51
|
Jiang K, Zhang J, Huang Y, Wang Y, Xiao S, Hadden MK, Woodruff TK, Sun J. A platform utilizing Drosophila ovulation for nonhormonal contraceptive screening. Proc Natl Acad Sci U S A 2021; 118:e2026403118. [PMID: 34260376 PMCID: PMC8285897 DOI: 10.1073/pnas.2026403118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A significant unmet need for new contraceptive options for both women and men remains due to side-effect profiles, medical concerns, and the inconvenience of many currently available contraceptive products. Unfortunately, the development of novel nonsteroidal female contraceptive medicine has been stalled in the last couple of decades due to the lack of effective screening platforms. Drosophila utilizes conserved signaling pathways for follicle rupture, a final step in ovulation that is essential for female reproduction. Therefore, we explored the potential to use Drosophila as a model to screen compounds that could inhibit follicle rupture and be nonsteroidal contraceptive candidates. Using our ex vivo follicle rupture assay, we screened 1,172 Food and Drug Administration (FDA)-approved drugs and identified six drugs that could inhibit Drosophila follicle rupture in a dose-dependent manner. In addition, we characterized the molecular actions of these drugs in the inhibition of adrenergic signaling and follicle rupture. Furthermore, we validated that three of the four drugs consistently inhibited mouse follicle rupture in vitro and that two of them did not affect progesterone production. Finally, we showed that chlorpromazine, one of the candidate drugs, can significantly inhibit mouse follicle rupture in vivo. Our work suggests that Drosophila ovulation is a valuable platform for identifying lead compounds for nonsteroidal contraceptive development and highlights the potential of these FDA-approved drugs as novel nonsteroidal contraceptive agents.
Collapse
Affiliation(s)
- Kewa Jiang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269
| | - Jiyang Zhang
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Yuping Huang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269
| | - Yingzheng Wang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269
| | - Teresa K Woodruff
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269;
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
52
|
Hernandez JL, Park J, Yao S, Blakney AK, Nguyen HV, Katz BH, Jensen JT, Woodrow KA. Effect of tissue microenvironment on fibrous capsule formation to biomaterial-coated implants. Biomaterials 2021; 273:120806. [PMID: 33905960 PMCID: PMC8135119 DOI: 10.1016/j.biomaterials.2021.120806] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Within tissue exposed to the systemic immune system, lymphocytes and fibroblasts act against biomaterials via the development of a fibrous capsule, known as the foreign body reaction (FBR). Inspired by the natural tolerance that the uterine cavity has to foreign bodies, our study explores the role of microenvironment across classical (subcutaneous) and immune privileged (uterine) tissues in the development of the FBR. As a model biomaterial, we used electrospun fibers loaded with sclerosing agents to provoke scar tissue growth. Additionally, we integrated these materials onto an intrauterine device as a platform for intrauterine biomaterial studies. Polyester materials in vitro achieved drug release up to 10 days, greater pro-inflammatory and pro-healing cytokine expression, and the addition of gelatin enabled greater fibroblast attachment. We observed the materials that induced the greatest FBR in the mouse, had no effect when inserted at the utero-tubal junction of non-human primates. These results suggest that the FBR varies across different tissue microenvironments, and a dampened fibrotic response exists in the uterine cavity, possibly due to immune privilege. Further study of immune privileged tissue factors on biomaterials could broaden our understanding of the FBR and inform new methods for achieving biocompatibility in vivo.
Collapse
Affiliation(s)
- Jamie L Hernandez
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA
| | - Jaehyung Park
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA
| | - Shan Yao
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Anna K Blakney
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA
| | - Hienschi V Nguyen
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA
| | - Bob H Katz
- ContraMed LLC, 900 E. Hamilton Ave, Campbell, CA, 95008, USA
| | - Jeffrey T Jensen
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Ave, Beaverton, OR, 97006, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98105, USA.
| |
Collapse
|
53
|
Dong Y, Lyu L, Zhang D, Li J, Wen H, Shi B. Integrated lncRNA and mRNA Transcriptome Analyses in the Ovary of Cynoglossus semilaevis Reveal Genes and Pathways Potentially Involved in Reproduction. Front Genet 2021; 12:671729. [PMID: 34093665 PMCID: PMC8172126 DOI: 10.3389/fgene.2021.671729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in multiple biological processes. However, the roles of lncRNAs in the reproduction of half-smooth tongue sole (Cynoglossus semilaevis) are unclear, especially in the molecular regulatory mechanism driving ovarian development and ovulation. Thus, to explore the mRNA and lncRNA mechanisms regulating reproduction, we collected tongue sole ovaries in three stages for RNA sequencing. In stage IV vs. V, we identified 312 differentially expressed (DE) mRNAs and 58 DE lncRNAs. In stage V vs. VI, we identified 1,059 DE mRNAs and 187 DE lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DE mRNAs were enriched in ECM-receptor interaction, oocyte meiosis and steroid hormone biosynthesis pathways. Furthermore, we carried out gene set enrichment analysis (GSEA) to identify potential reproduction related-pathways additionally, such as fatty metabolism and retinol metabolism. Based on enrichment analysis, DE mRNAs with a potential role in reproduction were selected and classified into six categories, including signal transduction, cell growth and death, immune response, metabolism, transport and catabolism, and cell junction. The interactions of DE lncRNAs and mRNAs were predicted according to antisense, cis-, and trans-regulatory mechanisms. We constructed a competing endogenous RNA (ceRNA) network. Several lncRNAs were predicted to regulate genes related to reproduction including cyp17a1, cyp19a1, mmp14, pgr, and hsd17b1. The functional enrichment analysis of these target genes of lncRNAs revealed that they were involved in several signaling pathways, such as the TGF-beta, Wnt signaling, and MAPK signaling pathways and reproduction related-pathways such as the progesterone-mediated oocyte maturation, oocyte meiosis, and GnRH signaling pathway. RT-qPCR analysis showed that two lncRNAs (XR_522278.2 and XR_522171.2) were mainly expressed in the ovary. Dual-fluorescence in situ hybridization experiments showed that both XR_522278.2 and XR_522171.2 colocalized with their target genes cyp17a1 and cyp19a1, respectively, in the follicular cell layer. The results further demonstrated that lncRNAs might be involved in the biological processes by modulating gene expression. Taken together, this study provides lncRNA profiles in the ovary of tongue sole and further insight into the role of lncRNA involvement in regulating reproduction in tongue sole.
Collapse
Affiliation(s)
- Yani Dong
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China.,Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Likang Lyu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
| | - Daiqiang Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jing Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao, China
| | - Bao Shi
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
54
|
Wang Y, Gao Y, Zhou C, Kong S, Wang H, Yang J. Usp22 is expressed in mouse uterus during early pregnancy and involved in endometrial stromal cell decidualization. Cells Dev 2021; 166:203681. [PMID: 33994359 DOI: 10.1016/j.cdev.2021.203681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/01/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
While decidualization is essential for embryo implantation in the context of a normal pregnancy, the molecular basis for this process remains poorly understood. Ubiquitin-specific protease 22 (Usp22), one of the deubiquitinating enzymes, is an important regulator of tumor progression and knocking out this gene in mice results in placental vascular dysplasia and embryonic lethality. In this study, we first demonstrated that Usp22 is spatiotemporally expressed in the mouse peri-implantation uterus. Under artificial decidualization, Usp22 upregulation was detected in both in vivo and in vitro. Progesterone treatment could stimulate Usp22 expression in mouse endometrial stromal cells through progesterone/progesterone receptor (PR) pathway, which is inhibited by PR antagonist. The downregulation of Usp22 within mouse endometrial stomal cells by shRNA impaired their ability to proliferate and undergo decidualization. Taken together, these results suggest that Usp22 is involved in uterine stromal decidualization in mice.
