51
|
Tachibana T, Moriyama S, Takahashi A, Tsukada A, Oda A, Takeuchi S, Sakamoto T. Isolation and characterisation of prolactin-releasing peptide in chicks and its effect on prolactin release and feeding behaviour. J Neuroendocrinol 2011; 23:74-81. [PMID: 21083629 DOI: 10.1111/j.1365-2826.2010.02078.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prolactin (PRL)-releasing peptides (PrRP) have been identified in mammals, amphibians and fishes, and these animals have several PrRPs that consist of different numbers of amino acids such as 20, 31 and 37. In the present study, we identified the cDNA encoding chicken prepro-PrRP, which can generate putative PrRPs, and cloned and sequenced it. Sequences for the coding region suggested the occurrence of putative PrRPs of 20, 31 and 32 amino acid residues. The amino acid sequence of chicken PrRP20 showed 100%, 95% and 70% identity with those of PrRP20s from teleosts, Xenopus laevis and mammals, respectively. On the other hand, chicken PrRP31 showed approximately 90% and 52-55% homology to PrRP31s of X. laevis and mammals, respectively. Native chicken PrRPs were purified from an acid extract of chick brain by a Sep-Pak C18 cartridge (Waters Corp., Milford, MA, USA), affinity chromatography using anti-salmon PrRP serum, and reverse phase high-performance liquid chromatography (HPLC) on an ODS-120T column (TOSOH, Tokyo, Japan). The existence of chicken PrRP20 and PrRP31 in the brain was demonstrated by comparing them with the synthetic peptides using HPLC and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Chicken PrRP31 increased plasma PRL concentration when administered peripherally, whereas central administration decreased the concentration, suggesting that chicken PrRP31 has a distinct effect on PRL secretion between tissues in chicks. On the other hand, plasma growth hormone concentration decreased with both peripheral and central administrations of chicken PrRP31. Furthermore, central administration of chicken PrRP31 increased food intake in chicks compared to those observed in mammals and fishes. Taken together with the results indicating that chicken PrRP20 did not show endocrine and behavioural effects, we showed that chicken PrRP has a similar amino acid sequence to teleosts, Xenopus laevis and mammals, although the actions were variable among vertebrates.
Collapse
Affiliation(s)
- T Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.
School of Marine Biosciences, Kitasato University, Ofunato, Iwate, Japan.
| | | | | | | | | | | | | |
Collapse
|
52
|
Sabatier N, Leng G. Responses to cholecystokinin in the ventromedial nucleus of the rat hypothalamus in vivo. Eur J Neurosci 2010; 31:1127-35. [PMID: 20377625 DOI: 10.1111/j.1460-9568.2010.07144.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The peptide cholecystokinin (CCK) is a short-term satiety signal released from the gastrointestinal tract during food intake. From the periphery, CCK signalling travels via the vagus nerve to reach the brainstem from which it is relayed higher into the brain. The hypothalamus is a key integrator of appetite-related stimuli and the ventromedial nucleus of the hypothalamus (VMN) is thought to have an important role in the regulation of satiety. We investigated the effect of intravenous injections of CCK on the spontaneous firing activity of single VMN neurons in urethane-anaesthetised rats in vivo. We found that the predominant effect of CCK on the electrical activity in the VMN is inhibitory. We analysed the responses to CCK according to electrophysiologically distinct subpopulations of VMN neurons and found that four of these VMN subpopulations were inhibited by CCK, while five were not significantly affected. Finally, CCK-induced inhibitory response in VMN neurons was not altered by pre-administration of intravenous leptin.
Collapse
Affiliation(s)
- Nancy Sabatier
- Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
53
|
Mochiduki A, Takeda T, Kaga S, Inoue K. Stress response of prolactin-releasing peptide knockout mice as to glucocorticoid secretion. J Neuroendocrinol 2010; 22:576-84. [PMID: 20298457 DOI: 10.1111/j.1365-2826.2010.01993.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prolactin-releasing peptide (PrRP) is known to have functions in prolactin secretion, stress responses, cardiovascular regulation and food intake suppression. In addition, PrRP-knockout (KO) male mice show obesity from the age of 22 weeks and increase their food intake. The plasma concentrations of insulin, leptin, cholesterol and triglyceride are also increased in obese PrRP-KO mice. Fatty liver, hypertrophied white adipose tissue, decreased uncoupling protein 1 mRNA expression in brown adipose tissue and glucose intolerance were observed in obese PrRP-KO mice. As we reported previously, PrRP stimulates corticotrophin-releasing factor and regulates the hypothalamic-pituitary-adrenal axis. Therefore, it is speculated that PrRP regulates both food intake and metabolism as a stress responses. In the present study, we compared blood glucose and plasma glucocorticoid concentrations in PrRP-KO mice, and found that PrRP-KO mice showed higher concentrations of blood glucose and corticosterone compared to wild-type mice after restraint stress. By contrast, there were no difference in c-Fos expression in the paraventricular hypothalamic nucleus and plasma adrenocorticotrophic hormone concentrations between the two groups. These results suggest that the different stress responses as to glucocorticoid secretion may be induced by different responses of the adrenal glands between wild-type and PrRP-KO mice. Thus, we conclude that PrRP-KO mice become obese as a result of increased food intake, a change in metabolism, and abnormal stress responses as to glucose concentration and glucocorticoid secretion.
