51
|
Hypothalamic and inflammatory basis of hypertension. Clin Sci (Lond) 2017; 131:211-223. [PMID: 28057892 DOI: 10.1042/cs20160001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is a major health problem with great consequences for public health. Despite its role as the primary cause of significant morbidity and mortality associated with cardiovascular disease, the pathogenesis of essential hypertension remains largely unknown. The central nervous system (CNS) in general, and the hypothalamus in particular, are intricately involved in the development and maintenance of hypertension. Over the last several decades, the understanding of the brain's role in the development of hypertension has dramatically increased. This brief review is to summarize the neural mechanisms of hypertension with a focus on neuroendocrine and neurotransmitter involvement, highlighting recent findings that suggest that hypothalamic inflammation disrupts key signalling pathways to affect the central control of blood pressure, and therefore suggesting future development of interventional strategies that exploit recent findings pertaining to the hypothalamic control of blood pressure as well as the inflammatory-sympathetic mechanisms involved in hypertension.
Collapse
|
52
|
YOON JH, KANG MY, JEUNG D, CHANG SJ. Suppressing emotion and engaging with complaining customers at work related to experience of depression and anxiety symptoms: a nationwide cross-sectional study. INDUSTRIAL HEALTH 2017; 55:265-274. [PMID: 28216516 PMCID: PMC5462642 DOI: 10.2486/indhealth.2016-0069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
Our aim was to investigate the relationship between suppressing emotion and engaging with complaining customers at work and experience of depression and anxiety symptoms. We used nationally representative data from the Korean Working Condition Survey with 15,669 paid customer service workers. Job characteristics of "Engaging with Complaints", "Suppressing Emotion", experience of depression and anxiety symptoms were measured by self-reported questionnaires. Gender specific odds ratios (OR) and 95% confidence intervals (95% CI) were calculated using multivariate logistic regression after controlling for age, income, education level, job satisfaction, and working hours per week. The results showed that people who were 'Always Engaging with Complaints' (OR: 3.81, 95% CI: 1.83-7.96 for male, OR: 3.98, 95% CI: 2.07-7.66 for female) and 'Always Suppressing Emotion' (OR: 2.33, 95% CI: 1.33-4.08 for male, OR: 2.83, 95% CI: 1.67-4.77 for female) were more likely to experience depression and anxiety symptoms compared to those 'Rarely Engaging with Complaints' and 'Rarely Suppressing Emotion', respectively. Additionally, there was an interactive relationship between those job characteristics. Our nationwide study demonstrates that mental health problems are incrementally related to how much service workers must engage with complaining customers and suppressing emotion at work.
Collapse
Affiliation(s)
- Jin-Ha YOON
- The Institute for Occupational Health, Yonsei University College of Medicine, Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Korea
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Korea
| | - Mo-Yeol KANG
- Department of Preventive Medicine, Seoul National University College of Medicine, Korea
| | - Dayee JEUNG
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Korea
- Institute Occupational and Environmental Medicine, Wonju College of Medicine, Yonsei University, Korea
| | - Sei-Jin CHANG
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Korea
- Institute Occupational and Environmental Medicine, Wonju College of Medicine, Yonsei University, Korea
| |
Collapse
|
53
|
Cordero MI, Moser DA, Manini A, Suardi F, Sancho-Rossignol A, Torrisi R, Rossier MF, Ansermet F, Dayer AG, Rusconi-Serpa S, Schechter DS. Effects of interpersonal violence-related post-traumatic stress disorder (PTSD) on mother and child diurnal cortisol rhythm and cortisol reactivity to a laboratory stressor involving separation. Horm Behav 2017; 90:15-24. [PMID: 28189641 DOI: 10.1016/j.yhbeh.2017.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/23/2016] [Accepted: 02/05/2017] [Indexed: 01/09/2023]
Abstract
Women who have experienced interpersonal violence (IPV) are at a higher risk to develop posttraumatic stress disorder (PTSD), with dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and impaired social behavior. Previously, we had reported impaired maternal sensitivity and increased difficulty in identifying emotions (i.e. alexithymia) among IPV-PTSD mothers. One of the aims of the present study was to examine maternal IPV-PTSD salivary cortisol levels diurnally and reactive to their child's distress in relation to maternal alexithymia. Given that mother-child interaction during infancy and early childhood has important long-term consequences on the stress response system, toddlers' cortisol levels were assessed during the day and in response to a laboratory stressor. Mothers collected their own and their 12-48month-old toddlers' salivary samples at home three times: 30min after waking up, between 2-3pm and at bedtime. Moreover, mother-child dyads participated in a 120-min laboratory session, consisting of 3 phases: baseline, stress situation (involving mother-child separation and exposure to novelty) and a 60-min regulation phase. Compared to non-PTSD controls, IPV-PTSD mothers - but not their toddlers, had lower morning cortisol and higher bedtime cortisol levels. As expected, IPV-PTSD mothers and their children showed blunted cortisol reactivity to the laboratory stressor. Maternal cortisol levels were negatively correlated to difficulty in identifying emotions. Our data highlights PTSD-IPV-related alterations in the HPA system and its relevance to maternal behavior. Toddlers of IPV-PTSD mothers also showed an altered pattern of cortisol reactivity to stress that potentially may predispose them to later psychological disorders.
Collapse
Affiliation(s)
- Maria I Cordero
- Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK; Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland.
| | - Dominik A Moser
- Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland
| | - Aurelia Manini
- Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland
| | - Francesca Suardi
- Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland
| | - Ana Sancho-Rossignol
- Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland
| | - Raffaella Torrisi
- Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland
| | - Michel F Rossier
- Clinical Chemistry and Toxicology Service, Hôpital du Valais, Sion, Switzerland
| | - François Ansermet
- Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland; Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandre G Dayer
- Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland; Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandra Rusconi-Serpa
- Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland
| | - Daniel S Schechter
- Research Unit, Child and Adolescent Psychiatry Service, University of Geneva Hospitals, Geneva, Switzerland; Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Developmental Neuroscience, Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
54
|
Sarubin N, Hilbert S, Naumann F, Zill P, Wimmer AM, Nothdurfter C, Rupprecht R, Baghai TC, Bühner M, Schüle C. The sex-dependent role of the glucocorticoid receptor in depression: variations in the NR3C1 gene are associated with major depressive disorder in women but not in men. Eur Arch Psychiatry Clin Neurosci 2017; 267:123-133. [PMID: 27549215 DOI: 10.1007/s00406-016-0722-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 08/04/2016] [Indexed: 12/14/2022]
Abstract
Genetic variations in the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) have been associated with maladaptive stress responses and major depressive disorder (MDD). In a case-control study design, we examined whether single nucleotide polymorphisms (SNPs) and haploid genotype (haplotype) associations of MR gene NR3C2, GR gene NR3C1 and genes of GR chaperone molecules FK506 binding protein 5 (FKBP5) and corticotrophin-releasing hormone receptor 1 (CRHR1) differed between healthy subjects (n = 634) and inpatients with major depressive disorder (n = 412). All analyses were conducted for women and men separately. After conservative correction of Type-I-error to obtain reliable p values, one SNP in the NR3C1 gene, namely rs6195, showed a significant association with the presence of a major depression (p = 0.048) in females. In contrast, NR3C2, FKBP5 and CRHR1 polymorphisms were not significantly associated with MDD. No haplotype effects could be identified. Our results support the notion of an association between variants of GR-related genes in women and the pathophysiology of depression: females suffering from MDD showed a more than three times higher frequency of the T/C polymorphism compared to controls, which thus seems to increase the vulnerability to depression in females.
Collapse
Affiliation(s)
- Nina Sarubin
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
- Department of Psychological Methodology and Assessment, Ludwig-Maximilians-University Munich, Munich, Germany.
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany.
- Hochschule Fresenius, University of Applied Sciences, Munich, Germany.
| | - Sven Hilbert
- Department of Psychological Methodology and Assessment, Ludwig-Maximilians-University Munich, Munich, Germany
- Faculty of Psychology, Educational Science and Sport Science, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Felix Naumann
- Department of Psychological Methodology and Assessment, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Anna-Maria Wimmer
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Thomas C Baghai
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Markus Bühner
- Department of Psychological Methodology and Assessment, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Cornelius Schüle
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| |
Collapse
|
55
|
de Araújo Costa Folha OA, Bahia CP, de Aguiar GPS, Herculano AM, Coelho NLG, de Sousa MBC, Shiramizu VKM, de Menezes Galvão AC, de Carvalho WA, Pereira A. Effect of chronic stress during adolescence in prefrontal cortex structure and function. Behav Brain Res 2017; 326:44-51. [PMID: 28238824 DOI: 10.1016/j.bbr.2017.02.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 01/20/2023]
Abstract
Critical periods of plasticity (CPPs) are defined by developmental intervals wherein neuronal circuits are most susceptible to environmental influences. The CPP of the prefrontal cortex (PFC), which controls executive functions, extends up to early adulthood and, like other cortical areas, reflects the maturation of perineuronal nets (PNNs) surrounding the cell bodies of specialized inhibitory interneurons. The aim of the present work was to evaluate the effect of chronic stress on both structure and function of the adolescent's rat PFC. We subjected P28 rats to stressful situations for 7, 15 and 35days and evaluated the spatial distribution of histochemically-labeled PNNs in both the Medial Prefrontal Cortex (MPFC) and the Orbitofrontal Cortex (OFC) and PFC-associated behavior as well. Chronic stress affects PFC development, slowing PNN maturation in both the (MPFC) and (OFC) while negatively affecting functions associated with these areas. We speculate upon the risks of prolonged exposure to stressful environments in human adolescents and the possibility of stunted development of executive functions.
