller UC, Tort ABL, Draguhn A. Impaired theta-gamma coupling in APP-deficient mice. Sci Rep 2016; 6:21948. [PMID: 26905287 PMCID: PMC4764939 DOI: 10.1038/srep21948] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/04/2016] [Indexed: 01/05/2023] Open
Abstract
Amyloid precursor protein (APP) is critically involved in the pathophysiology of Alzheimer's disease, but its physiological functions remain elusive. Importantly, APP knockout (APP-KO) mice exhibit cognitive deficits, suggesting that APP plays a role at the neuronal network level. To investigate this possibility, we recorded local field potentials (LFPs) from the posterior parietal cortex, dorsal hippocampus and lateral prefrontal cortex of freely moving APP-KO mice. Spectral analyses showed that network oscillations within the theta- and gamma-frequency bands were not different between APP-KO and wild-type mice. Surprisingly, however, while gamma amplitude coupled to theta phase in all recorded regions of wild-type animals, in APP-KO mice theta-gamma coupling was strongly diminished in recordings from the parietal cortex and hippocampus, but not in LFPs recorded from the prefrontal cortex. Thus, lack of APP reduces oscillatory coupling in LFP recordings from specific brain regions, despite not affecting the amplitude of the oscillations. Together, our findings reveal reduced cross-frequency coupling as a functional marker of APP deficiency at the network level.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Wewei Zhong
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Jurij Brankačk
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Sascha W. Weyer
- Institute of Pharmacy and Molecular Biotechnology, Department of Bioinformatics and Functional Genomics, Heidelberg University, Heidelberg, Germany
| | - Ulrike C. Müller
- Institute of Pharmacy and Molecular Biotechnology, Department of Bioinformatics and Functional Genomics, Heidelberg University, Heidelberg, Germany
| | - Adriano B. L. Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Andreas Draguhn
- Institute for Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
67
|
Fol R, Braudeau J, Ludewig S, Abel T, Weyer SW, Roederer JP, Brod F, Audrain M, Bemelmans AP, Buchholz CJ, Korte M, Cartier N, Müller UC. Viral gene transfer of APPsα rescues synaptic failure in an Alzheimer's disease mouse model. Acta Neuropathol 2016; 131:247-266. [PMID: 26538149 DOI: 10.1007/s00401-015-1498-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is characterized by synaptic failure, dendritic and axonal atrophy, neuronal death and progressive loss of cognitive functions. It is commonly assumed that these deficits arise due to β-amyloid accumulation and plaque deposition. However, increasing evidence indicates that loss of physiological APP functions mediated predominantly by neurotrophic APPsα produced in the non-amyloidogenic α-secretase pathway may contribute to AD pathogenesis. Upregulation of APPsα production via induction of α-secretase might, however, be problematic as this may also affect substrates implicated in tumorigenesis. Here, we used a gene therapy approach to directly overexpress APPsα in the brain using AAV-mediated gene transfer and explored its potential to rescue structural, electrophysiological and behavioral deficits in APP/PS1∆E9 AD model mice. Sustained APPsα overexpression in aged mice with already preexisting pathology and amyloidosis restored synaptic plasticity and partially rescued spine density deficits. Importantly, AAV-APPsα treatment also resulted in a functional rescue of spatial reference memory in the Morris water maze. Moreover, we demonstrate a significant reduction of soluble Aβ species and plaque load. In addition, APPsα induced the recruitment of microglia with a ramified morphology into the vicinity of plaques and upregulated IDE and TREM2 expression suggesting enhanced plaque clearance. Collectively, these data indicate that APPsα can mitigate synaptic and cognitive deficits, despite established pathology. Increasing APPsα may therefore be of therapeutic relevance for AD.
Collapse
Affiliation(s)
- Romain Fol
- INSERM U1169/MIRCen CEA, 92265, Fontenay aux Roses, France
- University Paris Sud, University Paris-Saclay, 91400, Orsay, France
- Université Paris Descartes, 75006, Paris, France
| | - Jerome Braudeau
- INSERM U1169/MIRCen CEA, 92265, Fontenay aux Roses, France
- University Paris Sud, University Paris-Saclay, 91400, Orsay, France
| | - Susann Ludewig
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Brunswick, Germany
| | - Tobias Abel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Sascha W Weyer
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Jan-Peter Roederer
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Florian Brod
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Mickael Audrain
- INSERM U1169/MIRCen CEA, 92265, Fontenay aux Roses, France
- University Paris Sud, University Paris-Saclay, 91400, Orsay, France
- Université Paris Descartes, 75006, Paris, France
| | - Alexis-Pierre Bemelmans
- University Paris Sud, University Paris-Saclay, 91400, Orsay, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), 92260, Fontenay aux Roses, France
- Centre National de la Recherche Scientifique (CNRS), UMR 9199, Neurodegenerative Diseases Laboratory, 92260, Fontenay aux Roses, France
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, 63225, Langen, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Brunswick, Germany
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, 38124, Brunswick, Germany
| | - Nathalie Cartier
- INSERM U1169/MIRCen CEA, 92265, Fontenay aux Roses, France.
