51
|
Hasegawa M, Wada H. Developmental hypothyroidism disrupts visual signal detection performance in rats. Physiol Behav 2013; 112-113:90-5. [DOI: 10.1016/j.physbeh.2013.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/08/2012] [Accepted: 02/26/2013] [Indexed: 01/06/2023]
|
52
|
Gilbert ME, Hedge JM, Valentín-Blasini L, Blount BC, Kannan K, Tietge J, Zoeller RT, Crofton KM, Jarrett JM, Fisher JW. An Animal Model of Marginal Iodine Deficiency During Development: The Thyroid Axis and Neurodevelopmental Outcome*. Toxicol Sci 2013; 132:177-95. [DOI: 10.1093/toxsci/kfs335] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
53
|
Gilbert ME, Lasley SM. Developmental thyroid hormone insufficiency and brain development: a role for brain-derived neurotrophic factor (BDNF)? Neuroscience 2012. [PMID: 23201250 DOI: 10.1016/j.neuroscience.2012.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (TH) are essential for normal brain development. Even modest degrees of TH disruption experienced in utero can result in neuropsychological deficits in children despite normal thyroid status at birth. Neurotrophins have been implicated in a host of brain cellular functions, and in particular, brain-derived neurotrophic factor (BDNF) has a well documented role in development and function of the nervous system. A number of laboratories have reported the effects of TH administration or severe deprivation on neurotrophin expression in brain. This review provides an overview and update of recent developments in the thyroid field as they relate to the nervous system. Secondly, we describe an animal model of low level TH insufficiency that is more relevant for studying the neurological consequences associated with the modest TH perturbations of subclinical hypothyroidism, or that would be anticipated from exposure to environmental contaminants with a mode-of-action that involves the thyroid. Finally, we review the available in vivo literature on TH-mediated alterations in neurotrophins, particularly BDNF, and discuss their possible contribution to brain impairments associated with TH insufficiency. The observations of altered BDNF protein and gene expression have varied as a function of hypothyroid model, age, and brain region assessed. Only a handful of studies have investigated the relationship of neurotrophins and TH using models of TH deprivation that are not severe, and dose-response information is sparse. Differences in the models used, species, doses, regions assessed, age at assessment, and method employed make it difficult to reach a consensus. Based on the available literature, the case for a direct role for BDNF in thyroid-mediated effects in the brain is not compelling. We conclude that delineation of the potential role of neurotrophins in TH-mediated neuronal development may be more fruitful by examining additional neurotrophins (e.g., nerve growth factor), moderate degrees of TH insufficiency, and younger ages. We further suggest that investigation of BDNF invoked by synaptic activation (i.e., plasticity, enrichment, trauma) may serve to elucidate a role of thyroid hormone in BDNF-regulated synaptic function.
Collapse
Affiliation(s)
- M E Gilbert
- Toxicity Assessment Division, Neurotoxicology Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| | | |
Collapse
|
54
|
Ohishi T, Wang L, Akane H, Shiraki A, Goto K, Ikarashi Y, Suzuki K, Mitsumori K, Shibutani M. Reversible aberration of neurogenesis affecting late-stage differentiation in the hippocampal dentate gyrus of rat offspring after maternal exposure to manganese chloride. Reprod Toxicol 2012; 34:408-19. [DOI: 10.1016/j.reprotox.2012.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 03/15/2012] [Accepted: 04/25/2012] [Indexed: 01/13/2023]
|
55
|
Powell MH, Nguyen HV, Gilbert M, Parekh M, Colon-Perez LM, Mareci TH, Montie E. Magnetic resonance imaging and volumetric analysis: novel tools to study the effects of thyroid hormone disruption on white matter development. Neurotoxicology 2012; 33:1322-9. [PMID: 22975424 DOI: 10.1016/j.neuro.2012.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/08/2012] [Accepted: 08/21/2012] [Indexed: 11/16/2022]
Abstract
Humans and wildlife are exposed to environmental pollutants that have been shown to interfere with the thyroid hormone system and thus may affect brain development. Our goal was to expose pregnant rats to propylthiouracil (PTU) to measure the effects of a goitrogen on white matter development in offspring using magnetic resonance imaging (MRI) and volumetric analysis. We exposed pregnant Sprague Dawley (SD) rats to 3 or 10 ppm PTU from gestation day 7 (GD7) until postnatal day 25 (P25) to determine the effects on white matter (WM), gray matter (GM), and hippocampus volumes in offspring. We sacrificed offspring at P25 but continued the life of some offspring to P90 to measure persistent effects in adult animals. P25 offspring exposed to 10 ppm PTU displayed lowered levels of triiodothyronine (T3) and thyroxine (T4); cerebral WM, GM, and total brain volumes were significantly lower than the volumes in control animals. P90 adults exposed to 10 ppm PTU displayed normal T3 levels but lowered T4 levels; WM, GM, total brain, and hippocampal volumes were significantly lower than the volumes in control adults. Both P25 and P90 rats exposed to 10 ppm PTU displayed significant reductions in percent WM as well as heterotopias in the corpus callosum. Exposure to 3 ppm PTU did not produce any significant effects. These results suggest that MRI coupled with volumetric analysis is a powerful tool in assessing the effects of thyroid hormone disruption on white matter development and brain structure. This approach holds great promise in assessing neurotoxicity of xenobiotics in humans and wildlife.
