51
|
Swart AC, Storbeck KH. 11β-Hydroxyandrostenedione: Downstream metabolism by 11βHSD, 17βHSD and SRD5A produces novel substrates in familiar pathways. Mol Cell Endocrinol 2015; 408:114-23. [PMID: 25542845 DOI: 10.1016/j.mce.2014.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/23/2023]
Abstract
11β-Hydroxyandrostenedione (11OHA4), a major C19 steroid produced by the adrenal, was first reported in the 1950s. Initially the subject of numerous studies, interest dwindled due to the apparent lack of physiological function and, by the end of the century, 11OHA4 was no longer considered as an adrenal C19 steroid. Our recent studies, however, showed that 11OHA4 is the precursor to novel active androgens which include 11-ketodihydrotestosterone (11KDHT) which has been implicated in prostate cancer, thereby renewing interest in 11OHA4. In this paper we review the biosynthesis and downstream metabolism of 11OHA4. We discuss the extra-adrenal biosynthesis of 11OHA4 in humans and in other species, highlighting the well-documented role of 11OHA4 in the testes of male fish in which the steroid functions as an active androgen. Finally, we discuss the physiological relevance of 11OHA4 metabolism in castration resistant prostate cancer and outline future prospects.
Collapse
Affiliation(s)
- Amanda C Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa.
| | - Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7602, South Africa.
| |
Collapse
|
52
|
Mostaghel EA. Beyond T and DHT - novel steroid derivatives capable of wild type androgen receptor activation. Int J Biol Sci 2014; 10:602-13. [PMID: 24948873 PMCID: PMC4062953 DOI: 10.7150/ijbs.8844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022] Open
Abstract
While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa), castration does not eliminate androgens from the prostate tumor microenvironment, and residual intratumoral androgens are implicated in nearly every mechanism by which androgen receptor (AR)-mediated signaling promotes castration-resistant disease. The uptake and intratumoral (intracrine) conversion of circulating adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S) to steroids capable of activating the wild type AR is a recognized driver of castration resistant prostate cancer (CRPC). However, less well-characterized adrenal steroids, including 11-deoxcorticosterone (DOC) and 11beta-hydroxyandrostenedione (11OH-AED) may also play a previously unrecognized role in promoting AR activation. In particular, recent data demonstrate that the 5α-reduced metabolites of DOC and 11OH-AED are activators of the wild type AR. Given the well-recognized presence of SRD5A activity in CRPC tissue, these observations suggest that in the low androgen environment of CRPC, alternative sources of 5α-reduced ligands may supplement AR activation normally mediated by the canonical 5α-reduced agonist, 5α-DHT. Herein we review the emerging data that suggests a role for these alternative steroids of adrenal origin in activating the AR, and discuss the enzymatic pathways and novel downstream metabolites mediating these effects. We conclude by discussing the potential implications of these findings for CRPC progression, particularly in context of new agents such as abiraterone and enzalutamide which target the AR-axis for prostate cancer therapy.
Collapse
Affiliation(s)
- Elahe A Mostaghel
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle WA, USA
| |
Collapse
|
53
|
Yazawa T, Imamichi Y, Miyamoto K, Umezawa A, Taniguchi T. Differentiation of mesenchymal stem cells into gonad and adrenal steroidogenic cells. World J Stem Cells 2014; 6:203-212. [PMID: 24772247 PMCID: PMC3999778 DOI: 10.4252/wjsc.v6.i2.203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/24/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
Hormone replacement therapy is necessary for patients with adrenal and gonadal failure. Steroid hormone treatment is also employed in aging people for sex hormone deficiency. These patients undergo such therapies, which have associated risks, for their entire life. Stem cells represent an innovative tool for tissue regeneration and the possibility of solving these problems. Among various stem cell types, mesenchymal stem cells have the potential to differentiate into steroidogenic cells both in vivo and in vitro. In particular, they can effectively be differentiated into steroidogenic cells by expressing nuclear receptor 5A subfamily proteins (steroidogenic factor-1 and liver receptor homolog-1) with the aid of cAMP. This approach will provide a source of cells for future regenerative medicine for the treatment of diseases caused by steroidogenesis deficiencies. It can also represent a useful tool for studying the molecular mechanisms of steroidogenesis and its related diseases.
