51
|
Abstract
Immunosuppressive agents are commonly used in the nephrologist's practice in the treatment of autoimmune and immune-mediated diseases and transplantation, and they are investigational in the treatment of AKI and ESRD. Drug development has been rapid over the past decades as mechanisms of the immune response have been better defined both by serendipity (the discovery of agents with immunosuppressive activity that led to greater understanding of the immune response) and through mechanistic study (the study of immune deficiencies and autoimmune diseases and the critical pathways or mutations that contribute to disease). Toxicities of early immunosuppressive agents, such as corticosteroids, azathioprine, and cyclophosphamide, stimulated intense investigation for agents with more specificity and less harmful effects. Because the mechanisms of the immune response were better delineated over the past 30 years, this specialty is now bestowed with a multitude of therapeutic options that have reduced rejection rates and improved graft survival in kidney transplantation, provided alternatives to cytotoxic therapy in immune-mediated diseases, and opened new opportunities for intervention in diseases both common (AKI) and rare (atypical hemolytic syndrome). Rather than summarizing clinical indications and clinical trials for all currently available immunosuppressive medications, the purpose of this review is to place these agents into mechanistic context together with a brief discussion of unique features of development and use that are of interest to the nephrologist.
Collapse
Affiliation(s)
- Alexander C Wiseman
- Division of Renal Diseases and Hypertension, Transplant Center, University of Colorado, Denver, Aurora, Colorado
| |
Collapse
|
52
|
Blanco P, Ueno H, Schmitt N. T follicular helper (Tfh) cells in lupus: Activation and involvement in SLE pathogenesis. Eur J Immunol 2016; 46:281-90. [DOI: 10.1002/eji.201545760] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Patrick Blanco
- Univ. Bordeaux; CIRID, UMR/CNRS; 5164 Bordeaux France
- CNRS; CIRID, UMR; 5164 Bordeaux France
- CHU de Bordeaux; Bordeaux France
| | - Hideki Ueno
- Baylor Institute for Immunology Research; Dallas USA
| | | |
Collapse
|
53
|
Donner AJ, Yeh ST, Hung G, Graham MJ, Crooke RM, Mullick AE. CD40 Generation 2.5 Antisense Oligonucleotide Treatment Attenuates Doxorubicin-induced Nephropathy and Kidney Inflammation. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e265. [PMID: 26623936 PMCID: PMC5014534 DOI: 10.1038/mtna.2015.40] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022]
Abstract
Preclinical and clinical data suggest CD40 activation contributes to renal inflammation and injury. We sought to test whether upregulation of CD40 in the kidney is a causative factor of renal pathology and if reduction of renal CD40 expression, using antisense oligonucleotides (ASOs) targeting CD40, would be beneficial in mouse models of glomerular injury and unilateral ureter obstruction. Administration of a Generation 2.5 CD40 ASO reduced CD40 mRNA and protein levels 75–90% in the kidney. CD40 ASO treatment mitigated functional, transcriptional, and pathological endpoints of doxorubicin-induced nephropathy. Experiments using an activating CD40 antibody revealed CD40 is primed in kidneys following doxorubicin injury or unilateral ureter obstruction and CD40 ASO treatment blunted CD40-dependent renal inflammation. Suborgan fractionation and imaging studies demonstrated CD40 in glomeruli before and after doxorubicin administration that becomes highly enriched within interstitial and glomerular foci following CD40 activation. Such foci were also sites of ASO distribution and activity and may be predominately comprised from myeloid cells as bone marrow CD40 deficiency sharply attenuated CD40 antibody responses. These studies suggest an important role of interstitial renal and/or glomerular CD40 to augment kidney injury and inflammation and demonstrate that ASO treatment could be an effective therapy in such disorders.
Collapse
Affiliation(s)
- Aaron J Donner
- Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Steve T Yeh
- Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Gene Hung
- Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Mark J Graham
- Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Rosanne M Crooke
- Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Adam E Mullick
- Antisense Drug Discovery, Isis Pharmaceuticals, Inc., Carlsbad, California, USA
| |
Collapse
|
54
|
CD32a antibodies induce thrombocytopenia and type II hypersensitivity reactions in FCGR2A mice. Blood 2015; 126:2230-8. [PMID: 26396093 DOI: 10.1182/blood-2015-04-638684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023] Open
Abstract
The CD32a immunoglobulin G (IgG) receptor (Fcγ receptor IIa) is a potential therapeutic target for diseases in which IgG immune complexes (ICs) mediate inflammation, such as heparin-induced thrombocytopenia, rheumatoid arthritis, and systemic lupus erythematosus. Monoclonal antibodies (mAbs) are a promising strategy for treating such diseases. However, IV.3, perhaps the best characterized CD32a-blocking mAb, was recently shown to induce anaphylaxis in immunocompromised "3KO" mice. This anaphylactic reaction required a human CD32a transgene because mice lack an equivalent of this gene. The finding that IV.3 induces anaphylaxis in CD32a-transgenic mice was surprising because IV.3 had long been thought to lack the intrinsic capacity to trigger cellular activation via CD32a. Such an anaphylactic reaction would also limit potential therapeutic applications of IV.3. In the present study, we examine the molecular mechanisms by which IV.3 induces anaphylaxis. We now report that IV.3 induces anaphylaxis in immunocompetent CD32a-transgenic "FCGR2A" mice, along with the novel finding that IV.3 and 2 other well-characterized CD32a-blocking mAbs, AT-10 and MDE-8, also induce severe thrombocytopenia in FCGR2A mice. Using recombinant variants of these same mAbs, we show that IgG "Fc" effector function is necessary for the induction of anaphylaxis and thrombocytopenia in FCGR2A mice. Variants of these mAbs lacking the capacity to activate mouse IgG receptors not only failed to induce anaphylaxis or thrombocytopenia, but also very potently protected FCGR2A mice from near lethal doses of IgG ICs. Our findings show that effector-deficient IV.3, AT-10, and MDE-8 are promising candidates for developing therapeutic mAbs to treat CD32a-mediated diseases.
Collapse
|
55
|
Vilas-Boas A, Bakshi J, Isenberg DA. What can we learn from systemic lupus erythematosus pathophysiology to improve current therapy? Expert Rev Clin Immunol 2015; 11:1093-107. [DOI: 10.1586/1744666x.2015.1078237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
56
|
Pilat N, Klaus C, Schwarz C, Hock K, Oberhuber R, Schwaiger E, Gattringer M, Ramsey H, Baranyi U, Zelger B, Brandacher G, Wrba F, Wekerle T. Rapamycin and CTLA4Ig synergize to induce stable mixed chimerism without the need for CD40 blockade. Am J Transplant 2015; 15:1568-79. [PMID: 25783859 DOI: 10.1111/ajt.13154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/12/2014] [Accepted: 11/30/2014] [Indexed: 01/25/2023]
Abstract
The mixed chimerism approach achieves donor-specific tolerance in organ transplantation, but clinical use is inhibited by the toxicities of current bone marrow (BM) transplantation (BMT) protocols. Blocking the CD40:CD154 pathway with anti-CD154 monoclonal antibodies (mAbs) is exceptionally potent in inducing mixed chimerism, but these mAbs are clinically not available. Defining the roles of donor and recipient CD40 in a murine allogeneic BMT model, we show that CD4 or CD8 activation through an intact direct or CD4 T cell activation through the indirect pathway is sufficient to trigger BM rejection despite CTLA4Ig treatment. In the absence of CD4 T cells, CD8 T cell activation via the direct pathway, in contrast, leads to a state of split tolerance. Interruption of the CD40 signals in both the direct and indirect pathway of allorecognition or lack of recipient CD154 is required for the induction of chimerism and tolerance. We developed a novel BMT protocol that induces mixed chimerism and donor-specific tolerance to fully mismatched cardiac allografts relying on CD28 costimulation blockade and mTOR inhibition without targeting the CD40 pathway. Notably, MHC-mismatched/minor antigen-matched skin grafts survive indefinitely whereas fully mismatched grafts are rejected, suggesting that non-MHC antigens cause graft rejection and split tolerance.