Collapse
Affiliation(s)
- A Mochiduki
- Department of Regulatory Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | | | | | |
Collapse
|
54
|
Dodd GT, Mancini G, Lutz B, Luckman SM. The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice. J Neurosci 2010; 30:7369-76. [PMID: 20505104 PMCID: PMC6632410 DOI: 10.1523/jneurosci.5455-09.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/07/2010] [Accepted: 04/12/2010] [Indexed: 11/21/2022] Open
Abstract
Hemopressin is a short, nine amino acid peptide (H-Pro-Val-Asn-Phe-Lys-Leu-Leu-Ser-His-OH) isolated from rat brain that behaves as an inverse agonist at the cannabinoid receptor CB(1), and is shown here to inhibit agonist-induced receptor internalization in a heterologous cell model. Since this peptide occurs naturally in the rodent brain, we determined its effect on appetite, an established central target of cannabinoid signaling. Hemopressin dose-dependently decreases night-time food intake in normal male rats and mice, as well as in obese ob/ob male mice, when administered centrally or systemically, without causing any obvious adverse side effects. The normal, behavioral satiety sequence is maintained in male mice fasted overnight, though refeeding is attenuated. The anorectic effect is absent in CB(1) receptor null mutant male mice, and hemopressin can block CB(1) agonist-induced hyperphagia in male rats, providing strong evidence for antagonism of the CB(1) receptor in vivo. We speculate that hemopressin may act as an endogenous functional antagonist at CB(1) receptors and modulate the activity of appetite pathways in the brain.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal
- Benzoxazines/pharmacology
- COS Cells
- Chlorocebus aethiops
- Circadian Rhythm/drug effects
- Circadian Rhythm/physiology
- Cyclohexanols
- Dose-Response Relationship, Drug
- Drinking Behavior/drug effects
- Dronabinol/pharmacology
- Drug Administration Routes
- Eating/drug effects
- Eating/genetics
- Food Deprivation/physiology
- Green Fluorescent Proteins/genetics
- Hemoglobins/pharmacology
- Hyperphagia/chemically induced
- Hyperphagia/drug therapy
- Leptin/deficiency
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Peptide Fragments/pharmacology
- Piperidines/pharmacology
- Protein Transport/drug effects
- Psychotropic Drugs/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/metabolism
- Rimonabant
- Time Factors
- Transfection/methods
Collapse
Affiliation(s)
- Garron T. Dodd
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, and
| | - Giacomo Mancini
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | - Simon M. Luckman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom, and
| |
Collapse
|
55
|
Onaka T, Takayanagi Y, Leng G. Metabolic and stress-related roles of prolactin-releasing peptide. Trends Endocrinol Metab 2010; 21:287-93. [PMID: 20122847 DOI: 10.1016/j.tem.2010.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/23/2009] [Accepted: 01/07/2010] [Indexed: 12/26/2022]
Abstract
In the modern world, improvements in human health can be offset by unhealthy lifestyle factors, including the deleterious consequences of stress and obesity. For energy homeostasis, humoral factors and neural afferents from the gastrointestinal tract, in combination with long-term nutritional signals, communicate information to the brain to regulate energy intake and expenditure. Energy homeostasis and stress interact with each other, and stress affects both food intake and energy expenditure. Prolactin-releasing peptide, synthesized in discrete neuronal populations in the hypothalamus and brainstem, plays an important role in integrating these responses. This review describes how prolactin-releasing peptide neurons receive information concerning both internal metabolic states and environmental conditions, and play a key role in energy homeostasis and stress responses.
Collapse
Affiliation(s)
- Tatsushi Onaka
- Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken 329-0498, Japan
| | | | | |
Collapse
|
56
|
Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 2010; 1350:18-34. [PMID: 20353764 DOI: 10.1016/j.brainres.2010.03.059] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/15/2010] [Accepted: 03/15/2010] [Indexed: 01/16/2023]
Abstract
Metabolic homeostasis reflects the complex output of endocrine, autonomic, and behavioral control circuits that extend throughout the central nervous system. Brain regions that control food intake and energy expenditure are privy to continuous visceral sensory feedback signals that presumably modulate appetite, satiety, digestion, and metabolism. Sensory signals from the gastrointestinal tract and associated digestive viscera are delivered to the brain primarily by vagal afferents that terminate centrally within the caudal nucleus of the solitary tract (NST), with signals subsequently relayed to higher brain regions by parallel noradrenergic and peptidergic projection pathways arising within the NST. This article begins with an overview of these ascending pathways identified in adult rats using a standard anterograde tracer microinjected into the caudal visceral sensory region of the NST, and also by immunocytochemical localization of glucagon-like peptide-1. NST projection targets identified by these two approaches are compared to the distribution of neurons that become infected after inoculating the ventral stomach wall with a neurotropic virus that transneuronally infects synaptically-linked chains of neurons in the anterograde (i.e., ascending sensory) direction. Although the focus of this article is the anatomical organization of axonal projections from the caudal visceral NST to the hypothalamus and limbic forebrain, discussion is included regarding the hypothesized role of these projections in modulating behavioral arousal and coordinating endocrine and behavioral (i.e., hypophagic) responses to stress.
Collapse
Affiliation(s)
- Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
57
|
Renner E, Szabó-Meltzer KI, Puskás N, Tóth ZE, Dobolyi A, Palkovits M. Activation of neurons in the hypothalamic dorsomedial nucleus via hypothalamic projections of the nucleus of the solitary tract following refeeding of fasted rats. Eur J Neurosci 2010; 31:302-14. [PMID: 20074225 DOI: 10.1111/j.1460-9568.2009.07053.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We report that satiation evokes neuronal activity in the ventral subdivision of the hypothalamic dorsomedial nucleus (DMH) as indicated by increased c-fos expression in response to refeeding in fasted rats. The absence of significant Fos activation following food presentation without consumption suggests that satiation but not craving for food elicits the activation of ventral DMH neurons. The distribution pattern of the prolactin-releasing peptide (PrRP)-immunoreactive (ir) network showed remarkable correlations with the distribution of activated neurons within the DMH. The PrRP-ir fibers and terminals were immunolabeled with tyrosine hydroxylase, suggesting their origin in lower brainstem instead of local, hypothalamic PrRP cells. PrRP-ir fibers arising from neurons of the nucleus of the solitary tract could be followed to the hypothalamus. Unilateral transections of these fibers at pontine and caudal hypothalamic levels resulted in a disappearance of the dense PrRP-ir network in the ventral DMH while PrRP immunoreactivity was increased in transected fibers caudal to the knife cuts as well as in perikarya of the nucleus of the solitary tract ipsilateral to the transections. In accord with these changes, the number of Fos-expressing neurons following refeeding declined in the ipsilateral but remained high in the contralateral DMH. However, the Fos response in the ventral DMH was not attenuated following chemical lesion (neonatal monosodium glutamate treatment) of the hypothalamic arcuate nucleus, another possible source of DMH inputs. These findings suggest that PrRP projections from the nucleus of the solitary tract contribute to the activation of ventral DMH neurons during refeeding, possibly by transferring information on cholecystokinin-mediated satiation.