Collapse
Affiliation(s)
- Michael H Powell
- Department of Natural Sciences, University of South Carolina Beaufort, Bluffton, SC 29909, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Mohan V, Sinha RA, Pathak A, Rastogi L, Kumar P, Pal A, Godbole MM. Maternal thyroid hormone deficiency affects the fetal neocorticogenesis by reducing the proliferating pool, rate of neurogenesis and indirect neurogenesis. Exp Neurol 2012; 237:477-88. [PMID: 22892247 DOI: 10.1016/j.expneurol.2012.07.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 06/26/2012] [Accepted: 07/31/2012] [Indexed: 01/25/2023]
Abstract
Neuronal progenitor cell proliferation and their optimum number are indispensable for neurogenesis, which is determined by cell cycle length and cell cycle quitting rate of the dividing progenitors. These processes are tightly orchestrated by transcription factors like Tbr2, Pax6, and E2f-1. Radial glia and intermediate progenitor cells (IPC) through direct and indirect neurogenesis maintain surface area and neocortical thickness during development. Here we show that fetal neurogenesis is maternal thyroid hormone (MTH) dependent with differential effect on direct and indirect neurogenesis. MTH deficiency (MTHD) impairs direct neurogenesis through initial down-regulation of Pax6 and diminished progenitor pool with recovery even before the onset of fetal thyroid function (FTF). However, persistent decrease in Tbr2 positive IPCs, diminished NeuN positivity in layers I-III of neocortex, and reduced cortical thickness indicate a non-compensatory impairment in indirect neurogenesis. TH deficiency causes disrupted cell cycle kinetics and deranged neurogenesis. It specifically affects indirect neurogenesis governed by intermediate progenitor cells (IPCs). TH replacement in hypothyroid dams partially restored the rate of neurogenesis in the fetal neocortex. Taken together we describe a novel role of maternal TH in promoting IPCs derived neuronal differentiation in developing neo-cortex. We have also shown for the first time that ventricular zone progenitors are TH responsive as they express its receptor, TR alpha-1, transporters (MCT8) and deiodinases. This study highlights the importance of maternal thyroid hormone (TH) even before the start of the fetal thyroid function.
Collapse
Affiliation(s)
- Vishwa Mohan
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP India
| | | | | | | | | | | | | |
Collapse
|
57
|
Gilbert ME, Rovet J, Chen Z, Koibuchi N. Developmental thyroid hormone disruption: Prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology 2012; 33:842-52. [DOI: 10.1016/j.neuro.2011.11.005] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022]
|
58
|
Increased cellular distribution of vimentin and Ret in the cingulum induced by developmental hypothyroidism in rat offspring maternally exposed to anti-thyroid agents. Reprod Toxicol 2012; 34:93-100. [DOI: 10.1016/j.reprotox.2012.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 02/19/2012] [Accepted: 03/16/2012] [Indexed: 12/16/2022]
|
59
|
Wang L, Ohishi T, Shiraki A, Morita R, Akane H, Ikarashi Y, Mitsumori K, Shibutani M. Developmental exposure to manganese chloride induces sustained aberration of neurogenesis in the hippocampal dentate gyrus of mice. Toxicol Sci 2012; 127:508-21. [PMID: 22407947 DOI: 10.1093/toxsci/kfs110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The effect of exogenously administered manganese (Mn) on developmental neurogenesis in the hippocampal dentate gyrus was examined in male mice after maternal exposure to MnCl(2) (0, 32, 160, or 800 ppm as Mn in diet) from gestational day 10 to day 21 after delivery on weaning. Immunohistochemistry was performed to monitor neurogenesis and interneuron subpopulations on postnatal days (PNDs) 21 and 77 (adult stage). Reelin-synthesizing γ-aminobutyric acid (GABA)ergic interneurons increased in the hilus with ≥ 160 ppm on weaning to sustain to PND 77 at 800 ppm. Apoptosis in the neuroblast-producing subgranular zone increased with 800 ppm and TUC4-expressing immature granule cells decreased with 800 ppm on weaning, whereas at the adult stage, immature granule cells increased. On PND 21, transcript levels increased with Reln and its receptor gene Lrp8 and decreased with Dpysl3 coding TUC4 in the dentate gyrus, confirming immunohistochemical results. Double immunohistochemistry revealed a sustained increase of reelin-expressing and NeuN-lacking or weakly positive immature interneurons and NeuN-expressing mature neurons in the hilus through to the adult stage as examined at 800 ppm. Brain Mn concentrations increased at both PNDs 21 and 77 in all MnCl(2)-exposed groups. These results suggest that Mn targets immature granule cells causing apoptosis and neuronal mismigration. Sustained increases in immature reelin-synthesizing GABAergic interneurons may represent continued aberration in neurogenesis and following migration to cause an excessive response for overproduction of immature granule cells through to the adult stage. Sustained high concentration of Mn in the brain may be responsible for these changes.
