51
|
Martínez-González AE, Andreo-Martínez P. Prebiotics, probiotics and fecal microbiota transplantation in autism: A systematic review. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2020; 13:150-164. [PMID: 32684346 DOI: 10.1016/j.rpsm.2020.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022]
Abstract
In recent years, there has been an increase in studies of the implications of the gut microbiota (GM) in children with autism spectrum disorder (ASD). There is a hypothesis which propose a relationship between the emotional state and the abundance of intestinal microbes through the so-called microbiota-intestine-brain axis. In this sense, dysbiotic GM could be a contributing factor to the appearance of ASD. This systematic review article analyzes the results of the intervention using prebiotics (carrot powder, vitamin A, partially hydrolyzed guar gum, galactooligosaccharides, etc.), probiotics (mainly: Lactobacillus, Bifidobacterium, etc.) and transplantation of fecal microbiota in ASD children. In conclusion, the results of the initial studies suggest changes in ASD symptoms, gastro-intestinal symptoms and GM composition after the interventions. However, the results should be taken with caution because there are very few studies that analyze the efficacy of long-term treatments and the different combinations of them.
Collapse
Affiliation(s)
| | - Pedro Andreo-Martínez
- Departamento de Química Agrícola, Facultad de Química, Universidad de Murcia, Campus de Espinardo, Murcia, España; Departamento de Ingeniería Química, Facultad de Química, Universidad de Murcia, Campus de Espinardo, Murcia, España
| |
Collapse
|
52
|
Maes M, Anderson G, Betancort Medina SR, Seo M, Ojala JO. Integrating Autism Spectrum Disorder Pathophysiology: Mitochondria, Vitamin A, CD38, Oxytocin, Serotonin and Melatonergic Alterations in the Placenta and Gut. Curr Pharm Des 2020; 25:4405-4420. [PMID: 31682209 DOI: 10.2174/1381612825666191102165459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND A diverse array of data has been associated with autism spectrum disorder (ASD), reflecting the complexity of its pathophysiology as well as its heterogeneity. Two important hubs have emerged, the placenta/prenatal period and the postnatal gut, with alterations in mitochondria functioning crucial in both. METHODS Factors acting to regulate mitochondria functioning in ASD across development are reviewed in this article. RESULTS Decreased vitamin A, and its retinoic acid metabolites, lead to a decrease in CD38 and associated changes that underpin a wide array of data on the biological underpinnings of ASD, including decreased oxytocin, with relevance both prenatally and in the gut. Decreased sirtuins, poly-ADP ribose polymerase-driven decreases in nicotinamide adenine dinucleotide (NAD+), hyperserotonemia, decreased monoamine oxidase, alterations in 14-3-3 proteins, microRNA alterations, dysregulated aryl hydrocarbon receptor activity, suboptimal mitochondria functioning, and decreases in the melatonergic pathways are intimately linked to this. Many of the above processes may be modulating, or mediated by, alterations in mitochondria functioning. Other bodies of data associated with ASD may also be incorporated within these basic processes, including how ASD risk factors such as maternal obesity and preeclampsia, as well as more general prenatal stressors, modulate the likelihood of offspring ASD. CONCLUSION Such a mitochondria-focussed integrated model of the pathophysiology of ASD has important preventative and treatment implications.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | | - Moonsang Seo
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Johanna O Ojala
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
53
|
Ho LKH, Tong VJW, Syn N, Nagarajan N, Tham EH, Tay SK, Shorey S, Tambyah PA, Law ECN. Gut microbiota changes in children with autism spectrum disorder: a systematic review. Gut Pathog 2020; 12:6. [PMID: 32025243 PMCID: PMC6996179 DOI: 10.1186/s13099-020-0346-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As more animal studies start to disentangle pathways linking the gut microbial ecosystem and neurobehavioral traits, human studies have grown rapidly. Many have since investigated the bidirectional communication between the gastrointestinal tract and the central nervous system, specifically on the effects of microbial composition on the brain and development. METHODS Our review at the initial stage aimed to evaluate literature on gut microbial alterations in pediatric neurobehavioral conditions. We searched five literature databases (Embase, PubMed, PsychInfo, Scopus, and Medline) and found 4489 published work. As the mechanisms linking gut microbiota to these conditions are divergent, the scope of this review was narrowed to focus on describing gut dysbiosis in children with autism spectrum disorder (ASD). RESULTS Among the final 26 articles, there was a lack of consistency in the reported gut microbiome changes across ASD studies, except for distinguishable patterns, within limits, for Prevotella, Firmicutes at the phylum level, Clostridiales clusters including Clostridium perfringens, and Bifidobacterium species. CONCLUSIONS These results were inadequate to confirm a global microbiome change in children with ASD and causality could not be inferred to explain the etiology of the behaviors associated with ASD. Mechanistic studies are needed to elucidate the specific role of the gut microbiome in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Lucius Kang Hua Ho