Collapse
Affiliation(s)
- Eva Renner
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
58
|
Jászberényi M, Bagosi Z, Thurzó B, Földesi I, Szabó G, Telegdy G. Endocrine, behavioral and autonomic effects of neuropeptide AF. Horm Behav 2009; 56:24-34. [PMID: 19269292 DOI: 10.1016/j.yhbeh.2009.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 02/20/2009] [Accepted: 02/22/2009] [Indexed: 11/19/2022]
Abstract
The actions of neuropeptide AF (NPAF), on the hypothalamic-pituitary-adrenal (HPA) axis, behavior and autonomic functions were investigated. NPAF (0.25, 0.5, 1, 2 nmol) was administered intracerebroventricularly to rats, the behavior of which was monitored by means of telemetry, open-field (OF) observations and elevated plus-maze (EPM) tests. The temperature and heart rate were recorded by telemetry, and the plasma ACTH and corticosterone levels were used as indices of the HPA activation. The dopamine release from striatal and amygdala slices after peptide treatment (100 nM and 1 microM) was measured with a superfusion apparatus. To establish the transmission of the HPA response, animals were pretreated with the corticotrophin-releasing hormone (CRH) receptor antagonist antalarmin or astressin 2B (0.5 nmol). In the OF test, the animals were pretreated with antalarmin or haloperidol (10 microg/kg), while in the EPM test they were pretreated with antalarmin or diazepam (1 mg/kg). NPAF stimulated ACTH and corticosterone release, which was inhibited by antalarmin. It activated exploratory locomotion (square crossings and rearings) and grooming in OF observations, and decreased the entries to and the time spent in the open arms during the EPM tests. The antagonists inhibited the locomotor responses, and also attenuated grooming and the EPM responses. NPAF also increased spontaneous locomotion, and tended to decrease the core temperature and the heart rate in telemetry, while it augmented the dopamine release from striatal and amygdala slices. These results demonstrate, that acute administration of exogenous NPAF stimulates the HPA axis and behavioral paradigms through CRH and dopamine release.
Collapse
|
59
|
Takayanagi Y, Matsumoto H, Nakata M, Mera T, Fukusumi S, Hinuma S, Ueta Y, Yada T, Leng G, Onaka T. Endogenous prolactin-releasing peptide regulates food intake in rodents. J Clin Invest 2008; 118:4014-24. [PMID: 19033670 DOI: 10.1172/jci34682] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 09/17/2008] [Indexed: 02/03/2023] Open
Abstract
Food intake is regulated by a network of signals that emanate from the gut and the brainstem. The peripheral satiety signal cholecystokinin is released from the gut following food intake and acts on fibers of the vagus nerve, which project to the brainstem and activate neurons that modulate both gastrointestinal function and appetite. In this study, we found that neurons in the nucleus tractus solitarii of the brainstem that express prolactin-releasing peptide (PrRP) are activated rapidly by food ingestion. To further examine the role of this peptide in the control of food intake and energy metabolism, we generated PrRP-deficient mice and found that they displayed late-onset obesity and adiposity, phenotypes that reflected an increase in meal size, hyperphagia, and attenuated responses to the anorexigenic signals cholecystokinin and leptin. Hypothalamic expression of 6 other appetite-regulating peptides remained unchanged in the PrRP-deficient mice. Blockade of endogenous PrRP signaling in WT rats by central injection of PrRP-specific mAb resulted in an increase in food intake, as reflected by an increase in meal size. These data suggest that PrRP relays satiety signals within the brain and that selective disturbance of this system can result in obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Watanabe A, Okuno S, Okano M, Jordan S, Aihara K, Watanabe TK, Yamasaki Y, Kitagawa H, Sugawara K, Kato S. Altered emotional behaviors in the diabetes mellitus OLETF type 1 congenic rat. Brain Res 2007; 1178:114-24. [PMID: 17916333 DOI: 10.1016/j.brainres.2007.07.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/26/2007] [Accepted: 07/28/2007] [Indexed: 11/28/2022]
Abstract
GPR10 is a G-protein-coupled receptor expressed in thalamic and hypothalamic brain regions, including the reticular thalamic nucleus (RTN) and periventricular nucleus (Pev), and the endogenous ligand for this receptor, prolactin-releasing peptide (PrRP), has demonstrated regulatory effects on the stress response. We produced a congenic rat by introducing the Dmo1 allele from the OLETF rat which encodes the amino acid sequences of GPR10 with a truncated NH2-terminus, into the Brown-Norway background. Using receptor autoradiography, we determined a lack of specific [125I]PrRP binding in the RTN and Pev of these mutant rats compared to the control rats. Furthermore, intracerebroventricular injection of PrRP did not induce a significant increase of c-fos-like immunoreactivity in the paraventricular nucleus of the mutant rats compared to the control rats. The mutant rats also displayed a less anxious-like phenotype in three behavioral-based models of anxiety-like behavior (open field, elevated plus maze and defensive withdrawal test). These data show the mutant congenic rat, of which GPR10 neither binds nor responds to PrRP, expresses less anxious-like phenotypes. On the basis of these observations, the GPR10 might be a novel target for the developing new drugs against anxiety and/or other stress-related diseases.