Collapse
Affiliation(s)
- Liyun Wang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Schlenker EH. Effects of hypothyroidism on the respiratory system and control of breathing: Human studies and animal models. Respir Physiol Neurobiol 2012; 181:123-31. [DOI: 10.1016/j.resp.2012.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/16/2012] [Accepted: 02/19/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Evelyn H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St., Vermillion, SD 57069, United States.
| |
Collapse
|
61
|
Similar distribution changes of GABAergic interneuron subpopulations in contrast to the different impact on neurogenesis between developmental and adult-stage hypothyroidism in the hippocampal dentate gyrus in rats. Arch Toxicol 2012; 86:1559-69. [DOI: 10.1007/s00204-012-0846-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/14/2012] [Indexed: 11/25/2022]
|
62
|
Picou F, Fauquier T, Chatonnet F, Flamant F. A bimodal influence of thyroid hormone on cerebellum oligodendrocyte differentiation. Mol Endocrinol 2012; 26:608-18. [PMID: 22361821 DOI: 10.1210/me.2011-1316] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone (T(3)) can trigger a massive differentiation of cultured oligodendrocytes precursor cells (OPC) by binding the nuclear T(3) receptor α1 (TRα1). Whether this reflects a physiological function of TRα1 remains uncertain. Using a recently generated mouse model, in which CRE/loxP recombination is used to block its function, we show that TRα1 acts at two levels for the in vivo differentiation of OPC in mouse cerebellum. At the early postnatal stage, it promotes the secretion of several neurotrophic factors by acting in Purkinje neurons and astrocytes, defining an environment suitable for OPC differentiation. At later stages, TRα1 acts in a cell-autonomous manner to ensure the complete arrest of OPC proliferation. These data explain contradictory observations made on various models and outline the importance of T(3) signaling both for synchronizing postnatal neurodevelopment and restraining OPC proliferation in adult brain.
Collapse
Affiliation(s)
- Frédéric Picou
- Université Lyon 1, Centre National de la Recherche Scientifique, Institut de la Recherché Agronomique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
63
|
Paquette MA, Dong H, Gagné R, Williams A, Malowany M, Wade MG, Yauk CL. Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses. BMC Genomics 2011; 12:634. [PMID: 22206413 PMCID: PMC3340398 DOI: 10.1186/1471-2164-12-634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023] Open
Abstract
Background Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid). A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement). An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid). Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays. Results Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences in vivo and that it can bind directly to these sequences in vitro. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb) of the transcription start site of the regulated gene. Conclusions Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search revealed new thyroid response elements associated with genes previously unknown to be responsive to thyroid hormone. The work provides insight into thyroid response element sequence motif characteristics.
Collapse
Affiliation(s)
- Martin A Paquette
- Environmental Health Sciences and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Colombine Driveway, Ottawa, Ontario K1A 0K9, Canada
| | | | | | | | | | | | | |
Collapse
|
64
|
Torremante P, Flock F, Kirschner W. Free thyroxine level in the high normal reference range prescribed for nonpregnant women may reduce the preterm delivery rate in multiparous. J Thyroid Res 2011; 2011:905734. [PMID: 22203918 PMCID: PMC3238402 DOI: 10.4061/2011/905734] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 01/06/2023] Open
Abstract
Preterm birth is the most common reason for perinatal morbidity and mortality in the western world. It has been shown that in euthyreotic pregnant women with thyroid autoimmune antibodies, L-Thyroxine replacement reduces preterm delivery rate in singleton pregnancies. We investigated in a nonrandomized retrospective observational study whether L-Thyroxine replacement, maintaining maternal free thyroxine serum level in the high normal reference range prescribed for nonpregnant women also influences the rate of preterm delivery in women without thyroid autoimmune antibodies. As control group for preterm delivery rate, data from perinatal statistics of the State of Baden-Württemberg from 2006 were used. The preterm delivery rate in the study group was significantly reduced. The subgroup analysis shows no difference in primiparous but a decline in multiparous by approximately 61% with L-Thyroxine replacement. Maintaining free thyroxine serum level in the high normal reference range prescribed for nonpregnant women may reduce the preterm delivery rate.
Collapse
Affiliation(s)
- P Torremante
- Praxis für Gynäkologie und Geburtshilfe, Marktplatz 29, 88416 Ochsenhausen, Germany
| | | | | |
Collapse
|
65
|
Shibutani M, Fujimoto H, Woo GH, Inoue K, Takahashi M, Nishikawa A. Reply to Comment on “Impaired oligodendroglial development by decabromodiphenyl ether in rat offspring after maternal exposure from mid-gestation through lactation” [Reprod. Toxicol. 31(1) (2011) 86–94]. Reprod Toxicol 2011. [DOI: 10.1016/j.reprotox.2011.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Woodruff TJ. Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects. J Steroid Biochem Mol Biol 2011; 127:108-17. [PMID: 21112393 PMCID: PMC6628916 DOI: 10.1016/j.jsbmb.2010.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
Concerning temporal trends in human reproductive health has prompted concern about the role of environmentally mediated risk factors. The population is exposed to chemicals present in air, water, food and in a variety of consumer and personal care products, subsequently multiple chemicals are found human populations around the globe. Recent reviews find that endocrine disrupting chemicals (EDCs) can adversely affect reproductive and developmental health. However, there are still many knowledge gaps. This paper reviews some of the key scientific concepts relevant to integrating information from human epidemiologic and model organisms to understand the relationship between EDC exposure and adverse human health effects. Additionally, areas of new insights which influence the interpretation of the science are briefly reviewed, including: enhanced understanding of toxicity pathways; importance of timing of exposure; contribution of multiple chemical exposures; and low dose effects. Two cases are presented, thyroid disrupting chemicals and anti-androgens chemicals, which illustrate how our knowledge of the relationship between EDCs and adverse human health effects is strengthened and data gaps reduced when we integrate findings from animal and human studies.