Collapse
Affiliation(s)
- Yaqin Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Yue Gao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China
| | - Chan Zhou
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, China; Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian 361005, China
| | - Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, China; Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian 361005, China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005, China; Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian 361005, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China; Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, Hubei 430060, China.
| |
Collapse
|
55
|
Campbell GE, Bender HR, Parker GA, Curry TE, Duffy DM. Neurotensin: A novel mediator of ovulation? FASEB J 2021; 35:e21481. [PMID: 33710668 PMCID: PMC8314182 DOI: 10.1096/fj.202002547rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
The midcycle luteinizing hormone (LH) surge initiates a cascade of events within the ovarian follicle which culminates in ovulation. Only mural granulosa cells and theca cells express large numbers of LH receptors, and LH-stimulated paracrine mediators communicate the ovulatory signal within the follicle. Recent reports identified the neuropeptide neurotensin (NTS) as a product of granulosa cells. Here, we demonstrate that granulosa cells were the primary site of NTS expression in macaque ovulatory follicles. Granulosa cell NTS mRNA and protein increased after human chorionic gonadotropin (hCG) administration, which substitutes for the LH surge. To identify ovulatory actions of NTS, a NTS-neutralizing antibody was injected into preovulatory macaque follicles. hCG administration immediately followed, and ovaries were removed 48 hours later to evaluate ovulatory events. Follicles injected with control IgG ovulated normally. In contrast, 75% of NTS antibody-injected follicles failed to ovulate, containing oocytes trapped within unruptured, hemorrhagic follicles. Serum progesterone was unchanged. Of the three NTS receptors, SORT1 was highly expressed in follicular granulosa, theca, and endothelial cells; NTSR1 and NTSR2 were expressed at lower levels. Excessive blood cells in NTS antibody-injected follicles indicated vascular anomalies, so the response of monkey ovarian endothelial cells to NTS was evaluated in vitro. NTS stimulated endothelial cell migration and capillary sprout formation, consistent with a role for NTS in vascular remodeling associated with ovulation. In summary, we identified NTS as a possible paracrine mediator of ovulation. Further investigation of the NTS synthesis/response pathway may lead to improved treatments for infertility and novel targets for contraception.
Collapse
Affiliation(s)
- Genevieve E. Campbell
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Hannah R. Bender
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Grace A. Parker
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|
56
|
Hughes SM, Pandey U, Johnston C, Marrazzo J, Hladik F, Micks E. Impact of the menstrual cycle and ethinyl estradiol/etonogestrel contraceptive vaginal ring on granulysin and other mucosal immune mediators. Am J Reprod Immunol 2021; 86:e13412. [PMID: 33641250 DOI: 10.1111/aji.13412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Changes in sex hormones during the menstrual cycle and contraceptive vaginal ring (CVR) use influence immunity within the female genital tract, but the magnitude of these effects and their anatomical location are unclear. METHOD OF STUDY In a prospective study, 29 women were assessed at three-time points: follicular phase, luteal phase, and one month after initiation of the ethinyl estradiol/etonogestrel CVR (NuvaRing®, Merck). We performed microarrays on endocervical cytobrushes and measured immune mediators in cervicovaginal fluid, adjusting for bacterial vaginosis and the presence of blood. We compared these results to public gene expression data from the fallopian tubes, endometrium, endo- and ectocervix, and vagina. RESULTS Immune-related gene expression in the endocervix and immune mediators in cervicovaginal fluid increased during CVR use versus both menstrual phases, and in the follicular versus luteal phase. The antimicrobial protein granulysin was high during CVR use, intermediate in the follicular phase, and nearly absent from the luteal phase. Re-analysis of public gene expression data confirmed increased immune-related gene expression in the endocervix during the follicular phase. However, in the fallopian tube, endometrium, and vagina, the follicular phase showed immunosuppression. CONCLUSIONS Immune-related genes in the cervicovaginal tract were highest during CVR use, intermediate in the follicular phase, and lowest in the luteal phase. Granulysin is a potential biomarker of menstrual phase: Frequently detected in follicular samples, but rare in luteal. Lastly, immunological differences between the follicular and luteal phases vary throughout the female genital tract.
Collapse
Affiliation(s)
- Sean M Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Urvashi Pandey
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jeanne Marrazzo
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Micks
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
57
|
Belotti EM, Amweg AN, Matiller V, Varela ML, Stassi AF, Velázquez MML, Ortega HH, Rey F, Salvetti NR. Effects of adrenocorticotrophic hormone on the expression of matrix metalloproteinases and their inhibitors in the bovine ovary. Reprod Fertil Dev 2021; 32:748-762. [PMID: 32362313 DOI: 10.1071/rd19232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/01/2019] [Indexed: 01/06/2023] Open
Abstract
Cattle undergo numerous environmental and management stressors that reduce fertility and affect ovulation. The extracellular matrix of the follicle wall can be altered by matrix metalloproteinases (MMPs), the activities of which are regulated by interleukins and tissue-specific inhibitors of metalloproteinases (TIMPs), especially during ovulation. The aims of the present study were to: (1) evaluate changes in the hormone milieu, the localisation and activity of MMP2 and MMP9 and the localisation of MMP14, TIMP1 and TIMP2 in response to adrenocorticotrophic hormone (ACTH) during the preovulatory period in cows; and (2) determine the direct effects of ACTH on the mRNA expression of MMP2 and MMP9 in the cultured follicle wall of bovine ovaries obtained from an abattoir. 100IU ACTH was administered during pro-oestrus every 12h until ovariectomy, which was performed before ovulation. Cortisol concentrations in the plasma and follicular fluid (FF) of preovulatory follicles were higher in ACTH-treated than control cows. Progesterone presented subluteal concentrations in plasma of ACTH-treated cows (P<0.05). MMP2 immunostaining and activity in ovaries were higher in ACTH-treated than control cows (P<0.05), whereas MMP9 immunostaining was similar between the two groups. However, unlike in control cows, MMP9 activity was absent in the FF of ACTH-treated cows. These results suggest that the administration of ACTH during the preovulatory period in cows could cause changes that culminate in modifications in the content and activation of MMPs and TIMPs in the ovary, which could interfere with the ovulation process.
Collapse
Affiliation(s)
- E M Belotti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina; and Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - A N Amweg
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina; and Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - V Matiller
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina; and Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - M L Varela
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - A F Stassi
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina; and Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - M M L Velázquez
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina; and Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - H H Ortega
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina; and Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - F Rey
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina; and Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina
| | - N R Salvetti
- Laboratorio de Biología Celular y Molecular Aplicada, Instituto de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina; and Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral, R. P. Kreder 2805, CP3080, Esperanza, Santa Fe, Argentina; and Corresponding author.
| |
Collapse
|
58
|
Tokmakov AA, Stefanov VE, Sato KI. Dissection of the Ovulatory Process Using ex vivo Approaches. Front Cell Dev Biol 2020; 8:605379. [PMID: 33363163 PMCID: PMC7755606 DOI: 10.3389/fcell.2020.605379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Ovulation is a unique physiological phenomenon that is essential for sexual reproduction. It refers to the entire process of ovarian follicle responses to hormonal stimulation resulting in the release of mature fertilization-competent oocytes from the follicles and ovaries. Remarkably, ovulation in different species can be reproduced out-of-body with high fidelity. Moreover, most of the molecular mechanisms and signaling pathways engaged in this process have been delineated using in vitro ovulation models. Here, we provide an overview of the major molecular and cytological events of ovulation observed in frogs, primarily in the African clawed frog Xenopus laevis, using mainly ex vivo approaches, with the focus on meiotic oocyte maturation and follicle rupture. For the purpose of comparison and generalization, we also refer extensively to ovulation in other biological species, most notoriously, in mammals.