Collapse
Affiliation(s)
- Otávio Augusto de Araújo Costa Folha
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil
| | - Carlomagno Pacheco Bahia
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil
| | - Gisele Priscila Soares de Aguiar
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil
| | - Anderson Manoel Herculano
- Laboratory of Experimental Pharmacology, Institute of Biological Sciences, Federal University of Pará, Av. Augusto Correa, 1, 66075-110 Belém, PA, Brazil
| | - Nicole Leite Galvão Coelho
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Maria Bernardete Cordeiro de Sousa
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Victor Kenji Medeiros Shiramizu
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Ana Cecília de Menezes Galvão
- Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil
| | - Walther Augusto de Carvalho
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil
| | - Antonio Pereira
- Laboratory of Neuroplasticity, Institute of Health Sciences, Federal University of Pará, Av. Generalíssimo Deodoro, 1, 66035-160 Belém, PA, Brazil; Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59078-970 Natal, RN, Brazil.
| |
Collapse
|
56
|
Syed SA, Nemeroff CB. Early Life Stress, Mood, and Anxiety Disorders. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017694461. [PMID: 28649671 PMCID: PMC5482282 DOI: 10.1177/2470547017694461] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 12/24/2022]
Abstract
Early life stress has been shown to exert profound short- and long-term effects on human physiology both in the central nervous system and peripherally. Early life stress has demonstrated clear association with many psychiatric disorders including major depression, posttraumatic stress disorder, and bipolar disorder. The Diagnostic and Statistics Manuel of Mental Disorders (DSM) diagnostic categorical system has served as a necessary framework for clinical service, delivery, and research, however has not been completely matching the neurobiological research perspective. Early life stress presents a complex dynamic featuring a wide spectrum of physiologic alterations: from epigenetic alterations, inflammatory changes, to dysregulation of the hypothalamic pituitary axis and has further added to the challenge of identifying biomarkers associated with psychiatric disorders. The National Institute of Mental Health's proposed Research Domain Criteria initiative incorporates a dimensional approach to assess discrete domains and constructs of behavioral function that are subserved by identifiable neural circuits. The current neurobiology of early life stress is reviewed in accordance with dimensional organization of Research Domain Criteria matrix and how the findings as a whole fit within the Research Domain Criteria frameworks.
Collapse
Affiliation(s)
- Shariful A. Syed
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Charles B. Nemeroff
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
57
|
Surís A, Holliday R, Adinoff B, Holder N, North CS. Facilitating Fear-Based Memory Extinction With Dexamethasone: A Randomized Controlled Trial in Male Veterans With Combat-Related PTSD. Psychiatry 2017; 80:399-410. [PMID: 29466111 DOI: 10.1080/00332747.2017.1286892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Animal and preliminary human studies have demonstrated that glucocorticoids enhance the extinction of fear memories. Impaired extinction of fear memories is a critical component in the development and maintenance of posttraumatic stress disorder (PTSD). The purpose of this translational study was to determine the effectiveness of pairing a glucocorticoid with trauma memory reactivation as a novel intervention to treat PTSD and to measure the duration of the effect. METHOD A total of 54 male veterans with combat-related PTSD in this double-blind, randomized, placebo-controlled trial received either four weekly glucocorticoid (dexamethasone [DEX]) or placebo administrations paired with a 45-second trauma memory reactivation task. PTSD and depressive symptom severity were assessed at baseline and at one three, and six months. RESULTS Trauma memory activation paired with DEX versus trauma memory activation paired with placebo demonstrated a significantly greater reduction of PTSD symptoms for DEX at the one-month (p = .037) and three-month (p = .036) posttreatment assessments, but the difference was no longer evident at six months. DEX showed a nonsignificantly greater reduction of PTSD symptoms than placebo over the course of the study (p = .067). Significantly more veterans in the DEX group lost their diagnosis of PTSD at one month posttreatment compared to the placebo group, but the difference was not maintained at three or six months. DEX had no effect on depression symptoms. CONCLUSIONS Despite insufficient power to test differences in PTSD symptom reduction, findings suggest that this novel intervention may have potential for treatment of combat-related PTSD.
Collapse
|
58
|
Lieberman R, Kranzler HR, Levine ES, Covault J. Examining FKBP5 mRNA expression in human iPSC-derived neural cells. Psychiatry Res 2017; 247:172-181. [PMID: 27915167 PMCID: PMC5191911 DOI: 10.1016/j.psychres.2016.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
In peripheral blood leukocytes, FKBP5 mRNA expression is upregulated following glucocorticoid receptor activation. The single nucleotide polymorphism rs1360780 in FKBP5 is associated with psychiatric illness and has functional molecular effects. However, examination of FKBP5 regulation has largely been limited to peripheral cells, which may not reflect regulation in neural cells. We used 27 human induced pluripotent stem cell lines (iPSCs) derived from 20 subjects to examine FKBP5 mRNA expression following GR activation. Following differentiation into forebrain-lineage neural cultures, cells were exposed to 1μM dexamethasone and mRNA expression of FKBP5 and NR3C1 analyzed. Results from the iPSC-derived neural cells were compared with those from 15 donor matched fibroblast lines. Following dexamethasone treatment, there was a 670% increase in FKBP5 expression in fibroblasts, mimicking findings in peripheral blood-derived cells, but only a 23% increase in iPSC-derived neural cultures. FKBP5 rs1360780 genotype did not affect the induction of FKBP5 mRNA in either fibroblasts or neural cells. These results suggest that iPSC-derived forebrain-lineage neurons may not be an optimal neural cell type in which to examine relationships between GR activation, FKBP5 expression, and genetic variation in human subjects. Further, FKBP5 induction following GR activation may differ between cell types derived from the same individual.
Collapse
Affiliation(s)
- Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington 06030-1410, CT, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia 19104, PA, USA; VISN4 MIRECC, Crescenz Philadelphia VAMC, Philadelphia 19104, PA, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington 06030, CT, USA
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington 06030-1410, CT, USA.
| |
Collapse
|
59
|
Use of Salivary Diurnal Cortisol as an Outcome Measure in Randomised Controlled Trials: a Systematic Review. Ann Behav Med 2016; 50:210-36. [PMID: 27007274 PMCID: PMC4823366 DOI: 10.1007/s12160-015-9753-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with diverse adverse health outcomes, making it an important therapeutic target. Measurement of the diurnal rhythm of cortisol secretion provides a window into this system. At present, no guidelines exist for the optimal use of this biomarker within randomised controlled trials (RCTs). Purpose The aim of this study is to describe the ways in which salivary diurnal cortisol has been measured within RCTs of health or behavioural interventions in adults. Methods Six electronic databases (up to May 21, 2015) were systematically searched for RCTs which used salivary diurnal cortisol as an outcome measure to evaluate health or behavioural interventions in adults. A narrative synthesis was undertaken of the findings in relation to salivary cortisol methodology and outcomes. Results From 78 studies that fulfilled the inclusion criteria, 30 included healthy participants (38.5 %), 27 included patients with physical disease (34.6 %) and 21 included patients with psychiatric disease (26.9 %). Psychological therapies were most commonly evaluated (n = 33, 42.3 %). There was substantial heterogeneity across studies in relation to saliva collection protocols and reported cortisol parameters. Only 39 studies (50 %) calculated a rhythm parameter such as the diurnal slope or the cortisol awakening response (CAR). Patterns of change in cortisol parameters were inconsistent both within and across studies and there was low agreement with clinical findings. Conclusions Salivary diurnal cortisol is measured inconsistently across RCTs, which is limiting the interpretation of findings within and across studies. This indicates a need for more validation work, along with consensus guidelines. Electronic supplementary material The online version of this article (doi:10.1007/s12160-015-9753-9) contains supplementary material, which is available to authorized users.
Collapse
|
60
|
Ralph CR, Tilbrook AJ. INVITED REVIEW: The usefulness of measuring glucocorticoids for assessing animal welfare. J Anim Sci 2016; 94:457-70. [PMID: 27065116 DOI: 10.2527/jas.2015-9645] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoids (corticosterone in birds and rodents and cortisol in all other mammals) are glucoregulatory hormones that are synthesized in response to a range of stimuli including stress and are regularly measured in the assessment of animal welfare. Glucocorticoids have many normal or non-stress-related functions, and glucocorticoid synthesis can increase in response to pleasure, excitement, and arousal as well as fear, anxiety, and pain. Often, when assessing animal welfare, little consideration is given to normal non-stress-related glucocorticoid functions or the complex mechanisms that regulate the effects of glucocorticoids on physiology. In addition, it is rarely acknowledged that increased glucocorticoid synthesis can indicate positive welfare states or that a stress response can increase fitness and improve the welfare of an animal. In this paper, we review how and when glucocorticoid synthesis increases, the actions mediated through type I and type II glucocorticoid receptors, the importance of corticosteroid-binding globulin, the role of 11 β-hydroxysteroid dehydrogenase, and the key aspects of neurophysiology relevant to activating the hypothalamo-pituitary-adrenal axis. This is discussed in the context of animal welfare assessment, particularly under the biological functioning and affective states frameworks. We contend that extending the assessment of animal welfare to key brain regions afferent to the hypothalamus and incorporating the aspects of glucocorticoid physiology that affect change in target tissue will advance animal welfare science and inspire more comprehensive assessment of the welfare of animals.