Collapse
Affiliation(s)
- Tracey J Woodruff
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, Oakland, CA 94612, United States.
| |
Collapse
|
67
|
Gilbert ME. Impact of Low-Level Thyroid Hormone Disruption Induced by Propylthiouracil on Brain Development and Function. Toxicol Sci 2011; 124:432-45. [DOI: 10.1093/toxsci/kfr244] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
68
|
Schlenker EH, Schultz HD. Hypothyroidism attenuates SCH 23390-mediated depression of breathing and decreases D1 receptor expression in carotid bodies, PVN and striatum of hamsters. Brain Res 2011; 1401:40-51. [PMID: 21669406 DOI: 10.1016/j.brainres.2011.05.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/09/2011] [Accepted: 05/14/2011] [Indexed: 11/28/2022]
Abstract
Hypothyroidism can lead to depressed breathing. We determined if propylthiouracil (PTU)-induced hypothyroidismin hamsters (HH) altered dopamine D1 receptor expression, D1 receptor-modulated ventilation, and ventilatory chemoreflex activation by hypoxia or hypercapnia. Hypothyroidism was induced by administering 0.04% PTU in drinking water for 3 months. Ventilation was evaluated following saline or 0.25mg/kg SCH 23390,a D1 receptor antagonist, while awake hamsters breathed normoxic (21% O(2) in N(2)), hypoxic (10% O(2)in N(2)) and hypercapnic (5% CO(2) in O(2))air. Relative to euthyroid hamsters (EH), HH exhibited decreased D1 receptor protein levels in carotid bodies, striatum, and hypothalamic paraventricular nucleus, but not in the nucleus tractus solitarius. Relative to EH, HH exhibited lower ventilation during exposure to normoxia, hypoxia, or hypercapnia, but comparable ventilatory responsiveness to chemoreflex activation. SCH23390 decreased ventilation of EH hamsters exposed to normoxia, hypoxia, and hypercapnia. In HH SCH23390 increased ventilation during baseline normoxia and did not affect ventilation during exposure to hypoxia and hypercapnia, resulting in reduced ventilatory responsivess to chemoreflex activation by hypoxia and hypercapnia. Furthermore, in HH D1 receptor protein levels are decreased in several brain regions and within the carotid bodies. Moreover, D1 receptor-modulation of breathing at rest and during gas exposures were depressed in EH but not HH.
Collapse
Affiliation(s)
- Evelyn H Schlenker
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, 414 East Clark St., Vermillion, SD 57069, USA.
| | | |
Collapse
|
69
|
Lasley SM, Gilbert ME. Developmental thyroid hormone insufficiency reduces expression of brain-derived neurotrophic factor (BDNF) in adults but not in neonates. Neurotoxicol Teratol 2011; 33:464-72. [PMID: 21530650 DOI: 10.1016/j.ntt.2011.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/08/2011] [Accepted: 04/08/2011] [Indexed: 01/21/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin critical for many developmental and physiological aspects of CNS function. Severe hypothyroidism in the early neonatal period results in developmental and cognitive impairments and reductions in mRNA and protein expression of BDNF in a number of brain regions. The present study examined the impact of modest levels of developmental thyroid hormone insufficiency on BDNF protein expression in the hippocampus, cortex and cerebellum in the neonatal and adult offspring of rat dams treated throughout pregnancy and lactation. Graded levels of hormone insufficiency were induced by adding propylthiouracil (PTU, 0, 1, 2, 3 and 10 ppm) to the drinking water of pregnant dams from early gestation (gestational day 6) until weaning of the pups. Pups were sacrificed on postnatal days (PN) 14 and 21, and -PN100, and trunk blood collected for thyroid hormone analysis. Hippocampus, cortex, and cerebellum were separated from dissected brains and assessed for BDNF protein. Dose-dependent reductions in serum hormones in dams and pups were produced by PTU. Consistent with previous findings, age and regional differences in BDNF concentrations were observed. However, no differences in BDNF expression were detected in the preweanling animals as a function of PTU exposure; yet dose-dependent alterations emerged in adulthood despite the return of thyroid hormone levels to control values. Males were more affected by PTU than females, BDNF levels in hippocampus and cortex were altered but not those in cerebellum, and biphasic dose-response functions were detected in both sexes. These findings indicate that BDNF may mediate some of the adverse effects accompanying developmental thyroid hormone insufficiency, and reflect the potential for delayed impact of modest reductions in thyroid hormones during critical periods of brain development on a protein important for normal synaptic function.
Collapse
Affiliation(s)
- S M Lasley
- Dept. of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | | |
Collapse
|
70
|
Fujimoto H, Woo GH, Inoue K, Takahashi M, Hirose M, Nishikawa A, Shibutani M. Impaired oligodendroglial development by decabromodiphenyl ether in rat offspring after maternal exposure from mid-gestation through lactation. Reprod Toxicol 2011; 31:86-94. [DOI: 10.1016/j.reprotox.2010.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 08/10/2010] [Accepted: 09/03/2010] [Indexed: 11/28/2022]
|
71
|
Disruptive neuronal development by acrylamide in the hippocampal dentate hilus after developmental exposure in rats. Arch Toxicol 2010; 85:987-94. [DOI: 10.1007/s00204-010-0622-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 11/09/2010] [Indexed: 11/25/2022]
|
72
|
Berbel P, Bernal J. Hypothyroxinemia: a subclinical condition affecting neurodevelopment. Expert Rev Endocrinol Metab 2010; 5:563-575. [PMID: 30780800 DOI: 10.1586/eem.10.37] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hypothyroxinemia with low levels of circulating free thyroxine and normal levels of thyrotropin, which is usually caused by iodine deficiency, may affect pregnant women even in apparently iodine-sufficient areas, and it is debated whether it increases the risk of neurodevelopmental abnormalities in children born to them. Epidemiological observations indeed indicate that this is the case. Animal models show abnormal brain cortical cytoarchitecture in pups born to mildly hypothyroxinemic dams. In regions where the availability and use of iodized salt is inadequate (where <90% of households use iodized salt), the WHO and the International Council for Control of Iodine Deficiency Disorders (ICCIDD) recommend iodine supplementation so that the total iodine intake is 250 µg/day to prevent iodine deficiency during gestation and lactation.