Collapse
Affiliation(s)
- Akihito Watanabe
- Department of Molecular Neurobiology, Graduate School of Medicine, Kanazawa University, Kanazawa, 920-8640, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Moriyama S, Kasahara M, Amiya N, Takahashi A, Amano M, Sower SA, Yamamori K, Kawauchi H. RFamide peptides inhibit the expression of melanotropin and growth hormone genes in the pituitary of an Agnathan, the sea lamprey, Petromyzon marinus. Endocrinology 2007; 148:3740-9. [PMID: 17494999 DOI: 10.1210/en.2007-0356] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptides with the Arg-Phe-amide motif at their C termini (RFamide peptides) were identified in the brains of several vertebrates, and shown to have important physiological roles in neuroendocrine, behavioral, sensory, and autonomic functions. The present study identified RFamide peptides, which are teleost prolactin-releasing peptide (PrRP) homologs, in the sea lamprey, Petromyzon marinus and characterized their effect on the release of pituitary hormones in vitro. Two RFamide peptides (RFa-A and RFa-B) were isolated from an acid extract of sea lamprey brain, including hypothalamus by Sep-Pak C18 cartridge, affinity chromatography using anti-salmon PrRP serum, and reverse-phase HPLC on an ODS-120T column. Amino acid (aa) sequences and mass spectrometric analyses revealed that RFa-A and RFa-B consist of 25 and 20 aa, respectively, and have 75% sequence identity within the C-terminal 20 aa. The RFa-B cDNA encoding a preprohormone of 142 aa was cloned from the lamprey brain, and the deduced aa sequence from positions 48-67 was identical to the sequence of RFa-B. However, the preprohormone does not include an aa sequence similar to the RFa-A sequence. Cell bodies, which were immunoreactive to anti-salmon PrRP serum, were located in the periventricular arcuate nucleus, ventral part of the hypothalamus, and immunoreactive fibers were abundant from the hypothalamus to the brain. A small number of immunoreactive fibers were detected in the dorsal half of the rostral pars distalis of the pituitary, close to the GH-producing cells. In addition, anti-salmon PrRP immunoreactivities were observed in the pars intermedia, corresponding to melanotropin cells. Likewise, signal of RFa-B mRNA was detected not only in the brain but also in the pars intermedia. The synthetic RFa-A and -B inhibited GH mRNA expression in a dose-dependent fashion in vitro, which is comparable to the inhibitory effect of teleost PrRP on GH release. Both RFa-A and -B also inhibited the expression of proopiomelanotropin mRNA, but no effects were observed in the expression of proopiocortin and gonadotropin beta mRNAs. The results indicate that RFamide peptides, which are teleost PrRP homologs, are present in the hypothalamus and pituitary of sea lamprey, and may be physiologically involved in the inhibition of GH and melanotropin release in the sea lamprey pituitary.
Collapse
Affiliation(s)
- Shunsuke Moriyama
- School of Fisheries Sciences, Kitasato University, Sanriku, Iwate 022-0101, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Mera T, Fujihara H, Saito J, Kawasaki M, Hashimoto H, Saito T, Shibata M, Onaka T, Tanaka Y, Oka T, Tsuji S, Ueta Y. Downregulation of prolactin-releasing peptide gene expression in the hypothalamus and brainstem of diabetic rats. Peptides 2007; 28:1596-604. [PMID: 17681402 DOI: 10.1016/j.peptides.2007.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 06/24/2007] [Accepted: 06/28/2007] [Indexed: 11/20/2022]
Abstract
We investigated the prolactin-releasing peptide (PrRP) mRNA levels in the hypothalamus and brainstem of streptozotocin (STZ)-induced diabetic rats and fa/fa Zucker diabetic rats, using in situ hybridization histochemistry. PrRP mRNA levels in the hypothalamus and brainstem of STZ-induced diabetic rats were significantly reduced in comparison with those of control rats. PrRP mRNA levels in the diabetic rats were reversed by both insulin and leptin. PrRP mRNA levels in the fa/fa diabetic rats were significantly reduced in comparison with those of Fa/? rats. PrRP mRNA levels in the fa/fa diabetic rats were significantly increased by insulin-treatment, but did not reach control levels in the Fa/? rats. We also investigated the effect of restraint stress on PrRP mRNA levels in STZ-induced diabetic rats. The PrRP mRNA levels in the control and the STZ-induced diabetic rats increased significantly after restraint stress. The diabetic condition and insulin-treatment may affect the regulation of PrRP gene expression via leptin and other factors, such as plasma glucose level. The diabetic condition may not impair the role of PrRP as a stress mediator.
Collapse
Affiliation(s)
- Takashi Mera
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bruzzone F, Lectez B, Alexandre D, Jégou S, Mounien L, Tollemer H, Chatenet D, Leprince J, Vallarino M, Vaudry H, Chartrel N. Distribution of 26RFa binding sites and GPR103 mRNA in the central nervous system of the rat. J Comp Neurol 2007; 503:573-91. [PMID: 17534937 DOI: 10.1002/cne.21400] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The novel RFamide peptide 26RFa, the endogenous ligand of the orphan receptor GPR103, affects food intake, locomotion, and activity of the gonadotropic axis. However, little is known regarding the localization of 26RFa receptors. The present report provides the first detailed mapping of 26RFa binding sites and GPR103 mRNA in the rat central nervous system (CNS). 26RFa binding sites were widely distributed in the brain and spinal cord, whereas the expression of GPR103 mRNA was more discrete, notably in the midbrain, the pons, and the medulla oblongata, suggesting that 26RFa can bind to a receptor(s) other than GPR103. Competition experiments confirmed that 26RFa interacts with an RFamide peptide receptor distinct from GPR103 that may be NPFF2. High densities of 26RFa binding sites were observed in olfactory, hypothalamic, and brainstem nuclei involved in the control of feeding behavior, including the piriform cortex, the ventromedial and dorsomedial hypothalamic nuclei, the paraventricular nucleus, the arcuate nucleus, the lateral hypothalamic area, and the nucleus of the solitary tract. The preoptic and anterior hypothalamic areas were also enriched with 26RFa recognition sites, supporting a physiological role of the neuropeptide in the regulation of the gonadotropic axis. A high density of 26RFa binding sites was detected in regions of the CNS involved in the processing of pain, such as the dorsal horn of the spinal cord and the parafascicular thalamic nucleus. The wide distribution of 26RFa binding sites suggests that 26RFa has multiple functions in the CNS that are mediated by at least two distinct receptors.