Collapse
Affiliation(s)
- N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - C Klaus
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - R Oberhuber
- Department of Visceral, Transplant, and Thoracic Surgery, Center of Operative Medicine, Innsbruck Medical University, Austria
| | - E Schwaiger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - M Gattringer
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - H Ramsey
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - U Baranyi
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| | - B Zelger
- Institute of Pathology, Medical University of Innsbruck, Austria
| | - G Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - F Wrba
- Institute of Clinical Pathology, Medical University of Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Austria
| |
Collapse
|
57
|
Moulton VR, Tsokos GC. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest 2015; 125:2220-7. [PMID: 25961450 DOI: 10.1172/jci78087] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototype systemic autoimmune disease that results from a break in immune tolerance to self-antigens, leading to multi-organ destruction. Autoantibody deposition and inflammatory cell infiltration in target organs such as kidneys and brain lead to complications of this disease. Dysregulation of cellular and humoral immune response elements, along with organ-defined molecular aberrations, form the basis of SLE pathogenesis. Aberrant T lymphocyte activation due to signaling abnormalities, linked to defective gene transcription and altered cytokine production, are important contributors to SLE pathophysiology. A better understanding of signaling and gene regulation defects in SLE T cells will lead to the identification of specific novel molecular targets and predictive biomarkers for therapy.
Collapse
|
58
|
Thanou A, Merrill J. T Cell Targeted Therapies in Lupus: Do They Make Sense? CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2015. [DOI: 10.1007/s40674-014-0008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
59
|
Amirkhosravi A, Boulaftali Y, Robles-Carrillo L, Meyer T, McKenzie SE, Francis JL, Bergmeier W. CalDAG-GEFI deficiency protects mice from FcγRIIa-mediated thrombotic thrombocytopenia induced by CD40L and β2GPI immune complexes. J Thromb Haemost 2014; 12:2113-9. [PMID: 25287077 PMCID: PMC4268353 DOI: 10.1111/jth.12748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Platelet activation via the Fcγ receptor IIa (FcγRIIa) is implicated in the pathogenesis of immune complex (IC)-mediated thrombocytopenia and thrombosis (ITT). We previously showed that ICs composed of antigen and antibodies targeting CD40 ligand (CD40L) or β2 Glycoprotein I (β2GPI) induce ITT in mice transgenic for human FcγRIIa (hFcR) but not wild-type controls (which lack FcγRIIa). Here we evaluated the contribution of the guanine nucleotide exchange factor, CalDAG-GEFI, and P2Y12, key regulators of Rap1 signaling in platelets, to ITT induced by these clinically relevant ICs. METHODS Pre-formed anti-CD40L or anti-β2GPI ICs were injected into hFcR/Caldaggef1(+/+) or hFcR/Caldaggef1(-/-) mice, with or without clopidogrel pretreatment. Animals were observed for symptoms of shock for 30 min, during which time core body temperature was monitored. Platelet counts were obtained before and 30 min after IC injection. Lungs were assessed for thrombosis by histology or near-infrared imaging. RESULTS Both CD40L and β2GPI ICs rapidly induced severe thrombocytopenia, shock and a reduction in body temperature in hFcR/Caldaggef1(+/+) mice. hFcR/Caldaggef1(-/-) mice were protected from CD40L and β2GPI IC-induced thrombocytopenia and shock, whereas P2Y12 inhibition had only a modest effect on IC-induced ITT. Consistent with these findings, IC-induced integrin activation in vitro and the accumulation of activated platelets in the lungs of IC-challenged mice was strongly dependent on CalDAG-GEFI. CONCLUSIONS Our studies demonstrate that CalDAG-GEFI plays a critical role in platelet activation, thrombocytopenia and thrombosis induced by clinically relevant ICs in mice. Thus, CalDAG-GEFI may be a promising target for the intervention of IC-associated, FcγRIIa-mediated thrombotic conditions.
Collapse
Affiliation(s)
- Ali Amirkhosravi
- Center for Thrombosis Research, Florida Hospital, Winter Park, FL, USA
| | - Yacine Boulaftali
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, USA
| | | | - Todd Meyer
- Center for Thrombosis Research, Florida Hospital, Winter Park, FL, USA
| | - Steven E. McKenzie
- Cardeza Foundation for Hematological Research, Thomas Jefferson University, Philadelphia, USA
| | - John L. Francis
- Center for Thrombosis Research, Florida Hospital, Winter Park, FL, USA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
60
|
Vaitaitis GM, Olmstead MH, Waid DM, Carter JR, Wagner DH. A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice. Diabetologia 2014; 57:2366-73. [PMID: 25104468 PMCID: PMC4183717 DOI: 10.1007/s00125-014-3342-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The CD40-CD154 interaction directs autoimmune inflammation. Therefore, a long-standing goal in the treatment of autoimmune disease has been to control the formation of that interaction and thereby prevent destructive inflammation. Antibodies blocking CD154 are successful in mouse models of autoimmune disease but, while promising when used in humans, unfortunate thrombotic events have occurred, forcing the termination of those studies. METHODS To address the clinical problem of thrombotic events caused by anti-CD154 antibody treatment, we created a series of small peptides based on the CD154 domain that interacts with CD40 and tested the ability of these peptides to target CD40 and prevent type 1 diabetes in NOD mice. RESULTS We identified a lead candidate, the 15-mer KGYY15 peptide, which specifically targets CD40-positive cells in a size- and sequence-dependent manner. It is highly efficient in preventing hyperglycaemia in NOD mice that spontaneously develop type 1 diabetes. Importantly, KGYY15 can also reverse new-onset hyperglycaemia. KGYY15 is well tolerated and functions to control the cytokine profile of culprit Th40 effector T cells. The KGYY15 peptide is 87% homologous to the human sequence, suggesting that it is an important candidate for translational studies. CONCLUSIONS/INTERPRETATION Peptide KGYY15 constitutes a viable therapeutic option to antibody therapy in targeting the CD40-CD154 interaction in type 1 diabetes. Given the involvement of CD40 in autoimmunity in general, it will also be important to evaluate KGYY15 in the treatment of other autoimmune diseases. This alternative therapeutic approach opens new avenues of exploration in targeting receptor-ligand interactions.
Collapse
Affiliation(s)
- Gisela M. Vaitaitis
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Dan M. Waid
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - Jessica R. Carter
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - David H. Wagner
- Webb-Waring Center, University of Colorado Denver, C322, 12850 East Montview Boulevard, Aurora, CO, USA
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
61
|
Splenic TFH expansion participates in B-cell differentiation and antiplatelet-antibody production during immune thrombocytopenia. Blood 2014; 124:2858-66. [PMID: 25232056 DOI: 10.1182/blood-2014-03-563445] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antiplatelet-antibody-producing B cells play a key role in immune thrombocytopenia (ITP) pathogenesis; however, little is known about T-cell dysregulations that support B-cell differentiation. During the past decade, T follicular helper cells (TFHs) have been characterized as the main T-cell subset within secondary lymphoid organs that promotes B-cell differentiation leading to antibody class-switch recombination and secretion. Herein, we characterized TFHs within the spleen of 8 controls and 13 ITP patients. We show that human splenic TFHs are the main producers of interleukin (IL)-21, express CD40 ligand (CD154), and are located within the germinal center of secondary follicles. Compared with controls, splenic TFH frequency is higher in ITP patients and correlates with germinal center and plasma cell percentages that are also increased. In vitro, IL-21 stimulation combined with an anti-CD40 agonist antibody led to the differentiation of splenic B cells into plasma cells and to the secretion of antiplatelet antibodies in ITP patients. Overall, these results point out the involvement of TFH in ITP pathophysiology and the potential interest of IL-21 and CD40 as therapeutic targets in ITP.