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Valerie Jia Wei Tong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Singapore, Singapore
| | - Elizabeth Huiwen Tham
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Stacey K. Tay
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Shefaly Shorey
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul Anantharajah Tambyah
- Division of Infectious Diseases, University Medicine Cluster, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Evelyn Chung Ning Law
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| |
Collapse
|
54
|
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020; 12:E381. [PMID: 32023943 PMCID: PMC7071260 DOI: 10.3390/nu12020381] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Collapse
Affiliation(s)
- Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | - Qi Liang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Biju Balakrishnan
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | | | - Qian-Jin Feng
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Wei Zhang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| |
Collapse
|
55
|
Karhu E, Zukerman R, Eshraghi RS, Mittal J, Deth RC, Castejon AM, Trivedi M, Mittal R, Eshraghi AA. Nutritional interventions for autism spectrum disorder. Nutr Rev 2019; 78:515-531. [DOI: 10.1093/nutrit/nuz092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractAutism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder with considerable clinical heterogeneity. With no cure for the disorder, treatments commonly center around speech and behavioral therapies to improve the characteristic social, behavioral, and communicative symptoms of ASD. Gastrointestinal disturbances are commonly encountered comorbidities that are thought to be not only another symptom of ASD but to also play an active role in modulating the expression of social and behavioral symptoms. Therefore, nutritional interventions are used by a majority of those with ASD both with and without clinical supervision to alleviate gastrointestinal and behavioral symptoms. Despite a considerable interest in dietary interventions, no consensus exists regarding optimal nutritional therapy. Thus, patients and physicians are left to choose from a myriad of dietary protocols. This review, summarizes the state of the current clinical and experimental literature on nutritional interventions for ASD, including gluten-free and casein-free, ketogenic, and specific carbohydrate diets, as well as probiotics, polyunsaturated fatty acids, and dietary supplements (vitamins A, C, B6, and B12; magnesium and folate).
Collapse
Affiliation(s)
- Elisa Karhu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ryan Zukerman
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Rebecca S Eshraghi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Richard C Deth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Malav Trivedi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | | | | |
Collapse
|
56
|
Autism Spectrum Disorder Interventions in Mainland China: a Systematic Review. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2019. [DOI: 10.1007/s40489-019-00191-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
57
|
González-Prendes R, Pena RN, Solé E, Seradj AR, Estany J, Ramayo-Caldas Y. Modulatory Effect of Protein and Carotene Dietary Levels on Pig gut Microbiota. Sci Rep 2019; 9:14582. [PMID: 31601914 PMCID: PMC6787051 DOI: 10.1038/s41598-019-51136-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/20/2019] [Indexed: 12/16/2022] Open
Abstract
In this study we investigated the impact of dietary protein and carotene levels on microbial functions and composition during the last month of purebred fattening Duroc pigs. Fecal microbiota was characterized using 16S ribosomal RNA sequencing at two points of live, 165 (T1) and 195 (T2) days. From 70 to 165 days of age, 32 pigs were divided into two groups fed either a standard-protein (SP) or a low-protein (LP) diet. In the last month (165-195 days), all pigs received a LP diet, either carotene-enriched (CE) or not (NC). Significant differences were observed between T1 and T2 at Amplicon Sequences Variants (ASVs), phylum and genus levels. In T1 group, Prevotella, Faecalibacterium and Treponema were the genera most influenced by dietary protein, together with predicted functions related with the degradation of protein. In contrast, the CE diet did not impact the microbiome diversity, although 160 ASVs were differentially abundant between CE and NC groups at T2. Weak stability of enterotype clusters across time-points was observed as consequence of medium-term dietary interventions. Our results suggest that during the last month of fattening, dietary protein have a stronger effect than carotenes on the modulation of the compositional and functional structure of the pig microbiota.
