51
|
Michaud JM, Price JC, Deane HV, Concepcion HA, Coronella JA, DeCourcey H, Seggio JA. The effects of ovariectomy on the behavioral and physiological responses to constant light in C57BL6/J Mice. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1842970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Julie M. Michaud
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, USA
| | - John C. Price
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, USA
| | - Hannah V. Deane
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, USA
| | - Holly A. Concepcion
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, USA
| | - Jason A. Coronella
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, USA
| | - Holly DeCourcey
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, USA
| | - Joseph A. Seggio
- Department of Biological Sciences, Bridgewater State University, Bridgewater, Massachusetts, USA
| |
Collapse
|
52
|
Chowdhury TG, Fenton AA, Aoki C. Effects of adolescent experience of food restriction and exercise on spatial learning and open field exploration of female rats. Hippocampus 2020; 31:170-188. [PMID: 33146453 DOI: 10.1002/hipo.23275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/29/2020] [Accepted: 10/11/2020] [Indexed: 11/08/2022]
Abstract
The hippocampus carries out multiple functions: spatial cognition dorsally (DH) and regulation of emotionality-driven behavior ventrally (VH). Previously, we showed that dendrites of DH and VH pyramidal neurons of female rats are still developing robustly during adolescence and are altered by the experience of food restriction and voluntary exercise on a wheel. We tested whether such anatomical changes during adolescence impact anxiety-like behavior and spatial cognition. Four groups of female rats were evaluated for these behaviors: those with wheel access in its cage from postnatal day (P) 36-44 (EX); those with food access restricted to 1 hr per day, from P40 to 44 (FR); those with EX from P36 to 44, combined with FR from P40 to 44, which we will refer to as EX + FR; and controls, CON (no EX, no FR). Open field test for anxiety-like behavior and active place avoidance test for spatial cognition were conducted at P47-49, the age when food restricted animals have restored body weight, or at P54-56, to identify more enduring effects. Anxiety-like behavior was elevated for the EX and FR groups at P47-49 but not for the EX + FR group. By P54-56, the EX + FR and EX groups exhibited less anxiety-like behavior, indicating a beneficial delayed main effect of exercise. There was a beneficial main effect of food restriction upon cognition, as the FR group showed cognition superior to CONs' at P44-46 and P54-56, while the EX + FR animals also showed enhanced spatial learning at P54-56. EX + FR animals with best adaptation to the feeding schedule showed the best spatial learning performance but with a delay. The EX group exhibited only a transient improvement. These findings indicate that FR, EX, and EX + FR in mid-adolescence are all beneficial in reducing anxiety-like behavior and improving spatial cognition but with subtle differences in the timing of their manifestation, possibly reflecting the protracted maturation of the hippocampus.
Collapse
Affiliation(s)
- Tara G Chowdhury
- Center for Neural Science, New York University, New York, New York, USA
| | - André A Fenton
- Center for Neural Science, New York University, New York, New York, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, New York, USA
| |
Collapse
|
53
|
Le Moëne O, Ramírez-Rentería ML, Ågmo A. Male and female immediate fear reaction to white noise in a semi-natural environment: A detailed behavioural analysis of the role of sex and oestrogen receptors. J Neuroendocrinol 2020; 32:e12902. [PMID: 32985022 DOI: 10.1111/jne.12902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 01/18/2023]
Abstract
In classical rodent anxiety models, females usually display lower anxiety than males, whereas anxiety disorders are more prevalent in women. Perhaps this contradiction is caused by the use of behavioural models with low external validity. Therefore, we analysed immediate reactions to a sudden 90-dB white noise in a semi-natural environment. We observed mixed-sex groups of rats for the 60 seconds preceding noise onset and the first 60 seconds of exposure. White noise elicited fear-specific behaviours hiding alone and huddling. It also increased exploratory and ambulatory behaviours, although only in the burrow zone farthest from the open area. Thus, in a semi-natural environment, white noise enhanced motor activity as a product of fear-induced general arousal. Then, we compared male and female sexual, social, exploratory and anxiety-related behaviour, and found little sex difference. This absence of behavioural effect, also observed in other studies, might be a result of our study design, a familiar environment with an ecologically relevant social context. Fear and anxiety responses are modulated by oestrogens through the activation of oestrogen receptors α and β. Thus, in a third part of out study, we analysed how treatment with either oil, oestradiol benzoate (EB), an agonist to the oestrogen receptor α (propylpyrazoletriol [PPT]) or β (diarylpropionitrile [DPN]) influenced female behaviour. The effect of treatment was limited, both EB and PPT stimulated motor activity in the open area before white noise, probably because of sexual activity. PPT increased the probability of fleeing from the noise, and decreased the latency to do so, which is consistent with a pattern of anxiogenic properties found in previous studies. Contrary to reports in classical procedures, we failed to detect any effect of DPN on immediate fear reactions in a semi-natural environment.
Collapse
Affiliation(s)
- Olivia Le Moëne
- Department of Psychology, University of Tromsø, Tromsø, Norway
| | | | - Anders Ågmo
- Department of Psychology, University of Tromsø, Tromsø, Norway
| |
Collapse
|
54
|
Novick AM, Scott AT, Neill Epperson C, Schneck CD. Neuropsychiatric effects of tamoxifen: Challenges and opportunities. Front Neuroendocrinol 2020; 59:100869. [PMID: 32822707 PMCID: PMC7669724 DOI: 10.1016/j.yfrne.2020.100869] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 02/08/2023]
Abstract
Epidemiological, clinical, and basic research over the past thirty years have described the benefits of estrogen on cognition, mood, and brain health. Less is known about tamoxifen, a selective estrogen receptor modifier (SERM) commonly used in breast cancer which is able to cross the blood-brain barrier. In this article, we review the basic pharmacology of tamoxifenas well as its effects on cognition and mood. The literature reveals an overall impairing effect of tamoxifen on cognition in breast cancer patients, hinting at central antiestrogen activity. On the other hand, tamoxifen demonstrates promising effects in psychiatric disorders, like bipolar disorder, where its therapeutic action may be independent of interaction with estrogen receptors. Understanding the neuropsychiatric properties of SERMs like tamoxifen can guide future research to ameliorate unwanted side-effects and provide novel options for difficult to treat disorders.
Collapse
Affiliation(s)
- Andrew M Novick
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States.
| | - Anthony T Scott
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States
| | - C Neill Epperson
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States
| | - Christopher D Schneck
- Department of Psychiatry, University of Colorado School of Medicine, 13001 E 17th Place, Campus Box F546, Aurora, CO 80045, United States
| |
Collapse
|
55
|
Mariotti FFN, Gonçalves BSM, Pimpão G, Mônico-Neto M, Antunes HKM, Viana MDB, Céspedes IC, Le Sueur-Maluf L. A single ovarian stimulation, as performed in assisted reproductive technologies, can modulate the anxiety-like behavior and neuronal activation in stress-related brain areas in rats. Horm Behav 2020; 124:104805. [PMID: 32531398 DOI: 10.1016/j.yhbeh.2020.104805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
Infertility affects about 8 to 12% of couples of childbearing age around the world, and is recognized as a global public health issue by the WHO. From a psychosocial perspective, infertile individuals experience intense psychological distress, related to emotional disorders, which have repercussions on marital and social relationships. The symptoms persist even after seeking specialized treatment, such as assisted reproductive technologies (ART). While the stress impact of ART outcome has been comprehensively studied, the role of supraphysiological concentrations of gonadal hormones on stress response, remains to be elucidated. This study aimed to evaluate the effect of a single ovarian stimulation on the stress response in rats. To mimic the context of ART in rodents, female rats were submitted to the superovulation (150 UI/kg of PMSG and 75 UI/kg of hCG) and then to psychogenic stress (restraint stress for 30 min/day, repeated for three days). Anxiety-like behavior was evaluated in the elevated plus-maze, and neuronal activation in the stress-related brain areas assessed by Fos protein immunoreactivity. Corticosterone, estradiol, progesterone and corpora lutea were quantified. Data were analyzed using Generalized Linear Model (GzLM). Our findings indicate anxiolytic-like and protective effects of supraphysiological concentrations of gonadal hormones induced by a single ovarian stimulation on stress response. An activation of hypothalamus-pituitary-adrenal response inhibitory pathways, with participation of the prefrontal cortex, basomedial amygdala, lateral septum, medial preoptic area, dorsomedial and paraventricular hypothalamus, was detected.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Anxiety/metabolism
- Anxiety/physiopathology
- Anxiety/prevention & control
- Anxiety/psychology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Corticosterone/metabolism
- Female
- Fertility Agents, Female/pharmacology
- Neurons/physiology
- Neuroprotection/drug effects
- Neuroprotection/physiology
- Ovulation Induction
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/pathology
- Prefrontal Cortex/physiopathology
- Rats
- Rats, Wistar
- Reproductive Techniques, Assisted
- Restraint, Physical/adverse effects
- Restraint, Physical/psychology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
Collapse
Affiliation(s)
| | | | - Giovanna Pimpão
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Marcos Mônico-Neto
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil; Departmento de Psicobiologia, Universidade Federal de São Paulo, UNIFESP, 04024-002 São Paulo, SP, Brazil
| | | | - Milena de Barros Viana
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Isabel Cristina Céspedes
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil
| | - Luciana Le Sueur-Maluf
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, 11015-020 Santos, SP, Brazil.