Collapse
|
62
|
|
63
|
Pathogenesis and potential therapeutic targets in systemic lupus erythematosus: from bench to bedside. AUTOIMMUNITY HIGHLIGHTS 2014; 5:33-45. [PMID: 26000154 PMCID: PMC4389042 DOI: 10.1007/s13317-014-0058-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 06/12/2014] [Indexed: 12/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is considered an autoimmune disease with multiorgan involvement. Many advances have been made during the last decade regarding inflammatory pathways, genetic and epigenetic alterations, adaptive and innate immune system mechanisms specifically involved in SLE pathogenesis. Apoptosis has been proposed as an important player in SLE pathogenesis more than a decade ago. However, only recently new key apoptotic pathways have been investigated and the link between apoptotic debris containing autoantigens, innate immunity and ongoing inflammation has been further elucidated. Better understanding of cellular mechanisms and involved cytokines contributed to the development of new biological drugs specifically addressed for SLE therapy.
Collapse
|
64
|
von Hundelshausen P, Schmitt MMN. Platelets and their chemokines in atherosclerosis-clinical applications. Front Physiol 2014; 5:294. [PMID: 25152735 PMCID: PMC4126210 DOI: 10.3389/fphys.2014.00294] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/22/2014] [Indexed: 12/22/2022] Open
Abstract
The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis, i.e., stroke and myocardial infarction are definable but not the plaque burden. Platelet indices including platelet count and mean platelet volume (MPV) and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities, e.g., altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich Munich, Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance Munich, Germany
| | - Martin M N Schmitt
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University of Munich Munich, Germany
| |
Collapse
|
65
|
Sthoeger Z, Sharabi A, Mozes E. Novel approaches to the development of targeted therapeutic agents for systemic lupus erythematosus. J Autoimmun 2014; 54:60-71. [PMID: 24958634 DOI: 10.1016/j.jaut.2014.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 01/29/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multisystem disease in which various cell types and immunological pathways are dysregulated. Current therapies for SLE are based mainly on the use of non-specific immunosuppressive drugs that cause serious side effects. There is, therefore, an unmet need for novel therapeutic means with improved efficacy and lower toxicity. Based on recent better understanding of the pathogenesis of SLE, targeted biological therapies are under different stages of development. The latter include B-cell targeted treatments, agents directed against the B lymphocyte stimulator (BLyS), inhibitors of T cell activation as well as cytokine blocking means. Out of the latter, Belimumab was the first drug approved by the FDA for the treatment of SLE patients. In addition to the non-antigen specific agents that may affect the normal immune system as well, SLE-specific therapeutic means are under development. These are synthetic peptides (e.g. pConsensus, nucleosomal peptides, P140 and hCDR1) that are sequences of conserved regions of molecules involved in the pathogenesis of lupus. The peptides are tolerogenic T-cell epitopes that immunomodulate only cell types and pathways that play a role in the pathogenesis of SLE without interfering with normal immune functions. Two of the peptides (P140 and hCDR1) were tested in clinical trials and were reported to be safe and well tolerated. Thus, synthetic peptides are attractive potential means for the specific treatment of lupus patients. In this review we discuss the various biological treatments that have been developed for lupus with a special focus on the tolerogenic peptides.
Collapse
Affiliation(s)
- Zev Sthoeger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel; Department of Internal Medicine B and Clinical Immunology, Kaplan Medical Center, Rehovot, Israel
| | - Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Edna Mozes
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
66
|
Abstract
PURPOSE OF REVIEW Despite their effectiveness, calcineurin inhibitors (CNIs) represent a major obstacle in the improvement of long-term graft survival in transplantation. The identification of new agents to implement CNI-free regimens is the focus of current transplant research. The purpose of this review is to summarize the novel immunosuppressive agents, including details about their mechanisms of action, stages of development, potential benefits and challenges. RECENT FINDINGS Targeting costimulation with belatacept is now an option for controlling the alloimmune response and has proved to be more effective in preserving long-term allograft function than CNIs despite an increased rate of acute rejection in some studies. mTOR inhibitors are also promising with their remarkable antineoplastic properties, though frequent side-effects may limit their broader use. Other agents under development include JAK inhibitors, CD40 blockade and leukocyte adhesion blockers, with unique potential benefits and side-effects in transplantation. SUMMARY Novel immunosuppressive agents are now available for use in CNI-free regimens in solid organ transplantation. Timing of initiation as well as long-term efficacy and safety are questions that remain to be answered in future clinical trials.
Collapse
|
67
|
Esposito P, Grosjean F, Rampino T, Libetta C, Gregorini M, Fasoli G, Marchi G, Sileno G, Montagna F, Dal Canton A. Costimulatory pathways in kidney transplantation: pathogenetic role, clinical significance and new therapeutic opportunities. Int Rev Immunol 2014; 33:212-33. [PMID: 24127878 DOI: 10.3109/08830185.2013.829470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Costimulatory pathways play a key role in immunity, providing the second signal required for a full activation of adaptive immune response. Different costimulatory families (CD28, TNF-related, adhesion and TIM molecules), characterized by structural and functional analogies, have been described. Costimulatory molecules modulate T cell activation, B cell function, Ig production, cytokine release and many other processes, including atherosclerosis. Patients suffering from renal diseases present significant alterations of the costimulatory pathways, which might make them particularly liable to infections. These alterations are further pronounced in patients undergoing kidney transplantation. In these patients, different costimulatory patterns have been related to distinct clinical features. The importance that costimulation has gained during the last years has led to development of several pharmacological approaches to modulate this critical step in the immune activation. Different drugs, mainly monoclonal antibodies targeting various costimulatory molecules (i.e. anti-CD80, CTLA-4 fusion proteins, anti-CD154, anti-CD40, etc.) were designed and tested in both experimental and clinical studies. The results of these studies highlighted some criticisms, but also some promising findings and now costimulatory blockade is considered a suitable strategy, with belatacept (a CTLA-4 fusion protein) being approved as the first costimulatory blocker for use in renal transplantation. In this review, we summarize the current knowledge on costimulatory pathways in the setting of kidney transplantation. We describe the principal costimulatory molecule families, their role and clinical significance in patients undergoing renal transplantation and the new therapeutic approaches that have been developed to modulate the costimulatory pathways.
Collapse
Affiliation(s)
- Pasquale Esposito
- Unit of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico S. Matteo and University of Pavia , Pavia , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Godeau B, Stasi R. Is B-cell depletion still a good strategy for treating immune thrombocytopenia? Presse Med 2014; 43:e79-85. [DOI: 10.1016/j.lpm.2014.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/29/2014] [Indexed: 01/19/2023] Open
|
69
|
Gatto M, Kiss E, Naparstek Y, Doria A. In-/off-label use of biologic therapy in systemic lupus erythematosus. BMC Med 2014; 12:30. [PMID: 24528782 PMCID: PMC3925951 DOI: 10.1186/1741-7015-12-30] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
Current therapies for systemic lupus erythematosus (SLE) include corticosteroids as a persistent mainstay and traditional immunosuppressants which are given according to disease severity, organ involvement and patient status. No treatment entails certain efficacy devoid of mild-to-moderate adverse effects. Nowadays, novel therapies are being developed aiming to target specific molecules involved in SLE development and progression which show variable effectiveness and safety. Biologic agents considered for SLE comprise monoclonal antibodies (chimeric, humanized or fully human) as well as fusion molecules or antibody fragments mostly consisting of B cell-targeted therapies beside anti-cytokines as well as T cell-targeted therapies. Encouraging evidence on biologics is mostly provided by case series or uncontrolled studies; conversely, larger randomized controlled clinical trials have frequently missed their primary endpoints with the exception of BLISS-52 and BLISS-76 trials. Actually, apart from belimumab, biologics are employed in clinical practice as off-label treatments for lupus and results are often promising, depending on specific SLE features, dose regimens and individual responsiveness.