Collapse
Affiliation(s)
- Rayner González-Prendes
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Centre, Lleida, 25198, Catalonia, Spain
- Animal Breeding and Genomics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ramona Natacha Pena
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Centre, Lleida, 25198, Catalonia, Spain
| | - Emma Solé
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Centre, Lleida, 25198, Catalonia, Spain
| | - Ahmad Reza Seradj
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Centre, Lleida, 25198, Catalonia, Spain
| | - Joan Estany
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio Centre, Lleida, 25198, Catalonia, Spain.
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, IRTA, Torre Marimon, Caldes de Montbui, Catalonia, Spain
| |
Collapse
|
58
|
Park JS, Moon SJ, Lim MA, Byun JK, Hwang SH, Yang S, Kim EK, Lee H, Kim SM, Lee J, Kwok SK, Min JK, Lee MO, Shin DY, Park SH, Cho ML. Retinoic Acid Receptor-Related Receptor Alpha Ameliorates Autoimmune Arthritis via Inhibiting of Th17 Cells and Osteoclastogenesis. Front Immunol 2019; 10:2270. [PMID: 31636631 PMCID: PMC6787168 DOI: 10.3389/fimmu.2019.02270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory polyarthritis characterized by progressive joint destruction. IL-17-producing CD4+ T (Th17) cells play pivotal roles in RA development and progression. Retinoic acid receptor-related orphan receptor alpha (RORα) is a negative regulator of inflammatory responses, whereas RORγt, another member of the ROR family, is a Th17 lineage-specific transcription factor. Here, we investigated the immunoregulatory potential of RORα in collagen-induced arthritis (CIA) mice, an experimental model of RA. Cholesterol sulfate (CS) or SR1078, a ligand of RORα, inhibited RORγt expression and Th17 differentiation in vitro. In addition, fortification of RORα in T cells inhibited the expression levels of glycolysis-associated genes. We found that RORα overexpression in CIA mice attenuated the clinical and histological severities of inflammatory arthritis. The anti-arthritic effect of RORα was associated with suppressed Th17 differentiation and attenuated mTOR-STAT3 signaling in T cells. Furthermore, altered RORα activity could directly affect osteoclastogenesis implicated in progressive bone destruction in human RA. Our findings defined a critical role of RORα in the pathogenesis of RA. These data suggest that RORα may have novel therapeutic uses in the treatment of RA.
Collapse
Affiliation(s)
- Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Su-Jin Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Mi-Ae Lim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Kyeong Byun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hohyun Lee
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Sung-Min Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jennifer Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jun-Ki Min
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Mi-Ock Lee
- College of Pharmacy and Bio-MAX Institute, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Dong-Yun Shin
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
59
|
Dempsey JL, Little M, Cui JY. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 2019; 75:41-69. [PMID: 31454513 DOI: 10.1016/j.neuro.2019.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
There is growing recognition that the gut microbiome is an important regulator for neurological functions. This review provides a summary on the role of gut microbiota in various neurological disorders including neurotoxicity induced by environmental stressors such as drugs, environmental contaminants, and dietary factors. We propose that the gut microbiome remotely senses and regulates CNS signaling through the following mechanisms: 1) intestinal bacteria-mediated biotransformation of neurotoxicants that alters the neuro-reactivity of the parent compounds; 2) altered production of neuro-reactive microbial metabolites following exposure to certain environmental stressors; 3) bi-directional communication within the gut-brain axis to alter the intestinal barrier integrity; and 4) regulation of mucosal immune function. Distinct microbial metabolites may enter systemic circulation and epigenetically reprogram the expression of host genes in the CNS, regulating neuroinflammation, cell survival, or cell death. We will also review the current tools for the study of the gut-brain axis and provide some suggestions to move this field forward in the future.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Mallory Little
- Department of Environmental and Occupational Health Sciences, University of Washington, United States
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, United States.