| |
Collapse
|
56
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
57
|
Salahinejad A, Naderi M, Attaran A, Meuthen D, Niyogi S, Chivers DP. Effects of chronic exposure to bisphenol-S on social behaviors in adult zebrafish: Disruption of the neuropeptide signaling pathways in the brain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:113992. [PMID: 32126434 DOI: 10.1016/j.envpol.2020.113992] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/23/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol S (BPS), considered to be a safe alternative to Bisphenol A, is increasingly used in a wide variety of consumer and industrial products. However, mounting evidence suggests that BPS can act as a xenoestrogen targeting a wide range of neuro-endocrine functions in animals. At present, very little is known about the impacts of BPS on social behaviors and/or the potential underlying mechanisms. To this end, we exposed adult male and female zebrafish to environmentally relevant concentrations of BPS (0 (control), 1, 10, and 30 μg/L), as well as to 17β-estradiol (E2; 1 μg/L; as positive control) for 75 days. Subsequently, alterations in social behaviors were evaluated by measuring shoal cohesion, group preferences, and locomotor activity. Furthermore, to elucidate the possible molecular mechanism underlying the neuro-behavioral effects of BPS, we also quantified the changes in the mRNA abundance of arginine vasotocin (AVT), isotocin (IT), and their corresponding receptors in the zebrafish brain. The results showed that E2 and BPS (30 μg/L) decreased shoal cohesion in both males and females. Moreover, a marked decline in group preferences was observed in all treatment groups, while locomotor activity remained unaffected. Alterations in the social behaviors were associated with sex-specific changes in the mRNA expression of genes involved in IT and AVT signaling. Taken together, the results of this study suggest that chronic exposure to BPS can impair zebrafish social behaviors via disruption of isotocinergic and vasotocinergic neuro-endocrine systems.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| | - Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada; Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121, Bonn, Germany
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
58
|
Dombret C, Naulé L, Trouillet AC, Parmentier C, Hardin-Pouzet H, Mhaouty-Kodja S. Effects of neural estrogen receptor beta deletion on social and mood-related behaviors and underlying mechanisms in male mice. Sci Rep 2020; 10:6242. [PMID: 32277160 PMCID: PMC7148327 DOI: 10.1038/s41598-020-63427-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Estradiol derived from neural aromatization of testosterone plays a key role in the organization and activation of neural structures underlying male behaviors. This study evaluated the contribution of the estrogen receptor (ER) β in estradiol-induced modulation of social and mood-related behaviors by using mice lacking the ERβ gene in the nervous system. Mutant males exhibited reduced social interaction with same-sex congeners and impaired aggressive behavior. They also displayed increased locomotor activity, and reduced or unaffected anxiety-state level in three paradigms. However, when mice were exposed to unescapable stress in the forced swim and tail suspension tests, they spent more time immobile and a reduced time in swimming and climbing. These behavioral alterations were associated with unaffected circadian and restraint stress-induced corticosterone levels, and unchanged number of tryptophan hydroxylase 2-immunoreactive neurons in the dorsal raphe. By contrast, reduced mRNA levels of oxytocin and arginine-vasopressin were observed in the bed nucleus of stria terminalis, whereas no changes were detected in the hypothalamic paraventricular nucleus. The neural ERβ is thus involved to different extent levels in social and mood-related behaviors, with a particular action on oxytocin and arginine-vasopressin signaling pathways of the bed nucleus of stria terminalis, yet the involvement of other brain areas cannot be excluded.
Collapse
Affiliation(s)
- Carlos Dombret
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Anne-Charlotte Trouillet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
59
|
Jusuf EC, Abdullah N, Tahir AM, Tanra J, Hatta M. Interaction estrogen receptor polymorphism associates with psychosocial stress on menopausal women. ENFERMERIA CLINICA 2020. [DOI: 10.1016/j.enfcli.2019.07.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
60
|
Khakpay R, Khakpai F. Modulation of anxiety behavior in gonadectomized animals. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
61
|
Neurochemical Characterization of Neurons Expressing Estrogen Receptor β in the Hypothalamic Nuclei of Rats Using in Situ Hybridization and Immunofluorescence. Int J Mol Sci 2019; 21:ijms21010115. [PMID: 31877966 PMCID: PMC6981915 DOI: 10.3390/ijms21010115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Estrogens play an essential role in multiple physiological functions in the brain, including reproductive neuroendocrine, learning and memory, and anxiety-related behaviors. To determine these estrogen functions, many studies have tried to characterize neurons expressing estrogen receptors known as ERα and ERβ. However, the characteristics of ERβ-expressing neurons in the rat brain still remain poorly understood compared to that of ERα-expressing neurons. The main aim of this study is to determine the neurochemical characteristics of ERβ-expressing neurons in the rat hypothalamus using RNAscope in situ hybridization (ISH) combined with immunofluorescence. Strong Esr2 signals were observed especially in the anteroventral periventricular nucleus (AVPV), bed nucleus of stria terminalis, hypothalamic paraventricular nucleus (PVN), supraoptic nucleus, and medial amygdala, as previously reported. RNAscope ISH with immunofluorescence revealed that more than half of kisspeptin neurons in female AVPV expressed Esr2, whereas few kisspeptin neurons were found to co-express Esr2 in the arcuate nucleus. In the PVN, we observed a high ratio of Esr2 co-expression in arginine-vasopressin neurons and a low ratio in oxytocin and corticotropin-releasing factor neurons. The detailed neurochemical characteristics of ERβ-expressing neurons identified in the current study can be very essential to understand the estrogen signaling via ERβ.
Collapse
|
62
|
Tantipongpiradet A, Monthakantirat O, Vipatpakpaiboon O, Khampukdee C, Umehara K, Noguchi H, Fujiwara H, Matsumoto K, Sekeroglu N, Kijjoa A, Chulikhit Y. Effects of Puerarin on the Ovariectomy-Induced Depressive-Like Behavior in ICR Mice and Its Possible Mechanism of Action. Molecules 2019; 24:molecules24244569. [PMID: 31847138 PMCID: PMC6943479 DOI: 10.3390/molecules24244569] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Daily treatment of ovariectomized (OVX) ICR mice with puerarin, a glycosyl isoflavone isolated from the root bark of Pueraria candollei var. mirifica, and 17β-estradiol attenuated ovariectomy-induced depression-like behavior, as indicated by a decrease in immobility times in the tail suspension test (TST) and the forced swimming test (FST), an increase in the uterine weight and volume, a decrease in serum corticosterone levels, and dose-dependently normalized the downregulated transcription of the brain-derived neurotrophic factor (BDNF) and estrogen receptor (Erβ and Erα) mRNAs. Like 17β-estradiol, puerarin also inhibited ovariectomy-induced suppression of neurogenesis in the dentate gyrus of the hippocampus (increased the number of doublecortin (DCX)-immunosuppressive cells). These results suggest that puerarin exerts antidepressant-like effects in OVX animals, possibly by attenuating the OVX-induced hyperactivation of the HPA axis and/or normalizing the downregulated transcription of BDNF and ER mRNA in the brain.
Collapse
Affiliation(s)
- Ariyawan Tantipongpiradet
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Onchuma Vipatpakpaiboon
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Charinya Khampukdee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Kaoru Umehara
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan; (K.U.); (H.N.)
| | - Hiroshi Noguchi
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan; (K.U.); (H.N.)
| | - Hironori Fujiwara
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (H.F.); (K.M.)
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (H.F.); (K.M.)
| | - Nazim Sekeroglu
- Department of Horticulture, Faculty of Agriculture, Killis 7 Aralik University, Killis 79000, Turkey;
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Correspondence: (A.K.); (Y.C.); Tel.: +351-220428331 (A.K.)
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
- Correspondence: (A.K.); (Y.C.); Tel.: +351-220428331 (A.K.)
| |
Collapse
|
63
|
Miller CK, Krentzel AA, Patisaul HB, Meitzen J. Metabotropic glutamate receptor subtype 5 (mGlu 5) is necessary for estradiol mitigation of light-induced anxiety behavior in female rats. Physiol Behav 2019; 214:112770. [PMID: 31830486 DOI: 10.1016/j.physbeh.2019.112770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Anxiety-related behaviors are influenced by steroid hormones such as 17β-estradiol and environmental stimuli such as acute stressors. For example, rats exhibit increased anxiety-related behaviors in the presence, but not the absence, of light. In females, estradiol potentially mitigates these effects. Experiments across behavioral paradigms and brain regions indicate that estradiol action can be mediated via activation of metabotropic glutamate receptors, including Group I subtype five (mGlu5). mGlu5 has been implicated in mediating estradiol's effects upon psychostimulant-induced behaviors, dopamine release and neuron phenotype in striatal regions. Whether estradiol activation of mGlu5 modulates anxiety or locomotor behavior in the absence of psychostimulants is unknown. Here we test if mGlu5 is necessary for estradiol mitigation of light-induced acute anxiety and locomotor behaviors. Ovariectomized adult female rats were pre-treated with either the mGlu5 antagonist MPEP or saline before estradiol or oil treatment. Anxiety and locomotor behaviors were assessed in the presence or absence of white light to induce high and low acute anxiety behavior phenotypes, respectively. In the presence of white light, estradiol treatment mitigated light-induced anxiety-related behaviors but not overall locomotor activity. MPEP treatment blocked estradiol effects upon light-induced anxiety-related behaviors but did not affect overall locomotor activity. In the absence of white light, estradiol or MPEP treatment did not influence anxiety-related behaviors or locomotor activity, consistent with a low anxiety phenotype. These novel findings indicate that mGlu5 activation is necessary for estradiol mitigation of anxiety-related behaviors induced by an acute stressor.