- University Paris Sud, University Paris-Saclay, 91400, Orsay, France.
| | - Ulrike C Müller
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany.
| |
Collapse
|
68
|
Kuhn PH, Colombo AV, Schusser B, Dreymueller D, Wetzel S, Schepers U, Herber J, Ludwig A, Kremmer E, Montag D, Müller U, Schweizer M, Saftig P, Bräse S, Lichtenthaler SF. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. eLife 2016; 5. [PMID: 26802628 PMCID: PMC4786429 DOI: 10.7554/elife.12748] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 12/11/2022] Open
Abstract
Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain.
Collapse
Affiliation(s)
- Peer-Hendrik Kuhn
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institut für Pathologie und Pathologische Anatomie, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Alessio Vittorio Colombo
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany
| | - Benjamin Schusser
- Department of Animal Science, Institute for Animal Physiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Ute Schepers
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julia Herber
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Elisabeth Kremmer
- German Research Center for Environmental Health, Institute of Molecular Tumor immunology, Helmholtz Zentrum München, Munich, Germany
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ulrike Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michaela Schweizer
- Service-Gruppe für Elektronenmikroskopie, Zentrum für Molekulare Neurobiologie, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan F Lichtenthaler
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
69
|
Audrain M, Fol R, Dutar P, Potier B, Billard JM, Flament J, Alves S, Burlot MA, Dufayet-Chaffaud G, Bemelmans AP, Valette J, Hantraye P, Déglon N, Cartier N, Braudeau J. Alzheimer's disease-like APP processing in wild-type mice identifies synaptic defects as initial steps of disease progression. Mol Neurodegener 2016; 11:5. [PMID: 26759118 PMCID: PMC4709894 DOI: 10.1186/s13024-016-0070-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/06/2016] [Indexed: 12/15/2022] Open
Abstract
Background Alzheimer’s disease (AD) is the most frequent form of dementia in the elderly and no effective treatment is currently available. The mechanisms triggering AD onset and progression are still imperfectly dissected. We aimed at deciphering the modifications occurring in vivo during the very early stages of AD, before the development of amyloid deposits, neurofibrillary tangles, neuronal death and inflammation. Most current AD models based on Amyloid Precursor Protein (APP) overproduction beginning from in utero, to rapidly reproduce the histological and behavioral features of the disease within a few months, are not appropriate to study the early steps of AD development. As a means to mimic in vivo amyloid APP processing closer to the human situation in AD, we used an adeno-associated virus (AAV)-based transfer of human mutant APP and Presenilin 1 (PS1) genes to the hippocampi of two-month-old C57Bl/6 J mice to express human APP, without significant overexpression and to specifically induce its amyloid processing. Results The human APP, βCTF and Aβ42/40 ratio were similar to those in hippocampal tissues from AD patients. Three months after injection the murine Tau protein was hyperphosphorylated and rapid synaptic failure occurred characterized by decreased levels of both PSD-95 and metabolites related to neuromodulation, on proton magnetic resonance spectroscopy (1H-MRS). Astrocytic GLT-1 transporter levels were lower and the tonic glutamatergic current was stronger on electrophysiological recordings of CA1 hippocampal region, revealing the overstimulation of extrasynaptic N-methyl D-aspartate receptor (NMDAR) which precedes the loss of long-term potentiation (LTP). These modifications were associated with early behavioral impairments in the Open-field, Y-maze and Morris Mater Maze tasks. Conclusions Altogether, this demonstrates that an AD-like APP processing, yielding to levels of APP, βCTF and Aβ42/Aβ40 ratio similar to those observed in AD patients, are sufficient to rapidly trigger early steps of the amyloidogenic and Tau pathways in vivo. With this strategy, we identified a sequence of early events likely to account for disease onset and described a model that may facilitate efforts to decipher the factors triggering AD and to evaluate early neuroprotective strategies. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0070-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mickael Audrain
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France.,Université Paris Descartes, Paris, France.,CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France
| | - Romain Fol
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France.,Université Paris Descartes, Paris, France.,CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France
| | - Patrick Dutar
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Brigitte Potier
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Marie Billard
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Julien Flament
- CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France.,INSERM UMS27, Fontenay-aux-Roses 92265, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France
| | - Sandro Alves
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France.,CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France
| | - Marie-Anne Burlot
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France.,Université Paris Descartes, Paris, France.,CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France
| | - Gaelle Dufayet-Chaffaud
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France.,CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France
| | - Alexis-Pierre Bemelmans
- CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France.,CNRS UMR9199, Fontenay-aux-Roses 92265, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France
| | - Julien Valette
- CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France.,CNRS UMR9199, Fontenay-aux-Roses 92265, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France
| | - Philippe Hantraye
- CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France.,INSERM UMS27, Fontenay-aux-Roses 92265, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France.,CNRS UMR9199, Fontenay-aux-Roses 92265, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital, Lausanne, Switzerland.,Neuroscience Research Center, Laboratory of Cellular and Molecular Neurotherapies, Lausanne University Hospital, Lausanne, Switzerland
| | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France. .,CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France.