| |
Collapse
|
60
|
Nogay NH, Nahikian-Nelms M. Can we reduce autism-related gastrointestinal and behavior problems by gut microbiota based dietary modulation? A review. Nutr Neurosci 2019; 24:327-338. [PMID: 31216957 DOI: 10.1080/1028415x.2019.1630894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Autism is a neurodevelopmental disorder that negatively affects a child's interaction and communication with the environment. The signals between intestine, brain, and microbiota change in autism. Altering the composition of microbiota may contribute to the development of clinical symptoms. Diet is one of the most important factors influencing intestinal microbiota.Aim: This study aimed to investigate the role of intestinal microbiota in gastrointestinal (GI) and behavioral problems seen in children with autism and discuss the potential effect of diet on intestinal microbiota in reducing these problems.Methods: The database Web of Science was searched for relevant studies. The combinations of the following terms were used for the search: 'autism' or 'autistic' and 'microbiome' or 'microbiota' or 'gut bacteria' or 'gut microbiota' or 'gut microbiome.' The analysis included human studies evaluating the relationship between GI problems and/or behavioral problems and intestinal microbiota in autism in the English language with no time limitation.Results: The initial search resulted in 691 studies, with 14 studies fully meeting the inclusion criteria. In these studies, high growth rates of Clostridium histolyticum, C. perfringens, and Sutterella; high ratio of Escherichia/Shigella; and low ratio of Bacteroidetes/Firmicutes were generally related to GI problems, while relative abundance of Desulfovibrio, Clostridium spp., and Bacteroides vulgatus were associated with behavior disorders.Conclusions: Published studies on the relationship of gastrointestinal and behavioral problems with gut microbiota in autism are very limited and contradictory. The fact that the results of the studies are not consistent with each other may be explained by the differences in the age of participants, geographical region, sample size, presence of GI problems in the selected control group, and feces or biopsy samples taken from different regions of GI system. With the available information, it is not yet possible to develop a gut microbiota-based nutritional intervention to treat GI symptoms for people with autism.
Collapse
Affiliation(s)
- Nalan Hakime Nogay
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erciyes University, Kayseri, Turkey.,School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Marcia Nahikian-Nelms
- School of Health and Rehabilitation Sciences, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
61
|
Huda MN, Ahmad SM, Kalanetra KM, Taft DH, Alam MJ, Khanam A, Raqib R, Underwood MA, Mills DA, Stephensen CB. Neonatal Vitamin A Supplementation and Vitamin A Status Are Associated with Gut Microbiome Composition in Bangladeshi Infants in Early Infancy and at 2 Years of Age. J Nutr 2019; 149:1075-1088. [PMID: 31006815 PMCID: PMC6543205 DOI: 10.1093/jn/nxz034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 02/14/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Infancy is a crucial period for establishing the intestinal microbiome. This process may be influenced by vitamin A (VA) status because VA affects intestinal immunity and epithelial integrity, factors that can, in turn, modulate microbiome development. OBJECTIVES The aim of this study was to determine if neonatal VA supplementation (VAS) affected the abundance of Bifidobacterium, a beneficial commensal, or of Proteobacteria, a phylum containing enteric pathogens, in early (6-15 wk) or late (2 y) infancy. Secondary objectives were to determine if VAS affected the abundance of other bacterial taxa, and to determine if VA status assessed by measuring plasma retinol was associated with bacterial abundance. METHODS Three hundred and six Bangladeshi infants were randomized by sex and birthweight status (above/below median) to receive 1 VA dose (50,000 IU) or placebo within 48 h of birth. Relative abundance at the genus level and above was assessed by 16S rRNA gene sequencing. A terminal restriction fragment-length polymorphism assay was used to identify Bifidobacterium species and subspecies at 6 wk. RESULTS Linear regression showed that Bifidobacterium abundance in early infancy was lower in boys (median, 1st/3rd quartiles; 0.67, 0.52/0.78) than girls (0.73, 0.60/0.80; P = 0.003) but that boys receiving VAS (0.69, 0.55/0.78) had higher abundance than boys receiving placebo (0.65, 0.44/0.77; P = 0.039). However this difference was not seen in girls (VAS 0.71, 0.54/0.80; placebo 0.75, 0.63/0.81; P = 0.25). VAS did not affect Proteobacteria abundance. Sex-specific associations were also seen for VA status, including positive associations of plasma retinol with Actinobacteria (the phylum containing Bifidobacterium) and Akkermansia, another commensal with possible health benefits, for girls in late infancy. CONCLUSIONS Better VA status in infancy may influence health both in infancy and later in life by promoting the establishment of a healthy microbiota. This postulated effect of VA may differ between boys and girls. This trial was registered at clinicaltrials.gov as NCT02027610.