Collapse
Affiliation(s)
- Federica Bruzzone
- Institut National de la Santé et de la Recherche Médicale U 413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Kelly SP, Peter RE. Prolactin-releasing peptide, food intake, and hydromineral balance in goldfish. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1474-81. [PMID: 16741144 DOI: 10.1152/ajpregu.00129.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A potential role for prolactin-releasing peptide (PrRP) in appetite regulation and hydromineral balance in goldfish was examined. PrRP was found to be expressed in discrete regions of the goldfish brain, in particular, the hypothalamus. Intraperitoneal (IP) or intracerebroventricular administration of PrRP had dose-dependent effects to suppress food intake in goldfish. Hypothalamic PrRP mRNA expression significantly increased after feeding, as well as after 7 days of food deprivation. Refeeding fish after 7 days food deprivation did not result in a postprandial increase in PrRP mRNA expression. These data suggest an anorexigenic role for PrRP in the short term around a scheduled meal time, but not over the longer term. IP injection of PrRP significantly increased pituitary prolactin (PRL) mRNA levels, suggesting involvement in the regulation of lactotroph activity. Acclimating goldfish to an ion-poor environment decreased serum osmolality and increased PrRP and PRL mRNA levels, providing evidence for PrRP involvement in hydromineral balance through its actions on lactotrophs. Acclimation to ion-poor water diminished the anorexigenic properties of PrRP in goldfish, indicating that a role for PrRP in goldfish satiation is counterbalanced by alternate systemic needs (i.e., osmoregulatory). This was further supported by an ability to reinstate the anorexigenic actions of PrRP in fish acclimated to ion-poor water by feeding a salt-rich diet. These studies provide evidence that PrRP is involved in regulating appetite and hydromineral balance in fish, and that the degree of involvement in either process varies according to overall systemic needs in response to environmental conditions.
Collapse
Affiliation(s)
- Scott P Kelly
- Dept. of Biology, York Univ., Toronto, Ontario, Canada M3J 1P3.
| | | |
Collapse
|
65
|
Laurent P, Becker JAJ, Valverde O, Ledent C, de Kerchove d'Exaerde A, Schiffmann SN, Maldonado R, Vassart G, Parmentier M. The prolactin-releasing peptide antagonizes the opioid system through its receptor GPR10. Nat Neurosci 2005; 8:1735-41. [PMID: 16299503 DOI: 10.1038/nn1585] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 09/30/2005] [Indexed: 11/08/2022]
Abstract
Prolactin-releasing peptide (PrRP) and its receptor G protein-coupled receptor 10 (GPR10) are expressed in brain areas involved in the processing of nociceptive signals. We investigated the role of this new neuropeptidergic system in GPR10-knockout mice. These mice had higher nociceptive thresholds and stronger stress-induced analgesia than wild-type mice, differences that were suppressed by naloxone treatment. In addition, potentiation of morphine-induced antinociception and reduction of morphine tolerance were observed in mutants. Intracerebroventricular administration of PrRP in wild-type mice promoted hyperalgesia and reversed morphine-induced antinociception. PrRP administration had no effect on GPR10-mutant mice, showing that its effects are mediated by GPR10. Anti-opioid effects of neuropeptide FF were found to require a functional PrRP-GPR10 system. Finally, GPR10 deficiency enhanced the acquisition of morphine-induced conditioned place preference and decreased the severity of naloxone-precipitated morphine withdrawal syndrome. Altogether, our data identify the PrRP-GPR10 system as a new and potent negative modulator of the opioid system.
Collapse
Affiliation(s)
- Patrick Laurent
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (I.R.I.B.H.M.), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Our knowledge of the physiological systems controlling energy homeostasis has increased dramatically over the last decade. The roles of peripheral signals from adipose tissue, pancreas, and the gastrointestinal tract reflecting short- and long-term nutritional status are now being described. Such signals influence central circuits in the hypothalamus, brain stem, and limbic system to modulate neuropeptide release and hence food intake and energy expenditure. This review discusses the peripheral hormones and central neuronal pathways that contribute to control of appetite.
Collapse
Affiliation(s)
- Sarah Stanley
- Endocrine Unit, Imperial College Faculty of Medicine, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | | | | | | |
Collapse
|
67
|
Grabauskas G, Zhou SY, Das S, Lu Y, Owyang C, Moises HC. Prolactin-releasing peptide affects gastric motor function in rat by modulating synaptic transmission in the dorsal vagal complex. J Physiol 2004; 561:821-39. [PMID: 15486017 PMCID: PMC1665377 DOI: 10.1113/jphysiol.2004.072736] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prolactin-releasing peptide (PrRP) is a recently discovered neuropeptide implicated in the central control of feeding behaviour and autonomic homeostasis. PrRP-containing neurones and PrRP receptor mRNA are found in abundance in the caudal portion of the nucleus tractus solitarius (NTS), an area which together with the dorsal motor nucleus of the vagus (DMV) comprises an integrated structure, the dorsal vagal complex (DVC) that processes visceral afferent signals from and provides parasympathetic motor innervation to the gastrointestinal tract. In this study, microinjection experiments were conducted in vivo in combination with whole-cell recording from neurones in rat medullary slices to test the hypothesis that PrRP plays a role in the central control of gastric motor function, acting within the DVC to modulate the activity of preganglionic vagal motor neurones that supply the stomach. Microinjection of PrRP (0.2 pmol (20 nl)(-1)) into the DMV at the level of the area postrema (+0.2 to +0.6 mm from the calamus scriptorius, CS) markedly stimulated gastric contractions and increased intragastric pressure (IGP). Conversely, administration of peptide into the DMV at sites caudal to the obex (0.0 to -0.3 mm from the CS) decreased IGP and reduced phasic contractions. These effects occurred without change in mean arterial pressure and were abolished by ipsilateral vagotomy, indicating mediation via a vagal-dependent mechanism(s). The pattern of gastric motor responses evoked by PrRP mimicked that produced by administration of L-glutamate at the same sites, and both the effects of L-glutamate and PrRP were abolished following local administration of NMDA and non-NMDA-type glutamate receptor antagonists. On the other hand, microinjection of PrRP into the medial or comissural nucleus of the solitary tract (mNTS and comNTS, respectively) resulted in less robust changes in IGP in a smaller percentage of animals, accompanied by marked alterations