Collapse
Affiliation(s)
| | - Vasily E Stefanov
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ken-Ichi Sato
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
59
|
Hughes CHK, Murphy BD. Nuclear receptors: Key regulators of somatic cell functions in the ovulatory process. Mol Aspects Med 2020; 78:100937. [PMID: 33288229 DOI: 10.1016/j.mam.2020.100937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022]
Abstract
The development of the ovarian follicle to its culmination by ovulation is an essential element of fertility. The final stages of ovarian follicular growth are characterized by granulosa cell proliferation and differentiation, and steroid synthesis under the influence of follicle-stimulating hormone (FSH). The result is a population of granulosa cells poised to respond to the ovulatory surge of luteinizing hormone (LH). Members of the nuclear receptor superfamily of transcription factors play indispensable roles in the regulation of these events. The key regulators of the final stages of follicular growth that precede ovulation from this family include the estrogen receptor beta (ESR2) and the androgen receptor (AR), with additional roles for others, including steroidogenic factor-1 (SF-1) and liver receptor homolog-1 (LRH-1). Following the LH surge, the mural and cumulus granulosa cells undergo rapid changes that result in expansion of the cumulus layer, and a shift in ovarian steroid hormone biosynthesis from estradiol to progesterone production. The nuclear receptor best associated with these events is LRH-1. Inadequate cumulus expansion is also observed in the absence of AR and ESR2, but not the progesterone receptor (PGR). The terminal stages of ovulation are regulated by PGR, which increases the abundance of the proteases that are directly responsible for rupture. It further regulates the prostaglandins and cytokines associated with the inflammatory-like characteristics of ovulation. LRH-1 regulates PGR, and is also a key regulator of steroidogenesis, cellular proliferation, and cellular migration, and cytoskeletal remodeling. In summary, nuclear receptors are among the panoply of transcriptional regulators with roles in ovulation, and several are necessary for normal ovarian function.
Collapse
Affiliation(s)
- Camilla H K Hughes
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Qc, J2S 2M2, Canada
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Université de Montréal, St-Hyacinthe, Qc, J2S 2M2, Canada.
| |
Collapse
|
60
|
Liu T, Shi F, Ying Y, Chen Q, Tang Z, Lin H. Mouse model of menstruation: An indispensable tool to investigate the mechanisms of menstruation and gynaecological diseases (Review). Mol Med Rep 2020; 22:4463-4474. [PMID: 33174022 PMCID: PMC7646730 DOI: 10.3892/mmr.2020.11567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Abnormal menstruation may result in several pathological alterations and gynaecological diseases, including endometriosis, menstrual pain and miscarriage. However, the pathogenesis of menstruation remains unclear due to the limited number of animal models available to study the menstrual cycle. In recent years, an effective, reproducible, and highly adaptive mouse model to study menstruation has been developed. In this model, progesterone and oestrogen were administered in cycles following the removal of ovaries. Subsequently, endometrial decidualisation was induced using sesame oil, followed by withdrawal of progesterone administration. Vaginal bleeding in mice is similar to that in humans. Therefore, the use of mice as a model organism to study the mechanism of menstruation and gynaecological diseases may prove to be an important breakthrough. The present review is focussed ond the development and applications of a mouse model of menstruation. Furthermore, various studies have been described to improve this model and the research findings that may aid in the treatment of menstrual disorders in women are presented.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Fuli Shi
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Ying Ying
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Qiongfeng Chen
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Tang
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Lin
- Department of Pathophysiology, School of Basic Medicine Sciences, Nanchang University Medical College, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
61
|
Li H, Chang HM, Shi Z, Leung PCK. The p38 signaling pathway mediates the TGF-β1-induced increase in type I collagen deposition in human granulosa cells. FASEB J 2020; 34:15591-15604. [PMID: 32996643 DOI: 10.1096/fj.202001377r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
Abstract
Type I collagen, which is mainly composed of collagen type I alpha 1 chain (COL1A1), is the most abundant extracellular matrix (ECM) protein in the mammalian ovary; and the cyclical remodeling of the ECM plays an essential role in the regulation of corpus luteum formation. Our previous studies have demonstrated that TGF-β1 is a potent inhibitor of luteinization in human granulosa-lutein (hGL) cells. Whether TGF-β1 can regulate the expression of COL1A1 during the luteal phase remains to be elucidated. The aim of this study was to investigate the effect of TGF-β1 on the regulation of COL1A1 expression and the underlying molecular mechanisms using an immortalized hGL cell line (SVOG cells) and primary hGL cells (obtained from 20 consenting patients undergoing IVF treatment). The results showed that TGF-β1 significantly upregulated the expression of COL1A1. Using inhibition approaches, including pharmacological inhibition (a specific p38 inhibitor, SB203580, and a specific ERK1/2 inhibitor, U0126) and specific siRNA-mediated knockdown inhibition, we demonstrated that TGF-β1 promoted the expression and production of COL1A1 in hGL cells, most likely via the ALK5-mediated p38 signaling pathway. Our findings provide insights into the molecular mechanisms by which TGF-β1 promotes the deposition of type I collagen during the late follicular phase in humans.
Collapse
Affiliation(s)
- Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Key Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
62
|
Berisha B, Schams D, Sinowatz F, Rodler D, Pfaffl MW. Hypoxia-inducible factor-1alpha and nitric oxide synthases in bovine follicles close to ovulation and early luteal angiogenesis. Reprod Domest Anim 2020; 55:1573-1584. [PMID: 32869370 DOI: 10.1111/rda.13812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022]
Abstract
The objective of the study was to characterize expression patterns of hypoxia-inducible factor-1alpha (HIF1A), inducible nitric oxide synthase (iNOS) and endothelial (eNOS) isoforms in time-defined follicle classes before and after GnRH application in the cow. Ovaries containing pre-ovulatory follicles or corpora lutea were collected by transvaginal ovariectomy (n = 5 cows/group) as follow: (I) before GnRH administration; (II) 4h after GnRH; (III) 10h after GnRH; (IV) 20h after GnRH; (V) 25h after GnRH; and (VI) 60h after GnRH (early corpus luteum). The mRNA abundance of HIF1A in the follicle group before GnRH was high, followed by a significant down regulation afterwards with a minimum level 25h after GnRH (close to ovulation) and significant increase only after ovulation. The mRNA abundance of iNOS before GnRH was high, decreased significantly during LH surge, with minimum levels afterwards. In contrast, the mRNA of eNOS decreased in the follicle group 20h after GnRH, followed by a rapid and significant upregulation just after ovulation. Immunohistochemically, the granulosa cells of antral follicles and the eosinophils of the theca tissue as well of the early corpus luteum showed a strong staining for HIF1A. The location of the eosinophils could be clearly demonstrated by immunostaining with an eosinophil-specific antibody (EMBP) and transmission electron microscopy. In conclusion, the parallel and acute regulated expression patterns of HIF1A and NOS isoforms, specifically during the interval between the LH surge and ovulation, indicate that these paracrine factors are involved in the local mechanisms, regulating final follicle maturation, ovulation and early luteal angiogenesis.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtinë, Kosovo.,Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
63
|
Barraza DE, Zampini R, Apichela SA, Pacheco JI, Argañaraz ME. Modifications of extracellular matrix features in the left and right uterine horns during the embryo pre-implantation period in Vicugna pacos. Theriogenology 2020; 157:440-448. [PMID: 32877844 DOI: 10.1016/j.theriogenology.2020.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023]
Abstract
More than 98% of the pregnancies in South American camelids is carried out in the left uterine horn (LUH). Hence, embryos originated from right-ovary ovulations have to migrate to the contralateral or left uterine horn (LUH) to implant and survive. A reason for this unique pattern of embryo implantation has not been elucidated yet. In general, embryo implantation involves an extensive extracellular matrix (ECM) remodeling within the endometrium, in which collagen and matrix metalloproteinases (MMPs) play an essential role. Deregulation of collagen and MMPs has been related to embryo implantation failure, miscarriage, and infertility. Therefore, we hypothesized that ECM components in camelids could be involved in differential embryo implantation and consequently the high incidence of left horn gestations. The aim of this study was to describe and compare changes in ECM components in the left and right uterine horn of non-pregnant and 15 days pregnant alpacas. To test this hypothesis, the collagen content was evaluated by specific staining with Picrosirius Red and using ImageJ 1.42q software. Subsequently, gene expression of the following components of the MMP pathway was determined: MMP-2, -3, -7, -9, and -14, MMP substrates (COL1A2 and COL3A1), MMP inhibitors (TIMP1 and TIMP2), LGMN, an MMP activator, and EMMPRIN, an extracellular matrix metalloproteinase inducer. Uterine horns of pregnant alpacas exhibited a marked decrease in collagen content. In contrast, transcript expression of COL1A2 and COL3A1 was higher in the LUH of pregnant alpacas. Gene expression of MMP-3, -7, -9, -14, LGMN, and EMMPRIN were also higher in the LUH of pregnant animals, whereas MMP-2 gene expression was higher in the LUH of both pregnant and non-pregnant alpacas. Expression of TIMP1 and TIMP2 increased during pregnancy, with higher values in the LUH. In conclusion, expression of ECM components displayed a specific pattern depending on the uterine side and the physiological status (pregnant vs non-pregnant) of the animal. The increased expression of ECM transcripts in the left uterine horn during early pregnancy in alpacas suggests the involvement of these molecules in a highly regulated process leading to the implantation process.