Collapse
|
54
|
Swart AC, Schloms L, Storbeck KH, Bloem LM, Toit TD, Quanson JL, Rainey WE, Swart P. 11β-hydroxyandrostenedione, the product of androstenedione metabolism in the adrenal, is metabolized in LNCaP cells by 5α-reductase yielding 11β-hydroxy-5α-androstanedione. J Steroid Biochem Mol Biol 2013; 138:132-42. [PMID: 23685396 DOI: 10.1016/j.jsbmb.2013.04.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022]
Abstract
11β-Hydroxyandrostenedione (11OHA4), which is unique to the adrenal, was first isolated from human adrenal tissue in the fifties. It was later shown in the sixties that 11β-hydroxytestosterone (11OHT) was also produced by the human adrenal. Attention has shifted back to these adrenal androgens once more, as improved analytical techniques have enabled more accurate detection of steroid hormones. In this paper, we investigated the origin of these metabolites as well as their subsequent metabolism and examined a possible physiological role for 11OHA4 in prostate cancer cells. In H295R cells treated with forskolin and trilostane, etomidate, a reported cytochrome P450 11β-hydroxylase (CYP11B1) inhibitor, blocked the production of corticosterone, cortisol, 11OHA4 and 11OHT. The metabolism of androstenedione and testosterone by CYP11B1 and aldosterone synthase (CYP11B2) was assayed. Androstenedione was converted by CYP11B1, while the conversion by CYP11B2 was negligible. Both enzymes readily converted testosterone. The metabolism of these 11β-hydroxylated metabolites by 11β-hydroxysteroid dehydrogenase (11βHSD) types 1 and 2 was subsequently investigated. 11βHSD2 catalyzed the conversion of both 11OHA4 and 11OHT to their respective keto-steroids, while 11βHSD1 catalyzed the conversion of 11-ketoandrostenedione and 11-ketotestosterone to their respective hydroxy-steroids in Chinese hamster ovary cells. Investigating a functional role, steroid 5α-reductase types 1 and 2 converted 11OHA4 to 11β-hydroxy-5α-androstanedione (11OH-5α-dione), identified by accurate mass detection. UPLC-MS/MS analyses of 11OHA4 metabolism in LNCaP androgen-dependent prostate cancer cells, identified the 5α-reduced metabolite as well as 11-ketoandrostenedione and 11-ketotestosterone, with the latter indicating conversion by 17β-hydroxysteroid dehydrogenase. Downstream metabolism by 11βHSD2 and by 5α-reductase may therefore indicate a physiological role for 11OHA4 and/or 11OH-5α-dione in normal and prostate cancer cells.
Collapse
Affiliation(s)
- Amanda C Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
11β-hydroxyandrostenedione returns to the steroid arena: biosynthesis, metabolism and function. Molecules 2013; 18:13228-44. [PMID: 24165582 PMCID: PMC6270415 DOI: 10.3390/molecules181113228] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 01/22/2023] Open
Abstract
The biological significance of 11β-hydroxyandrostenedione (11OHA4) has eluded researchers for the past six decades. It is now known that 11OHA4 is biosynthesized in the androgen arm of the adrenal steroidogenesis pathway and subsequently metabolized by steroidogenic enzymes in vitro, serving as precursor to recognized and novel androgenic steroids. These in vitro findings extend beyond the adrenal, suggesting that 11OHA4 could be metabolized in steroid-responsive peripheral tissues, as is the case for androgen precursor metabolites of adrenal origin. The significance thereof becomes apparent when considering that the metabolism of 11OHA4 in LNCaP androgen dependent prostate cancer cells yields androgenic steroid metabolites. It is thus possible that 11OHA4 may be metabolized to yield ligands for steroid receptors in not only the prostate but also in other steroid-responsive tissues. Future investigations of 11OHA4 may therefore characterize it as a vital steroid with far-reaching physiological consequences. An overview of the research on 11OHA4 since its identification in 1953 will be presented, with specific focus on the most recent works that have advanced our understanding of its biological role, thereby underscoring its relevance in health and disease.
Collapse
|
56
|
Storbeck KH, Bloem LM, Africander D, Schloms L, Swart P, Swart AC. 11β-Hydroxydihydrotestosterone and 11-ketodihydrotestosterone, novel C19 steroids with androgenic activity: a putative role in castration resistant prostate cancer? Mol Cell Endocrinol 2013; 377:135-46. [PMID: 23856005 DOI: 10.1016/j.mce.2013.07.006] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/10/2013] [Accepted: 07/05/2013] [Indexed: 01/28/2023]
Abstract
Adrenal C19 steroids, dehydroepiandrostenedione (DHEA(S)) and androstenedione (A4), play a critical role in castration resistant prostate cancer (CRPC) as they are metabolised to dihydrotestosterone (DHT), via testosterone (T), or via the alternate 5α-dione pathway, bypassing T. Adrenal 11OHA4 metabolism in CRPC is, however, unknown. We present a novel pathway for 11OHA4 metabolism in CRPC leading to the production of 11ketoT (11KT) and novel 5α-reduced C19 steroids - 11OH-5α-androstanedione, 11keto-5α-androstanedione, 11OHDHT and 11ketoDHT (11KDHT). The pathway was validated in the androgen-dependent prostate cancer cell line, LNCaP. Androgen receptor (AR) transactivation studies showed that while 11KT and 11OHDHT act as a partial AR agonists, 11KDHT is a full AR agonist exhibiting similar activity to DHT at 1nM. Our data demonstrates that, while 11OHA4 has negligible androgenic activity, its metabolism to 11KT and 11KDHT yields androgenic compounds which may be implicated, together with A4 and DHEA(S), in driving CRPC in the absence of testicular T.