Collapse
|
61
|
Individual and Day-to-Day Differences in Active Coping Predict Diurnal Cortisol Patterns among Early Adolescent Girls. J Youth Adolesc 2016; 46:121-135. [PMID: 27783306 DOI: 10.1007/s10964-016-0591-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022]
Abstract
Prior work has identified alterations in activity of the hypothalamic-pituitary-adrenal axis as a potential mechanism underlying stress-induced emotional health problems, which disproportionately impact girls beginning in mid-adolescence. How adolescent girls differ from one another in dispositional coping tendencies and shift specific coping strategies in response to varying stressors have been theorized as important predictors of their adaptation, health, and well-being during this dynamic period of development. The goal of this study was to examine whether individual and day-to-day (within-person) differences in adolescent girls' coping responses are associated with daily patterns of hypothalamic-pituitary-adrenal axis activity, indexed by cortisol. Participants were 122 early adolescent girls (M age = 12.39) who provided three saliva samples per day for 3 days and completed daily coping reports, as well as a standard coping survey. Participants and primary caregivers also completed objective life stress interviews. On average, girls who were more likely to respond to interpersonal stress with voluntary engagement (active) coping exhibited generally adaptive daily physiological regulation-steeper diurnal cortisol slopes, lower total diurnal cortisol output, and lower cortisol awakening responses. Chronic interpersonal stress level significantly moderated these associations in different ways for two distinct components of the diurnal pattern-the slope and cortisol awakening responses. Regarding within-person differences, using active coping more than usual was associated with higher waking cortisol the following morning, which may help to prepare adolescent girls for perceived daily demands. These findings highlight the interactive influence of stress and coping in the prediction of daily hypothalamic-pituitary-adrenal axis activity and support the stress-buffering role of active coping for adolescent girls.
Collapse
|
62
|
Abstract
The first mineralocorticoid receptor (MR) antagonist, spironolactone, was developed almost 60 years ago to treat primary aldosteronism and pathological edema. Its use waned in part because of its lack of selectivity. Subsequently, knowledge of the scope of MR function was expanded along with clinical evidence of the therapeutic importance of MR antagonists to prevent the ravages of inappropriate MR activation. Forty-two years elapsed between the first and MR-selective second generation of MR antagonists. Fifteen years later, despite serious shortcomings of the existing antagonists, a third-generation antagonist has yet to be marketed. Progress has been slowed by the lack of appreciation of the large variety of cell types that express the MR and its diverse cell-type-specific actions, and also its unique complex interaction actions at the molecular level. New MR antagonists should preferentially target the inflammatory and fibrotic effects of MR and perhaps its excitatory effects on sympathetic nervous system, but not the renal tubular epithelium or neurons of the cortex and hippocampus. This review briefly describes efforts to develop a third-generation MR antagonist and why fourth generation antagonists and selective agonists based on structural determinants of tissue and ligand-specific MR activation should be contemplated.
Collapse
|
63
|
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016; 8:25. [PMID: 27616990 PMCID: PMC4999448 DOI: 10.3389/fnsyn.2016.00025] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Collapse
Affiliation(s)
- Marco Atzori
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico; School for Behavior and Brain Sciences, University of Texas at DallasRichardson, TX, USA
| | - Roberto Cuevas-Olguin
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Eric Esquivel-Rendon
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | - Roberto C Salgado-Delgado
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Nadia Saderi
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Marcela Miranda-Morales
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Mario Treviño
- Laboratory of Cortical Plasticity and Learning, Universidad de Guadalajara Guadalajara, Mexico
| | - Juan C Pineda
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| | - Humberto Salgado
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| |
Collapse
|
64
|
Dong T, Zhi L, Bhayana B, Wu MX. Cortisol-induced immune suppression by a blockade of lymphocyte egress in traumatic brain injury. J Neuroinflammation 2016; 13:197. [PMID: 27561600 PMCID: PMC5000452 DOI: 10.1186/s12974-016-0663-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/18/2016] [Indexed: 12/16/2022] Open
Abstract
Background Acute traumatic brain injury (TBI) represents one of major causes of mortality and disability in the USA. Neuroinflammation has been regarded both beneficial and detrimental, probably in a time-dependent fashion. Methods To address a role for neuroinflammation in brain injury, C57BL/6 mice were subjected to a closed head mild TBI (mTBI) by a standard controlled cortical impact, along with or without treatment of sphingosine 1-phosphate (S1P) or rolipram, after which the brain tissue of the impact site was evaluated for cell morphology via histology, inflammation by qRT-PCR and T cell staining, and cell death with Caspase-3 and TUNEL staining. Circulating lymphocytes were quantified by flow cytometry, and plasma hydrocortisone was analyzed by LC-MS/MS. To investigate the mechanism whereby cortisol lowered the number of peripheral T cells, T cell egress was tracked in lymph nodes by intravital confocal microscopy after hydrocortisone administration. Results We detected a decreased number of circulating lymphocytes, in particular, T cells soon after mTBI, which was inversely correlated with a transient and robust increase of plasma cortisol. The transient lymphocytopenia might be caused by cortisol in part via a blockade of lymphocyte egress as demonstrated by the ability of cortisol to inhibit T cell egress from the secondary lymphoid tissues. Moreover, exogenous hydrocortisone severely suppressed periphery lymphocytes in uninjured mice, whereas administering an egress-promoting agent S1P normalized circulating T cells in mTBI mice and increased T cells in the injured brain. Likewise, rolipram, a cAMP phosphodiesterase inhibitor, was also able to elevate cAMP levels in T cells in the presence of hydrocortisone in vitro and abrogate the action of cortisol in mTBI mice. The investigation demonstrated that the number of circulating T cells in the early phase of TBI was positively correlated with T cell infiltration and inflammatory responses as well as cell death at the cerebral cortex and hippocampus beneath the impact site. Conclusions Decreases in intracellular cAMP might be part of the mechanism behind cortisol-mediated blockade of T cell egress. The study argues strongly for a protective role of cortisol-induced immune suppression in the early stage of TBI.
Collapse
Affiliation(s)
- Tingting Dong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Liang Zhi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Boston, MA, 02114, USA.
| |
Collapse
|
65
|
Kinner VL, Wolf OT, Merz CJ. Cortisol alters reward processing in the human brain. Horm Behav 2016; 84:75-83. [PMID: 27170428 DOI: 10.1016/j.yhbeh.2016.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/22/2016] [Accepted: 05/05/2016] [Indexed: 01/28/2023]
Abstract
Dysfunctional reward processing is known to play a central role for the development of psychiatric disorders. Glucocorticoids that are secreted in response to stress have been shown to attenuate reward sensitivity and thereby might promote the onset of psychopathology. However, the underlying neurobiological mechanisms mediating stress hormone effects on reward processing as well as potential sex differences remain elusive. In this neuroimaging study, we administered 30mg cortisol or a placebo to 30 men and 30 women and subsequently tested them in the Monetary Incentive Delay Task. Cortisol attenuated anticipatory neural responses to a verbal and a monetary reward in the left pallidum and the right anterior parahippocampal gyrus. Furthermore, in men, activation in the amygdala, the precuneus, the anterior cingulate, and in hippocampal regions was reduced under cortisol, whereas in cortisol-treated women a signal increase was observed in these regions. Behavioral performance also indicated that reward learning in men is impaired under high cortisol concentrations, while it is augmented in women. These findings illustrate that the stress hormone cortisol substantially diminishes reward anticipation and provide first evidence that cortisol effects on the neural reward system are sensitive to sex differences, which might translate into different vulnerabilities for psychiatric disorders.
Collapse
Affiliation(s)
- Valerie L Kinner
- Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr-University Bochum, Germany
| | - Oliver T Wolf
- Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr-University Bochum, Germany.
| | - Christian J Merz
- Institute of Cognitive Neuroscience, Department of Cognitive Psychology, Ruhr-University Bochum, Germany
| |
Collapse
|
66
|
Cortisol disrupts the neural correlates of extinction recall. Neuroimage 2016; 133:233-243. [DOI: 10.1016/j.neuroimage.2016.03.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/16/2022] Open
|
67
|
Sladek MR, Doane LD, Jewell SL, Luecken LJ. Social support coping style predicts women's cortisol in the laboratory and daily life: the moderating role of social attentional biases. ANXIETY STRESS AND COPING 2016; 30:66-81. [PMID: 27189781 DOI: 10.1080/10615806.2016.1181754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Social stress and associated coping responses can profoundly influence women's stress physiology and health. Implicit social attentional biases can also influence psychological and physiological stress responses. The purpose of this study was to explore whether a coping style characterized by greater use of social support predicts indices of cortisol activity in laboratory and daily life contexts among female university students. We hypothesized that the relation of this coping style to cortisol activity would be moderated by women's attentional biases. METHODS Seventy-four women (Mage = 19.44, range: 17.8-27.8, 64% White) completed an interpersonal stress task and an attentional bias task in the lab, along with a self-report coping inventory. Participants provided five saliva samples during the lab protocol, followed by three saliva samples per day for three consecutive weekdays. Outcome measures included cortisol response to lab tasks (AUCg), diurnal cortisol slope, diurnal AUCg, and cortisol awakening response (CARi). RESULTS A coping style characterized by greater use of social support predicted lower lab AUCg and lower, flatter average diurnal cortisol slope for women with attentional avoidance compared to women with attentional vigilance (ps < .05). CONCLUSIONS Responding to stress by using social support is linked to lower cortisol responses to social stress and diurnal cortisol activity for women with implicit avoidance of social threat cues.