Collapse
Affiliation(s)
- Mariele Gatto
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, Padova 35128, Italy
| | - Emese Kiss
- Department of Clinical Immunology, Adult- and Paediatric Rheumatology, National Institute of Rheumatology and Physiotherapy, Budapest, Hungary
- Rheumatology Division, 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Yaakov Naparstek
- Senior Deputy Director General for Research and Academic Affairs, Hadassah Medical Organization, Hadassah Hebrew University Medical Center, Jerusalem 12000, Israel
| | - Andrea Doria
- Division of Rheumatology, University of Padova, Via Giustiniani, 2, Padova 35128, Italy
| |
Collapse
|
70
|
Abstract
We are entering an exciting time in the study of immunologic tolerance. Several cellular and molecular strategies have been developed that show promise in nonhuman transplant models and these approaches are just now appearing in clinical trials. Tolerance strategies that prevent immune rejection and obviate the need for immunosuppressive medications (with inherent risk of cancer, infection, and organ toxicity) would improve both graft and patient survival. Each tolerance protocol brings its own set of associated risks. As the results of these trials become available, we must continue to evaluate their successes and failures. The balance of these outcomes will help us answer the question: "Tolerance-Is it worth it?"
Collapse
Affiliation(s)
- Erik B Finger
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | |
Collapse
|
71
|
Lang B, Willcox N. Autoantibodies in neuromuscular autoimmune disorders. Expert Rev Clin Immunol 2014; 2:293-307. [DOI: 10.1586/1744666x.2.2.293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
72
|
Treatment of systemic lupus erythematosus: new therapeutic avenues and blind alleys. Nat Rev Rheumatol 2013; 10:23-34. [DOI: 10.1038/nrrheum.2013.145] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
73
|
Meabed MH, Taha GM, Mohamed SO, El-Hadidy KS. Autoimmune thrombocytopenia: Flow cytometric determination of platelet-associated CD154/CD40L and CD40 on peripheral blood T and B lymphocytes. Hematology 2013; 12:301-7. [PMID: 17654056 DOI: 10.1080/10245330701383957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The CD40-CD40L system has pleiotropic effects in a variety of cells and biological processes including the immune response. Within the immune system, these molecules represent a critical link between its humoral and cellular arms. Immune or idiopathic thrombocytopenic purpura (ITP) is an autoimmune disorder characterized by antibody-induced platelet destruction and clearance due to anti-platelet autoantibodies, which bind to circulating platelets resulting in their destruction by the reticuloendothelial system. Despite its clinical importance, the diagnosis of ITP is one of exclusion, thus, inevitably associated with potential difficulties. CD40 is a cell surface receptor that belongs to the tumor necrosis factor-receptor (TNF-R) family, and that was first identified and functionally characterized on B lymphocytes. CD40-ligand (CD40L/CD154), a member of the TNF superfamily, is a cell membrane molecule expressed on activated CD4 + T lymphocytes and is essential for the T cell-dependent activation of B lymphocytes. Therefore it is now thought that CD40-CD40L interactions play a more important role in ITP immune regulation. DESIGN AND METHODS The expressions of CD154 and CD40 on peripheral blood (PB) T and B lymphocytes, respectively, were measured using flow cytometry (FCM). An antigen-specific assay for platelet-associated CD154 (CD40L) on CD4 + T lymphocytes and for CD40 on CD19 + B lymphocytes was tested in 30 pediatric patients with acute ITP, 30 adult patients with chronic ITP, and in 20 age- and sex-matched healthy controls. RESULTS The expression of CD4 + CD154+ and CD4 + CD154+/CD4+ on PB T lymphocytes, and CD19 + CD40+ and CD19 + CD40+/CD19+ on PB B lymphocytes were significantly higher in acute and chronic ITP patients compared to controls, and in acute patients compared to chronics (p < 0.001). CONCLUSIONS CD40-CD40L interaction plays an important role in the pathology of certain autoimmune diseases. ITP is an autoimmune disease characterized by increased platelet destruction caused by anti-platelet autoantibodies, which mainly target a platelet surface antigen. It is speculated that platelet-associated CD154 is competent to induce the CD40-dependent proliferation of B lymphocytes. Therefore, platelet-associated CD154 expression is increased in ITP patients and is able to drive the activation of autoreactive B lymphocytes in this disease. These findings are particularly useful for clarifying the pathogenic process in ITP patients and for developing a therapeutic approach that blocks pathogenic anti-platelet antibody production. Blockade of the CD40/CD154 signal is a potential immunomodulatory strategy for T cell-mediated diseases, and many findings suggest that CD40/CD154 blockade therapy is potentially effective for ITP through selective suppression of autoreactive T and B lymphocytes to platelet antigens.
Collapse
Affiliation(s)
- Mohamed H Meabed
- Department of Pediatrics, Faculty of Medicine, Bani Suef University, Bani Suef, Egypt.
| | | | | | | |
Collapse
|
74
|
Calvo-Alén J, Silva-Fernández L, Úcar-Angulo E, Pego-Reigosa JM, Olivé A, Martínez-Fernández C, Martínez-Taboada V, Marenco JL, Loza E, López-Longo J, Gómez-Reino JJ, Galindo-Izquierdo M, Fernández-Nebro A, Cuadrado MJ, Aguirre-Zamorano MÁ, Zea-Mendoza A, Rúa-Figueroa Í. SER Consensus Statement on the Use of Biologic Therapy for Systemic Lupus Erythematosus. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.reumae.2013.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
75
|
Consenso de la Sociedad Española de Reumatología sobre el uso de terapias biológicas en el lupus eritematoso sistémico. ACTA ACUST UNITED AC 2013; 9:281-96. [DOI: 10.1016/j.reuma.2013.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022]
|
76
|
Sellar RS, Peggs KS. Recent progress in managing graft-versus-host disease and viral infections following allogeneic stem cell transplantation. Future Oncol 2013; 8:1549-65. [PMID: 23231517 DOI: 10.2217/fon.12.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite recent reductions in transplant-related mortality, post-transplant complications such as graft-versus-host disease (GvHD) remain major obstacles to the successful application of allogeneic hematopoietic transplantation. Steroid-refractory GvHD has a poor outcome. Although there are a variety of new approaches to the treatment of refractory GvHD, many have limited evidence of efficacy. Other approaches appear to be unacceptably toxic. It would be preferable to improve GvHD prophylaxis. There is good evidence that rates of GvHD can be reduced without unacceptable reduction of the graft-versus-leukemia effect or compromising overall survival. However, prophylactic measures aimed at reducing T-cell numbers or functions are associated with high rates of reactivation of latent viruses. New technologies that allow rapid generation of virus-specific T-cells show promise to reduce the frequency and severity of such reactivations and have the potential to revolutionize the approach to post-transplant infectious complications.
Collapse
Affiliation(s)
- Rob S Sellar
- UCL Cancer Institute, Department of Haematology, London, WC1E 6BT, UK
| | | |
Collapse
|
77
|
Co-stimulatory molecules as targets for treatment of lupus. Clin Immunol 2013; 148:369-75. [PMID: 23680362 DOI: 10.1016/j.clim.2013.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 11/22/2022]
Abstract
Co-stimulatory molecules help to regulate interactions between T cells and antigen-presenting cells and may play an important role in the pathogenesis of lupus. Both work in murine models and some early studies in human lupus support further examination of these molecules as therapeutic targets. Complexities of lupus clinical trial variables may have hampered progress in this area but recent developments in the field may make interventional trials more feasible in the near future. To date biologics which provide direct blockade of interactions between CD40 and CD154, B7RP-1 and ICOS, and CD80 or CD86 with CD28 have been assessed in multicenter clinical trials. These data will be reviewed and critiqued.