Collapse
Affiliation(s)
- Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | | | | | | | | | | |
Collapse
|
57
|
Sid-Ahmed O, Arias N, Palme R, Möstl E. Increased immunoreactive 11-ketotestosterone concentrations in sheep feces after acth challenge. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1332-1336. [PMID: 23404733 DOI: 10.1002/etc.2173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/16/2012] [Accepted: 01/08/2013] [Indexed: 06/01/2023]
Abstract
11-Oxoetiocholanolone and related substances are important metabolites of cortisol and are excreted via feces in ruminants. To investigate whether 11-ketotestosterone (11-KT) or its immunoreactive metabolites are formed and excreted in ruminant feces, an enzyme immunoassay (EIA) was developed and validated. The antibody was raised in rabbits against 11-KT-3-CMO:bovine serum albumin with biotinylated 11-KT as a label. The assay showed a sensitivity of 0.3 pg/well. To validate the assay biologically, 6 rams were injected with a synthetic analogue of the adrenocorticotropic hormone (Synacthen, 2 µg/kg body wt). An aliquot was collected of each fecal portion spontaneously defecated 8 h before Synacthen injection to 24 h after injection and stored at -20 °C until analysis. Samples (0.5 g) were extracted using 80% methanol and immunoreactive metabolites measured using the 11-KT EIA and an already established 11,17-dioxoandrostane (11,17-DOA) EIA. High-performance liquid chromatography separation revealed no peak in the same elution position as authentic 11-KT; therefore, reacting substances were referred to as 11-KT equivalents. In the case of 11-KT immunoreactive substances, the values increased from baseline (median, 136 ng/g feces) to a peak concentration (median, 424 ng/g) 10 to 14 h after Synacthen injection and declined afterwards. Concentrations of 11,17-DOA showed the same pattern, but the values were 2 to 4 times higher. From this data, the authors conclude that 11-KT-like substances, specifically C19 O3 -androgens with a 17ß-hydroxy group, were present in the feces. These substances originate from the adrenals and are most likely cortisol metabolites.
Collapse
Affiliation(s)
- Omer Sid-Ahmed
- Department of Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | | | | | | |
Collapse
|
58
|
Yazawa T, Kawabe S, Kanno M, Mizutani T, Imamichi Y, Ju Y, Matsumura T, Yamazaki Y, Usami Y, Kuribayashi M, Shimada M, Kitano T, Umezawa A, Miyamoto K. Androgen/androgen receptor pathway regulates expression of the genes for cyclooxygenase-2 and amphiregulin in periovulatory granulosa cells. Mol Cell Endocrinol 2013; 369:42-51. [PMID: 23415714 DOI: 10.1016/j.mce.2013.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/26/2012] [Accepted: 02/05/2013] [Indexed: 01/30/2023]
Abstract
It is well known that the androgen/androgen receptor (AR) pathway is involved in both male and female fertility in mammals. AR knockout female mice are reported to exhibit various abnormalities in follicle development, and a subfertile phenotype. In exogenous gonadotropin-induced superovulation, serum androgen levels were robustly elevated in female mice at the periovulatory stage after human chorionic gonadotropin (hCG) treatment. At this stage, ovarian AR proteins were strongly expressed in cumulus cells. Because these results suggested that the androgen/AR pathway is involved in ovulation, we investigated the expression of ovulation-related genes in the mouse ovary treated with the nonaromatizable androgen, 5α-dihydrotestosterone (DHT). DHT treatment induced the expression of the genes for cyclooxyganase-2 (Cox-2 or prostaglandin endoperoxidase synthase 2) and the epidermal growth factor-like factor, amphiregulin (Areg), in the ovary, whereas their hCG-induced expression was suppressed by the AR antagonist flutamide. These genes were also induced by DHT in AR-expressing primary granulosa and granulosa tumor-derived cells. Reporter assays, electrophoretic shift mobility assays and chromatin immunoprecipitation assays demonstrated that androgen response sequence(s) existing upstream of each gene were responsible for androgen responsiveness and were occupied by the AR in periovulatory granulosa cells. Our results suggest that the androgen/AR pathway is involved in the ovulatory process via expression of the Cox-2 and Areg genes in periovulatory granulosa cells.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Rege J, Nakamura Y, Satoh F, Morimoto R, Kennedy MR, Layman LC, Honma S, Sasano H, Rainey WE. Liquid chromatography-tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation. J Clin Endocrinol Metab 2013; 98:1182-8. [PMID: 23386646 PMCID: PMC3590473 DOI: 10.1210/jc.2012-2912] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT A broad analysis of adrenal gland-derived 19-carbon (C19) steroids has not been reported. This is the first study that uses liquid chromatography-tandem mass spectrometry to quantify 9 C19 steroids (androgens and their precursors), estrone, and estradiol in the adrenal vein (AV) of women, before and after ACTH stimulation. OBJECTIVE The objective of this study was to define the adrenal androgen metabolome in women before and after ACTH infusion. DESIGN This was a retrospective study. PATIENTS Seven women, aged 50.4 ± 5.4 years, with suspected diagnosis of an adrenal aldosterone-producing adenoma were included in the study. METHODS AV and iliac serum samples were collected before and after administration of ACTH (15 minutes). AV samples were analyzed using for concentrations of 9 unconjugated C19 steroids, estrone, and estradiol. Dehydroepiandrosterone