Collapse
Affiliation(s)
- Michael R Sladek
- a Department of Psychology , Arizona State University , Tempe , AZ , USA
| | - Leah D Doane
- a Department of Psychology , Arizona State University , Tempe , AZ , USA
| | - Shannon L Jewell
- a Department of Psychology , Arizona State University , Tempe , AZ , USA
| | - Linda J Luecken
- a Department of Psychology , Arizona State University , Tempe , AZ , USA
| |
Collapse
|
68
|
Sladek MR, Doane LD, Luecken LJ, Eisenberg N. Perceived stress, coping, and cortisol reactivity in daily life: A study of adolescents during the first year of college. Biol Psychol 2016; 117:8-15. [PMID: 26876116 DOI: 10.1016/j.biopsycho.2016.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 12/22/2015] [Accepted: 02/05/2016] [Indexed: 12/29/2022]
Abstract
Adolescents change how they cope with stress across different situations, but also differ from one another in their general capacity to cope. The current study examined whether cortisol reactivity to perceived daily stress varies with both situational (within-person) and individual (between-person) differences in coping. First-year college students (N=63; Mage=18.85) provided 15 stress-coping diaries and 15 corresponding saliva samples across 3 weekdays. Results from hierarchical linear growth models revealed that perceiving greater stress than usual in the last hour was significantly associated with elevations in cortisol (relative to diurnal patterning) only during situations characterized by greater than usual diary-reported engagement coping. Regarding individual differences, perceiving greater stress than usual was significantly associated with elevations in cortisol only for adolescents below average on trait measures of engagement coping or belief in their ability to handle stress. Findings indicate that cortisol reactivity to daily stress varies with both situational variation and individual differences in coping.
Collapse
Affiliation(s)
| | - Leah D Doane
- Department of Psychology, Arizona State University, USA
| | | | | |
Collapse
|
69
|
|
70
|
Walker JJ, Spiga F, Gupta R, Zhao Z, Lightman SL, Terry JR. Rapid intra-adrenal feedback regulation of glucocorticoid synthesis. J R Soc Interface 2015; 12:20140875. [PMID: 25392395 PMCID: PMC4277077 DOI: 10.1098/rsif.2014.0875] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The hypothalamic–pituitary–adrenal axis is a vital neuroendocrine system that regulates the secretion of glucocorticoid hormones from the adrenal glands. This system is characterized by a dynamic ultradian hormonal oscillation, and in addition is highly responsive to stressful stimuli. We have recently shown that a primary mechanism generating this ultradian rhythm is a systems-level interaction where adrenocorticotrophin hormone (ACTH) released from the pituitary stimulates the secretion of adrenal glucocorticoids, which in turn feedback at the level of the pituitary to rapidly inhibit ACTH secretion. In this study, we combine experimental physiology and mathematical modelling to investigate intra-adrenal mechanisms regulating glucocorticoid synthesis. Our modelling results suggest that glucocorticoids can inhibit their own synthesis through a very rapid (within minutes), presumably non-genomic, intra-adrenal pathway. We present further evidence for the existence of a short time delay in this intra-adrenal inhibition, and also that at the initiation of each ACTH stimulus, this local feedback mechanism is rapidly antagonized, presumably via activation of the specific ACTH receptor (MC2R) signalling pathway. This mechanism of intra-adrenal inhibition enables the gland to rapidly release glucocorticoids while at the same time preventing uncontrolled release of glucocorticoids in response to large surges in ACTH associated with stress.
Collapse
Affiliation(s)
- J J Walker
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Whitson St., Bristol BS1 3NY, UK
| | - F Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Whitson St., Bristol BS1 3NY, UK
| | - R Gupta
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK
| | - Z Zhao
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Whitson St., Bristol BS1 3NY, UK
| | - S L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Whitson St., Bristol BS1 3NY, UK
| | - J R Terry
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Whitson St., Bristol BS1 3NY, UK
| |
Collapse
|
71
|
Blair C, Ursache A, Mills-Koonce R, Stifter C, Voegtline K, Granger DA. Emotional reactivity and parenting sensitivity interact to predict cortisol output in toddlers. Dev Psychol 2015; 51:1271-7. [PMID: 26192038 DOI: 10.1037/dev0000031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cortisol output in response to emotion induction procedures was examined at child age 24 months in a prospective longitudinal sample of 1,292 children and families in predominantly low-income and nonurban communities in two regions of high poverty in the United States. Multilevel analysis indicated that observed emotional reactivity to a mask presentation but not a toy removal procedure interacted with sensitive parenting to predict cortisol levels in children. For children experiencing high levels of sensitive parenting, cortisol output was high among children exhibiting high emotional reactivity and low among children exhibiting low emotional reactivity. For children experiencing low levels of sensitive parenting, cortisol output was unrelated to emotional reactivity.
Collapse
Affiliation(s)
- Clancy Blair
- Department of Applied Psychology, New York University
| | | | - Roger Mills-Koonce
- Department of Human Development and Family Studies, University of North Carolina at Greensboro
| | | | - Kristin Voegtline
- Department of Population, Family, and Reproductive Health, Johns Hopkins School of Public Health
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, Arizona State University
| | | |
Collapse
|
72
|
Early Life Stress, Nicotinic Acetylcholine Receptors and Alcohol Use Disorders. Brain Sci 2015; 5:258-74. [PMID: 26136145 PMCID: PMC4588139 DOI: 10.3390/brainsci5030258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc) following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs) play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.
Collapse
|
73
|
Spiga F, Lightman SL. Dynamics of adrenal glucocorticoid steroidogenesis in health and disease. Mol Cell Endocrinol 2015; 408:227-34. [PMID: 25662280 DOI: 10.1016/j.mce.2015.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
Abstract
The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterized by an ultradian (pulsatile) pattern of hormone secretion. Pulsatility of glucocorticoids has been found critical for optimal transcriptional, neuroendocrine and behavioral responses. This review will focus on the mechanisms underlying the origin of the glucocorticoid ultradian rhythm. Our recent research shows that the ultradian rhythm of glucocorticoids depends on highly dynamic processes within adrenocortical steroidogenic cells. Furthermore, we have evidence that disruption of these dynamics leads to abnormal glucocorticoid secretion observed in disease and critical illness in both humans and rats.
Collapse
Affiliation(s)
- Francesca Spiga
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| |
Collapse
|
74
|
Wong P, Sze Y, Gray LJ, Chang CCR, Cai S, Zhang X. Early life environmental and pharmacological stressors result in persistent dysregulations of the serotonergic system. Front Behav Neurosci 2015; 9:94. [PMID: 25964750 PMCID: PMC4410609 DOI: 10.3389/fnbeh.2015.00094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/01/2015] [Indexed: 12/26/2022] Open
Abstract
Dysregulations in the brain serotonergic system and exposure to environmental stressors have been implicated in the development of major depressive disorder. Here, we investigate the interactions between the stress and serotonergic systems by characterizing the behavioral and biochemical effects of chronic stress applied during early-life or adulthood in wild type (WT) mice and mice with deficient tryptophan hydroxylase 2 (TPH2) function. We showed that chronic mild stress applied in adulthood did not affect the behaviors and serotonin levels of WT and TPH2 knock-in (KI) mice. Whereas, maternal separation (MS) stress increased anxiety- and depressive-like behaviors of WT mice, with no detectable behavioral changes in TPH2 KI mice. Biochemically, we found that MS WT mice had reduced brain serotonin levels, which was attributed to increased expression of monoamine oxidase A (MAO A). The increased MAO A expression was detected in MS WT mice at 4 weeks old and adulthood. No change in TPH2 expression was detected. To determine whether a pharmacological stressor, dexamethasone (Dex), will result in similar biochemical results obtained from MS, we used an in vitro system, SH-SY5Y cells, and found that Dex treatment resulted in increased MAO A expression levels. We then treated WT mice with Dex for 5 days, either during postnatal days 7–11 or adulthood. Both groups of Dex treated WT mice had reduced basal corticosterone and glucocorticoid receptors expression levels. However, only Dex treatment during PND7–11 resulted in reduced serotonin levels and increased MAO A expression. Just as with MS WT mice, TPH2 expression in PND7–11 Dex-treated WT mice was unaffected. Taken together, our findings suggest that both environmental and pharmacological stressors affect the expression of MAO A, and not TPH2, when applied during the critical postnatal period. This leads to long-lasting perturbations in the serotonergic system, and results in anxiety- and depressive-like behaviors.