in arterial pressure. Superfusion of brain slices with PrRP (100-300 nm) produced a small depolarization and increased spontaneous firing in 10 of 30 retrogradely labelled gastric-projecting DMV neurones. The excitatory effects were blocked by administration of TTX (2 mum) or specific glutamate receptor antagonists, indicating that they resulted from interactions of PrRP at a presynaptic site. Congruent with this, PrRP increased the amplitude of excitatory postsynaptic currents (EPSCs, 154 +/- 33%, 12 of 25 neurones) evoked by electrical stimulation in mNTS or comNTS. In addition, administration of PrRP decreased the paired-pulse ratio of EPSCs evoked by two identical stimuli delivered 100 ms apart (from 0.95 +/- 0.08 to 0.71 +/- 0.11, P < 0.05), whereas it did not affect the amplitude of inward currents evoked by exogenous application of L-glutamate to the slice. The frequency, but not amplitude of spontaneous EPSCs and action potential-independent miniature EPSCs was also increased by administration of PrRP, suggesting that the peptide was acting at least in part at receptors on presynaptic nerve terminals to enhance glutamatergic transmission. In recordings obtained from a separate group of slices, we did not observe any direct effects of PrRP on spontaneous discharge or postsynaptic excitability in either mNTS or comNTS neurones (n = 31). These data indicate that PrRP may act within the DVC to regulate gastric motor function by modulating the efficacy of conventional excitatory synaptic inputs from the NTS onto gastric-projecting vagal motor neurones.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- GI Division, Department of Internal Medicine, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0622, USA
| | | | | | | | | | | |
Collapse
|
68
|
Beck B, Max JP, Richy S, Stricker-Krongrad A. Feeding response to a potent prolactin-releasing peptide agonist in lean and obese Zucker rats. Brain Res 2004; 1016:135-8. [PMID: 15234262 DOI: 10.1016/j.brainres.2004.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2004] [Indexed: 11/15/2022]
Abstract
Prolactin (PRL)-releasing peptide (PrRP) is a new peptide present in the hypothalamus and in the circulation that may be involved in the regulation of feeding behavior. In the present experiment, we measured it in a well-known model of obesity, the Zucker rat. We also measured the reactivity of this animal in terms of food intake after the intraperitoneal (I.P.) or central injection of PrRP-13, a potent PrRP agonist. Plasma PrRP levels were 35% lower in obese fa/fa than in the lean rats (p<0.005). I.P. injections of PrRP-13 (10 mg/kg) stimulated food intake in lean and had no effect in obese rats (p<0.001). Intracerebral injections of PrRP-13 had no effects in both genotypes. Altogether, these results do not support a role for PrRP in the hyperphagia and obesity syndrome of the Zucker rat.
Collapse
Affiliation(s)
- Bernard Beck
- UHP EA 3453/IFR 111-Systèmes Neuromodulateurs des Comportements Ingestifs-38, rue Lionnois 54000 Nancy, France
| | | | | | | |
Collapse
|
69
|
Gu W, Geddes BJ, Zhang C, Foley KP, Stricker-Krongrad A. The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J Mol Neurosci 2004; 22:93-103. [PMID: 14742914 DOI: 10.1385/jmn:22:1-2:93] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Accepted: 07/22/2003] [Indexed: 11/11/2022]
Abstract
To identify new drug targets for the treatment of obesity, we employed a degenerate reverse transcriptasepolymerase chain reaction technique to isolate novel members of the G-protein coupled receptor superfamily from mouse hypothalamus. One of our clones was found to encode a protein with 90% amino acid identity to human GPR10, which was previously identified as the receptor for prolactin-releasing peptide (PrRP) and has been implicated in lactation, the regulation of food intake and other physiological functions. To investigate the role of GPR10 in food intake and body weight homeostasis, we generated mice carrying a targeted deletion of the GPR10 gene. First, using these knockout animals, we confirmed that GPR10 is the principle receptor for PrRP in the mouse hypothalamus because deletion of GPR10 completely abolished PrRP binding to isolated hypothalamic cell membranes. Second, we investigated the effect of normal and high-fat diets on energy intake, body weight, and glucose homeostasis in wild-type and GPR10 knockout mice. After fasting and refeeding, food intake in knockout animals was unchanged relative to control littermates. However, beginning at 16 wk of age on a normal diet, knockout mice became hyperphagic, obese, and showed significant increases in body fat and the levels of leptin and insulin, as well as decreased glucose tolerance. This metabolic profile was similar to the effect of a high-fat diet on wild-type animals. Our findings provide direct evidence that GPR10 is the receptor for PrRP and that it is involved in the regulation of energy balance in mice. GPR10 knockout mice will also prove useful for investigating other proposed activities for PrRP.
Collapse
Affiliation(s)
- Wei Gu
- Millennium Pharmaceuticals, Inc., MA 02139, USA
| | | | | | | | | |
Collapse
|
70
|
Abstract
The hypothalamus is a major site for integration of central and peripheral signals that regulate energy homeostasis. Within the hypothalamus, neurons residing in the ARC (arcuate nucleus)-PVN (paraventricular)-PF/LH (perifornical/lateral hypothalamus) axis communicate among each other and are subjected to the influence of several peripheral factors, including leptin and insulin. Proper signaling in the hypothalamus by leptin, a long-sought peripheral factor that relays the status of fat stores, is critical to normal regulation of food intake and body weight. Leptin action in the hypothalamus is mediated by a large number of orexigenic and anorectic peptide-producing neurons of the ARC-PVN-PF/LH axis. Not only the classical JAK2 (Janus kinase 2)-STAT3 (signal transducer and activator of transcription 3) pathway, but also the phosphatidylinositol-3 kinase-phosphodiesterase 3B-cAMP pathway mediates hypothalamic leptin receptor signaling. It appears that hypothalamic leptin resistance, possibly due to defective nutritional regulation of leptin receptor expression and/or reduced STAT3 signaling in the hypothalamus, contributes to the development of obesity associated with high-fat feeding and aging. Interestingly, hypothalamic neurons may develop leptin resistance despite an intact JAK2-STAT3 signaling path. The role of suppressor of cytokine signaling 3 and other negative regulators of leptin signaling in central leptin resistance needs to be established, an important area of future investigation. Further understanding of the neural circuitry and leptin signaling in the hypothalamus is critical not only for the advancement of our knowledge on the hypothalamic role in energy balance but also for future development of drugs for the attenuation or treatment of obesity and related disorders in humans.