| | - Jérome Braudeau
- INSERM UMR1169, Université Paris-Sud, Université Paris-Saclay, Orsay, 94100, France.,CEA, DSV, I2BM, MIRCen, Fontenay-aux-Roses, 92265, France
| |
Collapse
|
70
|
Crenshaw E, Leung BP, Kwok CK, Sharoni M, Olson K, Sebastian NP, Ansaloni S, Schweitzer-Stenner R, Akins MR, Bevilacqua PC, Saunders AJ. Amyloid Precursor Protein Translation Is Regulated by a 3'UTR Guanine Quadruplex. PLoS One 2015; 10:e0143160. [PMID: 26618502 PMCID: PMC4664259 DOI: 10.1371/journal.pone.0143160] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
A central event in Alzheimer’s disease is the accumulation of amyloid β (Aβ) peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP). APP overexpression leads to increased Aβ generation and Alzheimer’s disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aβ levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aβ levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes), non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3’UTR (untranslated region) at residues 3008–3027 (NM_201414.2). This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3’UTR G-quadruplex as a novel mechanism regulating APP expression.
Collapse
Affiliation(s)
- Ezekiel Crenshaw
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Brian P. Leung
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
- Department of Chemistry, Drexel University, Philadelphia, PA, United States of America
| | - Chun Kit Kwok
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States of America
- Department of Biochemistry & Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michal Sharoni
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Kalee Olson
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States of America
| | - Neeraj P. Sebastian
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Sara Ansaloni
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | | | - Michael R. Akins
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States of America
- Department of Biochemistry & Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States of America
| | - Aleister J. Saunders
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
71
|
Vnencak M, Paul MH, Hick M, Schwarzacher SW, Del Turco D, Müller UC, Deller T, Jedlicka P. Deletion of the amyloid precursor-like protein 1 (APLP1) enhances excitatory synaptic transmission, reduces network inhibition but does not impair synaptic plasticity in the mouse dentate gyrus. J Comp Neurol 2015; 523:1717-29. [PMID: 25728909 DOI: 10.1002/cne.23766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/21/2015] [Accepted: 02/23/2015] [Indexed: 01/02/2023]
Abstract
Amyloid precursor-like protein 1 (APLP1) is a transmembrane synaptic protein belonging to the amyloid precursor protein (APP) gene family. Although the role of this gene family-in particular of APP-has been intensely studied in the context of Alzheimer's disease, the physiological roles of its family members remain poorly understood. In particular, the function of APLP1, which is predominantly expressed in the nervous system, has remained enigmatic. Since APP has been implicated in synaptic plasticity, we wondered whether APLP1 could play a similar role. First, using in situ hybridization and laser microdissection combined with reverse transcription-quantitative polymerase chain reaction (PCR) we observed that Aplp1 mRNA is highly expressed in dentate granule cells. Having this examined, we studied synaptic plasticity at the perforant path-granule cell synapses in the dentate gyrus of APLP1-deficient mice in vivo. Analysis of field excitatory postsynaptic potentials evoked by stimulation of perforant path fibers revealed increased excitatory transmission in APLP1-deficient mice. Moreover, we observed decreased paired-pulse inhibition of population spikes indicating a decrease in network inhibition upon deletion of APLP1. In contrast, short-term presynaptic plasticity (STP) as well as long-term synaptic plasticity (LTP) was unchanged in the absence of APLP1. Based on these results we conclude that APLP1 deficiency on its own does not lead to defects in synaptic plasticity, but affects synaptic transmission and network inhibition in the dentate gyrus.