Collapse
|
78
|
Modulating T-cell costimulation as new immunosuppressive concept in organ transplantation. Curr Opin Organ Transplant 2013; 17:368-75. [PMID: 22790071 DOI: 10.1097/mot.0b013e328355fc94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Blockade of costimulatory signalling is a promising approach to inhibit T-cell responses and consequently allograft rejection. The last decade was marked by progress in understanding the details of various costimulatory pathways and by the development of biologicals targeting these pathways with the aim of selectively and efficiently modulating T-cell responses. RECENT FINDINGS Here we focus on the clinically relevant costimulatory pathways CD28:CD80/86, CD40:CD154 (CD40L), CD2:LFA-3 and ICAM:LFA-1. We will give a short overview of the physiologic function of these pathways and discuss results from preclinical and clinical studies of costimulation blockers targeting these pathways. SUMMARY The development of costimulation blockers for clinical application in the field of organ transplantation was delayed by several setbacks. However, belatacept has recently been approved as first in class for renal transplantation. Several additional costimulation blockers are under development with some having already entered into clinical trials. Costimulation blockers are a new class of rationally designed immunosuppressive drugs with considerable potential for improving outcome of organ transplantation.
Collapse
|
79
|
Mixed chimerism through donor bone marrow transplantation: a tolerogenic cell therapy for application in organ transplantation. Curr Opin Organ Transplant 2013; 17:63-70. [PMID: 22186093 DOI: 10.1097/mot.0b013e32834ee68b] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW Organ transplantation is the state-of-the-art treatment for end-stage organ failure; however, long-term graft survival is still unsatisfactory. Despite improved immunosuppressive drug therapy, patients are faced with substantial side effects and the risk of chronic rejection with subsequent graft loss. The transplantation of donor bone marrow for the induction of mixed chimerism has been recognized to induce donor-specific tolerance a long time ago, but safety concerns regarding toxicities of current bone marrow transplantation (BMT) protocols impede widespread application. RECENT FINDINGS Recent studies in nonhuman primates and kidney transplant patients have demonstrated successful induction of allograft tolerance even though--in contrast to murine models--only transient chimerism was achieved. Progress toward the development of nontoxic murine BMT protocols revealed that Treg therapy is a potent therapeutic adjunct eliminating the need for cytotoxic recipient conditioning. Furthermore, new insight into the mechanisms underlying tolerization of CD4 and CD8 T cells in mixed chimeras has been gained and has identified possible difficulties impeding clinical translation. SUMMARY This review will address the recent advances in murine models as well as findings from the first clinical trials for the induction of tolerance through mixed chimerism. Both the potential for more widespread clinical application and the remaining hurdles and challenges of this tolerance approach will be discussed.
Collapse
|
80
|
Goldwater R, Keirns J, Blahunka P, First R, Sawamoto T, Zhang W, Kowalski D, Kaibara A, Holman J. A phase 1, randomized ascending single-dose study of antagonist anti-human CD40 ASKP1240 in healthy subjects. Am J Transplant 2013; 13:1040-1046. [PMID: 23356210 DOI: 10.1111/ajt.12082] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/03/2012] [Accepted: 12/06/2012] [Indexed: 01/25/2023]
Abstract
This first-in-human, phase I study evaluated the safety, tolerability, pharmacokinetic and pharmacodynamic profile of ASKP1240 in healthy subjects. Twelve sequential groups (each 6 active and 3 placebo) were randomly assigned to placebo or single ascending doses of intravenous ASKP1240 (0.00003-10 mg/kg). ASKP1240 exhibited nonlinear pharmacokinetics, with mean maximal serum concentrations and area under the serum concentration-time curves ranging from 0.7 to 251.6 μg/mL and 6.5 to 55409.6 h·μg/mL following doses 0.1 mg/kg-10 mg/kg, respectively. CD40 receptor occupancy by ASKP1240, which was dose-dependent, reached a maximum at doses above 0.01 mg/kg. ASKP1240 was well tolerated, with no evidence of cytokine release syndrome or thromboembolic events. Treatment emergent antibodies to ASKP1240 were detected in 5/70 (7.1%) ASKP1240 recipients. In conclusion, antagonism of the CD40/CD154 interaction with ASKP1240 was safe and well tolerated at the doses tested.
Collapse
Affiliation(s)
- R Goldwater
- PAREXEL International, Early Phase Clinical Unit-Baltimore, Harbor Hospital, Baltimore, MD
| | - J Keirns
- Astellas Pharma Global Development, Northbrook, IL
| | - P Blahunka
- Astellas Pharma Global Development, Northbrook, IL
| | - R First
- Astellas Pharma Global Development, Northbrook, IL
| | - T Sawamoto
- Astellas Pharma Global Development, Northbrook, IL
| | - W Zhang
- Astellas Pharma Global Development, Northbrook, IL
| | - D Kowalski
- Astellas Pharma Global Development, Northbrook, IL
| | - A Kaibara
- Astellas Pharma Global Development, Northbrook, IL
| | - J Holman
- Astellas Pharma Global Development, Northbrook, IL
| |
Collapse
|
81
|
Wang Y, Wang YM, Wang Y, Zheng G, Zhang GY, Zhou JJ, Tan TK, Cao Q, Hu M, Watson D, Wu H, Zheng D, Wang C, Lahoud MH, Caminschi I, Harris DC, Alexander SI. DNA vaccine encoding CD40 targeted to dendritic cells in situ prevents the development of Heymann nephritis in rats. Kidney Int 2013; 83:223-32. [PMID: 23223173 DOI: 10.1038/ki.2012.374] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
82
|
Al-Adra DP, Anderson CC. Toward minimal conditioning protocols for allogeneic chimerism in tolerance resistant recipients. CHIMERISM 2013; 4:23-5. [PMID: 23328386 PMCID: PMC3654734 DOI: 10.4161/chim.23350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mixed chimerism is a promising approach toward generating donor-specific immunological tolerance. However, chimerism induction can be toxic; therefore, there is an effort to develop non-myeloablative, minimal intensity protocols that can generate chimerism without the toxic side effects. Recently, with the goal of creating a minimalistic chimerism induction protocol in the tolerance resistant non-obese diabetic (NOD) mouse model, we identified pre-existing T cells as cells that resist fully allogeneic chimerism. With monoclonals targeting NOD T cells, we showed that long-term chimerism and tolerance toward donor islets could be established. However, this promising new protocol relied on the administration of a single dose of anti-CD40 ligand, which is not clinically applicable. In refining protocols to move even closer to clinical utility, we report here initial success at generating fully allogeneic mixed chimerism in NOD mice by adding cyclophosphamide to the conditioning regimen in place of anti-CD40 ligand antibodies.