Collapse
Affiliation(s)
- M Nazmul Huda
- Nutrition Department
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- US Department of Agriculture, Western Human Nutrition Research Center, Davis, CA
| | - Shaikh M Ahmad
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | | | - Md J Alam
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Afsana Khanam
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Mark A Underwood
- Department of Pediatrics, University of California, Davis, Sacramento, CA
| | - David A Mills
- Department of Food Science and Technology
- Department of Viticulture and Enology, University of California, Davis, Davis, CA
| | - Charles B Stephensen
- Nutrition Department
- US Department of Agriculture, Western Human Nutrition Research Center, Davis, CA
| |
Collapse
|
62
|
Huangfu YR, Peng W, Guo BJ, Shen ZF, Li L, Liu SW, Zheng H, Hu YP. Effects of acupuncture in treating insomnia due to spleen-stomach disharmony syndrome and its influence on intestinal microbiome: Study protocol for a randomized controlled trial. JOURNAL OF INTEGRATIVE MEDICINE 2019; 17:161-166. [PMID: 30819614 DOI: 10.1016/j.joim.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/21/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND Insomnia is a common complaint that is closely related to gastrointestinal symptoms, which is consistent with the traditional Chinese medicine classical theory of "stomach disharmony leading to restless sleep." Acupuncture is an effective complementary and alternative medicine therapy to improve gastrointestinal function and restore the normal sleep-wake cycle. However, studies on the effectiveness of acupuncture for insomnia due to spleen-stomach disharmony syndrome are limited to case reports and few randomized controlled trials; deeper research on its mechanism is still lacking. This randomized controlled trial aims to assess the treatment efficacy of "harmonizing stomach to tranquilize mind" acupuncture for insomnia and its influence on the intestinal microbiome. METHODS/DESIGN This is a randomized, single-blind, parallel-group study. Sixty eligible patients with insomnia due to spleen-stomach disharmony syndrome will be randomly divided into two groups (1:1 allocation ratio). The intervention group will use "harmonizing stomach to tranquilize mind" acupuncture, and the control group will receive sham acupuncture. Participants will receive 5 acupuncture treatment sessions per week for 4 consecutive weeks. The Pittsburgh Sleep Quality Index will be used to evaluate the clinical efficacy of acupuncture treatment by making assessments at baseline, the end of treatment and the end of the follow-up. High-throughput 16S ribosomal ribonucleic acid gene sequencing will be performed to detect changes in the intestinal microbial composition before and after treatment. DISCUSSION The results of this trial are expected to confirm that "harmonizing stomach to tranquilize mind" acupuncture can effectively relieve insomnia and alter the intestinal microbiome. TRIAL REGISTRATION Chinese Clinical Trials Registry: ChiCTR1800017092.
Collapse
Affiliation(s)
- Ya-Ru Huangfu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Wei Peng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Bao-Jun Guo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Zhi-Fu Shen
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Li Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Shi-Wei Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Hui Zheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - You-Ping Hu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China.