sulfate (DHEA-S) was quantified by radioimmunoassay. RESULTS AV levels of DHEA-S were the highest among the steroids measured. The most abundant unconjugated C19 steroids in AV were 11β-hydroxyandrostenedione (11OHA), dehydroepiandrosterone (DHEA), and androstenedione (A4). ACTH significantly increased the adrenal output of 9 of the 12 steroids that were measured. ACTH increased the mean AV concentration of DHEA-S by 5-fold, DHEA by 21-fold, A4 by 7-fold, and 11OHA by 5-fold. 11β-Hydroxytestosterone and testosterone were found to be potent androgen receptor agonists when tested with an androgen-responsive cell reporter model. CONCLUSION The current study indicates that the adrenal gland secretes primarily 3 weak androgens, namely DHEA, 11OHA, and A4. Active androgens, including testosterone and 11β-hydroxytestosterone, are also produced but to a lesser degree.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Physiology, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Strushkevich N, Gilep AA, Shen L, Arrowsmith CH, Edwards AM, Usanov SA, Park HW. Structural insights into aldosterone synthase substrate specificity and targeted inhibition. Mol Endocrinol 2013; 27:315-24. [PMID: 23322723 PMCID: PMC5417327 DOI: 10.1210/me.2012-1287] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aldosterone is a major mineralocorticoid hormone that plays a key role in the regulation of electrolyte balance and blood pressure. Excess aldosterone levels can arise from dysregulation of the renin-angiotensin-aldosterone system and are implicated in the pathogenesis of hypertension and heart failure. Aldosterone synthase (cytochrome P450 11B2, CYP11B2) is the sole enzyme responsible for the production of aldosterone in humans. Blocking of aldosterone synthesis by mediating aldosterone synthase activity is thus a recently emerging pharmacological therapy for hypertension, yet a lack of structural information has limited this approach. Here, we present the crystal structures of human aldosterone synthase in complex with a substrate deoxycorticosterone and an inhibitor fadrozole. The structures reveal a hydrophobic cavity with specific features associated with corticosteroid recognition. The substrate binding mode, along with biochemical data, explains the high 11β-hydroxylase activity of aldosterone synthase toward both gluco- and mineralocorticoid formation. The low processivity of aldosterone synthase with a high extent of intermediates release might be one of the mechanisms of controlled aldosterone production from deoxycorticosterone. Although the active site pocket is lined by identical residues between CYP11B isoforms, most of the divergent residues that confer additional 18-oxidase activity of aldosterone synthase are located in the I-helix (vicinity of the O(2) activation path) and loops around the H-helix (affecting an egress channel closure required for retaining intermediates in the active site). This intrinsic flexibility is also reflected in isoform-selective inhibitor binding. Fadrozole binds to aldosterone synthase in the R-configuration, using part of the active site cavity pointing toward the egress channel. The structural organization of aldosterone synthase provides critical insights into the molecular mechanism of catalysis and enables rational design of more specific antihypertensive agents.
Collapse
Affiliation(s)
- Natallia Strushkevich
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada M5G 1L7.
| | | | | | | | | | | | | |
Collapse
|
61
|
Castillo-Briceño P, Aguila-Martínez S, Liarte S, García Alcázar A, Meseguer J, Mulero V, García-Ayala A. In situ forming microparticle implants for delivery of sex steroids in fish: Modulation of the immune response of gilthead seabream by testosterone. Steroids 2013; 78:26-33. [PMID: 23127815 DOI: 10.1016/j.steroids.2012.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/22/2012] [Accepted: 10/06/2012] [Indexed: 11/29/2022]
Abstract
Current knowledge on the sensitivity of marine fish to androgenic environmental chemicals is limited, despite the growing interest in the effects of endocrine disrupting chemicals. To study in vivo the effects of testosterone (T) on the fish immune response, we used a microencapsulation implant technique, the in situ forming microparticle system, containing 1 mg T/kg body weight (T-ISM), in adult specimens of gilthead seabream (Sparus aurata L.), a species of great economic interest. We demonstrated that implants themselves (without T) have no significant effect on most of the parameters measured. In T-ISM implanted fish, T serum levels reached supraphysiological concentrations accompanied by a slight increase in 11-ketotestosterone and 17β-estradiol levels 21 days post-implantation (dpi). Liver and head-kidney samples were processed 7 and 21 dpi to assess T-ISM effect on (i) the mRNA expression of genes involved in the metabolism of steroid hormones and in the immune response, and (ii) phagocyte activities. The expression profile of cytokines, chemokines and immune receptors was altered in T-ISM implanted animals that showed an early pro-inflammatory tendency, and then, a mixed pro-/anti-inflammatory activation during longer exposure. Furthermore, the enhancement of phagocytic activity and the production of reactive oxygen species by leukocytes 21 dpi in T-ISM implanted specimens suggest fine modulation of the innate immune response by T. Taken together, these data demonstrate for the first time the feasibility of using ISM implants in an aquatic species, and provide new data on the role played by T on the immune response in fish.