Collapse
Affiliation(s)
- Christiana K Miller
- Graduate Program in Biology, North Carolina State University, Raleigh, NC, USA; W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.
| | - Amanda A Krentzel
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Heather B Patisaul
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - John Meitzen
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
64
|
Neonatal treatment with clomipramine modifies the expression of estrogen receptors in brain areas of male adult rats. Brain Res 2019; 1724:146443. [DOI: 10.1016/j.brainres.2019.146443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
|
65
|
Suthprasertporn N, Suwanna N, Thangnipon W. Protective effects of diarylpropionitrile against hydrogen peroxide-induced damage in human neuroblastoma SH-SY5Y cells. Drug Chem Toxicol 2019; 45:44-51. [PMID: 31495239 DOI: 10.1080/01480545.2019.1658768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is implicated in pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. The study demonstrates diarylpropionitrile (DPN), an antioxidant selective agonist of estrogen receptor β, protected human neuroblastoma SH-SY5Y cells against H2O2-induced toxicity by attenuating production of reactive oxygen species, apoptosis, autophagy, NF-κB activation, MAPK p38, JNK and ERK 1/2 signaling pathways, and β-site amyloid precursor protein cleaving enzyme level, but, interestingly, stimulating Akt pathway. These findings indicate the important potential of DPN to ameliorate oxidative stress-associated damage in neurodegenerative disorders.
Collapse
Affiliation(s)
- Nopparat Suthprasertporn
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University , Salaya , Nakhonpathom , 73170 , Thailand
| | - Nirut Suwanna
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University , Kamphaeng Saen , Nakhonpathom , 73140 , Thailand
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University , Salaya , Nakhonpathom , 73170 , Thailand
| |
Collapse
|
66
|
Egan AE, Seemiller LR, Packard AEB, Solomon MB, Ulrich-Lai YM. Palatable food reduces anxiety-like behaviors and HPA axis responses to stress in female rats in an estrous-cycle specific manner. Horm Behav 2019; 115:104557. [PMID: 31310760 PMCID: PMC6765440 DOI: 10.1016/j.yhbeh.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/29/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
Abstract
Eating tasty foods dampens responses to stress - an idea reflected in the colloquial term 'comfort foods'. To study the neurobiological mechanisms by which palatable foods provide stress relief, we previously characterized a limited sucrose intake (LSI) paradigm in which male rats are given twice-daily access to 4 ml of 30% sucrose solution (vs. water as a control), and subsequently have reduced hypothalamic-pituitary-adrenocortical (HPA) axis responsivity and anxiety-related behaviors. Notably, women may be more prone to 'comfort feeding' than men, and this may vary across the menstrual cycle, suggesting the potential for important sex and estrous cycle differences. In support of this idea, LSI reduces HPA axis responses in female rats during the proestrus/estrus (P/E), as opposed to the diestrus 1/diestrus 2 (D1/D2) estrous cycle stage. However, the effect of LSI on anxiety-related behaviors in females remains unknown. Here we show that LSI reduced stress-related behaviors in female rats in the elevated plus-maze and restraint tests, but not in the open field test, though only during P/E. LSI also decreased the HPA axis stress response primarily during P/E, consistent with prior findings. Finally, cFos immunolabeling (a marker of neuronal activation) revealed that LSI increased post-restraint cFos in the central amygdala medial subdivision (CeM) and the bed nucleus of the stria terminalis posterior subnuclei (BSTp) exclusively during P/E. These results suggest that in female rats, palatable food reduces both behavioral and neuroendocrine stress responses in an estrous cycle-dependent manner, and the CeM and BSTp are implicated as potential mediators of these effects.
Collapse
Affiliation(s)
- Ann E Egan
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Laurel R Seemiller
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Amy E B Packard
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Matia B Solomon
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA; Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45237, USA.
| |
Collapse
|
67
|
Turkson S, Kloster A, Hamilton PJ, Neigh GN. Neuroendocrine drivers of risk and resilience: The influence of metabolism & mitochondria. Front Neuroendocrinol 2019; 54:100770. [PMID: 31288042 PMCID: PMC6886586 DOI: 10.1016/j.yfrne.2019.100770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
The manifestation of risk versus resilience has been considered from varying perspectives including genetics, epigenetics, early life experiences, and type and intensity of the challenge with which the organism is faced. Although all of these factors are central to determining risk and resilience, the current review focuses on what may be a final common pathway: metabolism. When an organism is faced with a perturbation to the environment, whether internal or external, appropriate energy allocation is essential to resolving the divergence from equilibrium. This review examines the potential role of metabolism in the manifestation of stress-induced neural compromise. In addition, this review details the current state of knowledge on neuroendocrine factors which are poised to set the tone of the metabolic response to a systemic challenge. The goal is to provide an essential framework for understanding stress in a metabolic context and appreciation for key neuroendocrine signals.
Collapse
Affiliation(s)
- Susie Turkson
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Alix Kloster
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Peter J Hamilton
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy & Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
68
|
Estrogen receptors α and β in the central amygdala and the ventromedial nucleus of the hypothalamus: Sociosexual behaviors, fear and arousal in female rats during emotionally challenging events. Behav Brain Res 2019; 367:128-142. [DOI: 10.1016/j.bbr.2019.03.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
|
69
|
He C, Wang J, Ma M, Wang H. Sexual cues influence cocaine-induced locomotion, anxiety and the immunoreactivity of oestrogen receptor alpha and tyrosine hydroxylase in both sexes. J Neuroendocrinol 2019; 31:e12720. [PMID: 31009113 DOI: 10.1111/jne.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/11/2023]
Abstract
Dyadic physical social interaction influences cocaine-seeking behaviour, although whether limited sexual cues (LSC) from an opposite-sex partner influence the behavioural responses to cocaine is unclear. We investigated this issue using a cylindrical wire cage containing a stimulus mouse; the subject mouse (of the opposite sex) had access to this stimulus mouse during a "binge" injection pattern (injected with cocaine or saline vehicle twice a day at 6-hour intervals). Following the second injection, locomotion and anxiety-like behaviours were examined using the open-field and elevated plus maze test, at the same time as oestrogen receptor (ER)α and tyrosine hydroxylase (TH) immunoreactivities were also examined. The data indicate that LSC enhanced cocaine-stimulated locomotion in both sexes and inhibited the levels of anxiety caused by cocaine in males only. Accompanying these changes, the interaction between LSC and cocaine altered ERα immunoreactivity in the ventral medial nuclei of the hypothalamus (VMH) and medial amygdaloid nucleus (MeA) of males, whereas such interaction effects occurred in the VMH, MeA, arcuate nucleus (AR), bed nucleus of the stria terminalis (BNST) and lateral septum (LS) of females. LSC increased cocaine-induced ERα immunoreactivity in the VMH in males and reduced cocaine-induced ERα immunoreactivity in the AR and LS in females. LSC up-regulated cocaine-induced increases in ventral tegmental area (VTA) TH immunoreactivity in females only. Our present data suggest that interactions between LSC and cocaine led to changes in ERα and TH immunoreactivity in a brain region-specific manner, which showed subtle differences in both sexes. The effects of LSC-mediated cocaine-induced locomotion and anxiety may be associated with alterations in ERα and dopamine activation.
Collapse
Affiliation(s)
- Chen He
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Jianli Wang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Ming Ma
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Heng Wang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| |
Collapse
|
70
|
Evaluation of the Anxiolytic Effect of Vitex agnus-castus on Female Mice and Possible Role of Estrogen Receptors. Jundishapur J Nat Pharm Prod 2019. [DOI: 10.5812/jjnpp.63570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
71
|
Santen RJ, Simpson E. History of Estrogen: Its Purification, Structure, Synthesis, Biologic Actions, and Clinical Implications. Endocrinology 2019; 160:605-625. [PMID: 30566601 DOI: 10.1210/en.2018-00529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
This mini-review summarizes key points from the Clark Sawin Memorial Lecture on the History of Estrogen delivered at Endo 2018 and focuses on the rationales and motivation leading to various discoveries and their clinical applications. During the classical period of antiquity, incisive clinical observations uncovered important findings; however, extensive anatomical dissections to solidify proof were generally lacking. Initiation of the experimental approach followed later, influenced by Claude Bernard's treatise "An Introduction to the Study of Experimental Medicine." With this approach, investigators began to explore the function of the ovaries and their "internal secretions" and, after intensive investigations for several years, purified various estrogens. Clinical therapies for hot flashes, osteoporosis, and dysmenorrhea were quickly developed and, later, methods of hormonal contraception. Sophisticated biochemical methods revealed the mechanisms of estrogen synthesis through the enzyme aromatase and, after discovery of the estrogen receptors, their specific biologic actions. Molecular techniques facilitated understanding of the specific transcriptional and translational events requiring estrogen. This body of knowledge led to methods to prevent and treat hormone-dependent neoplasms as well as a variety of other estrogen-related conditions. More recently, the role of estrogen in men was uncovered by prismatic examples of estrogen deficiency in male patients and by knockout of the estrogen receptor and aromatase in animals. As studies became more extensive, the effects of estrogen on nearly every organ were described. We conclude that the history of estrogen illustrates the role of intellectual reasoning, motivation, and serendipity in advancing knowledge about this important sex steroid.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Evan Simpson
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
72
|
Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis' response to stress: an important role for gonadal hormones. Neuropsychopharmacology 2019; 44:45-58. [PMID: 30111811 PMCID: PMC6235871 DOI: 10.1038/s41386-018-0167-9] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine network that controls hormonal responses to internal and external challenges in an organism's environment, exhibits strikingly sex-biased activity. In adult female rodents, acute HPA function following a stressor is markedly greater than it is in males, and this difference has largely been attributed to modulation by the gonadal hormones testosterone and estradiol. These gonadal hormones are produced by the hypothalamic-pituitary-gonadal (HPG) axis and have been shown to determine sex differences in adult HPA function after acute stress via their activational and organizational effects. Although these actions of gonadal hormones are well supported, the possibility that sex chromosomes similarly influence HPA activity is unexplored. Moreover, questions remain regarding sex differences in the activity of the HPA axis following chronic stress and the underlying contributions of gonadal hormones and sex chromosomes. The present review examines what is currently known about sex differences in the neuroendocrine response to stress, as well as outstanding questions regarding this sex bias. Although it primarily focuses on the rodent literature, a brief discussion of sex differences in the human HPA axis is also included.