Collapse
Affiliation(s)
- Peiyan Wong
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore Singapore, Singapore ; Department of Pharmacology, Neuroscience Phenotyping Core, National University of Singapore Singapore, Singapore
| | - Ying Sze
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore Singapore, Singapore
| | - Laura Jane Gray
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore Singapore, Singapore
| | - Cecilia Chin Roei Chang
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore Singapore, Singapore
| | - Shiwei Cai
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore Singapore, Singapore
| | - Xiaodong Zhang
- Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School Singapore Singapore, Singapore ; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center Durham, NC, USA ; Department of Physiology, National University of Singapore Singapore, Singapore
| |
Collapse
|
75
|
Shirtcliff EA, Buck RL, Laughlin MJ, Hart T, Cole CR, Slowey PD. Salivary cortisol results obtainable within minutes of sample collection correspond with traditional immunoassays. Clin Ther 2015; 37:505-14. [PMID: 25773457 DOI: 10.1016/j.clinthera.2015.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE Cortisol is frequently assayed as a stress-responsive biomarker which changes over the course of minutes to meet the demands of a person's social context. Salivary cortisol is often used as a noninvasive sampling method that possesses important health implications. A critical barrier to psychobiological research that involves salivary cortisol is a time delay of days to months before cortisol results are obtained via immunoassay, long after the person is no longer proximate to the social context in which they provided the sample. The present study was designed to address this critical barrier through creation of a lateral flow test (LFT) cortisol device capable of measuring salivary cortisol within minutes of sample collection. The LFT is frequently used within commercial point-of-care settings to obtain rapid answers to the presence/absence of a biomarker. The present study extends the LFT into the research domain by presenting performance characteristics of a quantitative LFT that measures salivary cortisol within 20 minutes of sample collection. METHODS Saliva samples from 29 adults (15 men) were obtained in the morning and afternoon by using Passive Drool and then the Super·SAL Extra Collection Device (hereafter Super·SAL) and later assayed with LFT and a commercially available enzyme immunoassay. FINDINGS Results indicate the LFT correlated well with these collection methods (R = 0.872 with Super · SAL, R = 0.739 with Passive Drool, P < 0.0001) and at comparable levels to correspondence of Super · SAL with Passive Drool (R = 0.798, P < 0.0001) which were measured with the same assay. IMPLICATIONS These results open an exciting new possibility to integrate this technologic advance into stress research, including knowing and potentially changing the person's social context in a time-sensitive manner. Methodological improvements such as this have the possibility of refining conceptual models of stress reactivity and regulation.
Collapse
|
76
|
Sladek MR, Doane LD. Daily Diary Reports of Social Connection, Objective Sleep, and the Cortisol Awakening Response During Adolescents’ First Year of College. J Youth Adolesc 2014; 44:298-316. [DOI: 10.1007/s10964-014-0244-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
|
77
|
Bao LL, Jiang WQ, Sun FJ, Wang DX, Pan YJ, Song ZX, Wang CH, Yang J. The influence of psychological stress on arginine vasopressin concentration in the human plasma and cerebrospinal fluid. Neuropeptides 2014; 48:361-9. [PMID: 25454843 DOI: 10.1016/j.npep.2014.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 09/13/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
Psychological stress is strain affecting the intangible self, caused by problems in adaptation, perception, and emotions. Previous studies have demonstrated that arginine vasopressin (AVP) plays an important role in psychological stress. The goal of present study was to investigate the interaction between AVP release and cardiovascular functions by measuring AVP concentration and recording blood pressure or heart rate during psychological stress in human. The results showed that (1) psychological stress not only increased the systolic blood pressure, diastolic blood pressure and heart rate, but also elevated the cortisol and AVP concentration in both plasma and CSF in a stress level-dependent manner; (2) there was a positive relationship between plasma AVP concentration and systolic blood pressure, diastolic blood pressure, heart rate or plasma cortisol concentration; (3) there was also a positive relationship between AVP concentrations in plasma and CSF AVP. The data suggested that plasma AVP, which might come from the central nervous system, might influence the cardiovascular functions during psychological stress in human.
Collapse
Affiliation(s)
- Le-Le Bao
- Department of Anesthesiology, 153 Hospital of People's Liberation Army, Zhengzhou, Henan 450002, China
| | - Wen-Quan Jiang
- Department of Burn Reconstructive Surgery, 153 Hospital of People's Liberation Army, Zhengzhou, Henan 450002, China
| | - Fang-Jie Sun
- Xinxiang Institute for New Medicine, Xinxiang, Henan 453003, China
| | - Da-Xin Wang
- Jiangsu Su Bei People's Hospital (Clinical College of Yangzhou University), Yangzhou, Jiangsu 225001, China
| | - Yan-Juan Pan
- Department of Pharmacy, The Second Affiliated Hospital of Xinxiang Medical University (Henan Provincial Mental Hospital), Xinxiang, Henan 453002, China
| | - Zhi-Xiu Song
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453000, China
| | - Chang-Hong Wang
- Henan Provincial Mental Hospital, Xinxiang, Henan 453002, China
| | - Jun Yang
- Xinxiang Institute for New Medicine, Xinxiang, Henan 453003, China; Standard Technological Co. Ltd., Xinxiang, Henan 453003, China.
| |
Collapse
|
78
|
Zimmer C, Spencer KA. Modifications of glucocorticoid receptors mRNA expression in the hypothalamic-pituitary-adrenal axis in response to early-life stress in female Japanese quail. J Neuroendocrinol 2014; 26:853-60. [PMID: 25303060 PMCID: PMC4260142 DOI: 10.1111/jne.12228] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 01/05/2023]
Abstract
Stress exposure during early-life development can programme individual brain and physiology. The hypothalamic-pituitary-adrenal (HPA) axis is one of the primary targets of this programming, which is generally associated with a hyperactive HPA axis, indicative of a reduced negative-feedback. This reduced feedback efficiency usually results from a reduced level of the glucocorticoid receptor (GR) and/or the mineralocorticoid receptor (MR) within the HPA axis. However, a few studies have shown that early-life stress exposure results in an attenuated physiological stress response, suggesting an enhance feedback efficiency. In the present study, we aimed to determine whether early-life stress had long-term consequences on GR and MR levels in quail and whether the effects on the physiological response to acute stress observed in prenatally stressed individuals were underpinned by changes in GR and/or MR levels in one or more HPA axis components. We determined GR and MR mRNA expression in the hippocampus, hypothalamus and pituitary gland in quail exposed to elevated corticosterone during prenatal development, postnatal development, or both, and in control individuals exposed to none of the stressors. We showed that prenatal stress increased the GR:MR ratio in the hippocampus, GR and MR expression in the hypothalamus and GR expression in the pituitary gland. Postnatal stress resulted in a reduced MR expression in the hippocampus. Both early-life treatments permanently affected the expression of both receptor types in HPA axis regions. The effects of prenatal stress are in accordance with a more efficient negative-feedback within the HPA axis and thus can explain the attenuated stress response observed in these birds. Therefore, these changes in receptor density or number as a consequence of early-life stress exposure might be the mechanism that allows an adaptive response to later-life stressful conditions.
Collapse
Affiliation(s)
- C Zimmer
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
79
|
Raio CM, Phelps EA. The influence of acute stress on the regulation of conditioned fear. Neurobiol Stress 2014; 1:134-46. [PMID: 25530986 PMCID: PMC4268774 DOI: 10.1016/j.ynstr.2014.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/24/2022] Open
Abstract
Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation), and briefly discuss other techniques (avoidance and reconsolidation) where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology.
Collapse
Affiliation(s)
- Candace M Raio
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA
| | - Elizabeth A Phelps
- Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA; Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| |
Collapse
|
80
|
Savic D, Knezevic G, Damjanovic S, Antic J, Matic G. GR gene BclI polymorphysm changes the path, but not the level, of dexamethasone-induced cortisol suppression. J Affect Disord 2014; 168:1-4. [PMID: 25033471 DOI: 10.1016/j.jad.2014.06.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND The hypothalamo-pituitary-adrenocortical (HPA) axis self-regulation is achieved via cortisol binding to mineralocorticoid (MR) and glucocorticoid receptors (GR). It is often disturbed in mental disorders, particularly in those where traumatic stress has been implicated, such as posttraumatic stress disorder and depression. Although dexamethasone suppression test (DST) is often used as diagnostic aid, the findings still vary. In search of the factors influencing the DST outcome, we examined the glucocorticoid receptor (GR) gene BclI polymorphism. METHODS A total of 229 male subjects were classified into three BclI groups: two groups with homozygous carriers (of the G allele, N=108, and of the C allele, N=26), and one with heterozygous carriers (N=95). Multiple hierarchical linear regression analysis was done, where the dependent variable was the dexamethasone-induced cortisol suppression, and predictors included receptor variables. The interactions of the count of 'G׳s with the predictors were introduced to single out the effects of the G allele. RESULTS The means of all studied variables, including suppression, are statistically the same in the three groups. However, the mechanism of suppression involves MRs only in the G allele carriers. LIMITATIONS The subjects were selected by criteria suited for the aim of the large project whose part is this study, hence the relatively small number of CC carriers. Also, we did not assess MR functional properties that would probably sharpen the results. CONCLUSION Our finding that MRs participate in cortisol suppression in the G allele carriers suggests that research aimed at refining HPA axis-based therapy might require its adjustment for such patients.
Collapse
Affiliation(s)
- Danka Savic
- Vinca Institute, Laboratory for Theoretical and Condensed Matter Physics 020/2, University of Belgrade, PO Box 522, 11001 Belgrade, Serbia.
| | - Goran Knezevic
- University of Belgrade, Faculty of Philosophy, School of Psychology, Belgrade, Serbia
| | - Svetozar Damjanovic
- Institute of Endocrinology, Diabetes and Metabolic Disease, University of Belgrade, Belgrade, Serbia
| | - Jadranka Antic
- Institute of Endocrinology, Diabetes and Metabolic Disease, University of Belgrade, Belgrade, Serbia
| | - Gordana Matic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
81
|
Kubota JT, Mojdehbakhsh R, Raio C, Brosch T, Uleman JS, Phelps EA. Stressing the person: legal and everyday person attributions under stress. Biol Psychol 2014; 103:117-24. [PMID: 25175000 DOI: 10.1016/j.biopsycho.2014.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 11/24/2022]
Abstract
When determining the cause of a person's behavior, perceivers often overweigh dispositional explanations and underweigh situational explanations, an error known as the Fundamental Attribution Error (FAE). The FAE occurs in part because dispositional explanations are relatively automatic, whereas considering the situation requires additional cognitive effort. Stress is known to impair the prefrontal cortex and executive functions important for the attribution process. We investigated if stress increases dispositional attributions in common place and legal situations. Experiencing a physiological stressor increased participants' cortisol, dispositional attributions of common everyday behaviors, and negative evaluations. When determining whether a crime was due to the defendant's disposition or the mitigating situation, self-reported stress correlated with increased dispositional judgments of defendant's behavior. These findings indicate that stress may make people more likely to commit the FAE and less favorable in their evaluations of others both in daily life and when making socially consequential judicial decisions.