Collapse
Affiliation(s)
- P Castillo-Briceño
- Department of Cell Biology and Histology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
62
|
Fernandino JI, Hattori RS, Kishii A, Strüssmann CA, Somoza GM. The cortisol and androgen pathways cross talk in high temperature-induced masculinization: the 11β-hydroxysteroid dehydrogenase as a key enzyme. Endocrinology 2012; 153:6003-11. [PMID: 23041673 DOI: 10.1210/en.2012-1517] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In many ectotherm species the gonadal fate is modulated by temperature early in life [temperature-dependent sex determination (TSD)] but the transducer mechanism between temperature and gonadal differentiation is still elusive. We have recently shown that cortisol, the glucocorticoid stress-related hormone in vertebrates, is involved in the TSD process of pejerrey, Odontesthes bonariensis. Particularly, all larvae exposed to a male-producing temperature (MPT, 29 C) after hatching showed increased whole-body cortisol and 11-ketotestosterone (11-KT; the main bioactive androgen in fish) levels and developed as males. Moreover, cortisol administration at an intermediate, mixed sex-producing temperature (MixPT, 24 C) caused increases in 11-KT and in the frequency of males, suggesting a relation between this glucocorticoid and androgens during the masculinization process. In order to clarify the link between stress and masculinization, the expression of hydroxysteroid dehydrogenase (hsd)11b2, glucocorticoid receptors gr1 and gr2, and androgen receptors ar1 and ar2 was analyzed by quantitative real time PCR and in situ hybridization in larvae reared at MPT, MixPT, and female-producing temperature (FPT, 17 C) during the sex determination period. We also analyzed the effects of cortisol treatment in larvae reared at MixPT and in adult testicular explants incubated in vitro. MPT and cortisol treatment produced significant increases in hsd11b2 mRNA expression. Also, gonadal explants incubated in the presence of cortisol showed increases of 11-KT levels in the medium. Taken together these results suggest that cortisol promotes 11-KT production during high temperature-induced masculinization by modulation of hsd11b2 expression and thus drives the morphogenesis of the testes.
Collapse
Affiliation(s)
- Juan Ignacio Fernandino
- Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús, Chascomús, B7130IWA Argentina
| | | | | | | | | |
Collapse
|
63
|
Abstract
Adrenarche is an endocrine developmental process whereby humans and select nonhuman primates increase adrenal output of a series of steroids, especially DHEA and DHEAS. The timing of adrenarche varies among primates, but in humans serum levels of DHEAS are seen to increase at around 6 years of age. This phenomenon corresponds with the development and expansion of the zona reticularis of the adrenal gland. The physiological phenomena that trigger the onset of adrenarche are still unknown; however, the biochemical pathways leading to this event have been elucidated in detail. There are numerous reviews examining the process of adrenarche, most of which have focused on the changes within the adrenal as well as the phenotypic results of adrenarche. This article reviews the recent and past studies that show the breadth of changes in the circulating steroid metabolome that occur during the process of adrenarche.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Physiology, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | |
Collapse
|
64
|
Meyer A, Strajhar P, Murer C, Da Cunha T, Odermatt A. Species-specific differences in the inhibition of human and zebrafish 11β-hydroxysteroid dehydrogenase 2 by thiram and organotins. Toxicology 2012; 301:72-8. [PMID: 22796344 DOI: 10.1016/j.tox.2012.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/30/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022]
Abstract
Dithiocarbamates and organotins can inhibit enzymes by interacting with functionally essential sulfhydryl groups. Both classes of chemicals were shown to inhibit human 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which converts active cortisol into inactive cortisone and has a role in renal and intestinal electrolyte regulation and in the feto-placental barrier to maternal glucocorticoids. In fish, 11β-HSD2 has a dual role by inactivating glucocorticoids and generating the major androgen 11-ketotestosterone. Inhibition of this enzyme may enhance glucocorticoid and diminish androgen effects in fish. Here, we characterized 11β-HSD2 activity of the model species zebrafish. A comparison with human and mouse 11β-HSD2 revealed species-specific substrate preference. Unexpectedly, assessment of the effects of thiram and several organotins on the activity of zebrafish 11β-HSD2 showed weak inhibition by thiram and no inhibition by any of the organotins tested. Sequence comparison revealed the presence of an alanine at position 253 on zebrafish 11β-HSD2, corresponding to cysteine-264 in the substrate-binding pocket of the human enzyme. Substitution of alanine-253 by cysteine resulted in a more than 10-fold increased sensitivity of zebrafish 11β-HSD2 to thiram. Mutating cysteine-264 on human 11β-HSD2 to serine resulted in 100-fold lower inhibitory activity. Our results demonstrate significant species differences in the sensitivity of human and zebrafish 11β-HSD2 to inhibition by thiram and organotins. Site-directed mutagenesis revealed a key role of cysteine-264 in the substrate-binding pocket of human 11β-HSD2 for sensitivity to sulfhydryl modifying agents.