Collapse
Affiliation(s)
- Daniela E Barraza
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco, 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Renato Zampini
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco, 461, T4000ILI, San Miguel de Tucumán, Argentina; Cátedra de Biología Celular y Molecular, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco, 461, San Miguel de Tucumán, T4000ILI, Tucumán, Argentina
| | - Silvana A Apichela
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco, 461, T4000ILI, San Miguel de Tucumán, Argentina; Cátedra de Zootecnia General I, Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Florentino Ameghino s/n, El Manantial, 4105, Tucumán, Argentina
| | - Joel I Pacheco
- Instituto Veterinario de Investigaciones Tropicales y de Altura, Universidad Nacional Mayor de San Marcos - UNMSM, Sede Marangani, Cuzco, Perú
| | - Martin E Argañaraz
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, UNT, Chacabuco, 461, T4000ILI, San Miguel de Tucumán, Argentina; Cátedra de Biología Celular y Molecular, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Chacabuco, 461, San Miguel de Tucumán, T4000ILI, Tucumán, Argentina.
| |
Collapse
|
64
|
Sylus AM, Nandeesha H, Chitra T. Matrix metalloproteinase-9 increases and Interleukin-10 reduces with increase in body mass index in polycystic ovary syndrome: A cross-sectional study. Int J Reprod Biomed 2020; 18:605-610. [PMID: 32923927 PMCID: PMC7457150 DOI: 10.18502/ijrm.v13i8.7502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/21/2019] [Accepted: 02/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background Obesity, inflammation and alterations in matrix metalloproteinase-9 (MMP-9) and nitric oxide (NO) levels are involved in the development of polycystic ovary syndrome (PCOS). Objective To investigate the relationship of MMP-9, NO and interleukin-10 (IL-10) with the increase in body mass index (BMI) in women with PCOS. Materials and Methods Sixty two infertile PCOS women were included in the study. Serum levels of NO, IL-10 and MMP-9 were assessed in the women with increase in BMI. Results MMP-9 was significantly increased (p = 0.029) and IL-10 (p = 0.015) was significantly reduced in obese PCOS subjects compared to those with lesser BMI. MMP-9 levels positively correlated with the duration of infertility (r = 0.253, p = 0.047) and negatively correlated with NO levels (r = - 0.259, p = 0.042). A significant negative correlation between the interleukin-10 levels and the BMI (r = - 0.272, p = 0.033) was also found in the PCOS subjects. Conclusion MMP-9 levels are increased in obese PCOS women and it is associated with NO levels and the duration of infertility.
Collapse
Affiliation(s)
- Angel Mercy Sylus
- Department of Biochemistry, Jawaharlal Institute of Post Graduate Medical Education and Research, Puducherry, India
| | - Hanumanthappa Nandeesha
- Department of Biochemistry, Jawaharlal Institute of Post Graduate Medical Education and Research, Puducherry, India
| | - Thiagaraju Chitra
- Obstetrics and Gynecology, Jawaharlal Institute of Post Graduate Medical Education and Research, Puducherry, India
| |
Collapse
|
65
|
Puttabyatappa M, Guo X, Dou J, Dumesic D, Bakulski KM, Padmanabhan V. Developmental Programming: Sheep Granulosa and Theca Cell-Specific Transcriptional Regulation by Prenatal Testosterone. Endocrinology 2020; 161:bqaa094. [PMID: 32516392 PMCID: PMC7417881 DOI: 10.1210/endocr/bqaa094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to polycystic ovarian syndrome women, manifest reduced cyclicity, functional hyperandrogenism, and polycystic ovary (PCO) morphology. The PCO morphology results from increased follicular recruitment and persistence of antral follicles, a consequence of reduced follicular growth and atresia, and is driven by cell-specific gene expression changes that are poorly understood. Therefore, using RNA sequencing, cell-specific transcriptional changes were assessed in laser capture microdissection isolated antral follicular granulosa and theca cells from age 21 months control and prenatal T-treated (100 mg intramuscular twice weekly from gestational day 30 to 90; term: 147 days) sheep. In controls, 3494 genes were differentially expressed between cell types with cell signaling, proliferation, extracellular matrix, immune, and tissue development genes enriched in theca; and mitochondrial, chromosomal, RNA, fatty acid, and cell cycle process genes enriched in granulosa cells. Prenatal T treatment 1) increased gene expression of transforming growth factor β receptor 1 and exosome component 9, and decreased BCL6 corepressor like 1, BCL9 like, and MAPK interacting serine/threonine kinase 2 in both cells, 2) induced differential expression of 92 genes that included increased mitochondrial, ribosome biogenesis, ribonucleoprotein, and ubiquitin, and decreased cell development and extracellular matrix-related pathways in granulosa cells, and 3) induced differential expression of 56 genes that included increased noncoding RNA processing, ribosome biogenesis, and mitochondrial matrix, and decreased transcription factor pathways in theca cells. These data indicate that follicular function is affected by genes involved in transforming growth factor signaling, extracellular matrix, mitochondria, epigenetics, and apoptosis both in a common as well as a cell-specific manner and suggest possible mechanistic pathways for prenatal T treatment-induced PCO morphology in sheep.