Collapse
Affiliation(s)
- Pere Berbel
- a Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Campus de Sant Joan, Apartado de Correos 18, Sant Joan d'Alacant, 03550 Alicante, Spain.
| | - Juan Bernal
- b Instituto de Investigaciones Biomédicas, CSIC-UAM, Centro de Investigación Biomédica en Enfermedades Raras, CIBERER, Arturo Duperier 4, 28029 Madrid, Spain
| |
Collapse
|
73
|
Saegusa Y, Woo GH, Fujimoto H, Kemmochi S, Shimamoto K, Hirose M, Mitsumori K, Nishikawa A, Shibutani M. Sustained production of Reelin-expressing interneurons in the hippocampal dentate hilus after developmental exposure to anti-thyroid agents in rats. Reprod Toxicol 2010; 29:407-14. [DOI: 10.1016/j.reprotox.2010.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/23/2010] [Accepted: 03/21/2010] [Indexed: 01/02/2023]
|
74
|
Berbel P, Navarro D, Ausó E, Varea E, Rodríguez AE, Ballesta JJ, Salinas M, Flores E, Faura CC, de Escobar GM. Role of late maternal thyroid hormones in cerebral cortex development: an experimental model for human prematurity. Cereb Cortex 2010; 20:1462-75. [PMID: 19812240 PMCID: PMC2871377 DOI: 10.1093/cercor/bhp212] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hypothyroxinemia affects 35-50% of neonates born prematurely (12% of births) and increases their risk of suffering neurodevelopmental alterations. We have developed an animal model to study the role of maternal thyroid hormones (THs) at the end of gestation on offspring's cerebral maturation. Pregnant rats were surgically thyroidectomized at embryonic day (E) 16 and infused with calcitonin and parathormone (late maternal hypothyroidism [LMH] rats). After birth, pups were nursed by normal rats. Pups born to LMH dams, thyroxine treated from E17 to postnatal day (P) 0, were also studied. In developing LMH pups, the cortical lamination was abnormal. At P40, heterotopic neurons were found in the subcortical white matter and in the hippocampal stratum oriens and alveus. The Zn-positive area of the stratum oriens of hippocampal CA3 was decreased by 41.5% showing altered mossy fibers' organization. LMH pups showed delayed learning in parallel to decreased phosphorylated cAMP response element-binding protein (pCREB) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) expression in the hippocampus. Thyroxine treatment of LMH dams reverted abnormalities. In conclusion, maternal THs are still essential for normal offspring's neurodevelopment even after onset of fetal thyroid function. Our data suggest that thyroxine treatment of premature neonates should be attempted to compensate for the interruption of the maternal supply.
Collapse
Affiliation(s)
- P Berbel
- Instituto de Neurociencias, Universidad Miguel Hernández and Consejo Superior de Investigaciones Científicas, Sant Joan d'Alacant, Alicante, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
SAEGUSA Y, WOO GH, FUJIMOTO H, INOUE K, TAKAHASHI M, HIROSE M, IGARASHI K, KANNO J, MITSUMORI K, NISHIKAWA A, SHIBUTANI M. Gene Expression Profiling and Cellular Distribution of Molecules with Altered Expression in the Hippocampal CA1 Region after Developmental Exposure to Anti-Thyroid Agents in Rats. J Vet Med Sci 2010; 72:187-95. [DOI: 10.1292/jvms.09-0396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yukie SAEGUSA
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Gye-Hyeong WOO
- Division of Pathology, National Institute of Health Sciences
| | | | - Kaoru INOUE
- Division of Pathology, National Institute of Health Sciences
| | - Miwa TAKAHASHI
- Division of Pathology, National Institute of Health Sciences
| | - Masao HIROSE
- Division of Pathology, National Institute of Health Sciences
- Food Safety Commission, Akasaka Park Bld
| | | | - Jun KANNO
- Division of Molecular Toxicology, National Institute of Health Sciences
| | - Kunitoshi MITSUMORI
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | | | - Makoto SHIBUTANI
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
76
|
Developmental Iodine Deficiency and Hypothyroidism Impair Spatial Memory in Adolescent Rat Hippocampus: Involvement of CaMKII, Calmodulin and Calcineurin. Neurotox Res 2009; 19:81-93. [DOI: 10.1007/s12640-009-9142-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/15/2009] [Accepted: 11/20/2009] [Indexed: 10/20/2022]
|
77
|
Moleti M, Vermiglio F, Trimarchi F. Maternal isolated hypothyroxinemia: To treat or not to treat? J Endocrinol Invest 2009; 32:780-2. [PMID: 19542756 DOI: 10.1007/bf03346536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- M Moleti
- Depaertment of Clinical and Experimantal Medicine and Pharmacology, University of Messina, Messina, Italy
| | | | | |
Collapse
|
78
|
Developmental toxicity of brominated flame retardants, tetrabromobisphenol A and 1,2,5,6,9,10-hexabromocyclododecane, in rat offspring after maternal exposure from mid-gestation through lactation. Reprod Toxicol 2009; 28:456-67. [PMID: 19577631 DOI: 10.1016/j.reprotox.2009.06.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 06/13/2009] [Accepted: 06/25/2009] [Indexed: 11/23/2022]
Abstract