Collapse
Affiliation(s)
- Arne Meyer
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
65
|
Zhou HY, Hu GX, Lian QQ, Morris D, Ge RS. The metabolism of steroids, toxins and drugs by 11β-hydroxysteroid dehydrogenase 1. Toxicology 2012; 292:1-12. [DOI: 10.1016/j.tox.2011.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 11/25/2022]
|
66
|
Yazawa T, Kawabe S, Inaoka Y, Okada R, Mizutani T, Imamichi Y, Ju Y, Yamazaki Y, Usami Y, Kuribayashi M, Umezawa A, Miyamoto K. Differentiation of mesenchymal stem cells and embryonic stem cells into steroidogenic cells using steroidogenic factor-1 and liver receptor homolog-1. Mol Cell Endocrinol 2011; 336:127-32. [PMID: 21129436 DOI: 10.1016/j.mce.2010.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/23/2010] [Accepted: 11/23/2010] [Indexed: 12/19/2022]
Abstract
Previously, we have demonstrated that mesenchymal stem cells could be differentiated into steroidogenic cells through steroidogenic factor-1 and 8bromo-cAMP treatment. Use of liver receptor homolog-1, another of the nuclear receptor 5A family nuclear receptors, with 8bromo-cAMP also resulted in the differentiation of human mesenchymal stem cells into steroid hormone-producing cells. The same approaches could not be applied to other undifferentiated cells such as embryonic stem cells or embryonal carcinoma cells, because the over-expression of the nuclear receptor 5A family is cytotoxic to these cells. We established embryonic stem cells carrying tetracycline-regulated steroidogenic factor-1 gene at the ROSA26 locus. The embryonic stem cells were first differentiated into a mesenchymal cell lineage by culturing on collagen IV-coated dishes and treating with pulse exposures of retinoic acid before expression of steroidogenic factor-1. Although the untreated embryonic stem cells could not be converted into steroidogenic cells by expression of steroidogenic factor-1 in the absence of leukemia inhibitory factor due to inability of the cells to survive, the differentiated cells could be successfully converted into steroidogenic cells when expression of steroidogenic factor-1 was induced. They exhibited characteristics of adrenocortical-like cells and produced a large amount of corticosterone. These results indicated that pluripotent stem cells could be differentiated into steroidogenic cells by the nuclear receptor 5A family of protein via the mesenchymal cell lineage. This approach may provide a source of cells for future gene therapy for diseases caused by steroidogenesis deficiencies.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki 23, Matsuoka, Eiheiji-cho, Fukui 910-1193, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Knapp R, Marsh-Matthews E, Vo L, Rosencrans S. Stress hormone masculinizes female morphology and behaviour. Biol Lett 2011; 7:150-2. [PMID: 20659923 PMCID: PMC3030876 DOI: 10.1098/rsbl.2010.0514] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/02/2010] [Indexed: 11/12/2022] Open
Abstract
Sex steroids play major roles in vertebrate sexual differentiation. Unexpectedly, we now find that exposure to elevated levels of the naturally occurring stress hormone cortisol can also masculinize sexually dimorphic morphological characters and behaviour in adult female mosquitofish (Gambusia affinis) in a dose-dependent manner. Females masculinized by cortisol developed elongated anal fins with distal tip features similar to those of mature males. Most masculinized females also attempted to copulate when placed with normal females. Although the mechanism of masculinization is currently unknown, we propose a role for an enzyme that both inactivates cortisol and catalyzes the final step in synthesis of a major teleost androgen. This mechanism may also help explain some previously reported effects of stress on sexual development across vertebrate taxa. Our findings underscore the need to understand the full range of chemicals, both naturally occurring hormones and human-produced endocrine disruptors, that can influence sexual differentiation and reproductive function.
Collapse
Affiliation(s)
- Rosemary Knapp
- Department of Zoology, University of Oklahoma, Norman, OK 73019, USA.
| | | | | | | |
Collapse
|
68
|
Yazawa T, Inaoka Y, Okada R, Mizutani T, Yamazaki Y, Usami Y, Kuribayashi M, Orisaka M, Umezawa A, Miyamoto K. PPAR-gamma coactivator-1alpha regulates progesterone production in ovarian granulosa cells with SF-1 and LRH-1. Mol Endocrinol 2010; 24:485-96. [PMID: 20133449 PMCID: PMC5419099 DOI: 10.1210/me.2009-0352] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/30/2009] [Indexed: 12/16/2022] Open
Abstract
Previously, we demonstrated that bone marrow-derived mesenchymal stem cells (MSCs) differentiate into steroidogenic cells such as Leydig and adrenocortical cells by the introduction of steroidogenic factor-1 (SF-1) and treatment with cAMP. In this study, we employed the same approach to differentiate umbilical cord blood (UCB)-derived MSCs. Despite UCB-MSCs differentiating into steroidogenic cells, they exhibited characteristics of granulosa-luteal-like cells. We found that peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was expressed and further induced by cAMP stimulation in UCB-MSCs. Consistent with these results, tissue-specific expression of Pgc-1alpha was observed in rat ovarian granulosa cells. PGC-1alpha binds to the NR5A family [SF-1 and liver receptor homolog-1 (LRH-1)] of proteins and markedly enhances their transcriptional activities. Reporter assays revealed that PGC-1alpha activated the promoter activities of SF-1 and LRH-1 target genes. Infection of KGN cells (a human cell line derived from granulosa cells) with adenoviruses expressing PGC-1alpha resulted in the induction of steroidogenesis-related genes and stimulation of progesterone production. PGC-1alpha also induced SF-1 and LRH-1, with the latter induced to a greater extent. Knockdown of Pgc-1alpha in cultured rat granulosa cells resulted in attenuation of gene expression as well as progesterone production. Transactivation of the NR5A family by PGC-1alpha was repressed by Dax-1. PGC-1alpha binds to the activation function 2 domain of NR5A proteins via its consensus LXXLL motif. These results indicate that PGC-1alpha is involved in progesterone production in ovarian granulosa cells by potentiating transcriptional activities of the NR5A family proteins.