Collapse
Affiliation(s)
- David P Al-Adra
- Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB Canada
| | | |
Collapse
|
83
|
Roescher N, Vosters JL, Lai Z, Uede T, Tak PP, Chiorini JA. Local administration of soluble CD40:Fc to the salivary glands of non-obese diabetic mice does not ameliorate autoimmune inflammation. PLoS One 2012; 7:e51375. [PMID: 23300544 PMCID: PMC3530540 DOI: 10.1371/journal.pone.0051375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 11/07/2012] [Indexed: 01/08/2023] Open
Abstract
Objective CD40–CD154 (CD40 ligand) interaction in the co-stimulatory pathway is involved in many (auto)immune processes and both molecules are upregulated in salivary glands of Sjögren’s syndrome (SS) patients. Interference within the CD40 pathway has ameliorated (auto)inflammation in a number of disease models. To test the potential role of the CD40 pathway in loss of gland function and inflammation in SS, an inhibitor of CD40-CD154 interaction was overexpressed in the salivary glands (SGs) of a spontaneous murine model of SS; the Non-Obese Diabetic (NOD) mouse. Materials and Methods At different disease stages an adeno associated viral vector encoding CD40 coupled to a human Fc domain (CD40:Fc) was injected locally into the SGs of NOD mice. Delivery was confirmed by PCR. The overall effect on local inflammation was determined by assessment of the focus score (FS), quantification of infiltrating cell types, immunoglobulin levels, and microarray analysis. The effect on SG function was determined by measuring stimulated salivary flow. Results CD40:Fc was stably expressed in the SG of NOD mice, and the protein was secreted into the blood stream. Microarray analysis revealed that expression of CD40:Fc affected the expression of many genes involved in regulation of the immune response. However, FS, infiltrating cell types, immunoglobulin levels, and salivary gland output were similar for treated and control mice. Discussion Although endogenous CD40 is expressed in SG inflammatory foci in the SG of NOD mice, the expression of soluble CD40:Fc did not lead to reduced overall inflammation and/or improved salivary gland function. These data indicate possible redundancy of the CD40 pathway in the SG and suggests that targeting CD40 alone may not be sufficient to alter the disease phenotype.
Collapse
Affiliation(s)
- Nienke Roescher
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Clinical Immunology & Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Jelle L. Vosters
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Clinical Immunology & Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Zhenan Lai
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Toshimitsu Uede
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Paul P. Tak
- Division of Clinical Immunology & Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
- GlaxoSmithKline, London, United Kingdom
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
84
|
Al-Adra DP, Pawlick R, Shapiro AMJ, Anderson CC. Targeting cells causing split tolerance allows fully allogeneic islet survival with minimal conditioning in NOD mixed chimeras. Am J Transplant 2012; 12:3235-45. [PMID: 22974315 DOI: 10.1111/j.1600-6143.2012.04260.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Donor-specific tolerance induced by mixed chimerism is one approach that may eliminate the need for long-term immunosuppressive therapy, while preventing chronic rejection of an islet transplant. However, even in the presence of chimerism it is possible for certain donor tissues or cells to be rejected whereas others from the same donor are accepted (split tolerance). We previously developed a nonmyeloablative protocol that generated mixed chimerism across full major histocompatability complex plus minor mismatches in NOD (nonobese diabetic) mice, however, these chimeras demonstrated split tolerance. In this study, we used radiation chimeras and found that the radiosensitive component of NOD has a greater role in the split tolerance NOD mice develop. We then show that split tolerance is mediated primarily by preexisting NOD lymphocytes and have identified T cells, but not NK cells or B cells, as cells that both resist chimerism induction and mediate split tolerance. Finally, after recognizing the barrier that preexisting T cells impose on the generation of fully tolerant chimeras, the chimerism induction protocol was refined to include nonmyeloablative recipient NOD T cell depletion which generated long-term mixed chimerism across fully allogeneic barriers. Furthermore, these chimeric NOD mice are immunocompetent, diabetes free and accept donor islet allografts.
Collapse
Affiliation(s)
- D P Al-Adra
- Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
85
|
de Leon-Boenig G, Bowman KK, Feng JA, Crawford T, Everett C, Franke Y, Oh A, Stanley M, Staben ST, Starovasnik MA, Wallweber HJA, Wu J, Wu LC, Johnson AR, Hymowitz SG. The crystal structure of the catalytic domain of the NF-κB inducing kinase reveals a narrow but flexible active site. Structure 2012; 20:1704-14. [PMID: 22921830 DOI: 10.1016/j.str.2012.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 11/18/2022]
Abstract
The NF-κB inducing kinase (NIK) regulates the non-canonical NF-κB pathway downstream of important clinical targets including BAFF, RANKL, and LTβ. Despite numerous genetic studies associating dysregulation of this pathway with autoimmune diseases and hematological cancers, detailed molecular characterization of this central signaling node has been lacking. We undertook a systematic cloning and expression effort to generate soluble, well-behaved proteins encompassing the kinase domains of human and murine NIK. Structures of the apo NIK kinase domain from both species reveal an active-like conformation in the absence of phosphorylation. ATP consumption and peptide phosphorylation assays confirm that phosphorylation of NIK does not increase enzymatic activity. Structures of murine NIK bound to inhibitors possessing two different chemotypes reveal conformational flexibility in the gatekeeper residue controlling access to a hydrophobic pocket. Finally, a single amino acid difference affects the ability of some inhibitors to bind murine and human NIK with the same affinity.
Collapse
Affiliation(s)
- Gladys de Leon-Boenig
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
|
87
|
Abstract
Allogeneic haematopoietic stem cell transplantation is used to treat a variety of disorders, but its efficacy is limited by the occurrence of graft-versus-host disease (GVHD). The past decade has brought impressive advances in our understanding of the role of stimulatory and suppressive elements of the adaptive and innate immune systems from both the donor and the host in GVHD pathogenesis. New insights from basic immunology, preclinical models and clinical studies have led to novel approaches for prevention and treatment. This Review highlights the recent advances in understanding the pathophysiology of GVHD and its treatment, with a focus on manipulations of the immune system that are amenable to clinical application.
Collapse
|
88
|
van den Hoogen MWF, Hilbrands LB. Use of monoclonal antibodies in renal transplantation. Immunotherapy 2012; 3:871-80. [PMID: 21751955 DOI: 10.2217/imt.11.72] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Monoclonal antibodies are applied in various settings in renal transplantation. Depleting T-cell antibodies are used for treatment of steroid-resistant acute rejection and as induction therapy to reduce the intensity of concomitant immunosuppressive drug therapy. Induction therapy with the nondepleting IL-2 receptor antagonists basiliximab and daclizumab, added to cyclosporine-based regimens, reduces the incidence of acute rejection without side effects. However, an increase in long-term graft and patient survival has not been demonstrated yet. The B-cell-targeting antibody rituximab is used in blood group ABO-incompatible transplantation, in desensitization protocols, and for treatment of antibody-mediated rejection. Eculizumab interrupts the complement pathway and is a promising tool for the treatment of antibody-mediated rejection and post-transplant hemolytic-uremic syndrome. Future options are monoclonal antibodies with new molecular targets and antibodies that can be used for maintenance immunosuppression in order to avoid the toxicity of existing drugs. However, in several cases, the development of new monoclonal antibodies has been hampered by safety issues.
Collapse
Affiliation(s)
- Martijn W F van den Hoogen
- Department of Nephrology, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
89
|
Zhang H, Grimaldo S, Yuen D, Chen L. Combined blockade of VEGFR-3 and VLA-1 markedly promotes high-risk corneal transplant survival. Invest Ophthalmol Vis Sci 2011; 52:6529-35. [PMID: 21715348 DOI: 10.1167/iovs.11-7454] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE. High-risk corneal transplantation refers to grafting performed on inflamed and highly vascularized host beds. It represents a clinical dilemma because the rejection rate can be as high as 90%, irrespective of current treatment modalities. This study was conducted to investigate whether combined blockade of VEGFR-3 (vascular endothelial growth factor receptor-3) and VLA-1 (very late antigen-1) promotes high-risk transplant survival and how it correlates with corneal lymphangiogenesis and hemangiogenesis before and after transplantation. METHODS. High-risk corneal transplantation was performed between normal C57BL/6 (donor) and inflamed BALB/c (recipient) mice. The recipients were randomized to receive intraperitoneal injections of VEGFR-3 and VLA-1-neutralizing antibodies or their controls twice a week for up to 8 weeks after transplantation. Corneal grafts were evaluated by ophthalmic slit-lamp biomicroscopy and analyzed by Kaplan-Meier survival curve. Additionally, whole-mount corneas before and after transplantation were examined by immunofluorescent microscopic assays, and the correlation between lymphatic or blood vessel distribution and transplant outcome was analyzed. RESULTS. The combined blockade markedly promotes 90% survival of high-risk transplants. This strategy specifically modified host beds by selective inhibition of lymphangiogenesis but not hemangiogenesis. A strong correlation was also identified between high-risk transplant rejection and severe lymphatic invasion reaching the donor-graft border. CONCLUSIONS. These novel findings not only provide a new and potentially powerful strategy to promote high-risk transplant survival, they also confirm a critical role of high-degree lymphangiogenesis in mediating high-risk transplant rejection. Results from this study may also shed new light on our understanding and management of other lymphatic- and immune-related diseases in general.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Eye Disease and Development, Program in Vision Science and School of Optometry, University of California, Berkeley, USA
| | | | | | | |
Collapse
|
90
|
Abstract
Secondary, so-called costimulatory, signals are critically required for the process of T cell activation. Since landmark studies defined that T cells receiving a T cell receptor signal without a costimulatory signal, are tolerized in vitro, the investigation of T cell costimulation has attracted intense interest. Early studies demonstrated that interrupting T cell costimulation allows attenuation of the alloresponse, which is particularly difficult to modulate due to the clone size of alloreactive T cells. The understanding of costimulation has since evolved substantially and now encompasses not only positive signals involved in T cell activation but also negative signals inhibiting T cell activation and promoting T cell tolerance. Costimulation blockade has been used effectively for the induction of tolerance in rodent models of transplantation, but turned out to be less potent in large animals and humans. In this overview we will discuss the evolution of the concept of T cell costimulation, the potential of 'classical' and newly identified costimulation pathways as therapeutic targets for organ transplantation as well as progress towards clinical application of the first costimulation blocking compound.