Collapse
Affiliation(s)
| | - Xingzi Guo
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Daniel Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
66
|
Liu W, Zhang C, Wang L, Huang X, Zhang J, He Y, Chen L, Li J. Successful reversal of ovarian hyperstimulation syndrome in a mouse model by rapamycin, an mTOR pathway inhibitor. Mol Hum Reprod 2020; 25:445-457. [PMID: 31329230 DOI: 10.1093/molehr/gaz033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/02/2019] [Indexed: 01/20/2023] Open
Abstract
Ovarian hyperstimulation syndrome (OHSS) is a potentially life-threatening, iatrogenic complication of ovarian stimulation in assisted reproduction technology. This complex syndrome is characterised by enlarged ovaries with multiple corpora luteum, elevated sex steroid hormones in serum and increased capillary permeability. Until now, the pathogenesis of OHSS remains obscure, and no absolute strategy can fully prevent OHSS without any side effect on ovulation and clinical pregnancy. Using cultured human or mouse granulosa cells, our study revealed the time-dependent activation of the mTOR signaling pathway after human chorionic gonadotropin (hCG) treatment. The involvement of the mTOR signaling pathway was also observed in the development of OHSS in a mouse model. Selectively inhibiting mTOR signals by only two injections of rapamycin (2 mg/kg body weight), before or just after hCG treatment, significantly reduced vascular leakage and the severity of OHSS symptoms. Although ovarian angiogenesis was significantly inhibited, rapamycin could not decrease the elevated levels of vascular endothelial growth factor, IL-6 and IL-11 in OHSS ovaries. Further study showed the functional roles of the mTOR signaling pathway in the hyperstimulation-induced ovarian extracellular matrix remodeling as the expression of α2M, a broad proteolytic inhibitor in both ovary and serum, was dramatically decreased after rapamycin treatment. Since a single injection of rapamycin during superovulation had no side effects on ovulation and early embryonic development, we propose rapamycin may be a good candidate to lower and prevent the risk of OHSS in the future.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chi Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lu Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuan Huang
- Reproductive Medical Center of Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Li Chen
- Reproductive Medical Center of Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
67
|
Yang JH, Chen CD, Chou CH, Wen WF, Tsao PN, Lee H, Chen SU. Intentional endometrial injury increases embryo implantation potentials through enhanced endometrial angiogenesis†. Biol Reprod 2020; 100:381-389. [PMID: 30247509 DOI: 10.1093/biolre/ioy205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 09/20/2018] [Indexed: 11/12/2022] Open
Abstract
Embryo implantation rates have been found to be enhanced by precedent endometrial injuries, but the underlying mechanism is not fully investigated. Endometrial inflammation occurs both at peri-implantation period and after endometrial injury, in which vascular reaction is a distinctive feature of inflammation. In this study, intentional endometrial injury was done with a 0.7-mm-diameter brush inserted into the left uterine horn of female ICR mice, then turned around 720° (group 2), and the right uterine horn served as the controls without endometrial injuries (group 1). Intraperitoneal equine chorionic gonadotropin 2.5 IU was injected, followed by human chorionic gonadotropin 10 IU injection, and the uterus was dissected 5 days later, roughly at the peri-implantation period. The peri-implantation endometrium was obtained, and angiogenesis protein array revealed that matrix metalloproteinase-3 (MMP-3), plasminogen activator inhibitor-1 (PAI-1), insulin-like growth factor binding protein 1 (IGFBP-1), and IL-1α were more strongly expressed in injured endometrium (group 2) than in the controls (group 1). Immunohistochemical CD34 staining was more prominently expressed in group 2 uterus, and the treatment with LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, significantly decreased CD34 immunopositive cells. The capabilities of permeability, proliferation, tube formation, and migration of mouse endometrial endothelial cells were significantly enhanced in group 2 than in group 1. Our results demonstrate that enhanced endometrial angiogenesis is a possible mechanism accounting for the increased endometrial receptivity after endometrial injury.
Collapse
Affiliation(s)
- Jehn-Hsiahn Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chin-Der Chen
- Department of Obstetrics and Gynecology, Fu Jen Catholic University Hospital, Taipei, Taiwan
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Fen Wen
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
68
|
Leon K, Hennebold JD, Fei SS, Young KA. Transcriptome analysis during photostimulated recrudescence reveals distinct patterns of gene regulation in Siberian hamster ovaries†. Biol Reprod 2020; 102:539-559. [PMID: 31724051 PMCID: PMC7068109 DOI: 10.1093/biolre/ioz210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/13/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
In Siberian hamsters, exposure to short days (SDs, 8 h light:16 h dark) reduces reproductive function centrally by decreasing gonadotropin secretion, whereas subsequent transfer of photoinhibited hamsters to stimulatory long days (LDs, 16 L:8 D) promotes follicle stimulating hormone (FSH) release inducing ovarian recrudescence. Although differences between SD and LD ovaries have been investigated, a systematic investigation of the ovarian transcriptome across photoperiod groups to identify potentially novel factors that contribute to photostimulated restoration of ovarian function had not been conducted. Hamsters were assigned to one of four photoperiod groups: LD to maintain ovarian cyclicity, SD to induce ovarian regression, or post transfer (PT), where females housed in SD for 14-weeks were transferred to LD for 2-days or 1-week to reflect photostimulated ovaries prior to (PTd2) and following (PTw1) the return of systemic FSH. Ovarian RNA was extracted to create RNA-sequencing libraries and short-read sequencing Illumina assays that mapped and quantified the ovarian transcriptomes (n = 4/group). Ovarian and uterine masses, plasma FSH, and numbers of antral follicles and corpora lutea decreased in SD as compared to LD ovaries (P < 0.05). When reads were aligned to the mouse genome, 18 548 genes were sufficiently quantified. Most of the differentially expressed genes noted between functional LD ovaries and regressed SD ovaries; however, five main expression patterns were identified across photoperiod groups. These results, generally corroborated by select protein immunostaining, provide a map of photoregulated ovary function and identify novel genes that may contribute to the photostimulated resumption of ovarian activity.
Collapse
Affiliation(s)
- Kathleen Leon
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, Oregon, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, USA
| | - Suzanne S Fei
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Kelly A Young
- Department of Biological Sciences, California State University Long Beach, Long Beach, California, USA
| |
Collapse
|
69
|
Park HR, Elkin ER, Castillo-Castrejon M, Loch-Caruso R. Brominated diphenyl ether-47 differentially regulates cellular migration and invasion in a human first trimester trophoblast cell line. Reprod Toxicol 2020; 93:191-198. [PMID: 32142752 DOI: 10.1016/j.reprotox.2020.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are flame retardant compounds detected in human placenta and linked to adverse pregnancy outcomes. Impaired trophoblast migration and invasion during early pregnancy have been implicated as potential mechanisms of pregnancy disorders. The present study investigated the effect of BDE-47, a prevalent PBDE congener, on cell migration, invasion, and matrix metalloproteinase (MMP) expression in a human first trimester extravillous trophoblast cell line, HTR-8/SVneo. BDE-47 stimulated cell migration in HTR-SV/neo cells while decreasing invasion of cells into Matrigel. In addition, BDE-47 led to differential expression of MMP-1, -2, -3, and -9 at protein and mRNA levels. In summary, BDE-47 differentially regulated cellular migration and invasion with divergent changes in MMP expression in trophoblasts. Because proper regulation of trophoblast migration and invasion is critical for placental development and function, further research is warranted to determine if exposure to PBDEs disrupts trophoblast functions with increased risk for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA.
| | - Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA
| | - Marisol Castillo-Castrejon
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA
| | - Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029 USA
| |
Collapse
|
70
|
Canisso IF, Segabinazzi LG, Fedorka CE. Persistent Breeding-Induced Endometritis in Mares - a Multifaceted Challenge: From Clinical Aspects to Immunopathogenesis and Pathobiology. Int J Mol Sci 2020; 21:E1432. [PMID: 32093296 PMCID: PMC7073041 DOI: 10.3390/ijms21041432] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Post-breeding endometritis (i.e., inflammation/infection of the endometrium), is a physiological reaction taking place in the endometrium of mares within 48 hours post-breeding, aimed to clear seminal plasma, excess sperm, microorganisms, and debris from the uterine lumen in preparation for the arrival of an embryo. Mares are classified as susceptible or resistant to persistent breeding-induced endometritis (PBIE) based on their ability to clear this inflammation/infection by 48 hours post-breeding. Mares susceptible to PBIE, or those with difficulty clearing infection/inflammation, have a deficient immune response and compromised physical mechanisms of defense against infection. Molecular pathways of the innate immune response known to be involved in PBIE are discussed herein. The role of the adaptive uterine immune response on PBIE remains to be elucidated in horses. Advances in the pathobiology of microbes involved in PBIE are also revised here. Traditional and non-traditional therapeutic modalities for endometritis are contrasted and described in the context of clinical and molecular aspects. In recent years, the lack of efficacy of traditional therapeutic modalities, alongside the ever-increasing incidence of antibiotic-resistant microorganisms, has enforced the development of non-traditional therapies. Novel biological products capable of modulating the endometrial inflammatory response are also discussed here as part of the non-traditional therapies for endometritis.