To evaluate developmental exposure effects of two brominated flame retardants, tetrabromobisphenol A (TBBPA) and 1,2,5,6,9,10-hexabromocyclododecane (HBCD), pregnant Sprague-Dawley rats were administered either chemical at doses of 100, 1000 or 10,000 ppm in a soy-free diet from gestation day 10 until the day 20 after delivery. Offspring exposed to TBBPA showed dose-unrelated slight decreases of serum triiodothyronine (T(3)) concentration at postnatal day 20, and there was no evidence of hypothyroidism-related neuronal mismigration and impaired oligodendroglial development as judged by morphometric analyses of NeuN-immunoreactive neuronal distribution in the hippocampal CA1, and area of corpus callosum as well as density of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase)-immunoreactive oligodendrocytes in the cingulate deep cortex at the adult stage. On the other hand, HBCD exerted a weak hypothyroidism evident with increases in thyroid weight, thyroid follicular cell hypertrophy and serum concentrations of thyroid-stimulating hormone as well as decreases of serum T(3) concentrations in offspring at 10,000 ppm at weaning. Increased thyroid weights and decreased serum T(3) concentrations were also observed in the adult stage from 1000 ppm. With regard to the effect on brain development, HBCD reduced density of CNPase-positive oligodendrocytes at 10,000 ppm, suggesting an impaired oligodendroglial development. Results thus suggest that TBBPA did not exert developmental brain effects, while HBCD did, and 100 ppm was determined to be the no-observed-adverse-effect level of HBCD from changes in thyroid parameters at the adult stage by maternal exposure, translating into 8.1-21.3mg/kg-d.
Collapse
|
79
|
Miller MD, Crofton KM, Rice DC, Zoeller RT. Thyroid-disrupting chemicals: interpreting upstream biomarkers of adverse outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1033-41. [PMID: 19654909 PMCID: PMC2717126 DOI: 10.1289/ehp.0800247] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 02/12/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND There is increasing evidence in humans and in experimental animals for a relationship between exposure to specific environmental chemicals and perturbations in levels of critically important thyroid hormones (THs). Identification and proper interpretation of these relationships are required for accurate assessment of risk to public health. OBJECTIVES We review the role of TH in nervous system development and specific outcomes in adults, the impact of xenobiotics on thyroid signaling, the relationship between adverse outcomes of thyroid disruption and upstream causal biomarkers, and the societal implications of perturbations in thyroid signaling by xenobiotic chemicals. DATA SOURCES We drew on an extensive body of epidemiologic, toxicologic, and mechanistic studies. DATA SYNTHESIS THs are critical for normal nervous system development, and decreased maternal TH levels are associated with adverse neuropsychological development in children. In adult humans, increased thyroid-stimulating hormone is associated with increased blood pressure and poorer blood lipid profiles, both risk factors for cardiovascular disease and death. These effects of thyroid suppression are observed even within the "normal" range for the population. Environmental chemicals may affect thyroid homeostasis by a number of mechanisms, and multiple chemicals have been identified that interfere with thyroid function by each of the identified mechanisms. CONCLUSIONS Individuals are potentially vulnerable to adverse effects as a consequence of exposure to thyroid-disrupting chemicals. Any degree of thyroid disruption that affects TH levels on a population basis should be considered a biomarker of adverse outcomes, which may have important societal outcomes.
Collapse
Affiliation(s)
- Mark D Miller
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, California 94612, USA.
| | | | | | | |
Collapse
|
80
|
Effect of thyroid hormone T3 on myosin-Va expression in the central nervous system. Brain Res 2009; 1275:1-9. [PMID: 19379719 DOI: 10.1016/j.brainres.2009.03.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 03/23/2009] [Accepted: 03/29/2009] [Indexed: 11/20/2022]
Abstract
Thyroid hormones (THs) are essential for brain development, where they regulate gliogenesis, myelination, cell proliferation and protein synthesis. Hypothyroidism severely affects neuronal growth and establishment of synaptic connections. Triiodothyronine (T3), the biologically active form of TH, has a central function in these activities. So, Myosin-Va (Myo-Va), a molecular motor protein involved in vesicle and RNA transport, is a good candidate as a target for T3 regulation. Here, we analyzed Myo-Va expression in euthyroid and hypothyroid adult rat brains and synaptosomes. We observed a reduction of Myo-Va expression in cultured neural cells from newborn hypothyroid rat brain, while immunocytochemical experiments showed a punctate distribution of this protein in the cytoplasm of cells. Particularly, Myo-Va co-localized with microtubules in neurites, especially in their varicosities. Myo-Va immunostaining was stronger in astrocytes and neurons of controls when compared with hypothyroid brains. In addition, supplementation of astrocyte cultures with T3 led to increased expression of Myo-Va in cells from both euthyroid and hypothyroid animals, suggesting that T3 modulates Myo-Va expression in neural cells both in vivo and in vitro. We have further analyzed Myo-Va expression in U373 cells, a human glioblastoma line, and found the same punctate cytoplasmic protein localization. As in normal neural cells, this expression was also increased by T3, suggesting that the modulatory mechanism exerted by T3 over Myo-Va remains active on astrocyte tumor cells. These data, coupled with the observation that Myo-Va is severely affected in hypothyroidism, support the hypothesis that T3 activity regulates neural motor protein expression, taking Myo-Va as a model. As a consequence, reduced T3 activity could supposedly affect axonal transport and synaptic function, and could therefore explain disturbances seen in the hypothyroid brain.