Collapse
Affiliation(s)
- Ashley L. Heck
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Robert J. Handa
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
73
|
Hou X, Adeosun SO, Zhao X, Hill R, Zheng B, Reddy R, Su X, Meyer J, Mosley T, Wang JM. ERβ agonist alters RNA splicing factor expression and has a longer window of antidepressant effectiveness than estradiol after long-term ovariectomy. J Psychiatry Neurosci 2019; 44:19. [PMID: 30565903 PMCID: PMC6306290 DOI: 10.1503/jpn.170199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Estrogen therapy (ET), an effective treatment for perimenopausal depression, often fails to ameliorate symptoms when initiated late after the onset of menopause. Our previous work has suggested that alternative splicing of RNA might mediate these differential effects of ET. METHODS Female Sprague–Dawley rats were treated with estradiol (E2) or vehicle 6 days (early ET) or 180 days (late ET) after ovariectomy (OVX). We investigated the differential expression of RNA splicing factors and tryptophan hydroxylase 2 (TPH2) protein using a customized RT2 Profiler PCR Array, reverse-transcription polymerase chain reaction, immunoprecipitation and behaviour changes in clinically relevant early and late ET. RESULTS Early ET, but not late ET, prolonged swimming time in the forced swim test and reduced anxiety-like behaviours in the elevated plus maze. It reversed OVX-increased (SFRS7 and SFRS16) or OVX-decreased (ZRSR2 and CTNNB1) mRNA levels of splicing factors and ERβ splicing changes in the brains of OVX rats. Early ET, but not late ET, also increased the expression of TPH2 and decreased monoamine oxidase A levels in the dorsal raphe in the brains of OVX rats. In late ET, only diarylpropionitrile (an ERβ-specific agonist) achieved similar results — not E2 (an ERα and ERβ agonist) or propylpyrazoletriol (an ERα-specific agonist). LIMITATIONS Our experimental paradigm mimicked early and late ET in the clinical setting, but the contribution of age and OVX might be difficult to distinguish. CONCLUSION These findings suggest that ERβ alternative splicing and altered responses in the regulatory system for serotonin may mediate the antidepressant efficacy of ET associated with the timing of therapy initiation. It is likely that ERβ-specific ligands would be effective estrogen-based antidepressants late after the onset of menopause.
Collapse
Affiliation(s)
- Xu Hou
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Samuel O. Adeosun
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Xueying Zhao
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Rosanne Hill
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Baoying Zheng
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Reveena Reddy
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Xiao Su
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Jeffrey Meyer
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Thomas Mosley
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| | - Jun Ming Wang
- From the Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA (Hou, Wang); the Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA (Adeosun, Zhao, Zheng, Reddy, Wang); the Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA (Wang); the Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA (Mosley); the Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Ont., Canada (Meyer); the Basic Medical College of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China (Zhao); and the College of Health & Biomedicine, Victoria University, Melbourne, Australia (Su)
| |
Collapse
|
74
|
Rosinger ZJ, Jacobskind JS, Bulanchuk N, Malone M, Fico D, Justice NJ, Zuloaga DG. Characterization and gonadal hormone regulation of a sexually dimorphic corticotropin-releasing factor receptor 1 cell group. J Comp Neurol 2018; 527:1056-1069. [PMID: 30499109 DOI: 10.1002/cne.24588] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
Corticotropin-releasing factor binds with high affinity to CRF receptor 1 (CRFR1) and is implicated in stress-related mood disorders such as anxiety and depression. Using a validated CRFR1-green fluorescent protein (GFP) reporter mouse, our laboratory recently discovered a nucleus of CRFR1 expressing cells that is prominent in the female rostral anteroventral periventricular nucleus (AVPV/PeN), but largely absent in males. This sex difference is present in the early postnatal period and remains dimorphic into adulthood. The present investigation sought to characterize the chemical composition and gonadal hormone regulation of these sexually dimorphic CRFR1 cells using immunohistochemical procedures. We report that CRFR1-GFP-ir cells within the female AVPV/PeN are largely distinct from other dimorphic cell populations (kisspeptin, tyrosine hydroxylase). However, CRFR1-GFP-ir cells within the AVPV/PeN highly co-express estrogen receptor alpha as well as glucocorticoid receptor. A single injection of testosterone propionate or estradiol benzoate on the day of birth completely eliminates the AVPV/PeN sex difference, whereas adult gonadectomy has no effect on CRFR1-GFP cell number. These results indicate that the AVPV/PeN CRFR1 is regulated by perinatal but not adult gonadal hormones. Finally, female AVPV/PeN CRFR1-GFP-ir cells are activated following an acute 30-min restraint stress, as assessed by co-localization of CRFR1-GFP cells with phosphorylated (p) CREB. CRFR1-GFP/pCREB cells were largely absent in the male AVPV/PeN. Together, these data indicate a stress and gonadal hormone responsive nucleus that is unique to females and may contribute to sex-specific stress responses.
Collapse
Affiliation(s)
| | | | - Nicole Bulanchuk
- Department of Psychology, University at Albany, Albany, New York
| | - Margaret Malone
- Department of Psychology, University at Albany, Albany, New York
| | - Danielle Fico
- Department of Psychology, University at Albany, Albany, New York
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, Texas
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, New York
| |
Collapse
|
75
|
Le Moëne O, Ågmo A. Behavioral responses to emotional challenges in female rats living in a seminatural environment: The role of estrogen receptors. Horm Behav 2018; 106:162-177. [PMID: 30391223 DOI: 10.1016/j.yhbeh.2018.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/16/2018] [Accepted: 10/27/2018] [Indexed: 10/27/2022]
Abstract
Estrogen receptors (ERs) are involved in sexual as well as non-sexual behaviors. In the present study we assessed the effects of stimuli inducing positive or negative affect on sociosexual, exploratory and fear-related behaviors of female rats housed in groups (4 females, 3 males) in a seminatural environment. Ovariectomized females were treated with oil, 17β‑estradiol benzoate (EB, 18 μg/kg), the ERα agonist propylpyrazoletriol (PPT), or the ERβ agonist diarylpropionitrile (DPN) (both 2 × 10 mg/rat). On the test day, the females were exposed to a sequence of events consisting of lavender odor, Mozart's Sonata for Two Pianos K448, chocolate pellets, white noise and fox odor (2,3,5‑Trimethyl‑3‑thiazoline, TMT). All these events are known to induce positive or negative affect. Behavior was carefully observed from the video record. White noise suppressed sexual behaviors and reduced the time spent in the open area of the environment. TMT had no consistent effect whereas exposure to music caused avoidance of the open area. Exposure to chocolate increased exploratory and social behavior. Lavender odor enhanced exploratory behavior. PPT and EB stimulated sexual behaviors, whereas DPN was ineffective. Co-occurrence analyses of the sequence of behavioral patterns revealed that PPT and EB consistently belonged to clusters different from oil and DPN, whereas DPN was separate from oil only under fear-inducing experimental conditions. These data, from a procedure with external validity, confirm that the ERα is crucial for sexual behaviors, that these behaviors are reduced under stressful conditions, and that the ERβ may have some role in fear-related behaviors.