| |
Collapse
|
63
|
Bjørklund G, Waly MI, Al-Farsi Y, Saad K, Dadar M, Rahman MM, Elhoufey A, Chirumbolo S, Jóźwik-Pruska J, Kałużna-Czaplińska J. The Role of Vitamins in Autism Spectrum Disorder: What Do We Know? J Mol Neurosci 2019; 67:373-387. [PMID: 30607900 DOI: 10.1007/s12031-018-1237-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Vitamin or mineral supplementation is considered to be the most commonly used medical treatment for autism spectrum disorder (ASD), in addition to other interventions such as neurological and psychological interventions. There is not much evidence of therapeutic efficacy between vitamin and mineral supplementation and improvements in ASD. However, several researchers have noted that patients with ASD have various metabolic and nutritional abnormalities including issues with sulfation, methylation, glutathione redox imbalances, oxidative stress, and mitochondrial dysfunction. There is some evidence that vitamin and mineral supplementation may support these basic physiologic processes. Recently, the nutritional status of ASD patients has been gaining focus in this particular area. Pointing out the nutritional status as a potential etiological factor for attention/communication disorders, more importance has been given to this particular point. Moreover, autistic specific considerations like the feature and behavior of ASD might be increased or at least fall in the higher risk due to the sub-optimal nutritional status.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| | - Mostafa I Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Yahya Al-Farsi
- Department of Family Medicine and Public Health, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Amira Elhoufey
- CONEM Upper Egypt Pediatric Research Group, Assiut University, Assiut, Egypt
- Department of Community Health Nursing, Faculty of Nursing, Assiut University, Assiut, Egypt
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | - Jagoda Jóźwik-Pruska
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Department of Chemistry, Technical University of Lodz, Lodz, Poland
- CONEM Poland Chemistry and Nutrition Research Group, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
64
|
Fattorusso A, Di Genova L, Dell'Isola GB, Mencaroni E, Esposito S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients 2019; 11:E521. [PMID: 30823414 PMCID: PMC6471505 DOI: 10.3390/nu11030521] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
In recent years, there has been an emerging interest in the possible role of the gut microbiota as a co-factor in the development of autism spectrum disorders (ASDs), as many studies have highlighted the bidirectional communication between the gut and brain (the so-called "gut-brain axis"). Accumulating evidence has shown a link between alterations in the composition of the gut microbiota and both gastrointestinal and neurobehavioural symptoms in children with ASD. The aim of this narrative review was to analyse the current knowledge about dysbiosis and gastrointestinal (GI) disorders in ASD and assess the current evidence for the role of probiotics and other non-pharmacological approaches in the treatment of children with ASD. Analysis of the literature showed that gut dysbiosis in ASD has been widely demonstrated; however, there is no single distinctive profile of the composition of the microbiota in people with ASD. Gut dysbiosis could contribute to the low-grade systemic inflammatory state reported in patients with GI comorbidities. The administration of probiotics (mostly a mixture of Bifidobacteria, Streptococci and Lactobacilli) is the most promising treatment for neurobehavioural symptoms and bowel dysfunction, but clinical trials are still limited and heterogeneous. Well-designed, randomized, placebo-controlled clinical trials are required to validate the effectiveness of probiotics in the treatment of ASD and to identify the appropriate strains, dose, and timing of treatment.
Collapse
Affiliation(s)
- Antonella Fattorusso
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Lorenza Di Genova
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Giovanni Battista Dell'Isola
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Elisabetta Mencaroni
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, 06132 Perugia, Italy.
| |
Collapse
|
65
|
Mafra D, Borges N, Alvarenga L, Esgalhado M, Cardozo L, Lindholm B, Stenvinkel P. Dietary Components That May Influence the Disturbed Gut Microbiota in Chronic Kidney Disease. Nutrients 2019; 11:E496. [PMID: 30818761 PMCID: PMC6471287 DOI: 10.3390/nu11030496] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota imbalance is common in patients with chronic kidney disease (CKD) and associates with factors such as increased circulating levels of gut-derived uremic toxins, inflammation, and oxidative stress, which are linked to cardiovascular disease and increased morbimortality. Different nutritional strategies have been proposed to modulate gut microbiota, and could potentially be used to reduce dysbiosis in CKD. Nutrients like proteins, fibers, probiotics, and synbiotics are important determinants of the composition of gut microbiota and specific bioactive compounds such as polyphenols present in nuts, berries. and fruits, and curcumin, may also play a key role in this regard. However, so far, there are few studies on dietary components influencing the gut microbiota in CKD, and it is therefore not possible to conclude which nutrients should be prioritized in the diet of patients with CKD. In this review, we discuss some nutrients, diet patterns and bioactive compounds that may be involved in the modulation of gut microbiota in CKD and provide the background and rationale for studies exploring whether nutritional interventions with these dietary components could be used to alleviate the gut dysbiosis in patients with CKD.