Collapse
Affiliation(s)
- Jennifer T Kubota
- Department of Psychology, University of Chicago, Chicago, IL 60637, USA.
| | | | - Candace Raio
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Tobias Brosch
- Department of Psychology, University of Geneva, 40, Boulevard du Pont d'Arve, CH-1205 Geneva, Switzerland
| | - James S Uleman
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Elizabeth A Phelps
- Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Nathan Kline Institute, New York University, New York, NY 10003, USA.
| |
Collapse
|
82
|
Ryan R, Spathis A, Clow A, Fallon M, Booth S. The biological impact of living with chronic breathlessness – A role for the hypothalamic–pituitary–adrenal axis? Med Hypotheses 2014; 83:232-7. [DOI: 10.1016/j.mehy.2014.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
83
|
Chigr F, Rachidi F, Tardivel C, Najimi M, Moyse E. Modulation of orexigenic and anorexigenic peptides gene expression in the rat DVC and hypothalamus by acute immobilization stress. Front Cell Neurosci 2014; 8:198. [PMID: 25100947 PMCID: PMC4103083 DOI: 10.3389/fncel.2014.00198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/01/2014] [Indexed: 01/31/2023] Open
Abstract
We studied the long term effects of a single exposure to immobilization stress (IS) (1 h) on the expression of anorexigenic (Pro-opiomelanocortin: POMC and cocaine amphetamine related transcript: CART) and orexigenic (neuropeptide Y:NPY, Agouti related peptide: AgRP) factors in hypothalamus and dorso vagal complex (DVC). We showed, by using RT-PCR that in the hypothalamus, that the mRNAs of POMC and CART were up-regulated at the end of IS and up to 24 h. This up regulation persists until 48–72 h after IS for CART only. In the DVC, their expressions peak significantly at 24 h post stress and decline afterwards; CART mRNA is down regulated after 48 h post stress. NPY and AgRP mRNAs show a gradual increase just after the end of IS. The up regulation is significant only at 24 h after stress for AgRP but remains significantly higher for NPY compared to controls. In DVC, the mRNAs of the two factors show generally a similar post stress pattern. A significant increase jut after the end of IS of rats which persists up to 24 h after is firstly noticed. The levels tend then to reach the basal levels although, they were slightly but significantly higher up to 72 h after stress for mRNA NPY. The comparison between the expression profiles of anorexigenic and the two orexigenic peptides investigated shows the presence of a parallelism between that of POMC and AgRP and that of CART and NPY when each brain region (hypothalamus and DVC) is considered separately. It seems that any surge in the expression of each anorexigenic factor stimulates the expression of those of corresponding and appropriated orexigenic one. These last reactions from orexigenic peptides tend to attenuate the anorexigenic effects of CART and POMC and by consequent to abolish the anorexia state generated by stress.
Collapse
Affiliation(s)
- Fatiha Chigr
- Life Sciences, Biological Engineering, Faculty of Sciences and Techniques, Sultan Moulay Slimane University Beni Mellal, Morocco
| | - Fatima Rachidi
- Life Sciences, Biological Engineering, Faculty of Sciences and Techniques, Sultan Moulay Slimane University Beni Mellal, Morocco
| | - Catherine Tardivel
- Faculté des Sciences et Techniques, Aix-Marseille Université, PPSN Marseille, France
| | - Mohamed Najimi
- Life Sciences, Biological Engineering, Faculty of Sciences and Techniques, Sultan Moulay Slimane University Beni Mellal, Morocco
| | - Emmanuel Moyse
- Biologie Animale et de Génétique, Université François, Rabelais, INRA Tours, Nouzilly, France
| |
Collapse
|
84
|
Lopez-Duran NL, Mayer SE, Abelson JL. Modeling neuroendocrine stress reactivity in salivary cortisol: adjusting for peak latency variability. Stress 2014; 17:285-95. [PMID: 24754834 DOI: 10.3109/10253890.2014.915517] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this report, we present growth curve modeling (GCM) with landmark registration as an alternative statistical approach for the analysis of time series cortisol data. This approach addresses an often-ignored but critical source of variability in salivary cortisol analyses: individual and group differences in the time latency of post-stress peak concentrations. It allows for the simultaneous examination of cortisol changes before and after the peak while controlling for timing differences, and thus provides additional information that can help elucidate group differences in the underlying biological processes (e.g., intensity of response, regulatory capacity). We tested whether GCM with landmark registration is more sensitive than traditional statistical approaches (e.g., repeated measures ANOVA--rANOVA) in identifying sex differences in salivary cortisol responses to a psychosocial stressor (Trier Social Stress Test--TSST) in healthy adults (mean age 23). We used plasma ACTH measures as our "standard" and show that the new approach confirms in salivary cortisol the ACTH finding that males had longer peak latencies, higher post-stress peaks but a more intense post-peak decline. This finding would have been missed if only saliva cortisol was available and only more traditional analytic methods were used. This new approach may provide neuroendocrine researchers with a highly sensitive complementary tool to examine the dynamics of the cortisol response in a way that reduces risk of false negative findings when blood samples are not feasible.
Collapse
|
85
|
Abstract
The primary adrenal cortical steroid hormones, aldosterone, and the glucocorticoids cortisol and corticosterone, act through the structurally similar mineralocorticoid (MR) and glucocorticoid receptors (GRs). Aldosterone is crucial for fluid, electrolyte, and hemodynamic homeostasis and tissue repair; the significantly more abundant glucocorticoids are indispensable for energy homeostasis, appropriate responses to stress, and limiting inflammation. Steroid receptors initiate gene transcription for proteins that effect their actions as well as rapid non-genomic effects through classical cell signaling pathways. GR and MR are expressed in many tissues types, often in the same cells, where they interact at molecular and functional levels, at times in synergy, others in opposition. Thus the appropriate balance of MR and GR activation is crucial for homeostasis. MR has the same binding affinity for aldosterone, cortisol, and corticosterone. Glucocorticoids activate MR in most tissues at basal levels and GR at stress levels. Inactivation of cortisol and corticosterone by 11β-HSD2 allows aldosterone to activate MR within aldosterone target cells and limits activation of the GR. Under most conditions, 11β-HSD1 acts as a reductase and activates cortisol/corticosterone, amplifying circulating levels. 11β-HSD1 and MR antagonists mitigate inappropriate activation of MR under conditions of oxidative stress that contributes to the pathophysiology of the cardiometabolic syndrome; however, MR antagonists decrease normal MR/GR functional interactions, a particular concern for neurons mediating cognition, memory, and affect.
Collapse
Affiliation(s)
- Elise Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Celso E. Gomez-Sanchez
- G.V.(Sonny) Montgomery V.A. Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
86
|
|
87
|
Buckert M, Schwieren C, Kudielka BM, Fiebach CJ. Acute stress affects risk taking but not ambiguity aversion. Front Neurosci 2014; 8:82. [PMID: 24834024 PMCID: PMC4018549 DOI: 10.3389/fnins.2014.00082] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/31/2014] [Indexed: 11/15/2022] Open
Abstract
Economic decisions are often made in stressful situations (e.g., at the trading floor), but the effects of stress on economic decision making have not been systematically investigated so far. The present study examines how acute stress influences economic decision making under uncertainty (risk and ambiguity) using financially incentivized lotteries. We varied the domain of decision making as well as the expected value of the risky prospect. Importantly, no feedback was provided to investigate risk taking and ambiguity aversion independent from learning processes. In a sample of 75 healthy young participants, 55 of whom underwent a stress induction protocol (Trier Social Stress Test for Groups), we observed more risk seeking for gains. This effect was restricted to a subgroup of participants that showed a robust cortisol response to acute stress (n = 26). Gambling under ambiguity, in contrast to gambling under risk, was not influenced by the cortisol response to stress. These results show that acute psychosocial stress affects economic decision making under risk, independent of learning processes. Our results further point to the importance of cortisol as a mediator of this effect.