Collapse
Affiliation(s)
| | - Anders Ågmo
- Department of Psychology, University of Tromsø, Norway
| |
Collapse
|
76
|
Cui P, Ma T, Tamadon A, Han S, Li B, Chen Z, An X, Shao LR, Wang Y, Feng Y. Hypothalamic DNA methylation in rats with dihydrotestosterone-induced polycystic ovary syndrome: effects of low-frequency electro-acupuncture. Exp Physiol 2018; 103:1618-1632. [DOI: 10.1113/ep087163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Cui
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Tong Ma
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Amin Tamadon
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Sha Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Bing Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Zheyi Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine; Affiliated Hospital of Nanjing University of Chinese Medicine; Nanjing 210029 China
| | - Linus R. Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy; University of Gothenburg; 40530 Gothenburg Sweden
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology; Fudan Institutes of Integrative Medicine; Fudan University; Shanghai 200032 China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function
| |
Collapse
|
77
|
Chen Z, Li T, Zhang L, Wang H, Hu F. Bisphenol A exposure remodels cognition of male rats attributable to excitatory alterations in the hippocampus and visual cortex. Toxicology 2018; 410:132-141. [PMID: 30312744 DOI: 10.1016/j.tox.2018.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 12/16/2022]
Abstract
Bisphenol A, an environmental xenoestrogen, has been shown sex-specific adverse effects on cognitive function of rodents. However, the specific mechanisms underlying these outcomes remain elusive, limiting our understanding the differences in behavioral impairments due to BPA exposure between genders in humans. The present study chose the juvenile stage (with a stable estrogen level) as the exposure window to explore BPA effects on cognitive behaviors of male and female Sprague-Dawley (SD) rats and related mechanisms. Three dosages of BPA (0.04, 0.4 and 4 mg/kg/day) were chose to make BPA-exposed models. Especially, the mid-dose for rats was close to the current reference daily limit for human exposure given by the U.S. Environmental Protection Agency. Our results showed that male but not female juvenile rats had a marked decline in spatial memory after 0.4 mg/kg/day BPA exposure, which accompanied with downregulation of glutamate receptor (NR2) expression in their hippocampus and primary visual cortex (V1). In the high-dose BPA exposed groups (4 mg/kg/day), there was not only a deficit of spatial memory, but also an anxiety-like behavior of male rats. Additionally, those rats had a significant decline in spine density of pyramidal neurons and a decreased expression of glutamate receptor subtypes (NR2 and GluR1) in the hippocampus. Importantly, such impairments in the hippocampus of male rats were associated with a decrease of glutamate receptor (NR2) expression in the V1, which could perturb the visual information inputs. To some extent, altered ERβ expression within their hypothalamus could contribute to the anxiety-like behavior after high-dose BPA exposure. However, the low-dose BPA exposed juvenile rats didn't present any structural and behavioral changes in our present study. Those results suggests that BPA exerts dose dependent and gender-specific effects on the cognition of juvenile animals. Our findings shed light on mechanisms underlying BPA effects on the juvenile animals.
Collapse
Affiliation(s)
- Zhi Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Tingting Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Linke Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Huan Wang
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China
| | - Fan Hu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
78
|
Sehl ME, Ganz PA. Potential Mechanisms of Age Acceleration Caused by Estrogen Deprivation: Do Endocrine Therapies Carry the Same Risks? JNCI Cancer Spectr 2018; 2:pky035. [PMID: 31360862 PMCID: PMC6649786 DOI: 10.1093/jncics/pky035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/30/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Longer duration of endocrine therapy decreases breast cancer recurrence and mortality, but these benefits need to be weighed against potential risks to overall health. Notable side effects of endocrine therapy include cataracts, uterine cancer, thromboembolic events, osteoporosis and fracture risk, chronic musculoskeletal complaints, as well as vaginal dryness and discharge, and vasomotor symptoms. Estrogen deprivation in healthy women younger than 50 years undergoing bilateral oophorectomy has been shown to accelerate the development of diseases related to aging, including coronary artery disease, cardiac arrhythmias, stroke, dementia, and osteoporosis, raising concern that even less dramatic modulation of estrogen homeostasis may adversely affect health outcomes. Diminished available estrogen at the cellular and molecular level may facilitate mechanisms that underlie the aging process, often termed the hallmarks of aging. In this review, we describe estrogen's role in normal physiology across tissues, review the effects of estrogen deprivation on health outcomes in the setting of both surgical and natural menopause, and examine the hallmarks of aging with attention to the effects of estrogen and estrogen blockade on each molecular mechanism underlying the aging process.
Collapse
Affiliation(s)
- Mary E Sehl
- Medicine, Hematology-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Patricia A Ganz
- Medicine, Hematology-Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.,Health Policy and Management, School of Public Health, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
79
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
80
|
Hanson AM, Perera KLIS, Kim J, Pandey RK, Sweeney N, Lu X, Imhoff A, Mackinnon AC, Wargolet AJ, Van Hart RM, Frick KM, Donaldson WA, Sem DS. A-C Estrogens as Potent and Selective Estrogen Receptor-Beta Agonists (SERBAs) to Enhance Memory Consolidation under Low-Estrogen Conditions. J Med Chem 2018; 61:4720-4738. [PMID: 29741891 DOI: 10.1021/acs.jmedchem.7b01601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Estrogen receptor-beta (ERβ) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERβ agonists (SERBAs) with in vivo efficacy that are A-C estrogens, lacking the B and D estrogen rings. The most potent and selective A-C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the β over α isoform and with EC50s of 20-30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound's ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A-C estrogen is selective, brain penetrant, and facilitates memory consolidation.
Collapse
Affiliation(s)
- Alicia M Hanson
- Department of Pharmaceutical Sciences, Center for Structure-Based Drug Design and Development , Concordia University Wisconsin , Mequon , Wisconsin 53097 , United States
| | - K L Iresha Sampathi Perera
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201-1881 , United States
| | - Jaekyoon Kim
- Department of Psychology , University of Wisconsin-Milwaukee , 2441 East Hartford Avenue , Milwaukee , Wisconsin 53211 , United States
| | - Rajesh K Pandey
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201-1881 , United States
| | - Noreena Sweeney
- Department of Pharmaceutical Sciences, Center for Structure-Based Drug Design and Development , Concordia University Wisconsin , Mequon , Wisconsin 53097 , United States
| | - Xingyun Lu
- Department of Pharmaceutical Sciences, Center for Structure-Based Drug Design and Development , Concordia University Wisconsin , Mequon , Wisconsin 53097 , United States
| | - Andrea Imhoff
- Department of Pharmaceutical Sciences, Center for Structure-Based Drug Design and Development , Concordia University Wisconsin , Mequon , Wisconsin 53097 , United States
| | - Alexander Craig Mackinnon
- Department of Pathology , Medical College of Wisconsin , 9200 West Wisconsin Avenue , Milwaukee , Wisconsin 53226 , United States
| | - Adam J Wargolet
- Department of Natural Science , Concordia University Wisconsin , Mequon , Wisconsin 53097 , United States
| | - Rochelle M Van Hart
- Department of Natural Science , Concordia University Wisconsin , Mequon , Wisconsin 53097 , United States
| | - Karyn M Frick
- Department of Psychology , University of Wisconsin-Milwaukee , 2441 East Hartford Avenue , Milwaukee , Wisconsin 53211 , United States
| | - William A Donaldson
- Department of Chemistry , Marquette University , P.O. Box 1881, Milwaukee , Wisconsin 53201-1881 , United States
| | - Daniel S Sem
- Department of Pharmaceutical Sciences, Center for Structure-Based Drug Design and Development , Concordia University Wisconsin , Mequon , Wisconsin 53097 , United States
| |
Collapse
|
81
|
Barel E, Abu-Shkara R, Colodner R, Masalha R, Mahagna L, Zemel OC, Cohen A. Gonadal hormones modulate the HPA-axis and the SNS in response to psychosocial stress. J Neurosci Res 2018; 96:1388-1397. [PMID: 29741787 DOI: 10.1002/jnr.24259] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023]
Abstract
Exposure to stress activates both the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). A growing body of research points to the contribution of sex hormones (testosterone, estrogen, and progesterone), the end products of the hypothalamus-pituitary-gonadal (HPG) axis, in modulating stress reactivity. The present study aimed at investigating the potential modulating role of sex hormones on HPA and SNS reactivity to psychosocial stress. The reactivity, induced by the Trier Social Stress Test, was analyzed by measuring the levels of cortisol and alpha-amylase (markers for SNS activity) in four saliva samples each of 21 men and 37 women (17 not using oral contraceptives and in their luteal phase, and 20 women using oral contraceptives). In addition, basal sex hormones were sampled prior to the psychosocial stress exposure. Results revealed that controlling for testosterone, estrogen, and progesterone diminished the impact of stress on cortisol reactivity and on alpha-amylase reactivity. Moreover, controlling for sex hormones also diminished the differential pattern of cortisol reactivity in each experimental group among responders. Furthermore, correlation analyses revealed differences between groups in the association between sex hormones and alpha-amylase. The present findings indicate a modulatory role for sex hormones in HPA and SNS reactivity and emphasize the need for control of sex hormone fluctuations when examining cortisol and alpha-amylase reactivity to stress.