Collapse
|
81
|
Royland JE, Parker JS, Gilbert ME. A genomic analysis of subclinical hypothyroidism in hippocampus and neocortex of the developing rat brain. J Neuroendocrinol 2008; 20:1319-38. [PMID: 19094080 DOI: 10.1111/j.1365-2826.2008.01793.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hypothyroidism during pregnancy and the early postnatal period has severe neurological consequences for the developing offspring. The impact of milder degrees of perturbation of the thyroid axis as encompassed in conditions of subclinical hypothyroidism and hypothyroxinemia, however, has not been established. The present investigation examined the effects of graded levels of hypothyroidism, from subclinical to severe, on global gene expression in the developing rodent brain. Thyroid hormone insufficiency was induced by administration of propylthiouracil (PTU) to pregnant rats via drinking water from gestational day 6 until sacrifice of pups prior to weaning. In the first study a specialised microarray, the Affymetrix Rat Neurobiology array RN_U34, was used to contrast gene expression in the hippocampus of animals exposed to 0 or 10 ppm (10 mg/l) PTU, a treatment producing severe hypothyroidism. In the second study, a more complete genome array (Affymetrix Rat 230A) was used to compare gene expression in the neocortex and hippocampus of postnatal day (PN) 14 animals experiencing graded degrees of thyroid hormone insufficiency induced by delivery of 0, 1, 2 or 3 ppm PTU to the dam. Dose-dependent up- and down-regulation were observed for gene transcripts known to play critical roles in brain development and brain function. Expression levels of a subset of approximately 25 genes in each brain region were altered at a dose of PTU (1 ppm) that induced mild hypothyroxinemia in dams and pups. These data indicate that genes driving important developmental processes are sensitive to relatively modest perturbations of the thyroid axis, and that the level of gene expression is related to the degree of hormone reduction. Altered patterns of gene expression during critical windows of brain development indicate that thyroid disease must be viewed as a continuum and that conditions typically considered 'subclinical' may induce structural and functional abnormalities in the developing central nervous system.
Collapse
Affiliation(s)
- J E Royland
- Neurotoxicology Division, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | |
Collapse
|
82
|
Sinha RA, Pathak A, Mohan V, Bandyopadhyay S, Rastogi L, Godbole MM. Maternal thyroid hormone: a strong repressor of neuronal nitric oxide synthase in rat embryonic neocortex. Endocrinology 2008; 149:4396-401. [PMID: 18467447 DOI: 10.1210/en.2007-1617] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding of how maternal thyroid inadequacy during early gestation poses a risk for developmental outcomes is still a challenge for the neuroendocrine community. Early neocortical neurogenesis is accompanied by maternal thyroid hormone (TH) transfer to fetal brain, appearance of TH receptors, and absence of antineurogenesis signals, followed by optimization of neuronal numbers through apoptosis. However, the effects of TH deprivation on neurogenesis and neuronal cell death before the onset of fetal thyroid are still not clear. We show that maternal TH deficiency during early gestational period causes massive premature elevation in the expression of neuronal nitric oxide synthase (nNOS) with an associated neuronal death in embryonic rat neocortex. Maternal hypothyroidism was induced by feeding methimazole (0.025% wt/vol) in the drinking water to pregnant Sprague Dawley rats from embryonic d 6. Cerebral cortices from fetuses were harvested at different embryonic stages (embryonic d 14, 16, and 18) of hypothyroid and euthyroid groups. Immunoblotting and real-time PCR results showed that both protein and RNA levels of nNOS were prematurely increased under maternal hypothyroidism, and showed reversibility upon T4 administration. Immunohistochemistry revealed an increased nNOS immunoreactivity in both the cortical plate and proliferative zone of neocortex along with a corroborative decrease in the microtubule associated protein-2 positive neurons under maternal TH insufficiency. Results combined, put forth nNOS as a novel target of maternal TH action in embryonic neocortex, and underscore the importance of prenatal screening and timely rectification of maternal TH insufficiency, even of a moderate degree.