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Shimoaizuki 23-3, Matsuoka, Eiheiji-cho, Fukui 910-1193, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Zhang WL, Zhou LY, Senthilkumaran B, Huang BF, Sudhakumari CC, Kobayashi T, Nagahama Y, Wang DS. Molecular cloning of two isoforms of 11beta-hydroxylase and their expressions in the Nile tilapia, Oreochromis niloticus. Gen Comp Endocrinol 2010; 165:34-41. [PMID: 19500584 DOI: 10.1016/j.ygcen.2009.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 05/22/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
Abstract
P450 11beta-hydroxylase, encoded by P450(11beta) gene, is a key mitochondrial enzyme to produce 11beta-hydroxy testosterone, substrate for the production of 11-ketotestosterone (11-KT), which has been shown to be potent androgen in several fish species. In the present work, two alternative splicing isoforms i.e. P450(11beta)-1 and P450(11beta)-2 cDNAs were cloned from the Nile tilapia, Oreochromis niloticus. They were 1614 and 1227bp in length with open reading frames encoding proteins of 537 and 408 amino acids, respectively. In contrast to P450(11beta)-1, which derived from 9 exons of the P450(11beta) gene, the 7th and 8th exons were absent in P450(11beta)-2. Tilapia P450(11beta)-1 shares the highest homology with that of medaka, Oryzias latipes. Expressions of P450(11beta)-1 and -2 were detected in the kidney and head kidney of both sexes, and in the testis but not in the ovary, with P450(11beta)-2 lower than P450(11beta)-1. Ontogenic expressions of both isoforms were detected in testis from 50dah onwards. P450(11beta)-1 and -2 were strongly expressed in sex reversed XX testis after fadrozole and tamoxifen treatment, but completely inhibited in 17beta-estradiol induced XY ovary. The existence of two alternatively spliced isoforms and the sexual dimorphic expression of P450(11beta)s were further confirmed by Northern blot. Strong expression signals in Leydig cells and weak signals in spermatogonia were detected by in situ hybridization and immunohistochemistry. Taken together, our data suggest a role for P450(11beta) in the spermatogenesis of tilapia through the production of 11-KT in testis, in addition to cortisol production in head kidney.
Collapse
Affiliation(s)
- Wei-Li Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Orban L, Sreenivasan R, Olsson PE. Long and winding roads: testis differentiation in zebrafish. Mol Cell Endocrinol 2009; 312:35-41. [PMID: 19422878 DOI: 10.1016/j.mce.2009.04.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/31/2009] [Accepted: 04/25/2009] [Indexed: 02/02/2023]
Abstract
Zebrafish sex determination, gonad differentiation and reproduction are far from being fully understood. Although the mode of sex determination is still being disputed, most experimental data point towards the lack of sex chromosomes and a multigenic sex determination system. Secondary effects from the environment and/or (xeno)hormones may influence the process, resulting in biased sex ratios. The exact time point of sex determination is unknown. Gonad differentiation involves a compulsory 'juvenile ovary' stage with subsequent transformation of the gonad into a testis in males. As the latter is a late event, there is a delay between sex determination and testis differentiation in zebrafish, in contrast to mammals. Information on the expression of several candidate genes thought to be involved in these processes has been supplemented with data from large-scale gonadal transcriptomic studies. New approaches and methodologies provide hope that answers to a number of important questions will be deciphered in the future.
Collapse
Affiliation(s)
- Laszlo Orban
- Reproductive Genomics Group, Strategic Research Program, Temasek Life Sciences Laboratory, Singapore.
| | | | | |
Collapse
|
71
|
Yazawa T, Inanoka Y, Mizutani T, Kuribayashi M, Umezawa A, Miyamoto K. Liver receptor homolog-1 regulates the transcription of steroidogenic enzymes and induces the differentiation of mesenchymal stem cells into steroidogenic cells. Endocrinology 2009; 150:3885-93. [PMID: 19359379 DOI: 10.1210/en.2008-1310] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Steroidogenic factor-1 (SF-1, also known as Ad4BP) has been demonstrated to be a primary transcriptional regulator of steroidogenic-related genes. However, mRNA for liver receptor homolog-1 (LRH-1), which together with SF-1, belongs to the NR5A nuclear receptor family, is expressed at much higher levels than SF-1 mRNA in the human gonad. In our previous studies, we demonstrated that SF-1 induced the differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into steroidogenic cells such as Leydig or adrenocortical cells. The introduction of LRH-1 into human MSCs (hMSCs) with the aid of cAMP also induced the expression of steroidogenic enzymes, including CYP17, and their differentiation into steroid hormone-producing cells. Promoter analysis, EMSA, and chromatin immunoprecipitation assay using LRH-1-transduced hMSCs indicated that three LRH-1 binding sites were responsible for CYP17 transactivation. Immunohistochemical studies showed that LRH-1 protein was expressed in human Leydig cells. The CYP17 promoter region was highly methylated in hMSCs, whereas it was demethylated by the introduction of LRH-1 and cAMP treatment. These results indicate that LRH-1 could represent another key regulator of the steroidogenic lineage in MSCs and play a vital role in steroid hormone production in human Leydig cells.