Collapse
Affiliation(s)
- Igor F. Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61802, USA;
| | - Lorenzo G.T.M. Segabinazzi
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61802, USA;
- Department of Animal Reproduction and Veterinary Radiology, Faculty of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-000, São Paulo, Brazil
| | - Carleigh E. Fedorka
- The Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40503, USA;
| |
Collapse
|
71
|
George AF, Ho TY, Prasad N, Keel BN, Miles JR, Vallet JL, Bartol FF, Bagnell CA. Neonatal lactocrine deficiency affects the adult porcine endometrial transcriptome at pregnancy day 13. Biol Reprod 2020; 100:71-85. [PMID: 30107478 DOI: 10.1093/biolre/ioy180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/08/2018] [Indexed: 01/22/2023] Open
Abstract
Reproductive performance of female pigs that do not receive sufficient colostrum from birth is permanently impaired. Whether lactocrine deficiency, reflected by low serum immunoglobulin immunocrit (iCrit), affects patterns of endometrial gene expression during the periattachment period of early pregnancy is unknown. Here, objectives were to determine effects of low iCrit at birth on the adult endometrial transcriptome on pregnancy day (PxD) 13. On the first day of postnatal life, gilts were assigned to high or low iCrit groups. Adult high (n = 8) and low (n = 7) iCrit gilts were bred (PxD 0), and humanely slaughtered on PxD 13 when tissues and fluids were collected. The endometrial transcriptome was defined for each group using mRNAseq and microRNAseq. Reads were mapped to the Sus scrofa 11.1 genome build. Mature microRNAs were annotated using miRBase 21. Differential expression was defined based on fold change (≥ ±1.5). Lactocrine deficiency did not affect corpora lutea number, uterine horn length, uterine wet weight, conceptus recovery, or uterine luminal fluid estrogen content on PxD 13. However, mRNAseq revealed 1157 differentially expressed endometrial mRNAs in high versus low iCrit gilts. Differentially expressed genes had functions related to solute transport, endometrial receptivity, and immune response. Six differentially expressed endometrial microRNAs included five predicted to target 62 differentially expressed mRNAs, affecting similar biological processes. Thus, lactocrine deficiency on the first day of postnatal life can alter uterine developmental trajectory with lasting effects on endometrial responses to pregnancy as reflected at the level of the transcriptome on PxD 13.
Collapse
Affiliation(s)
- Ashley F George
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers University, New Brunswick, New Jersey, USA
| | - Teh-Yuan Ho
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers University, New Brunswick, New Jersey, USA
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Brittney N Keel
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Jeremy R Miles
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Jeffrey L Vallet
- USDA, ARS, U.S. Meat Animal Research Center (USMARC), Clay Center, Nebraska, USA
| | - Frank F Bartol
- Department of Anatomy, Physiology and Pharmacology, Cellular and Molecular Biosciences Program, Auburn University, Auburn, Alabama, USA
| | - Carol A Bagnell
- Department of Animal Sciences, Endocrinology and Animal Biosciences Program, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
72
|
Hogg C, Horne AW, Greaves E. Endometriosis-Associated Macrophages: Origin, Phenotype, and Function. Front Endocrinol (Lausanne) 2020; 11:7. [PMID: 32038499 PMCID: PMC6989423 DOI: 10.3389/fendo.2020.00007] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 01/03/2023] Open
Abstract
Endometriosis is a complex, heterogeneous, chronic inflammatory condition impacting ~176 million women worldwide. It is associated with chronic pelvic pain, infertility, and fatigue, and has a substantial impact on health-related quality of life. Endometriosis is defined by the growth of endometrial-like tissue outside the uterus, typically on the lining of the pelvic cavity and ovaries (known as "lesions"). Macrophages are complex cells at the center of this enigmatic condition; they are critical for the growth, development, vascularization, and innervation of lesions as well as generation of pain symptoms. In health, tissue-resident macrophages are seeded during early embryonic life are vital for development and homeostasis of tissues. In the adult, under inflammatory challenge, monocytes are recruited from the blood and differentiate into macrophages in tissues where they fulfill functions, such as fighting infection and repairing wounds. The interplay between tissue-resident and recruited macrophages is now at the forefront of macrophage research due to their differential roles in inflammatory disorders. In some cancers, tumor-associated macrophages (TAMs) are comprised of tissue-resident macrophages and recruited inflammatory monocytes that differentiate into macrophages within the tumor. These macrophages of different origins play differential roles in disease progression. Herein, we review the complexities of macrophage dynamics in health and disease and explore the paradigm that under disease-modified conditions, macrophages that normally maintain homeostasis become modified such that they promote disease. We also interrogate the evidence to support the existence of multiple phenotypic populations and origins of macrophages in endometriosis and how this could be exploited for therapy.
Collapse
Affiliation(s)
- Chloe Hogg
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew W. Horne
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- *Correspondence: Erin Greaves
| |
Collapse
|
73
|
Nguyen VHL, Hough R, Bernaudo S, Peng C. Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J Ovarian Res 2019; 12:122. [PMID: 31829231 PMCID: PMC6905042 DOI: 10.1186/s13048-019-0596-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest female malignancy. The Wnt/β-catenin pathway plays critical roles in regulating embryonic development and physiological processes. This pathway is tightly regulated to ensure its proper activity. In the absence of Wnt ligands, β-catenin is degraded by a destruction complex. When the pathway is stimulated by a Wnt ligand, β-catenin dissociates from the destruction complex and translocates into the nucleus where it interacts with TCF/LEF transcription factors to regulate target gene expression. Aberrant activation of this pathway, which leads to the hyperactivity of β-catenin, has been reported in ovarian cancer. Specifically, mutations of CTNNB1, AXIN, or APC, have been observed in the endometrioid and mucinous subtypes of EOC. In addition, upregulation of the ligands, abnormal activation of the receptors or intracellular mediators, disruption of the β-catenin destruction complex, inhibition of the association of β-catenin/E-cadherin on the cell membrane, and aberrant promotion of the β-catenin/TCF transcriptional activity, have all been reported in EOC, especially in the high grade serous subtype. Furthermore, several non-coding RNAs have been shown to regulate EOC development, in part, through the modulation of Wnt/β-catenin signalling. The Wnt/β-catenin pathway has been reported to promote cancer stem cell self-renewal, metastasis, and chemoresistance in all subtypes of EOC. Emerging evidence also suggests that the pathway induces ovarian tumor angiogenesis and immune evasion. Taken together, these studies demonstrate that the Wnt/β-catenin pathway plays critical roles in EOC development and is a strong candidate for the development of targeted therapies.
Collapse
Affiliation(s)
| | - Rebecca Hough
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, Ontario, Canada. .,Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada.
| |
Collapse
|
74
|
Xiong S, Mhawech-Fauceglia P, Tsao-Wei D, Roman L, Gaur RK, Epstein AL, Pinski J. Expression of the luteinizing hormone receptor (LHR) in ovarian cancer. BMC Cancer 2019; 19:1114. [PMID: 31729966 PMCID: PMC6857310 DOI: 10.1186/s12885-019-6153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 09/11/2019] [Indexed: 11/10/2022] Open
Abstract
We investigated the association of LHR expression in epithelial ovarian cancer (OC) with clinical and pathologic characteristics of patients. LHR expression was examined immunohistochemically using tissue microarrays (TMAs) of specimens from 232 OC patients. Each sample was scored quantitatively evaluating LHR staining intensity (LHR-I) and percentage of LHR (LHR-P) staining cells in tumor cells examined. LHR-I was assessed as no staining (negative), weak (+ 1), moderate (+ 2), and strong positive (+ 3). LHR-P was measured as 1 to 5, 6 to 50% and > 50% of the tumor cells examined. Positive LHR staining was found in 202 (87%) patients' tumor specimens and 66% patients had strong intensity LHR expression. In 197 (85%) of patients, LHR-P was measured in > 50% of tumor cells. LHR-I was significantly associated with pathologic stage (p = 0.007). We found that 72% of stage III or IV patients expressed strong LHR-I in tumor cells. There were 87% of Silberberg's grade 2 or 3 patients compared to 70% of grade 1 patients with LHR expression observed in > 50% of tumor cells, p = 0.037. Tumor stage was significantly associated with overall survival and recurrence free survival, p < 0.001 for both analyses, even after adjustment for age, tumor grade and whether patient had persistent disease after therapy or not. Our study demonstrates that LHR is highly expressed in the majority of OC patients. Both LHR-I and LHR-P are significantly associated with either the pathologic stage or tumor grade.