Collapse
Affiliation(s)
- Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Raebareli Road, Lucknow 226 014, India
| | | | | | | | | | | |
Collapse
|
83
|
Bansal R, Zoeller RT. Polychlorinated biphenyls (Aroclor 1254) do not uniformly produce agonist actions on thyroid hormone responses in the developing rat brain. Endocrinology 2008; 149:4001-8. [PMID: 18420739 PMCID: PMC2488245 DOI: 10.1210/en.2007-1774] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (TH) is essential for normal brain development, and polychlorinated biphenyls (PCBs) are known to interfere with TH action in the developing brain. Thus, it is possible that the observed neurotoxic effects of PCB exposure in experimental animals and humans are mediated in part by their ability to interfere with TH signaling. PCBs may interfere with TH signaling by reducing circulating levels of TH, acting as TH receptor analogs, or both. If PCBs act primarily by reducing serum TH levels, then their effects should mimic those of low TH. In contrast, if PCBs act primarily as TH agonists in the developing brain, then they should mimic the effect of T(4) in hypothyroid animals. We used a two-factor design to test these predictions. Both hypothyroidism (Htx) and/or PCB treatment reduced serum free and total T(4) on postnatal d 15. However, only Htx increased pituitary TSHbeta expression. RC3/neurogranin expression was decreased by Htx and increased by PCB treatment. In contrast, Purkinje cell protein-2 expression was reduced in hypothyroid animals and restored by PCB treatment. Finally, PCB treatment partially ameliorated the effect of Htx on the thickness of the external granule layer of the cerebellum. These studies demonstrate clearly that PCB exposure does not mimic the effect of low TH on several important TH-sensitive measures in the developing brain. However, neither did PCBs mimic T(4) in hypothyroid animals on all end points measured. Thus, PCBs exert a complex action on TH signaling in the developing brain.
Collapse
Affiliation(s)
- Ruby Bansal
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
84
|
Taylor MA, Swant J, Wagner JJ, Fisher JW, Ferguson DC. Lower thyroid compensatory reserve of rat pups after maternal hypothyroidism: correlation of thyroid, hepatic, and cerebrocortical biomarkers with hippocampal neurophysiology. Endocrinology 2008; 149:3521-30. [PMID: 18372327 DOI: 10.1210/en.2008-0020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The developing central nervous system of the fetus and neonate is recognized as very sensitive to maternal or gestational hypothyroidism. Despite this recognition, there is still a lack of data concerning the relationship between thyroid-related biomarkers and neurological outcomes. We used propylthiouracil administered at 0, 3, or 10 ppm in drinking water from gestational d 2 until weaning to create hypothyroid conditions to study the relationship between hypothalamic-pituitary-thyroid axis compensation and impaired neurodevelopment. In addition to serum T(3), T(4), free T(4), and TSH concentrations, cerebrocortical T(3) concentration (cT(3)), hepatic type I and cerebrocortical type II (D2) 5'-deiodinase activity, and thyroidal mRNA for thyroglobulin and sodium iodide symporter were measured. Extracellular recordings from the CA1 region in hippocampal slices were obtained from both postnatal d 21-32 (pups) and postnatal d 90-110 (adults) rats to assess neurophysiological effects. Thyroidal mRNA for thyroglobulin and sodium iodide symporter were increased in pups but not in dams. Both propylthiouracil doses increased cerebrocortical D2 activity approximately 5-fold in pups but only 10 ppm increased D2 activity in dams. In dams, cT(3) concentrations were maintained at 3 ppm but fell 75% at 10 ppm. cT(3) concentration in pups fell 50% at 3 ppm and more than 90% at 10 ppm. In both 3 and 10 ppm pups, hippocampal baseline synaptic activity correlated negatively with cerebrocortical D2 activity. In 3 ppm adults, impaired long-term potentiation was evident. In summary, during depletion of serum T(4), D2 activity served as a sensitive marker of tissue thyroid status, an indicator of the brain's compensatory response to maintain cT(3), and correlated with a neurophysiological outcome.
Collapse
Affiliation(s)
- Matthew A Taylor
- Interdisciplinary Toxicology Program, and Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
85
|
Gilbert ME, Sui L. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:752-60. [PMID: 18560531 PMCID: PMC2430231 DOI: 10.1289/ehp.11089] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 03/05/2008] [Indexed: 05/07/2023]
Abstract
BACKGROUND Perchlorate is an environmental contaminant that blocks iodine uptake into the thyroid gland and reduces thyroid hormones. This action of perchlorate raises significant concern over its effects on brain development. OBJECTIVES The purpose of this study was to evaluate neurologic function in rats after developmental exposure to perchlorate. METHODS Pregnant rats were exposed to 0, 30, 300, or 1,000 ppm perchlorate in drinking water from gestational day 6 until weaning. Adult male offspring were evaluated on a series of behavioral tasks and neurophysiologic measures of synaptic function in the hippocampus. RESULTS At the highest perchlorate dose, triiodothyronine (T(3)) and thyroxine (T(4)) were reduced in pups on postnatal day 21. T(4) in dams was reduced relative to controls by 16%, 28%, and 60% in the 30-, 300-, and 1,000-ppm dose groups, respectively. Reductions in T(4) were associated with increases in thyroid-stimulating hormone in the high-dose group. No changes were seen in serum T(3). Perchlorate did not impair motor activity, spatial learning, or fear conditioning. However, significant reductions in baseline synaptic transmission were observed in hippocampal field potentials at all dose levels. Reductions in inhibitory function were evident at 300 and 1,000 ppm, and augmentations in long-term potentiation were observed in the population spike measure at the highest dose. CONCLUSIONS Dose-dependent deficits in hippocampal synaptic function were detectable with relatively minor perturbations of the thyroid axis, indicative of an irreversible impairment in synaptic transmission in response to developmental exposure to perchlorate.
Collapse
Affiliation(s)
- Mary E Gilbert
- Neurotoxicology Division, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | |
Collapse
|
86
|
|
87
|
Saunier B. How low can maternal thyroxin go? Endocrinology 2007; 148:2591-2. [PMID: 17507577 DOI: 10.1210/en.2007-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|