Collapse
Affiliation(s)
- Denise Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Natália Borges
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Livia Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Marta Esgalhado
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Ludmila Cardozo
- Post Graduation Program in Cardiovascular Sciences, Federal Fluminense University (UFF), Niterói-Rio de Janeiro (RJ) 24220-900, Brazil.
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
66
|
Lombardi VC, De Meirleir KL, Subramanian K, Nourani SM, Dagda RK, Delaney SL, Palotás A. Nutritional modulation of the intestinal microbiota; future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease. J Nutr Biochem 2018; 61:1-16. [PMID: 29886183 PMCID: PMC6195483 DOI: 10.1016/j.jnutbio.2018.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
The gut-brain axis refers to the bidirectional communication between the enteric nervous system and the central nervous system. Mounting evidence supports the premise that the intestinal microbiota plays a pivotal role in its function and has led to the more common and perhaps more accurate term gut-microbiota-brain axis. Numerous studies have identified associations between an altered microbiome and neuroimmune and neuroinflammatory diseases. In most cases, it is unknown if these associations are cause or effect; notwithstanding, maintaining or restoring homeostasis of the microbiota may represent future opportunities when treating or preventing these diseases. In recent years, several studies have identified the diet as a primary contributing factor in shaping the composition of the gut microbiota and, in turn, the mucosal and systemic immune systems. In this review, we will discuss the potential opportunities and challenges with respect to modifying and shaping the microbiota through diet and nutrition in order to treat or prevent neuroimmune and neuroinflammatory disease.
Collapse
Affiliation(s)
- Vincent C Lombardi
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA; University of Nevada, Reno, School of Medicine, Department of Pathology, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA.
| | - Kenny L De Meirleir
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Krishnamurthy Subramanian
- Nevada Center for Biomedical Research, University of Nevada, Reno, 1664 N. Virginia St. MS 0552, Reno, NV, 89557, USA.
| | - Sam M Nourani
- University of Nevada, Reno, School of Medicine, Department of Internal Medicine, 1664 N. Virginia St. MS 0357, Reno, NV, 89557, USA; Advanced Therapeutic, General Gastroenterology & Hepatology Digestive Health Associates, Reno, NV, USA.
| | - Ruben K Dagda
- University of Nevada, Reno, School of Medicine, Department of Pharmacology, 1664 N. Virginia St. MS 0318, Reno, NV, 89557, USA.
| | | | - András Palotás
- Kazan Federal University, Institute of Fundamental Medicine and Biology, (Volga Region) 18 Kremlyovskaya St., Kazan, 420008, Republic of Tatarstan, Russian Federation; Asklepios-Med (private medical practice and research center), Kossuth Lajos sgt. 23, Szeged, H-6722, Hungary.
| |
Collapse
|
67
|
Decreased levels of serum retinoic acid in chinese children with autism spectrum disorder. Psychiatry Res 2018; 269:469-473. [PMID: 30195740 DOI: 10.1016/j.psychres.2018.08.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 07/03/2018] [Accepted: 08/24/2018] [Indexed: 01/31/2023]
Abstract
Previous studies framed a possible link of retinoic acid (RA) regulation in brain to autism spectrum disorders (ASD) etiology. The aim of this study was to measure serum levels of RA in relation to the degree of the severity of autism. Serum RA levels were measured by enzyme-linked immunosorbent assay (ELISA) colorimetric detection Kit in 81 children with autism and 81 age-sex matched typical development children. The severity of autistic symptomatology was measured by the Childhood Autism Rating Scale (CARS) score using the Chinese version. The serum levels of RA in the children with ASD (1.68 ± 0.52 ng/ml) were significantly lower than those of control subjects (2.13 ± 0.71 ng/ml) (P < 0.001). At admission, 57 children (70.4%) had a severe autism. In those children, the mean serum RA levels were lower than in those children with mild to moderate autism (1.57 ± 0.47 ng/ml VS. 1.95 ± 0.55 ng/ml; P = 0.003). Furthermore, in multivariate model, low RA level was associated with having/the presence of ASD (adjusted odd ratio[OR] 0.516; P = 0.003) and severe ASD (OR 0.415; P = 0.015) after adjusted for confounding factors. The data suggested that serum RA levels were reduced in the group with ASD, and the levels negative correlated significantly with the severity of autism.