Collapse
Affiliation(s)
- Efrat Barel
- Department of Behavioral Sciences, The Max Stern Academic College of Emek Yezreel, Israel
| | - Randa Abu-Shkara
- Laboratory Medicine Department, Emek Medical Center, Afula, Israel
| | - Raul Colodner
- Laboratory Medicine Department, Emek Medical Center, Afula, Israel.,Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Refaat Masalha
- Laboratory Medicine Department, Emek Medical Center, Afula, Israel
| | - Lila Mahagna
- Laboratory Medicine Department, Emek Medical Center, Afula, Israel
| | - Or Chen Zemel
- Department of Behavioral Sciences, The Max Stern Academic College of Emek Yezreel, Israel
| | - Ami Cohen
- Department of Psychology, The Max Stern Academic College of Emek Yezreel, Israel
| |
Collapse
|
82
|
Rivera HM, Stincic TL. Estradiol and the control of feeding behavior. Steroids 2018; 133:44-52. [PMID: 29180290 PMCID: PMC5864536 DOI: 10.1016/j.steroids.2017.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
This review lays out the evidence for the role of E2 in homeostatic and hedonic feeding across several species. While significant effort has been expended on homeostatic feeding research, more studies for hedonic feeding need to be conducted (i.e. are there increases in meal size and enhanced motivation to natural food rewards). By identifying the underlying neural circuitry involved, one can better delineate the mechanisms by which E2 influences feeding behavior. By utilizing more selective neural targeting techniques, such as optogenetics, significant progress can be made toward this goal. Together, behavioral and physiological techniques will help us to better understand neural deficits that can increase the risk for obesity in the absence of E2 (menopause) and aid in developing therapeutic strategies.
Collapse
Affiliation(s)
- H M Rivera
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | - T L Stincic
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
83
|
Seo SY, Moon JY, Kang SY, Kwon OS, Kwon S, Bang SK, Kim SP, Choi KH, Ryu Y. An estradiol-independent BDNF-NPY cascade is involved in the antidepressant effect of mechanical acupuncture instruments in ovariectomized rats. Sci Rep 2018; 8:5849. [PMID: 29643431 PMCID: PMC5895789 DOI: 10.1038/s41598-018-23824-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/19/2018] [Indexed: 01/03/2023] Open
Abstract
Menopause-related depression devastates women's quality of life after middle age. Previous research has shown that estrogen hormone therapy has serious adverse effects; thus, complementary and integrative therapies have been considered clinically. The present study investigates whether stimulation of an acupoint using a mechanical acupuncture instrument (MAI) can mitigate depression-like behavior caused by estrogen deficiency in ovariectomized (OVX) rats. The animals were divided into Sham OVX, OVX, OVX + Sameumgyo (SP6) and OVX + NonAcu (non-acupuncture point) groups. MAI stimulation significantly increased the total distance traveled in the open-field test and the number of open-arm entries in the elevated plus maze and decreased the duration of immobility in the forced swim test. In addition to this decrease in depression-like behavior, brain-derived neurotrophic factor (BDNF) and neuropeptide Y (NPY) release increased in the hippocampus in response to MAI treatment, but estradiol levels did not recover. Furthermore, microinjection of the BDNF receptor antagonist ANA-12 (0.1 pmol/1 μl) into the hippocampus before MAI stimulation significantly suppressed the recovery of NPY levels. Taken together, these findings indicate that MAI stimulation at SP6 facilitates an estradiol-independent BDNF-NPY cascade, which may contribute to its antidepressant effects in OVX rats, an animal model of menopausal disorders.
Collapse
Affiliation(s)
- Su Yeon Seo
- Korea Institute of Oriental Medicine 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Ji-Young Moon
- Animal and Plant Quarantine Agency 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Suk-Yun Kang
- Korea Institute of Oriental Medicine 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - O Sang Kwon
- Korea Institute of Oriental Medicine 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Sunoh Kwon
- Korea Institute of Oriental Medicine 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Se Kyun Bang
- Korea Institute of Oriental Medicine 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Soo Phil Kim
- Korea Institute of Oriental Medicine 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Kwang-Ho Choi
- Korea Institute of Oriental Medicine 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Yeonhee Ryu
- Korea Institute of Oriental Medicine 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| |
Collapse
|
84
|
Ravenelle R, Berman AK, La J, Mason B, Asumadu E, Yelleswarapu C, Donaldson ST. Sex matters: females in proestrus show greater diazepam anxiolysis and brain-derived neurotrophin factor- and parvalbumin-positive neurons than males. Eur J Neurosci 2018; 47:994-1002. [PMID: 29461650 PMCID: PMC5902654 DOI: 10.1111/ejn.13870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/07/2018] [Accepted: 02/13/2018] [Indexed: 01/22/2023]
Abstract
In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures.
Collapse
Affiliation(s)
- Rebecca Ravenelle
- City University of New York, CUNY Neuroscience Collaborative, The Graduate Center, 365 Fifth Ave., New York, NY 10016 USA
| | - Ariel K. Berman
- Department of Psychology, Western Michigan University, 1526 Wood Hall, Kalamazoo, MI 49008 USA
| | - Jeffrey La
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| | - Briana Mason
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| | - Evans Asumadu
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| | - Chandra Yelleswarapu
- Department of Physics, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| | - S. Tiffany Donaldson
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125 USA
| |
Collapse
|
85
|
Campos GV, de Noronha SR, de Souza AA, Lima PM, Abreu AR, Chianca-Jr D, de Menezes RC. Estrogen receptor β activation within dorsal raphe nucleus reverses anxiety-like behavior induced by food restriction in female rats. Behav Brain Res 2018; 357-358:57-64. [PMID: 29567265 DOI: 10.1016/j.bbr.2018.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 02/15/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023]
Abstract
Severe food restriction (FR), as observed in disorders like anorexia nervosa, has been associated to the reduction of estrogen levels, which in turn could lead to anxiety development. Estrogen receptors, mainly ERβ type, are commonly found in the dorsal raphe nucleus (DRN) neurons, an important nucleus related to anxiety modulation and the primary source of serotonin (5-HT) in the brain. Taking together, these findings suggest an involvement of estrogen in anxiety modulation during food restriction, possibly mediated by ERβ activation in serotonergic DRN neurons. Thus, the present study investigated the relationship between food restriction and anxiety-like behavior, and the involvement of DRN and ERβ on the modulation of anxiety-like behaviors in animals subjected to FR. For that, female Fischer rats were grouped in control group, with free access to food, or a FR group, which received 40% of control intake during 14 days. Animals were randomly treated with 17β-estradiol (E2), DPN (ERβ selective agonist), or their respective vehicles, PBS and DMSO. Behavioral tests were performed on Elevated T-Maze (ETM) and Open Field (OF). Our results suggest that FR probably reduced the estrogen levels, since the remained in the non-ovulatory cycle phases, and their uterine weight was lower when compared to control group. The FR rats showed increased inhibitory avoidance latency in theETM indicating that FR is associated with the development of an anxiety-like state. The injections of both E2 and DPN into DRN of FR animals had an anxiolytic effect. Those data suggest thatanxiety-like behavior induced by FR could be mediated by a reduction of ERβ activation in the DRN neurons, probably due to decreased estrogen levels.
Collapse
Affiliation(s)
- Glenda Viggiano Campos
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Sylvana Rendeiro de Noronha
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Aline Arlindo de Souza
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Paulo Marcelo Lima
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Aline Rezende Abreu
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Deoclecio Chianca-Jr
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Rodrigo Cunha de Menezes
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Biological Sciences CBIOL/NUPEB, Federal University of Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
86
|
Immonen E, Hämäläinen A, Schuett W, Tarka M. Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms. Behav Ecol Sociobiol 2018; 72:60. [PMID: 29576676 PMCID: PMC5856903 DOI: 10.1007/s00265-018-2462-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 11/16/2022]
Abstract
Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration.
Collapse
Affiliation(s)
- Elina Immonen
- Department of Ecology and Genetics, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18 D, SE-75 236 Uppsala, Sweden
| | - Anni Hämäläinen
- Department of Biological Sciences, University of Alberta, Edmonton, T6G 2E9 Canada
| | - Wiebke Schuett
- Zoological Institute, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
| | - Maja Tarka
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
87
|
Estrada CM, Ghisays V, Nguyen ET, Caldwell JL, Streicher J, Solomon MB. Estrogen signaling in the medial amygdala decreases emotional stress responses and obesity in ovariectomized rats. Horm Behav 2018; 98:33-44. [PMID: 29248436 DOI: 10.1016/j.yhbeh.2017.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 12/01/2017] [Accepted: 12/09/2017] [Indexed: 12/15/2022]
Abstract
Declining estradiol (E2), as occurs during menopause, increases risk for obesity and psychopathology (i.e., depression, anxiety). E2 modulates mood and energy homeostasis via binding to estrogen receptors (ER) in the brain. The often comorbid and bidirectional relationship between mood and metabolic disorders suggests shared hormonal and/or brain networks. The medial amygdala (MeA) is abundant in ERs and regulates mood, endocrine, and metabolic stress responses; therefore we tested the hypothesis that E2 in the MeA mitigates emotional and metabolic dysfunction in a rodent model of surgical menopause. Adult female rats were ovariectomized (OVX) and received bilateral implants of E2 or cholesterol micropellets aimed at the MeA. E2-MeA decreased anxiety-like (center entries, center time) and depression-like (immobility) behaviors in the open field and forced swim tests (FST), respectively in ovariectomized rats. E2-MeA also prevented hyperphagia, body weight gain, increased visceral adiposity, and glucose intolerance in ovariectomized rats. E2-MeA decreased caloric efficiency, suggestive of increased energy expenditure. E2-MeA also modulated c-Fos neural activity in amygdalar (central and medial) and hypothalamic (paraventricular and arcuate) brain regions that regulate mood and energy homeostasis in response to the FST, a physically demanding task. Given the shared neural circuitry between mood and body weight regulation, c-Fos expression in discrete brain regions in response to the FST may be due to the psychologically stressful and/or metabolic demands of the task. Together, these findings suggest that the MeA is a critical node for mediating estrogenic effects on mood and energy homeostasis.