Collapse
MESH Headings
- Adrenal Glands/metabolism
- Animals
- Cell Differentiation/genetics
- Cell Line
- Chromatin Immunoprecipitation
- Cyclic AMP/pharmacology
- DAX-1 Orphan Nuclear Receptor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Electrophoretic Mobility Shift Assay
- Female
- Gonads/metabolism
- Humans
- Immunohistochemistry
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Mice
- Mice, Mutant Strains
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/physiology
- Receptors, Steroid/genetics
- Receptors, Steroid/physiology
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Steroid 17-alpha-Hydroxylase/genetics
- Steroidogenic Factor 1/genetics
- Steroidogenic Factor 1/physiology
- Steroids/biosynthesis
- Transduction, Genetic
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Eiheiji-cho, Fukui 910-1193 Japan
| | | | | | | | | | | |
Collapse
|
72
|
Gomez-Sanchez EP, Gomez-Sanchez MT, de Rodriguez AF, Romero DG, Warden MP, Plonczynski MW, Gomez-Sanchez CE. Immunohistochemical demonstration of the mineralocorticoid receptor, 11beta-hydroxysteroid dehydrogenase-1 and -2, and hexose-6-phosphate dehydrogenase in rat ovary. J Histochem Cytochem 2009; 57:633-41. [PMID: 19255253 DOI: 10.1369/jhc.2009.953059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An IHC survey using several monoclonal antibodies against different portions of the rat mineralocorticoid receptor (MR) molecule demonstrated significant specific MR immunoreactivity in the ovary, prompting further study of the localization of MR and of determinants of extrinsic MR ligand specificity, 11beta-hydroxysteroid dehydrogenase (11beta-HSD) types 1 and 2, and hexose-6-phosphate dehydrogenase (H6PDH). MR expression (real-time RT-PCR and Western blot) did not differ significantly in whole rat ovaries at early diestrus, late diestrus, estrus, and a few hours after ovulation. MR immunostaining was most intense in corporal lutea cells, light to moderate in oocytes and granulosa cells, and least intense in theca cells. Light immunoreactivity for 11beta-HSD2 occurred in most cells, with some mural granulosa cells of mature follicles staining more strongly. The distribution of immunoreactivity for 11beta-HSD1 and H6PDH required to generate NADPH, the cofactor required for reductase activity of 11beta-HSD1, was similar, with the most-intense staining in the cytoplasm of corporal lutea and theca cells and light or no staining in the granulosa and oocytes. MR function in the ovary is as yet unclear, but distinct patterns of distribution of 11beta-HSD1 and -2 and H6PDH suggest that the ligand for MR activation in different cells of the ovary may be differentially regulated.
Collapse
Affiliation(s)
- Elise P Gomez-Sanchez
- Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center and Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA.
| | | | | | | | | | | | | |
Collapse
|
73
|
Inaoka Y, Yazawa T, Mizutani T, Kokame K, Kangawa K, Uesaka M, Umezawa A, Miyamoto K. Regulation of P450 oxidoreductase by gonadotropins in rat ovary and its effect on estrogen production. Reprod Biol Endocrinol 2008; 6:62. [PMID: 19077323 PMCID: PMC2647926 DOI: 10.1186/1477-7827-6-62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND P450 oxidoreductase (POR) catalyzes electron transfer to microsomal P450 enzymes. Its deficiency causes Antley-Bixler syndrome (ABS), and about half the patients with ABS have ambiguous genitalia and/or impaired steroidogenesis. POR mRNA expression is up-regulated when mesenchymal stem cells (MSCs) differentiate into steroidogenic cells, suggesting that the regulation of POR gene expression is important for steroidogenesis. In this context we examined the regulation of POR expression in ovarian granulosa cells by gonadotropins, and its possible role in steroidogenesis. METHODS Changes in gene expression in MSCs during differentiation into steroidogenic cells were examined by DNA microarray analysis. Changes in mRNA and protein expression of POR in the rat ovary or in granulosa cells induced by gonadotropin treatment were examined by reverse transcription-polymerase chain reaction and western blotting. Effects of transient expression of wild-type or mutant (R457H or V492E) POR proteins on the production of estrone in COS-7 cells were examined in vitro. Effects of POR knockdown were also examined in estrogen producing cell-line, KGN cells. RESULTS POR mRNA was induced in MSCs following transduction with the SF-1 retrovirus, and was further increased by cAMP treatment. Expression of POR mRNA, as well as Cyp19 mRNA, in the rat ovary were induced by equine chorionic gonadotropin and human chorionic gonadotropin. POR mRNA and protein were also induced by follicle stimulating hormone in primary cultured rat granulosa cells, and the induction pattern was similar to that for aromatase. Transient expression of POR in COS-7 cells, which expressed a constant amount of aromatase protein, greatly increased the rate of conversion of androstenedione to estrone, in a dose-dependent manner. The expression of mutant POR proteins (R457H or V492E), such as those found in ABS patients, had much less effect on aromatase activity than expression of wild-type POR proteins. Knockdown of endogenous POR protein in KGN human granulosa cells led to reduced estrone production, indicating that endogenous POR affected aromatase activity. CONCLUSION We demonstrated that the expression of POR, together with that of aromatase, was regulated by gonadotropins, and that its induction could up-regulate aromatase activity in the ovary, resulting in a coordinated increase in estrogen production.
Collapse
Affiliation(s)
- Yoshihiko Inaoka
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Mizutani
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Koichi Kokame
- National Cardiovascular Research Center, Osaka 565-8565, Japan
| | - Kenji Kangawa
- National Cardiovascular Research Center, Osaka 565-8565, Japan
| | - Miki Uesaka
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Akihiro Umezawa
- National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kaoru Miyamoto
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|