Collapse
|
68
|
Inflammation and Neuro-Immune Dysregulations in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2018; 11:ph11020056. [PMID: 29867038 PMCID: PMC6027314 DOI: 10.3390/ph11020056] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests, or activities. Strong inflammation states are associated with ASD. This inflammatory condition is often linked to immune system dysfunction. Several cell types are enrolled to trigger and sustain these processes. Neuro-inflammation and neuro-immune abnormalities have now been established in ASD as key factors in its development and maintenance. In this review, we will explore inflammatory conditions, dysfunctions in neuro-immune cross-talk, and immune system treatments in ASD management.
Collapse
|
69
|
Ghonimy A, Zhang DM, Farouk MH, Wang Q. The Impact of Carnitine on Dietary Fiber and Gut Bacteria Metabolism and Their Mutual Interaction in Monogastrics. Int J Mol Sci 2018; 19:E1008. [PMID: 29597260 PMCID: PMC5979481 DOI: 10.3390/ijms19041008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/06/2018] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
Carnitine has vital roles in the endogenous metabolism of short chain fatty acids. It can protect and support gut microbial species, and some dietary fibers can reduce the available iron involved in the bioactivity of carnitine. There is also an antagonistic relationship between high microbial populations and carnitine bioavailability. This review shows the interactions between carnitine and gut microbial composition. It also elucidates the role of carnitine bacterial metabolism, mitochondrial function, fiber fermentability, and short chain fatty acids (SCFAs).
Collapse
Affiliation(s)
- Abdallah Ghonimy
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Dong Ming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Tonghua Normal University, Tonghua 134000, China.
| | - Mohammed Hamdy Farouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt.
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
70
|
Xiao S, Li Q, Hu K, He Y, Ai Q, Hu L, Yu J. Vitamin A and Retinoic Acid Exhibit Protective Effects on Necrotizing Enterocolitis by Regulating Intestinal Flora and Enhancing the Intestinal Epithelial Barrier. Arch Med Res 2018; 49:1-9. [PMID: 29699808 DOI: 10.1016/j.arcmed.2018.04.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Exaggerated inflammation that characterizes necrotizing enterocolitis (NEC) is caused by the invasion of pathogens through an immature intestinal barrier. Vitamin A (VA) and retinoic acid (RA) play important roles in the growth of epithelial tissue and in modulating immune function. OBJECTIVE To investigate the roles of VA and RA in the development of NEC. METHODS Levels of serum retinol in patients and in a NEC mouse model were detected with high-performance liquid chromatography. Bacterial communities of NEC mice treated with VA or PBS were detected by high-throughput sequencing. In vitro and in vivo, levels of inflammatory factors were measured by ELISA and RT-PCR, and expression levels of claudin-1, occludin, and ZO-1 were detected by Western blotting. Transepithelial electrical resistance (TEER) was measured in Caco-2 cell monolayers. RESULTS The level of VA in the NEC patients was lower than in the control patients. In the NEC mice that were treated with VA versus PBS, the proportion of Escherichia-Shigella was lower, while the abundance of Bacteroides was markedly higher. Both in vivo and in vitro, the levels of inflammatory factors were significantly reduced, while the expression levels of claudin-1, occludin, and ZO-1 were increased, after the VA and RA treatments. Meanwhile, TEER was increased and lipopolysaccharide-induced damage was reduced in Caco-2 cell monolayers after RA treatment. CONCLUSIONS These results suggest that VA may regulate intestinal flora, alleviate inflammatory reactions, and enhance the intestinal epithelial barrier in NEC. Thus, VA may be an effective drug for providing protection against NEC in newborns.
Collapse
Affiliation(s)
- Sa Xiao
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qiuping Li
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Kun Hu
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yu He
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qing Ai
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Liuhong Hu
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China
| | - Jialin Yu
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Pediatrics, Shenzhen University General Hospital, Shenzhen, China.
| |
Collapse
|