Collapse
Affiliation(s)
- Christina M Estrada
- Department of Psychology Experimental Psychology Program, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Valentina Ghisays
- Department of Psychology Experimental Psychology Program, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Elizabeth T Nguyen
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Jody L Caldwell
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Joshua Streicher
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Matia B Solomon
- Department of Psychology Experimental Psychology Program, University of Cincinnati, Cincinnati, OH 45237, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45237, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States.
| |
Collapse
|
88
|
Abstract
Biosynthesis and secretion of the hypothalamic nonapeptide oxytocin largely depends on steroid hormones. Estradiol, corticosterone, and vitamin D seem to be the most prominent actors. Due to their lipophilic nature, systemic steroids are thought to be capable of crossing the blood-brain barrier, thus mediating central functions including neuroendocrine and behavioral control. The actual mode of action of steroids in hypothalamic circuitry is still unknown: Most of the oxytocinergic perikarya lack nuclear steroid receptors but express proteins suspected to be membrane receptors for steroids. Oxytocin expressing neurons contain enzymes important for intrinsic steroid metabolism. Furthermore, they produce and probably liberate specific steroid-binding globulins. Rapid responses to steroid hormones may involve these binding proteins and membrane-associated receptors, rather than classic nuclear receptors and genomic pathways. Neuroendocrine regulation, reproductive behaviors, and stress response seem to depend on these mechanisms.
Collapse
Affiliation(s)
| | - Scott D Ochs
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| | - Jack D Caldwell
- Dept. of Pharmacology, Via College of Osteopathic Medicine, Spartanburg, SC, USA
| |
Collapse
|
89
|
Effects of tamoxifen on neuronal morphology, connectivity and biochemistry of hypothalamic ventromedial neurons: Impact on the modulators of sexual behavior. Neurobiol Dis 2018; 109:33-43. [DOI: 10.1016/j.nbd.2017.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/06/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022] Open
|
90
|
Boivin JR, Piekarski DJ, Wahlberg JK, Wilbrecht L. Age, sex, and gonadal hormones differently influence anxiety- and depression-related behavior during puberty in mice. Psychoneuroendocrinology 2017; 85:78-87. [PMID: 28837909 PMCID: PMC6596309 DOI: 10.1016/j.psyneuen.2017.08.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 01/21/2023]
Abstract
Anxiety and depression symptoms increase dramatically during adolescence, with girls showing a steeper increase than boys after puberty onset. The timing of the onset of this sex bias led us to hypothesize that ovarian hormones contribute to depression and anxiety during puberty. In humans, it is difficult to disentangle direct effects of gonadal hormones from social and environmental factors that interact with pubertal development to influence mental health. To test the role of gonadal hormones in anxiety- and depression-related behavior during puberty, we manipulated gonadal hormones in mice while controlling social and environmental factors. Similar to humans, we find that mice show an increase in depression-related behavior from pre-pubertal to late-pubertal ages, but this increase is not dependent on gonadal hormones and does not differ between sexes. Anxiety-related behavior, however, is more complex during puberty, with differences that depend on sex, age, behavioral test, and hormonal status. Briefly, males castrated before puberty show greater anxiety-related behavior during late puberty compared to intact males, while pubertal females are unaffected by ovariectomy or hormone injections in all assays except the marble burying test. Despite this sex-specific effect of pubertal hormones on anxiety-related behavior, we find no sex differences in intact young adults, suggesting that males and females use separate mechanisms to converge on a similar behavioral phenotype. Our results are consistent with anxiolytic effects of testicular hormones during puberty in males but are not consistent with a causal role for ovarian hormones in increasing anxiety- and depression-related behavior during puberty in females.
Collapse
Affiliation(s)
- Josiah R. Boivin
- UC San Francisco, Neuroscience Graduate Program, 1550 4th St., San Francisco, CA 94158, USA
| | - David J. Piekarski
- UC Berkeley, Department of Psychology, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Jessica K. Wahlberg
- UC Berkeley, Department of Psychology, 16 Barker Hall, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- UC Berkeley, Department of Psychology, 16 Barker Hall, Berkeley, CA 94720, USA; UC Berkeley, Helen Wills Neuroscience Institute, 16 Barker Hall, Berkeley, CA 94720, USA.
| |
Collapse
|
91
|
The anticancer estrogen receptor antagonist tamoxifen impairs consolidation of inhibitory avoidance memory through estrogen receptor alpha. J Neural Transm (Vienna) 2017; 124:1331-1339. [DOI: 10.1007/s00702-017-1785-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/27/2017] [Indexed: 12/20/2022]
|
92
|
Lee TJ, Kinzig KP. Reprint of "Repeated adolescent activity-based anorexia influences central estrogen signaling and adulthood anxiety-like behaviors in rats". Physiol Behav 2017; 178:179-186. [PMID: 28341321 DOI: 10.1016/j.physbeh.2017.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/28/2016] [Accepted: 12/17/2016] [Indexed: 11/18/2022]
Abstract
Anorexia nervosa (AN) typically presents in adolescence and is highly comorbid with anxiety and depression, which often persist after elimination of AN symptomology. The activity-based anorexia (ABA) paradigm allows for evaluation of behavioral and neuroendocrine consequences of AN-like behaviors, including voluntary anorexia, hyperactivity, and disruption of the hypothalamic-pituitary-gonadal (HPG) and the hypothalamic pituitary adrenal (HPA) axis. Because ABA in adolescent females results in increased anxiety-like behavior in adulthood and the estrogen signaling system has been shown to play a role in anxiety and food intake, we investigated the role of ovarian hormones in adolescent ABA-treated rats, and long-term effects of mid- and late adolescent ABA exposure on behavior and estrogen signaling. While previous research demonstrated that two bouts of ABA during adolescence resulted in decreased time in the open arm of the elevated plus maze (EPM) and increased activity of the HPA axis in response to a novel stressor, here we show that one bout of ABA in mid-or late-adolescence did not result in the same behavioral outcome. Two exposures to ABA during adolescence were necessary to produce long-term anxiety-like behavior on the EPM. Finally, removal of ovarian hormones by ovariectomy (OVX) prior to puberty did not attenuate long-term behavioral consequences of ABA in adolescence, and estrogen receptor β (ERβ) expression level in the amygdala of ABA rats was significantly lower than control subjects. Taken together, these studies identify enduring effects of ABA in adolescent females that may be mediated by ABA-induced changes to CNS ERβ signaling that increase anxiety-like behaviors.
Collapse
Affiliation(s)
- Tien-Jui Lee
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| | - Kimberly P Kinzig
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
93
|
Oyola MG, Thompson MK, Handa AZ, Handa RJ. Distribution and chemical composition of estrogen receptor β neurons in the paraventricular nucleus of the female and male mouse hypothalamus. J Comp Neurol 2017; 525:3666-3682. [PMID: 28758220 DOI: 10.1002/cne.24295] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Activation of estrogen receptor beta (ERβ)-expressing neurons regulates the mammalian stress response via the hypothalamic-pituitary-adrenal (HPA) axis. These neurons densely populate the paraventricular nucleus of the hypothalamus (PVN). Recent research has revealed striking differences between rat and mouse PVN cytochemistry, but careful exploration of PVN ERβ neurons in mice has been hindered by a lack of specific ERβ antisera. Therefore, we used male and female transgenic mice expressing EGFP under the control of the mouse ERβ promoter (ERβ-EGFP) to examine the chemical architecture of PVN ERβ cells. Using immunohistochemistry, we found that 90% of ERβ-immunoreactivity (-ir) colocalized with EGFP. Cellular colocalization of EGFP with neuropeptides, transcription modulators, and neuronal tracers was examined throughout the PVN. ERβ-EGFP cells expressed oxytocin more abundantly in the rostral (71 ± 3%) than caudal (33 ± 8%) PVN. Arginine vasopressin colocalized with EGFP more often in females (18 ± 3%) than males (4 ± 1%). Moreover, estrogen receptor α-ir colocalized with ERβ-EGFP at low levels (15 ± 3%). Using a corticotropin releasing hormone-cre driver X tdTomato reporter mouse, we found a moderate colocalization with ERβ-ir (48 ± 16%) in the middle PVN. Peripheral injection of fluorogold revealed that the rostral PVN ERβ-EGFP cells are neuroendocrine neurons whereas non-neuroendocrine (presumably pre-autonomic) ERβ-EGFP neurons predominated in the posterior PVN. These data demonstrate chemoarchitectural differences in ERβ neurons of the mouse PVN that are different from that previously described for the rat, thus, elucidating potential neuronal pathways involved in the regulation of the HPA axis in mice.