Collapse
Affiliation(s)
- Abhiram Sahu
- Ph.D, Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, S-829 Scaife Hall, 3550 Terrace Street, Pittsburgh, Pennsylvania 15262, USA.
| |
Collapse
|
71
|
Abstract
Neuropeptides terminating in -Arg-Phe-NH(2) (-RFamide) were first discovered in molluscan nervous systems, but were soon recognized to occur widely throughout the invertebrates. Progress in characterizing members of the family in vertebrates has been slower. In mammals, however, it is now clear that there are at least five genes encoding members of the family, and at least five G-protein-coupled receptors at which they act. The tissue distribution of the peptides and their receptors is wide and there are likely to be many different functions. One of the emerging themes from recent research is that these peptides are involved in control of feeding behaviour both in invertebrates and in vertebrates. This would seem to be a remarkable example of conservation of chemical structure and biological function throughout nervous system evolution.
Collapse
Affiliation(s)
- Graham J Dockray
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
72
|
Ellacott KLJ, Lawrence CB, Pritchard LE, Luckman SM. Repeated administration of the anorectic factor prolactin-releasing peptide leads to tolerance to its effects on energy homeostasis. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1005-10. [PMID: 14557233 DOI: 10.1152/ajpregu.00237.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Central administration of a single dose of prolactin-releasing peptide (PrRP) causes a reduction in both fast-induced and nocturnal food intake and body weight gain. The aim of this study was to examine the effect of repeated administration of PrRP on energy homeostasis, including a measure of the expression of the mitochondrial uncoupling protein-1 (UCP-1) in brown adipose tissue. Conscious, free-feeding animals received central injections of PrRP (4 nmol icv) or vehicle. A single injection at 1000 caused a sustained hyperthermia over the 4-h test period and an increase in the expression of UCP-1 mRNA. Repeated, twice daily injection caused a reduction in body weight gain greater than that seen in pair-fed animals for the first 48-72 h. After 72 h, the animals became refractory to the actions of PrRP. The pair-fed group showed a reduction in UCP-1 mRNA expression at 48 h, which was reversed by PrRP treatment. This study indicates that PrRP exerts its effects on energy homeostasis in the short-medium term by reducing food intake and increasing energy expenditure.
Collapse
Affiliation(s)
- Kate L J Ellacott
- 1.124 Stopford Bldg., School of Biological Sciences, Univ. of Manchester, Oxford Road, Manchester, M13 9PT UK.
| | | | | | | |
Collapse
|
73
|
Lawrence CB, Liu YL, Stock MJ, Luckman SM. Anorectic actions of prolactin-releasing peptide are mediated by corticotropin-releasing hormone receptors. Am J Physiol Regul Integr Comp Physiol 2003; 286:R101-7. [PMID: 14512273 DOI: 10.1152/ajpregu.00402.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prolactin-releasing peptide (PrRP) reduces food intake and body weight and modifies body temperature when administered centrally in rats, suggesting a role in energy homeostasis. However, the mediators of PrRP's actions are unknown. The present study, therefore, first examined the possible involvement of the anorectic neuropeptides corticotropin-releasing hormone (CRH) and the melanocortins (e.g., alpha-melanocyte-stimulating hormone) in PrRP's effects on food intake and core body temperature and, second, determined if PrRP affects energy expenditure by measuring oxygen consumption (Vo2). Intracerebroventricular injection of PrRP (4 nmol) to 24-h-fasted male Sprague-Dawley rats decreased food intake and modified body temperature. Blockade of central CRH receptors by intracerebroventricular coadministration of the CRH receptor antagonist astressin (20 microg) reversed the PrRP-induced reduction in feeding. However, astressin's effect on PrRP-induced changes in body temperature was complicated because the antagonist itself caused a slight rise in body temperature. In contrast, intracerebroventricular coadministration of the melanocortin receptor-3/4 antagonist SHU-9119 (0.1 nmol) had no effect on any of PrRP's actions. Finally, intracerebroventricular injection of PrRP (4 nmol) caused a significantly greater Vo2 over a 3-h test period compared with vehicle-treated rats. These results show that the anorectic actions of PrRP are mediated by central CRH receptors but not by melanocortin receptors-3/4 and that PrRP can modify Vo2.
Collapse
MESH Headings
- Animals
- Appetite Depressants/administration & dosage
- Body Temperature/drug effects
- Corticotropin-Releasing Hormone/pharmacology
- Eating/drug effects
- Hypothalamic Hormones/administration & dosage
- Injections, Intraventricular
- Male
- Melanocyte-Stimulating Hormones/pharmacology
- Neuropeptides/administration & dosage
- Oxygen Consumption/drug effects
- Peptide Fragments/pharmacology
- Prolactin-Releasing Hormone
- Rats
- Rats, Sprague-Dawley
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/physiology
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/physiology
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/physiology
- Satiety Response
Collapse
Affiliation(s)
- Catherine B Lawrence
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
74
|
Zhu LL, Onaka T. Facilitative role of prolactin-releasing peptide neurons in oxytocin cell activation after conditioned-fear stimuli. Neuroscience 2003; 118:1045-53. [PMID: 12732249 DOI: 10.1016/s0306-4522(03)00059-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Emotional stress activates oxytocin neurons in the hypothalamic supraoptic and paraventricular nuclei and stimulates oxytocin release from the posterior pituitary. Oxytocin neurons in the hypothalamus have synaptic contact with prolactin-releasing peptide (PrRP) neurons. Intracerebroventricular administration of PrRP stimulates oxytocin release from the pituitary. These observations raise the possibility that PrRP neurons play a role in oxytocin response to emotional stress. To test this hypothesis, we first examined expression of Fos protein, an immediate early gene product, in the PrRP neurons in the medulla oblongata after conditioned-fear stimuli. Conditioned-fear stimuli increased the number of PrRP cells expressing Fos protein especially in the dorsomedial medulla. In order to determine whether PrRP cells projecting to the supraoptic nucleus are activated after conditioned-fear stimuli, we injected retrograde tracers into the supraoptic nucleus. Conditioned-fear stimuli induced expression of Fos protein in retrogradely labeled PrRP cells in the dorsomedial medulla. Finally we investigated whether immunoneutralization of endogenous PrRP impairs oxytocin release after emotional stimuli. An i.c.v. injection of a mouse monoclonal anti-PrRP antibody impaired release of oxytocin but not of adrenocorticotrophic hormone or prolactin and did not significantly change freezing behavior in response to conditioned-fear stimuli. From these data, we conclude that PrRP neurons in the dorsomedial medulla that project to the hypothalamus play a facilitative role in oxytocin release after emotional stimuli in rats.