Collapse
Affiliation(s)
- Shigang Xiong
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Paulette Mhawech-Fauceglia
- Aurora Diagnostics, Department of Pathology, Gynecologic Pathology Consultant, San Antonio, TX, 78209, USA
| | - Denice Tsao-Wei
- University of Southern California, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA
| | - Lynda Roman
- Department of Obstetrics & Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA, 90033, USA
| | - Rajesh K Gaur
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Alan L Epstein
- Department of Pathology, University of Southern California, HMR 2011 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jacek Pinski
- Department of Medicine/Medical Oncology Division, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA. .,University of Southern California, Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA, 90033, USA.
| |
Collapse
|
75
|
Wolak D, Hrabia A. Tamoxifen-induced alterations in the expression of selected matrix metalloproteinases (MMP-2, -9, -10, and -13) and their tissue inhibitors (TIMP-2 and -3) in the chicken ovary. Theriogenology 2019; 148:208-215. [PMID: 31753476 DOI: 10.1016/j.theriogenology.2019.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 11/26/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of peptidases that disintegrate extracellular matrix (ECM) molecules associated with tissue remodeling, including reproductive tissues. Their actions are largely controlled by specific tissue inhibitors of MMPs (TIMPs). The role and regulation of MMPs in the chicken ovary is largely unknown. The aim of the present study was to examine the effect of tamoxifen (TMX; estrogen receptor modulator) treatment on the expression of selected members of the MMP system in the laying hen ovary. The activity of MMP-2 and -9 was also examined. Real-time polymerase chain reaction and western blot analyses revealed changes in mRNA and/or protein expression of MMP-2, -9, -10, -13, TIMP-2, and TIMP-3 in the following ovarian follicles after TMX treatment: white (WF), yellowish (YF), small yellow (SYF), and the largest yellow preovulatory (F3-F1). The response to TMX depended on the stage of follicle development and the layer of follicular wall. Moreover, ovarian regression following TMX treatment was accompanied by both an increase in total activity of MMP-2 in the theca layer of F3-F2 and granulosa layer of F2, and a decrease in total activity of MMP-2 in the WF, YF, and SYF, and MMP-9 in theca of F3-F1. In conclusion, the TMX-induced changes in MMP-2, -9, -10, and -13, and TIMP-2 and -3 mRNA expression, as well as MMP-2 and -9 activity, were dependent on tissue and the stage of follicular maturation. Our findings strongly suggests a role for estrogen in regulating the transcription, translation, and/or posttranslational activity of members of the MMP system. Further, these components may be involved in the orchestration of ECM turnover and cellular functions during ovary regression, which occur under conditions of reduced estrogenic activity.
Collapse
Affiliation(s)
- Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
76
|
Silva JF, Ocarino NM, Serakides R. Thyroid hormones and female reproduction. Biol Reprod 2019; 99:907-921. [PMID: 29767691 DOI: 10.1093/biolre/ioy115] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/13/2018] [Indexed: 12/31/2022] Open
Abstract
Thyroid hormones are vital for the proper functioning of the female reproductive system, since they modulate the metabolism and development of ovarian, uterine, and placental tissues. Therefore, hypo- and hyperthyroidism may result in subfertility or infertility in both women and animals. Other well-documented sequelae of maternal thyroid dysfunctions include menstrual/estral irregularity, anovulation, abortion, preterm delivery, preeclampsia, intrauterine growth restriction, postpartum thyroiditis, and mental retardation in children. Several studies have been carried out involving prospective and retrospective studies of women with thyroid dysfunction, as well as in vivo and in vitro assays of hypo- and hyperthyroidism using experimental animal models and/or ovarian, uterine, and placental cell culture. These studies have sought to elucidate the mechanisms by which thyroid hormones influence reproduction to better understand the physiology of the reproductive system and to provide better therapeutic tools for reproductive dysfunctions that originate from thyroid dysfunctions. Therefore, this review aims to summarize and update the available information related to the role of thyroid hormones in the morphophysiology of the ovary, uterus, and placenta in women and animals and the effects of hypo- and hyperthyroidism on the female reproductive system.
Collapse
Affiliation(s)
- Juneo F Silva
- Centro de Microscopia Eletrônica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Natália M Ocarino
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rogéria Serakides
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
77
|
Knapp EM, Li W, Sun J. Downregulation of homeodomain protein Cut is essential for Drosophila follicle maturation and ovulation. Development 2019; 146:dev179002. [PMID: 31444217 PMCID: PMC6765176 DOI: 10.1242/dev.179002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/19/2019] [Indexed: 01/19/2023]
Abstract
Proper development and maturation of a follicle is essential for successful ovulation and reproduction; however, the molecular mechanisms for follicle maturation, particularly for somatic follicle cell differentiation, are poorly understood. During Drosophila oogenesis, the somatic follicle cells encasing oocytes undergo two distinct well-established transitions: the mitotic to endocycle switch at stage 6/7 and the endocycle to gene amplification switch at stage10A/10B. Here, we identify a novel third follicle cell transition that occurs in the final stages of oogenesis (stage 13/14). This late follicle cell transition is characterized by upregulation of the transcription factor Hindsight (Hnt), and downregulation of the homeodomain transcription factor Cut and the zinc-finger transcription factor Tramtrack-69 (Ttk69). We demonstrate that inducing expression of Cut in stage 14 follicle cells is sufficient to inhibit follicle rupture and ovulation through its negative regulation of Hnt and promotion of Ttk69 expression. Our work illustrates the importance of the stage13/14 transition for follicle maturation and demonstrates the complex regulation required for somatic follicle cells to differentiate into a state primed for follicle rupture and ovulation.
Collapse
Affiliation(s)
- Elizabeth M Knapp
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Wei Li
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
78
|
Matrix Metalloproteinase Expressions Play Important role in Prediction of Ovarian Cancer Outcome. Sci Rep 2019; 9:11677. [PMID: 31406154 PMCID: PMC6691000 DOI: 10.1038/s41598-019-47871-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 06/12/2019] [Indexed: 11/11/2022] Open
Abstract
Ovarian cancer has a high death rate and is often not detected until late stages. While some studies found high expressions of MMPs correlated with cancer invasion, metastasis, and poor prognosis, however, several other studies indicated MMPs might inhibit cancer rather than promote cancer in certain situations. Thus, the role of different MMPs in different cancer types needs a systematic re-evaluation. In this study, we used RNA-Seq and corresponding clinical data downloaded from TCGA and analyzed the correlations between MMP expressions and the clinicopathologic characteristics and outcome in ovarian serous cystadenocarcinoma (OSC) patients. Among the MMPs investigated, MMP-3 was significantly increased in high-grade and high-stage tumors compared with low-grade and low-stage ones. Using univariate analysis and multivariate Cox model, high expressions of MMP-19 and -20 were found to associate with poor overall survival independent of clinicopathologic characteristics. Moreover, using in vitro studies, we found ovarian cancer cell lines with higher MMP-19 and -20 protein expressing levels were associated with anti-cancer drugs resistance, while knockdown of MMP-19 or -20 increased ovarian cancer cell sensitivities to several clinical using chemotherapy agents. Finally, knockdown of MMP-19 or -20 also decreased the invasion abilities of several ovarian cancer cell lines. These in vitro studies provided potential mechanisms of high MMP-19 and -20 expressions in the poor prognosis of ovarian cancer.