Collapse
Affiliation(s)
- Nina Pilat
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Austria
| | - Mohamed H. Sayegh
- Brigham and Women's Hospital & Children's Hospital Boston, Harvard Medical School, Boston, USA
| | - Thomas Wekerle
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Austria
| |
Collapse
|
91
|
Abstract
Recent findings suggest that a chronic alloimmune response is playing the dominant role in late allograft loss, challenging the notion that most grafts are lost due to the inexorable progression of calcineurin inhibitor (CNI) nephrotoxicity. CNIs have failed to improve long-term outcomes and are associated with multiple metabolic derangements. Thus, improvement in long-term allograft outcomes may depend on new agents with novel mechanisms of action, devoid of the toxicities associated with CNIs. To meet this need, inhibitors of novel pathways in B cell and plasma cell activation have emerged to combat the humoral immune response including belimumab and atacicept, both promising targets of B-cell survival factors and bortezomib and eculizumab, agents currently in trials for desensitization protocols and treatment of antibody-mediated rejection. Promising agents for maintenance immunosuppression, used as monotherapy or synergistically, include monoclonal antibodies and fusion receptor proteins targeting the CD40-CD154 pathway (multiple anti-CD40 antibodies), the CD28-CD80/86 pathway (i.e., belatacept), the LFA3-CD2 pathway (i.e., alefacept), and small molecules such as tofacitinib, a janus kinase 1/3 inhibitor. The induction of allograft tolerance has been attempted with some success with simultaneous bone marrow/kidney transplantation from the same donor, albeit, limited by its associated toxicites. Finally, the exciting fields of tissue engineering and stem cell biology with the repopulation of decellularized organs is ushering in a new paradigm for transplantation. The era of simplified immunosuppression regimens devoid of toxicities is upon us with the promise of dramatic improvement in long term survival.
Collapse
|
92
|
Moulton VR, Tsokos GC. Abnormalities of T cell signaling in systemic lupus erythematosus. Arthritis Res Ther 2011; 13:207. [PMID: 21457530 PMCID: PMC3132009 DOI: 10.1186/ar3251] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease resulting from a loss of tolerance to multiple self antigens, and characterized by autoantibody production and inflammatory cell infiltration in target organs, such as the kidneys and brain. T cells are critical players in SLE pathophysiology as they regulate B cell responses and also infiltrate target tissues, leading to tissue damage. Abnormal signaling events link to defective gene transcription and altered cytokine production, contributing to the aberrant phenotype of T cells in SLE. Study of signaling and gene transcription abnormalities in SLE T cells has led to the identification of novel targets for therapy.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
93
|
Oxer DS, Godoy LC, Borba E, Lima-Salgado T, Passos LA, Laurindo I, Kubo S, Barbeiro DF, Fernandes D, Laurindo FR, Velasco IT, Curi R, Bonfa E, Souza HP. PPARγ expression is increased in systemic lupus erythematosus patients and represses CD40/CD40L signaling pathway. Lupus 2011; 20:575-87. [PMID: 21415255 DOI: 10.1177/0961203310392419] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease involving several immune cell types and pro-inflammatory signals, including the one triggered by binding of CD40L to the receptor CD40. Peroxisome-proliferator activated receptor gamma (PPARγ) is a transcription factor with anti-inflammatory properties. Here we investigated whether CD40 and PPARγ could exert opposite effects in the immune response and the possible implications for SLE. Increased PPARγ mRNA levels were detected by real-time PCR in patients with active SLE, compared to patients with inactive SLE PPARγ/GAPDH mRNA = 2.21 ± 0.49 vs. 0.57 ± 0.14, respectively (p < 0.05) or patients with infectious diseases and healthy subjects (p < 0.05). This finding was independent of the corticosteroid therapy. We further explored these observations in human THP1 and in SLE patient-derived macrophages, where activation of CD40 by CD40L promoted augmented PPARγ gene transcription compared to non-stimulated cells (PPARγ/GAPDH mRNA = 1.14 ± 0.38 vs. 0.14 ± 0.01, respectively; p < 0.05). This phenomenon occurred specifically upon CD40 activation, since lipopolysaccharide treatment did not induce a similar response. In addition, increased activity of PPARγ was also detected after CD40 activation, since higher PPARγ-dependent transcription of CD36 transcription was observed. Furthermore, CD40L-stimulated transcription of CD80 gene was elevated in cells treated with PPARγ-specific small interfering RNA (small interfering RNA, siRNA) compared to cells treated with CD40L alone (CD80/GAPDH mRNA = 0.11 ± 0.04 vs. 0.05 ± 0.02, respectively; p < 0.05), suggesting a regulatory role for PPARγ on the CD40/CD40L pathway. Altogether, our findings outline a novel mechanism through which PPARγ regulates the inflammatory signal initiated by activation of CD40, with important implications for the understanding of immunological mechanisms underlying SLE and the development of new treatment strategies.