Collapse
Affiliation(s)
- L L Zhu
- Department of Physiology, Jichi Medical School, Minamikawachi-machi, Tochigi-ken 329-0498, Japan
| | | |
Collapse
|
75
|
Anderson ST, Kokay IC, Lang T, Grattan DR, Curlewis JD. Quantification of prolactin-releasing peptide (PrRP) mRNA expression in specific brain regions of the rat during the oestrous cycle and in lactation. Brain Res 2003; 973:64-73. [PMID: 12729954 DOI: 10.1016/s0006-8993(03)02543-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Real-time Taqman RT-PCR was used to make quantitative comparisons of the levels of PrRP mRNA expression in micropunch brain samples from rats at different stages of the oestrous cycle and in lactation. The nucleus of the solitary tract and ventrolateral reticular nuclei of the medulla oblongata contained significantly (P<0.05) greater levels of PrRP mRNA than any hypothalamic region. Within the hypothalamus, the highest level of PrRP expression was localised to the dorsomedial aspect of the ventromedial hypothalamus. All other hypothalamic regions exhibited significantly (P<0.05) lower levels of expression, including the rostral and caudal dorsomedial hypothalamus. Very low levels of PrRP expression were observed in the arcuate nucleus, paraventricular nucleus, medial preoptic nucleus and ventrolateral aspect of the ventromedial hypothalamus. No significant changes in PrRP expression were noted in any sampled region between proestrus, oestrus or dioestrus. Similarly, PrRP expression in hypothalamic regions did not differ between lactating and non-lactating (dioestrous) animals. During validation of RT-PCR techniques we cloned and sequenced a novel splice variant of PrRP from the hypothalamus. This variant arises from alternative splicing of the donor site within exon 2, resulting in an insert of 64 base pairs and shift in the codon reading frame with the introduction of an early stop codon. In the hypothalamus and brainstem, mRNA expression of the variant was restricted to regions that expressed PrRP. These results suggest that PrRP expression in the hypothalamus may be more widespread than previously reported. However, the relatively low level of PrRP in the hypothalamus and the lack of significant changes in expression during the oestrous cycle and lactation provides further evidence that PrRP is unlikely to be involved in the regulation of prolactin secretion.
Collapse
Affiliation(s)
- S T Anderson
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | |
Collapse
|
76
|
Vergoni AV, Watanobe H, Guidetti G, Savino G, Bertolini A, Schiöth HB. Effect of repeated administration of prolactin releasing peptide on feeding behavior in rats. Brain Res 2002; 955:207-13. [PMID: 12419538 DOI: 10.1016/s0006-8993(02)03462-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Prolactin releasing peptide (PrRP) has been reported to reduce food intake in rats. We tested the effect of i.c.v. administration of PrRP-31 on food intake in both food deprived and free-feeding rats. We did not find any effect of PrRP-31 on food intake after single injections of up to an 8-nmol dose, but observed a marked decrease in food intake and body weight in rats that received a repeated twice daily administration of 8 nmol of PrRP-31. This effect was associated with an adverse behavioral pattern, indicating that the repeated high doses of the peptide caused non-specific effects inducing anorexia. We also tested several other behavioral parameters like locomotion and exploratory time, grooming and resting time, using lower doses of PrRP that did not cause the adverse behavior. Moreover, we carried out locomotor and sensory motor activity tests at the doses that exerted the most pronounced effect on the food intake. None of these tests suggested any specific behavioral effect of PrRP. We conclude that the behavioral pattern induced by PrRP is likely to be different from those induced by many other neuropeptides affecting food intake in rats.
Collapse
|
77
|
Ellacott KLJ, Lawrence CB, Rothwell NJ, Luckman SM. PRL-releasing peptide interacts with leptin to reduce food intake and body weight. Endocrinology 2002; 143:368-74. [PMID: 11796488 DOI: 10.1210/endo.143.2.8608] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PRL-releasing peptide (PrRP) is a novel anorexigen that reduces food intake and body weight gain in rats. In common with other anorexigens, PrRP mRNA expression is reduced during states of negative energy balance, i.e. lactation and fasting in female rats. In this study, we examined the interaction between PrRP and the adiposity signal, leptin, which interacts with a number of peptidergic systems in the brain to regulate energy homeostasis. Intracerebroventricular coadministration of 4 nmol PrRP and 1 microg leptin in rats resulted in additive reductions in nocturnal food intake and body weight gain and an increase in core body temperature compared with each peptide alone. We show also, by quantitative in situ hybridization, that PrRP mRNA is reduced in fasted male rats and obese Zucker rats, indicating that PrRP mRNA expression, like that of other anorexigens, may be regulated by leptin. Finally we show, using immunohistochemistry, that greater than 90% of PrRP neurons in all regions where PrRP is expressed contain leptin receptors. Thus, we provide evidence for PrRP neurons forming part of the leptin-sensitive brain circuitry involved in the regulation of food intake and energy homeostasis.
Collapse
Affiliation(s)
- Kate L J Ellacott
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|