Collapse
Affiliation(s)
- Magdalena Buckert
- Department of Psychology, Goethe University Frankfurt am Main Frankfurt am Main, Germany
| | | | | | - Christian J Fiebach
- Department of Psychology, Goethe University Frankfurt am Main Frankfurt am Main, Germany ; IDeA Center for Individual Development and Adaptive Education, Goethe University Frankfurt am Main Frankfurt am Main, Germany ; Donders Center for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| |
Collapse
|
88
|
Zhou J, Cao X, Mar AC, Ding YQ, Wang X, Li Q, Li L. Activation of postsynaptic 5-HT1A receptors improve stress adaptation. Psychopharmacology (Berl) 2014; 231:2067-75. [PMID: 24258351 DOI: 10.1007/s00213-013-3350-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/28/2013] [Indexed: 11/27/2022]
Abstract
RATIONALE Serotonin-1A (5-HT1A) receptors modulate the stress response and have been implicated in the etiology and treatment of depression and anxiety disorders. A reduction in postsynaptic 5-HT1A receptor function in limbic areas has consistently been observed following exposure to chronic stress. OBJECTIVES To investigate the hypothesis that increased activation of 5-HT1A receptors in rats having reduced 5-HT function may improve stress adaptation and the behavioral sequelae commonly associated with chronic stress. METHODS One hundred forty-four Sprague-Dawley rats received injections of para-chlorophenylalanine to partially deplete 5-HT then were given daily systemic pretreatment with the 5-HT1A receptor agonist, 8-hydroxy-2- (di-n-propylamino) tetralin (8-OH-DPAT), the antagonist, WAY 100635, or vehicle prior to either restraint stress (6 h/day for 10 daily sessions) or control conditions. Anxiety- and depressive-like behaviors were then assessed using the open field and sucrose preference tests. Protein level of hippocampal glucocorticoid receptors (GR) and mineralocorticoid receptors was detected by immunohistochemistry and brain-derived neurotrophic factor (BDNF) was determined by in situ hybridization. RESULTS 8-OH-DPAT pretreatment prior to stress exposure attenuated later stress-induced anxiety- and depression-like behaviors and increased GR and BDNF mRNA expression in the hippocampus relative to vehicle- and WAY 100635-pretreated, stressed animals. CONCLUSION The stress-related impairments associated with 5-HT deficiency can be improved by 8-OH-DPAT pretreatment prior to stress exposure and are associated with an augmentation of GR-like immunoreactivity and BDNF mRNA expression in the hippocampus. It suggested that selective activation of 5-HT1A receptors may be a potential treatment strategy for stress-related disorders such as anxiety and depression.
Collapse
Affiliation(s)
- Jiansong Zhou
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | | | | | | | | | | | | |
Collapse
|
89
|
Santarsieri M, Niyonkuru C, McCullough EH, Dobos JA, Dixon CE, Berga SL, Wagner AK. Cerebrospinal fluid cortisol and progesterone profiles and outcomes prognostication after severe traumatic brain injury. J Neurotrauma 2014; 31:699-712. [PMID: 24354775 PMCID: PMC3967414 DOI: 10.1089/neu.2013.3177] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite significant advances in the management of head trauma, there remains a lack of pharmacological treatment options for traumatic brain injury (TBI). While progesterone clinical trials have shown promise, corticosteroid trials have failed. The purpose of this study was to (1) characterize endogenous cerebrospinal fluid (CSF) progesterone and cortisol levels after TBI, (2) determine relationships between CSF and serum profiles, and (3) assess the utility of these hormones as predictors of long-term outcomes. We evaluated 130 adults with severe TBI. Serum samples (n=538) and CSF samples (n=746) were collected for 6 days post-injury, analyzed for cortisol and progesterone, and compared with healthy controls (n=13). Hormone data were linked with clinical data, including Glasgow Outcome Scale (GOS) scores at 6 and 12 months. Group based trajectory (TRAJ) analysis was used to develop temporal hormone profiles delineating distinct subpopulations. Compared with controls, CSF cortisol levels were significantly and persistently elevated during the first week after TBI, and high CSF cortisol levels were associated with poor outcome. As a precursor to cortisol, progesterone mediated these effects. Serum and CSF levels for both cortisol and progesterone were strongly correlated after TBI relative to controls, possibly because of blood-brain barrier disruption. Also, differentially impaired hormone transport and metabolism mechanisms after TBI, potential de novo synthesis of steroids within the brain, and the complex interplay of cortisol and pro-inflammatory cytokines may explain these acute hormone profiles and, when taken together, may help shed light on why corticosteroid trials have previously failed and why progesterone treatment after TBI may be beneficial.
Collapse
Affiliation(s)
- Martina Santarsieri
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christian Niyonkuru
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Emily H. McCullough
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julie A. Dobos
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - C. Edward Dixon
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, Universitry of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sarah L. Berga
- Department of Obstetrics/Gynecology, Wake Forest University, Winston-Salem, North Carolina
| | - Amy K. Wagner
- University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, Universitry of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
90
|
Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task. Neuropharmacology 2014; 79:201-11. [DOI: 10.1016/j.neuropharm.2013.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/30/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
|
91
|
Goodin BR, Pham QT, Glover TL, Sotolongo A, King CD, Sibille KT, Herbert MS, Cruz-Almeida Y, Sanden SH, Staud R, Redden DT, Bradley LA, Fillingim RB. Perceived racial discrimination, but not mistrust of medical researchers, predicts the heat pain tolerance of African Americans with symptomatic knee osteoarthritis. Health Psychol 2014; 32:1117-26. [PMID: 24219416 DOI: 10.1037/a0031592] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Studies have shown that perceived racial discrimination is a significant predictor of clinical pain severity among African Americans. It remains unknown whether perceived racial discrimination also alters the nociceptive processing of painful stimuli, which, in turn, could influence clinical pain severity. This study examined associations between perceived racial discrimination and responses to noxious thermal stimuli among African Americans and non-Hispanic Whites. Mistrust of medical researchers was also assessed given its potential to affect responses to the noxious stimuli. METHOD One-hundred and 30 (52% African American, 48% non-Hispanic White) community-dwelling older adults with symptomatic knee osteoarthritis completed two study sessions. In session one, individuals provided demographic, socioeconomic, physical and mental health information. They completed questionnaires related to perceived lifetime frequency of racial discrimination and mistrust of medical researchers. In session two, individuals underwent a series of controlled thermal stimulation procedures to assess heat pain sensitivity, particularly heat pain tolerance. RESULTS African Americans were more sensitive to heat pain and reported greater perceived racial discrimination as well as greater mistrust of medical researchers compared with non-Hispanic Whites. Greater perceived racial discrimination significantly predicted lower heat pain tolerance for African Americans but not non-Hispanic Whites. Mistrust of medical researchers did not significantly predict heat pain tolerance for either racial group. CONCLUSION These results lend support to the idea that perceived racial discrimination may influence the clinical pain severity of African Americans via the nociceptive processing of painful stimuli.
Collapse
|
92
|
Schatzberg AF, Keller J, Tennakoon L, Lembke A, Williams G, Kraemer FB, Sarginson JE, Lazzeroni LC, Murphy GM. HPA axis genetic variation, cortisol and psychosis in major depression. Mol Psychiatry 2014; 19:220-7. [PMID: 24166410 PMCID: PMC4339288 DOI: 10.1038/mp.2013.129] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/27/2013] [Accepted: 07/10/2013] [Indexed: 01/07/2023]
Abstract
Genetic variation underlying hypothalamic pituitary adrenal (HPA) axis overactivity in healthy controls (HCs) and patients with severe forms of major depression has not been well explored, but could explain risk for cortisol dysregulation. In total, 95 participants were studied: 40 patients with psychotic major depression (PMD); 26 patients with non-psychotic major depression (NPMD); and 29 HCs. Collection of genetic material was added one third of the way into a larger study on cortisol, cognition and psychosis in major depression. Subjects were assessed using the Brief Psychiatric Rating Scale, the Hamilton Depression Rating Scale and the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders. Blood was collected hourly for determination of cortisol from 1800 to 0900 h and for the assessment of alleles for six genes involved in HPA axis regulation. Two of the six genes contributed significantly to cortisol levels, psychosis measures or depression severity. After accounting for age, depression and psychosis, and medication status, only allelic variation for the glucocorticoid receptor (GR) gene accounted for a significant variance for mean cortisol levels from 1800 to 0100 h (r(2)=0.288) and from 0100 to 0900 h (r(2)=0.171). In addition, GR and corticotropin-releasing hormone receptor 1 (CRHR1) genotypes contributed significantly to psychosis measures and CRHR1 contributed significantly to depression severity rating.
Collapse
MESH Headings
- Adult
- Affective Disorders, Psychotic/diagnosis
- Affective Disorders, Psychotic/genetics
- Affective Disorders, Psychotic/physiopathology
- Corticotropin-Releasing Hormone/genetics
- Depressive Disorder, Major/diagnosis
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/physiopathology
- Female
- Humans
- Hydrocortisone/blood
- Hypothalamo-Hypophyseal System/physiopathology
- Interview, Psychological
- Linkage Disequilibrium
- Male
- Pituitary-Adrenal System/physiopathology
- Psychiatric Status Rating Scales
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Glucocorticoid/genetics
- Receptors, Mineralocorticoid/genetics
- Tacrolimus Binding Proteins/genetics
Collapse
Affiliation(s)
- Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Jennifer Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Lakshika Tennakoon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Anna Lembke
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | | | | | - Jane E. Sarginson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| | - Greer M. Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine
| |
Collapse
|
93
|
NMDA receptor activation and calpain contribute to disruption of dendritic spines by the stress neuropeptide CRH. J Neurosci 2013; 33:16945-60. [PMID: 24155300 DOI: 10.1523/jneurosci.1445-13.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The complex effects of stress on learning and memory are mediated, in part, by stress-induced changes in the composition and structure of excitatory synapses. In the hippocampus, the effects of stress involve several factors including glucocorticoids and the stress-released neuropeptide corticotropin-releasing hormone (CRH), which influence the integrity of dendritic spines and the structure and function of the excitatory synapses they carry. CRH, at nanomolar, presumed-stress levels, rapidly abolishes short-term synaptic plasticity and destroys dendritic spines, yet the mechanisms for these effects are not fully understood. Here we tested the hypothesis that glutamate receptor-mediated processes, which shape synaptic structure and function, are engaged by CRH and contribute to spine destabilization. In cultured rat hippocampal neurons, CRH application reduced dendritic spine density in a time- and dose-dependent manner, and this action depended on the CRH receptor type 1. CRH-mediated spine loss required network activity and the activation of NMDA, but not of AMPA receptors; indeed GluR1-containing dendritic spines were resistant to CRH. Downstream of NMDA receptors, the calcium-dependent enzyme, calpain, was recruited, resulting in the breakdown of spine actin-interacting proteins including spectrin. Pharmacological approaches demonstrated that calpain recruitment contributed critically to CRH-induced spine loss. In conclusion, the stress hormone CRH co-opts mechanisms that contribute to the plasticity and integrity of excitatory synapses, leading to selective loss of dendritic spines. This spine loss might function as an adaptive mechanism preventing the consequences of adverse memories associated with severe stress.