Collapse
Affiliation(s)
- D S Oxer
- Faculdade de Medicina da Universidade de São Paulo, Emergency Medicine Division, LIM 51, Av. Dr. Arnaldo, 455 sala 3189. 01246-903 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Lorente L, Martín MM, Varo N, Borreguero-León JM, Solé-Violán J, Blanquer J, Labarta L, Díaz C, Jiménez A, Pastor E, Belmonte F, Orbe J, Rodríguez JA, Gómez-Melini E, Ferrer-Agüero JM, Ferreres J, LLimiñana MC, Páramo JA. Association between serum soluble CD40 ligand levels and mortality in patients with severe sepsis. Crit Care 2011; 15:R97. [PMID: 21406105 PMCID: PMC3219362 DOI: 10.1186/cc10104] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/17/2011] [Accepted: 03/15/2011] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION CD40 Ligand (CD40L) and its soluble counterpart (sCD40L) are proteins that exhibit prothrombotic and proinflammatory properties on binding to their cell surface receptor CD40. The results of small clinical studies suggest that sCD40L levels could play a role in sepsis; however, there are no data on the association between sCD40L levels and mortality of septic patients. Thus, the aim of this study was to determine whether circulating sCD40L levels could be a marker of adverse outcome in a large cohort of patients with severe sepsis. METHODS This was a multicenter, observational and prospective study carried out in six Spanish intensive care units. Serum levels of sCD40L, tumour necrosis factor-alpha and interleukin-10, and plasma levels of tissue factor were measured in 186 patients with severe sepsis at the time of diagnosis. Serum sCD40L was also measured in 50 age- and sex-matched controls. Survival at 30 days was used as the endpoint. RESULTS Circulating sCD40L levels were significantly higher in septic patients than in controls (P = 0.01), and in non-survivors (n = 62) compared to survivors (n = 124) (P = 0.04). However, the levels of CD40L were not different regarding sepsis severity. Logistic regression analysis showed that sCD40L levels >3.5 ng/mL were associated with higher mortality at 30 days (odds ratio = 2.89; 95% confidence interval = 1.37 to 6.07; P = 0.005). The area under the curve of sCD40L levels >3.5 ng/mL as predictor of mortality at 30 days was 0.58 (95% CI = 0.51 to 0.65; P = 0.03). CONCLUSIONS In conclusion, circulating sCD40L levels are increased in septic patients and are independently associated with mortality in these patients; thus, its modulation could represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife - 38010, Spain
| | - Nerea Varo
- Biochemistry Deparment, Clínica Universidad de Navarra, Avda Pío XII n°55, Pamplona - 31008, Spain
| | - Juan María Borreguero-León
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria - 35010, Spain
| | - José Blanquer
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez no. 17-19, Valencia - 46004, Spain
| | - Lorenzo Labarta
- Intensive Care Unit, Hospital San Jorge de Huesca, Avenida Martínez de Velasco n°36, Huesca - 22004, Spain
| | - César Díaz
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria - 35016, Spain
| | - Alejandro Jiménez
- Mixed Research Unit HUC-ULL, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - Eduardo Pastor
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - Felipe Belmonte
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife - 38010, Spain
| | - Josune Orbe
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII no. 55, Pamplona - 31008, Spain
| | - José A Rodríguez
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII no. 55, Pamplona - 31008, Spain
| | - Eduardo Gómez-Melini
- Laboratory Deparment, Hospital Universitario de Canarias, Ofra, s/n, La Laguna - 38320, Santa Cruz de Tenerife, Spain
| | - José M Ferrer-Agüero
- Intensive Care Unit, Hospital Universitario Dr. Negrín, Barranco de la Ballena s/n, Las Palmas de Gran Canaria - 35010, Spain
| | - José Ferreres
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez no. 17-19, Valencia - 46004, Spain
| | - María C LLimiñana
- Laboratory Department, Hospital San Jorge de Huesca, Avenida Martínez de Velasco no. 36, Huesca - 22004, Spain
| | - José A Páramo
- Atherosclerosis Research Laboratory, CIMA-University of Navarra, Avda Pío XII no. 55, Pamplona - 31008, Spain
| |
Collapse
|
95
|
Baranyi U, Gattringer M, Valenta R, Wekerle T. Cell-based therapy in allergy. Curr Top Microbiol Immunol 2011; 352:161-79. [PMID: 21598105 DOI: 10.1007/82_2011_127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IgE-mediated allergy is an immunological disorder occurring in response to otherwise harmless environmental antigens (i.e., allergens). Development of effective therapeutic or preventive approaches inducing robust tolerance toward allergens remains an unmet goal. Several experimental tolerance approaches have been described. The therapeutic use of regulatory T cells (Tregs) and the establishment of molecular chimerism are two cell-based strategies that are of particular interest. Treg therapy is close to clinical application, but its efficacy remains to be fully defined. Recent proof-of-concept studies demonstrated that transplantation of syngeneic hematopoietic stem cells modified in vitro to express a major allergen leads to molecular chimerism and robust allergen-specific tolerance. Here we review cell-based tolerance strategies in allergy, discussing their potentials and limitations.
Collapse
Affiliation(s)
- Ulrike Baranyi
- Division of Transplantation, Department of Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
96
|
The Immune Tolerance Network at 10 years: tolerance research at the bedside. Nat Rev Immunol 2010; 10:797-803. [PMID: 20972473 DOI: 10.1038/nri2869] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Immune tolerance-inducing therapies reprogramme immune cells to eliminate pathogenic immune responses while preserving protective immunity. The Immune Tolerance Network (ITN), sponsored by the US National Institutes of Health, was established in 1999 to evaluate new tolerance-inducing therapies and carry out mechanistic studies using a unique interactive approach in partnership with industry, academia and foundations. Ten years later, the ITN has carried out approximately 36 clinical trials and tolerance studies examining innovative tolerogenic approaches in the settings of allergy, autoimmune diseases and organ transplantation. ITN investigators have published more than 80 original research papers based on this work. This Timeline article summarizes the progress and challenges of clinical research in the ITN.
Collapse
|
97
|
Verbinnen B, Van Gool SW, Ceuppens JL. Blocking costimulatory pathways: prospects for inducing transplantation tolerance. Immunotherapy 2010; 2:497-509. [PMID: 20636004 DOI: 10.2217/imt.10.31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tolerance induction to alloantigens is a major challenge in transplant immunology. Whereas conventional immunosuppression inhibits the immune system in a nonspecific way, thereby also undermining an appropriate immune response towards potentially harmful infectious organisms, tolerance in a transplantation setting is restricted to alloantigens, while protective immunity is preserved. Moreover, tolerance implies an immunological status that is preserved after withdrawal of the tolerance-inducing therapy. Among the most promising strategies to induce immunological tolerance are costimulation blockade and establishment of mixed chimerism. Despite significant advances, we still know little about the mechanisms responsible for such tolerance. In this article, we discuss tolerance induction to transplantation antigens by costimulation blockade.
Collapse
Affiliation(s)
- Bert Verbinnen
- University Hospital Gasthuisberg, Catholic University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
98
|
Robles-Carrillo L, Meyer T, Hatfield M, Desai H, Dávila M, Langer F, Amaya M, Garber E, Francis JL, Hsu YM, Amirkhosravi A. Anti-CD40L Immune Complexes Potently Activate Platelets In Vitro and Cause Thrombosis in FCGR2A Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:1577-83. [DOI: 10.4049/jimmunol.0903888] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
99
|
Grewal IS. Overview of TNF superfamily: a chest full of potential therapeutic targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:1-7. [PMID: 19760063 DOI: 10.1007/978-0-387-89520-8_1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Since the discovery of tumor necrosis factor TNFalpha about 25 years ago, TNF superfamily has grown to a large family of related proteins consisting of over 20 members that signal through over 30 receptors. Members of this superfamily have wide tissue distribution and play important roles ranging from regulation of the normal biological processes such as immune responses, hematopoiesis and morphogenesis to their role in tumorigenesis, transplant rejection, septic shock, viral replication, bone resorption and autoimmunity. Thus, many approaches to harness the potency of TNF superfamily members to treat human diseases have been developed. Indeed, TNF and TNF agonistic molecules have been approved for human use in the United States and other countries. Many other TNF family members show promise for several therapeutic applications, including cancer, infectious disease, transplantation and autoimmunity. This chapter will give overview of TNF superfamily for exploitation for therapeutic use in humans.
Collapse
Affiliation(s)
- Iqbal S Grewal
- Department of Preclinical Therapeutics, Seattle Genetics, Inc., 21823 30th Drive SE, Bothell, WA, 98021, USA.
| |
Collapse
|
100
|
[Pathophysiology of immune thrombocytopenia]. Rev Med Interne 2010; 32:350-7. [PMID: 20557985 DOI: 10.1016/j.revmed.2009.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/09/2009] [Accepted: 05/02/2009] [Indexed: 01/15/2023]
Abstract
Immune thrombocytopenia is an autoimmune disease characterized by a peripheral destruction of platelets. B lymphocytes play a key role but pathogenesis is more complex, involving humoral and cellular immunity associated with an inappropriate platelet production. In this article, we review the different pathogenic pathways, leading to new therapeutic strategies.
Collapse
|