Collapse
Affiliation(s)
- Matej Vnencak
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Frankfurt am Main, Germany
| | - Mandy H Paul
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Frankfurt am Main, Germany
| | - Meike Hick
- Department of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Frankfurt am Main, Germany
| | - Domenico Del Turco
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Frankfurt am Main, Germany
| | - Ulrike C Müller
- Department of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Frankfurt am Main, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
72
|
Hick M, Herrmann U, Weyer SW, Mallm JP, Tschäpe JA, Borgers M, Mercken M, Roth FC, Draguhn A, Slomianka L, Wolfer DP, Korte M, Müller UC. Acute function of secreted amyloid precursor protein fragment APPsα in synaptic plasticity. Acta Neuropathol 2015; 129:21-37. [PMID: 25432317 DOI: 10.1007/s00401-014-1368-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/24/2022]
Abstract
The key role of APP in the pathogenesis of Alzheimer disease is well established. However, postnatal lethality of double knockout mice has so far precluded the analysis of the physiological functions of APP and the APLPs in the brain. Previously, APP family proteins have been implicated in synaptic adhesion, and analysis of the neuromuscular junction of constitutive APP/APLP2 mutant mice showed deficits in synaptic morphology and neuromuscular transmission. Here, we generated animals with a conditional APP/APLP2 double knockout (cDKO) in excitatory forebrain neurons using NexCre mice. Electrophysiological recordings of adult NexCre cDKOs indicated a strong synaptic phenotype with pronounced deficits in the induction and maintenance of hippocampal LTP and impairments in paired pulse facilitation, indicating a possible presynaptic deficit. These deficits were also reflected in impairments in nesting behavior and hippocampus-dependent learning and memory tasks, including deficits in Morris water maze and radial maze performance. Moreover, while no gross alterations of brain morphology were detectable in NexCre cDKO mice, quantitative analysis of adult hippocampal CA1 neurons revealed prominent reductions in total neurite length, dendritic branching, reduced spine density and reduced spine head volume. Strikingly, the impairment of LTP could be selectively rescued by acute application of exogenous recombinant APPsα, but not APPsβ, indicating a crucial role for APPsα to support synaptic plasticity of mature hippocampal synapses on a rapid time scale. Collectively, our analysis reveals an essential role of APP family proteins in excitatory principal neurons for mediating normal dendritic architecture, spine density and morphology, synaptic plasticity and cognition.
Collapse
Affiliation(s)
- Meike Hick
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Stahl R, Schilling S, Soba P, Rupp C, Hartmann T, Wagner K, Merdes G, Eggert S, Kins S. Shedding of APP limits its synaptogenic activity and cell adhesion properties. Front Cell Neurosci 2014; 8:410. [PMID: 25520622 PMCID: PMC4253958 DOI: 10.3389/fncel.2014.00410] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023] Open
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD) and has essential synapse promoting functions. Synaptogenic activity as well as cell adhesion properties of APP presumably depend on trans-cellular dimerization via its extracellular domain. Since neuronal APP is extensively processed by secretases, it raises the question if APP shedding affects its cell adhesion and synaptogenic properties. We show that inhibition of APP shedding using cleavage deficient forms of APP or a dominant negative α-secretase strongly enhanced its cell adhesion and synaptogenic activity suggesting that synapse promoting function of APP is tightly regulated by α-secretase mediated processing, similar to other trans-cellular synaptic adhesion molecules.
Collapse
Affiliation(s)
- Ronny Stahl
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich Munich, Germany
| | - Sandra Schilling
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Peter Soba
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Center for Molecular Neurobiology (ZMNH), University of Hamburg Hamburg, Germany
| | - Carsten Rupp
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Tobias Hartmann
- Deutsches Institut für DemenzPrävention, Experimental Neurology, Saarland University Homburg/Saar, Germany
| | - Katja Wagner
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Gunter Merdes
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Biosystems Science and Engineering, ETH Zürich Basel, Switzerland
| | - Simone Eggert
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Stefan Kins
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany ; Deutsches Institut für DemenzPrävention, Experimental Neurology, Saarland University Homburg/Saar, Germany
| |
Collapse
|