Collapse
Affiliation(s)
- Mario G Oyola
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Maranda K Thompson
- Department of Basic Medical Sciences, Univ. Arizona College of Medicine, Phoenix, Arizona
| | - Aaron Z Handa
- Department of Basic Medical Sciences, Univ. Arizona College of Medicine, Phoenix, Arizona
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
94
|
Molecular cloning of ESR2 and gene expression analysis of ESR1 and ESR2 in the pituitary gland of the Chinese alligator ( Alligator sinensis ) during female reproductive cycle. Gene 2017; 623:15-23. [DOI: 10.1016/j.gene.2017.04.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/04/2017] [Accepted: 04/12/2017] [Indexed: 02/02/2023]
|
95
|
Abstract
BACKGROUND In adults, hypothalamus-pituitary-adrenal (HPA) axis activity shows sexual dimorphism, and this is thought to be a mechanism underlying sex-specific disease incidence. Evidence is scarce on whether these sex differences are also present in childhood. In a meta-analysis, we recently found that basal (non-stimulated) cortisol in saliva and free cortisol in 24-h urine follow sex-specific patterns. We explored whether these findings could be extended with sex differences in HPA axis reactivity. METHODS From inception to January 2016, PubMed and EMBASE.com were searched for studies that assessed HPA axis reactivity in healthy girls and boys aged ≤18 years. Articles were systematically assessed and reported in the categories: (1) diurnal rhythm, (2) cortisol awakening response (CAR), (3) protocolled social stress tests similar or equal to the Trier Social Stress Test for children (TSST-C), (4) pharmacological (ACTH and CRH) stress tests, and (5) miscellaneous stress tests. RESULTS Two independent assessors selected 109 out of 6158 records for full-text screening, of which 81 studies (with a total of 14,591 subjects) were included. Studies showed that girls had a tendency towards a more variable diurnal rhythm (12 out of 29 studies), a higher CAR (8 out of 18 studies), and a stronger cortisol response to social stress tests (9 out of 21 studies). We found no evidence for sex differences in cortisol response after a pharmacological challenge or to miscellaneous stress tests. DISCUSSION Sex differences in HPA axis reactivity appear to be present in childhood, although evidence is not unequivocal. For a better evaluation of sex differences in HPA axis reactivity, standardization of protocols and reports of stress tests is warranted.
Collapse
|
96
|
Viral-mediated overexpression of the Myelin Transcription Factor 1 (MyT1) in the dentate gyrus attenuates anxiety- and ethanol-related behaviors in rats. Psychopharmacology (Berl) 2017; 234:1829-1840. [PMID: 28303373 DOI: 10.1007/s00213-017-4588-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/02/2017] [Indexed: 12/19/2022]
Abstract
RATIONALE Myelin Transcription Factor 1 (MyT1), a member of the Zinc Finger gene family, plays a fundamental role in the nervous system. Recent research has suggested that this transcription factor is associated with the pathophysiology of psychiatric disorders including addiction, schizophrenia, and depression. However, the role of MyT1 in anxiety- and ethanol-related behaviors is still unknown. OBJECTIVES We evaluated the effects of lentiviral-mediated overexpression of MyT1 in the dentate gyrus (DG) on anxiety- and ethanol-related behaviors in rats. METHODS We used the elevated plus maze (EPM) and the open field (OF) tests to assess anxiety-like behavior and a two-bottle choice procedure to measure the effects of MyT1 on ethanol intake and preference. RESULTS MyT1 overexpression produced anxiolytic-like effects in the EPM test and decreased the number of fecal boli in the OF test, without affecting locomotor activity in both behavioral tests. Next, we demonstrated that ethanol intake and preference were decreased in the MyT1-overexpressing rats with no effect on saccharin and quinine, used to assess taste discrimination, and no effect on ethanol clearance suggesting specific alterations in the rewarding effects of ethanol. Most importantly, ectopic MyT1 overexpression increased both MyT1 and BDNF mRNA levels in the DG. Using Pearson's correlation, results showed a strong negative relationship between MyT1 mRNA and anxiety parameters and ethanol consumption and a positive correlation between MyT1 and BDNF mRNAs. CONCLUSION Taken together, MyT1 along with being a key component in anxiety may be a suitable candidate in the search of the molecular underpinnings of alcoholism.
Collapse
|
97
|
Patisaul HB. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours. Proc Nutr Soc 2017; 76:130-144. [PMID: 27389644 PMCID: PMC5646220 DOI: 10.1017/s0029665116000677] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is 'synthetic' v. what is 'natural,' shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences,Center for Human Health and the Environment,NC State University,Raleigh,NC 27695,USA
| |
Collapse
|
98
|
Równiak M. The neurons expressing calcium-binding proteins in the amygdala of the guinea pig: precisely designed interface for sex hormones. Brain Struct Funct 2017; 222:3775-3793. [PMID: 28456912 PMCID: PMC5676811 DOI: 10.1007/s00429-017-1432-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 04/24/2017] [Indexed: 01/18/2023]
Abstract
The generation of emotional responses by the amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons. These responses are often sex-specific, and any imbalance in excitatory and/or inhibitory tones leads to serious psychiatric disorders which occur with different rates in men versus women. To investigate the neural basis of sex-specific processing in the amygdala, relationships between the neurons expressing calbindin (CB), parvalbumin (PV) and calretinin (CR), which form in the amygdala main subsets of γ-aminobutyric acid (GABA)-ergic inhibitory system, and neurons endowed with oestrogen alpha (ERα), oestrogen beta (ERβ) or androgen (AR) receptors were analysed using double immunohistochemistry in male and female guinea pig subjects. The results show that in various nuclei of the amygdala in both sexes small subsets of CB neurons and substantial proportions of PV neurons co-express ERβ, while many of the CR neurons co-express ERα. Both these oestrogen-sensitive populations are strictly separated as CB and PV neurons almost never co-express ERα, while CR cells are usually devoid of ERβ. In addition, in the medial nucleus and some other neighbouring regions, there are non-overlapping subpopulations of CB and CR neurons which co-express AR. In conclusion, the localization of ERα, ERβ or AR within subsets of GABAergic interneurons across diverse amygdaloid regions suggests that steroid hormones may exert a significant influence over local neuronal activity by directly modulating inhibitory tone. The control of inhibitory tone may be one of the mechanisms whereby oestrogen and androgen could modulate amygdala processing in a sex-specific manner. Another mechanism may be thorough steroid-sensitive projection neurons, which are most probably located in the medial and central nuclei.
Collapse
Affiliation(s)
- Maciej Równiak
- Department of Comparative Anatomy, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-727, Olsztyn, Poland.
| |
Collapse
|
99
|
Abstract
Anorexia nervosa is a psychiatric disorder characterized by altered body image, persistent food restriction and low body weight, and is associated with global endocrine dysregulation in both adolescent girls and women. Dysfunction of the hypothalamic-pituitary axis includes hypogonadotropic hypogonadism with relative oestrogen and androgen deficiency, growth hormone resistance, hypercortisolaemia, non-thyroidal illness syndrome, hyponatraemia and hypooxytocinaemia. Serum levels of leptin, an anorexigenic adipokine, are suppressed and levels of ghrelin, an orexigenic gut peptide, are elevated in women with anorexia nervosa; however, levels of peptide YY, an anorexigenic gut peptide, are paradoxically elevated. Although most, but not all, of these endocrine disturbances are adaptive to the low energy state of chronic starvation and reverse with treatment of the eating disorder, many contribute to impaired skeletal integrity, as well as neuropsychiatric comorbidities, in individuals with anorexia nervosa. Although 5-15% of patients with anorexia nervosa are men, only limited data exist regarding the endocrine impact of the disease in adolescent boys and men. Further research is needed to understand the endocrine determinants of bone loss and neuropsychiatric comorbidities in anorexia nervosa in both women and men, as well as to formulate optimal treatment strategies.
Collapse
Affiliation(s)
- Melanie Schorr
- Neuroendocrine Unit, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 457B, Boston, Massachusetts 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 457B, Boston, Massachusetts 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA
| |
Collapse
|
100
|
Russell AL, Grimes JM, Larco DO, Cruthirds DF, Westerfield J, Wooten L, Keil M, Weiser MJ, Landauer MR, Handa RJ, Wu TJ. The interaction of dietary isoflavones and estradiol replacement on behavior and brain-derived neurotrophic factor in the ovariectomized rat. Neurosci Lett 2017; 640:53-59. [PMID: 28077306 DOI: 10.1016/j.neulet.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
Phytoestrogens are plant derived, non-steroidal compounds naturally found in rodent chows that potentially have endocrine-disrupting effects. Isoflavones, the most common phytoestrogens, have a similar structure and molecular weight to 17β-estradiol (E2) and have the ability to bind and activate both isoforms of the estrogen receptor (ER). Most isoflavones have a higher affinity for ERβ, which is involved in sexually dimorphic behavioral regulation. The goal of this study was to examine the interaction of isoflavones and E2 presence in the OVX rat on anxiety- and depressive- like behavior and the related BDNF pathophysiology. E2 administration resulted in anxiogenic behaviors when isoflavones were present in the diet (p<0.05), but anxiolytic behaviors when isoflavones were not present (p<0.05). E2 resulted in antidepressive-like behaviors in animals fed an isoflavone-rich diet (p<0.05), with no effect when isoflavones were removed. Increased hippocampal BDNF expression was observed in animals fed an isoflavone-rich diet after E2 administration (p<0.05). BDNF expression in the amygdala and hypothalamus was increased after E2 treatment in animals fed an isoflavone-rich diet. Overall, these results demonstrate that the presence of dietary isoflavones can differentially regulate the effect of E2 replacement on behavior and BDNF expression.
Collapse
Affiliation(s)
- Ashley L Russell
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Jamie Moran Grimes
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Darwin O Larco
- Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States
| | - Danette F Cruthirds
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joanna Westerfield
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Lawren Wooten
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Margaret Keil
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Michael J Weiser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Michael R Landauer
- Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States; Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|