Collapse
|
94
|
Iacobas DA, Iacobas S, Chachua T, Goletiani C, Sidyelyeva G, Velíšková J, Velíšek L. Prenatal corticosteroids modify glutamatergic and GABAergic synapse genomic fabric: insights from a novel animal model of infantile spasms. J Neuroendocrinol 2013; 25:964-79. [PMID: 23763471 PMCID: PMC3855178 DOI: 10.1111/jne.12061] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/25/2013] [Accepted: 06/09/2013] [Indexed: 12/16/2022]
Abstract
Prenatal exposure to corticosteroids has long-term postnatal somatic and neurodevelopmental consequences. Animal studies indicate that corticosteroid exposure-associated alterations in the nervous system include hypothalamic function. Infants with infantile spasms, a devastating epileptic syndrome of infancy with characteristic spastic seizures, chaotic irregular waves on interictal electroencephalogram (hypsarhythmia) and mental deterioration, have decreased concentrations of adrenocorticotrophic hormone (ACTH) and cortisol in cerebrospinal fluid, strongly suggesting hypothalamic dysfunction. We have exploited this feature to develop a model of human infantile spasms by using repeated prenatal exposure to betamethasone and a postnatal trigger of developmentally relevant spasms with NMDA. The spasms triggered in prenatally primed rats are more severe compared to prenatally saline-injected ones and respond to ACTH, a treatment of choice for infantile spasms in humans. Using autoradiography and immunohistochemistry, we have identified a link between the spasms in our model and the hypothalamus, especially the arcuate nucleus. Transcriptomic analysis of the arcuate nucleus after prenatal priming with betamethasone but before trigger of spasms indicates that prenatal betamethasone exposure down-regulates genes encoding several important proteins participating in glutamatergic and GABAergic transmission. Interestingly, there were significant sex-specific alterations after prenatal betamethasone in synapse-related gene expression but no such sex differences were found in prenatally saline-injected controls. A pairwise relevance analysis revealed that, although the synapse gene expression in controls was independent of sex, these genes form topologically distinct gene fabrics in males and females and these fabrics are altered by betamethasone in a sex-specific manner. These findings may explain the sex differences with respect to both normal behaviour and the occurrence and severity of infantile spasms. Changes in transcript expression and their coordination may contribute to a molecular substrate of permanent neurodevelopmental changes (including infantile spasms) found after prenatal exposure to corticosteroids.
Collapse
Affiliation(s)
- D A Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Leggio GM, Salomone S, Bucolo C, Platania C, Micale V, Caraci F, Drago F. Dopamine D3 receptor as a new pharmacological target for the treatment of depression. Eur J Pharmacol 2013; 719:25-33. [DOI: 10.1016/j.ejphar.2013.07.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/05/2013] [Accepted: 07/01/2013] [Indexed: 12/12/2022]
|
96
|
Thomson EM, Vladisavljevic D, Mohottalage S, Kumarathasan P, Vincent R. Mapping acute systemic effects of inhaled particulate matter and ozone: multiorgan gene expression and glucocorticoid activity. Toxicol Sci 2013; 135:169-81. [PMID: 23805001 PMCID: PMC3748763 DOI: 10.1093/toxsci/kft137] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent epidemiological studies have demonstrated associations between air pollution and adverse effects that extend beyond respiratory and cardiovascular disease, including low birth weight, appendicitis, stroke, and neurological/neurobehavioural outcomes (e.g., neurodegenerative disease, cognitive decline, depression, and suicide). To gain insight into mechanisms underlying such effects, we mapped gene profiles in the lungs, heart, liver, kidney, spleen, cerebral hemisphere, and pituitary of male Fischer-344 rats immediately and 24h after a 4-h exposure by inhalation to particulate matter (0, 5, and 50mg/m3 EHC-93 urban particles) and ozone (0, 0.4, and 0.8 ppm). Pollutant exposure provoked differential expression of genes involved in a number of pathways, including antioxidant response, xenobiotic metabolism, inflammatory signalling, and endothelial dysfunction. The mRNA profiles, while exhibiting some interorgan and pollutant-specific differences, were remarkably similar across organs for a set of genes, including increased expression of redox/glucocorticoid-sensitive genes and decreased expression of inflammatory genes, suggesting a possible hormonal effect. Pollutant exposure increased plasma levels of adrenocorticotropic hormone and the glucocorticoid corticosterone, confirming activation of the hypothalamic-pituitary-adrenal axis, and there was a corresponding increase in markers of glucocorticoid activity. Although effects were transient and presumably represent an adaptive response to acute exposure in these healthy animals, chronic activation and inappropriate regulation of the hypothalamic-pituitary-adrenal axis are associated with adverse neurobehavioral, metabolic, immune, developmental, and cardiovascular effects. The experimental data are consistent with epidemiological associations of air pollutants with extrapulmonary health outcomes and suggest a mechanism through which such health effects may be induced.
Collapse
Affiliation(s)
- Errol M Thomson
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | | | | | | | | |
Collapse
|
97
|
Abstract
Mineralocorticoid receptors (MR) exist in many tissues, in which they mediate diverse functions crucial to normal physiology, including tissue repair and electrolyte and fluid homeostasis. However, inappropriate activation of MR within these tissues, and especially in the brain, causes hypertension and pathological vascular, cardiac, and renal remodeling. MR binds aldosterone, cortisol and corticosterone with equal affinity. In aldosterone-target cells, co-expression with the 11β-hydroxysteroid dehydrogenase 2 (HSD2) allows aldosterone specifically to activate MR. Aldosterone levels are excessive in primary aldosteronism, but in conditions with increased oxidative stress, like CHF, obesity and diabetes, MR may also be inappropriately activated by glucocorticoids. Unlike thiazide diuretics, MR antagonists are diuretics that do not cause insulin resistance. Addition of MR antagonists to standard treatment for hypertension and cardiac or renal disease decreases end-organ pathology and sympathetic nerve activation (SNA), and increases quality of life indices.
Collapse
|
98
|
Wemm S, Fanean A, Baker A, Blough ER, Mewaldt S, Bardi M. Problematic drinking and physiological responses among female college students. Alcohol 2013; 47:149-57. [PMID: 23333036 DOI: 10.1016/j.alcohol.2012.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 12/29/2022]
Abstract
Problematic drinking is a widespread problem among college students, and can contribute to alcohol dependence during later adulthood, particularly among females. The current study assessed vulnerability for alcohol-related consequences by comparing self-reported drinking with coping styles and physiological and behavioral stress responses during a challenging task. Cardiovascular measurements and saliva samples were taken from 88 female students at the beginning of the experiment and after the task. Hypothalamic-pituitary-adrenal (HPA) activity was measured by assessing cortisol and dehydroepiandrosterone (DHEA) salivary levels. The behavioral task consisted of a set of three anagrams of increasing difficulty, the last of which had no possible solution, to test the distress tolerance of the participants. Results showed that the majority of participants (70%) reported drinking in the six months prior to data collection, most of whom reported at least one incident of binge drinking. Excessive alcohol use was related to an impaired physiological response to stress during the impossible task. College students who drank to cope with stress had significantly higher basal levels of cortisol and DHEA, an indication of HPA axis over-regulation, while their stress response remained remarkably flat. Self-reported consequences of drinking were related to motives for drinking and lower DHEA levels. Regression analysis indicated that higher cortisol levels mediated the relationship between motives for drinking and problematic drinking.
Collapse
|
99
|
Maguire J, Salpekar JA. Stress, seizures, and hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Epilepsy Behav 2013; 26:352-62. [PMID: 23200771 PMCID: PMC3874873 DOI: 10.1016/j.yebeh.2012.09.040] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
Epilepsy is a heterogeneous condition with varying etiologies including genetics, infection, trauma, vascular, neoplasms, and toxic exposures. The overlap of psychiatric comorbidity adds to the challenge of optimal treatment for people with epilepsy. Seizure episodes themselves may have varying triggers; however, for decades, stress has been commonly and consistently suspected to be a trigger for seizure events. This paper explores the relationship between stress and seizures and reviews clinical data as well as animal studies that increasingly corroborate the impact of stress hormones on neuronal excitability and seizure susceptibility. The basis for enthusiasm for targeting glucocorticoid receptors for the treatment of epilepsy and the mixed results of such treatment efforts are reviewed. In addition, this paper will highlight recent findings identifying a regulatory pathway controlling the body's physiological response to stress which represents a novel therapeutic target for modulation of the hypothalamic-pituitary-adrenal (HPA) axis. Thus, the HPA axis may have important clinical implications for seizure control and imply use of anticonvulsants that influence this neuronal pathway.
Collapse
Affiliation(s)
- Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, U.S.A
| | - Jay A. Salpekar
- Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC, U.S.A
| |
Collapse
|
100
|
Manosso LM, Moretti M, Rodrigues ALS. Nutritional strategies for dealing with depression. Food Funct 2013; 4:1776-93. [DOI: 10.1039/c3fo60246j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|