Collapse
|
79
|
Orzabal MR, Lunde-Young ER, Ramirez JI, Naik VD, Hillhouse A, Konganti K, Threadgill DW, Ramadoss J. Gestational binge alcohol-induced alterations in maternal uterine artery transcriptome. Reprod Toxicol 2019; 87:42-49. [PMID: 31078653 PMCID: PMC6628922 DOI: 10.1016/j.reprotox.2019.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
Abstract
Binge alcohol exposure during pregnancy results in diminished vessel function and altered proteome in the maternal uterine artery. We aimed to utilize high throughput RNA-seq deep-sequencing to characterize specific effects of binge alcohol exposure during pregnancy on the uterine artery transcriptome, and gain insight into mechanisms underlying alcohol-mediated uterine artery dysfunction. Pregnant Sprague-Dawley rats assigned to Pair-Fed Control or Alcohol groups, received a once-daily orogastric gavage in a binge paradigm. RNA-sequencing using Illumina NextSeq 500, identified 13,941 genes; 40 significantly altered genes were altered by log2(fold change) > 2; 27 genes were upregulated and 13 were downregulated in the Alcohol group. Transcripts altered included those which encode for aldehyde dehydrogenases, matrix metalloproteases, and molecules vital for vasodilation and vascular remodeling. Biological pathways that were disproportionally altered by alcohol were proline and citrulline biosynthesis/metabolism. Disruption of these pathways suggests candidate mechanism(s) for alcohol-mediated impairments to the proteome and vascular function.
Collapse
Affiliation(s)
- Marcus R Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Emilie R Lunde-Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Josue I Ramirez
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Vishal D Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Andrew Hillhouse
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, and the Texas A&M Institute of Genome Sciences, TX, USA
| | - Kranti Konganti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, and the Texas A&M Institute of Genome Sciences, TX, USA
| | - David W Threadgill
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, and the Texas A&M Institute of Genome Sciences, TX, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
80
|
Estienne A, Portela VM, Choi Y, Zamberlam G, Boerboom D, Roussel V, Meinsohn MC, Brännström M, Curry TE, Jo M, Price CA. The endogenous hydrogen sulfide generating system regulates ovulation. Free Radic Biol Med 2019; 138:43-52. [PMID: 30930295 DOI: 10.1016/j.freeradbiomed.2019.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
The generation of free-radicals such as nitric oxide has been implicated in the regulation of ovarian function, including ovulation. Tissues that generate nitric oxide typically generate another free-radical gas, hydrogen sulfide (H2S), although little is known about the role of H2S in ovarian function. The hypothesis of this study was that H2S regulates ovulation. Treatment with luteinizing hormone (LH) increased the levels of mRNA and protein of the H2S generating enzyme cystathionine γ-lyase (CTH) in granulosa cells of mice and humans in vivo and in vitro. Pharmacological inhibition of H2S generating enzymes reduced the number of follicles ovulating in mice in vivo and in vitro, and this inhibitory action was reversed by cotreatment with a H2S donor. Addition of a H2S donor to cultured mouse granulosa cells increased basal and LH-dependent abundance of mRNA encoding amphiregulin, betacellulin and tumor necrosis alpha induced protein 6, proteins important for cumulus expansion and follicle rupture. Inhibition of CTH activity reduced abundance of mRNA encoding matrix metalloproteinase-2 and -9 and tissue-type plasminogen activator, and cotreatment with the H2S donor increased the levels of these mRNA above those stimulated by LH alone. We conclude that the H2S generating system plays an important role in the propagation of the preovulatory cascade and rupture of the follicle at ovulation.
Collapse
Affiliation(s)
- Anthony Estienne
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Valério M Portela
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Yohan Choi
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Gustavo Zamberlam
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Derek Boerboom
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Vickie Roussel
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Marie-Charlotte Meinsohn
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, QC, Canada
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, 405 30, Gothenburg, Sweden; Stockholm IVF, 112 81, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, Chandler Medical Center, 800 Rose Street, University of Kentucky, Lexington, KY, 40536-0298, USA
| | - Christopher A Price
- Centre de Recherche en Reproduction et Fertilité, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, QC, Canada.
| |
Collapse
|
81
|
Li H, Chang H, Shi Z, Leung PCK. ID
3 mediates the
TGF
‐β1‐induced suppression of matrix metalloproteinase‐1 in human granulosa cells. FEBS J 2019; 286:4310-4327. [DOI: 10.1111/febs.14964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/17/2019] [Accepted: 06/14/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Li
- Key laboratory of Animal Breeding and Reproduction Institute of Animal Science Jiangsu Academy of Agricultural Sciences Nanjing China
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver Canada
- Jiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and Technology Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Hsun‐Ming Chang
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver Canada
| | - Zhendan Shi
- Key laboratory of Animal Breeding and Reproduction Institute of Animal Science Jiangsu Academy of Agricultural Sciences Nanjing China
- Jiangsu Key Laboratory for Food Quality and Safety‐State Key Laboratory Cultivation Base of Ministry of Science and Technology Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Peter C. K. Leung
- Department of Obstetrics and Gynaecology BC Children's Hospital Research Institute University of British Columbia Vancouver Canada
| |
Collapse
|
82
|
Zheng ZH, Han Y, You SY, Chen Z, Zheng XD. Improvement in post-partum uterine involution in rats treated with Apios americana. J Zhejiang Univ Sci B 2019; 20:576-587. [PMID: 31168971 DOI: 10.1631/jzus.b1800475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Apios americana, a plant used as a staple ingredient of native American diets, has various properties, including anti-cancer, anti-hyperglycemic, hypotensive, and anti-inflammatory activity. In Japan, Apios is used as a post-natal medication. After parturition, women undergo a period of recovery as they return to pre-pregnancy conditions. However, few health products that aid post-partum recovery are on the market. We explored whether Apios can accelerate the post-partum recovery process, in particular the involution of the uterus. METHODS Female rats kept in individual cages were mated with two male rats, with the exception of the control group (female rats without mating, on basal diet; n=6). After delivery, rats were divided into five groups based on their diet: basal diet (model; n=6); basal diet+oral intake at 5.4 g/kg of Chanfukang granules (a Chinese patent medicine preparation for post-partum lochia) (positive; n=6); basal diet containing 10% Apios powder (low; n=6); basal diet containing 20% Apios powder (medium; n=6); basal diet containing 40% Apios powder (high; n=6). Five days later, uteri and spleens were weighed. Uterus and spleen indices for each rat were calculated by dividing visceral weight by the total weight. Hormone and cytokine concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Histological analysis of uteri was completed using hematoxylin and eosin (H&E) staining. Expression of matrix metalloproteinases and inhibitors in uteri was measured by western blotting. RESULTS Our results showed that Apios treatment reduced the post-partum uterus index and regulated the hormone concentrations. Moreover, we found that the process of uterine involution was accelerated, based on morphological changes in the uterus. In addition, our results indicated that Apios alleviated the inflammatory response induced by the involution process. Transforming growth factor β was also found to be regulated by Apios. There were significant downregulation of matrix metalloproteinases and upregulation of their inhibitors by Apios, which suggested that Apios increased the rate of the collagen clearance process. CONCLUSIONS These results, based on experimental observations at the molecular and protein levels, verified our hypothesis that Apios can improve uterine involution, and demonstrated the potential application of Apios in post-partum care.
Collapse
Affiliation(s)
- Zi-Huan Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ying Han
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310022, China
| | - Shi-Ying You
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zuo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Dong Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.,National Engineering Laboratory of Intelligent Food Technology and Equipment, Hangzhou 310058, China.,Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, China.,Fuli Institute of Food Science, Hangzhou 310058, China
| |
Collapse
|
83
|
Thomas VG. The Link Between Human Menstruation and Placental Delivery: A Novel Evolutionary Interpretation: Menstruation and fetal placental detachment share common evolved physiological processes dependent on progesterone withdrawal. Bioessays 2019; 41:e1800232. [PMID: 31119755 DOI: 10.1002/bies.201800232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Indexed: 11/10/2022]
Abstract
A new interpretation of human menstruation is presented, resulting from a cross-disciplinary investigation of evolution, developmental biology, and physiology. A process evolutionarily associated with childbirth expresses itself as menstruation in women for whom frequent and continual failure to conceive has become the default situation. In humans and Old World primates, contractile uterine spiral arterioles evolved as the complement of the highly invasive hemochorionic placenta and is the selected phenotype. Placental progesterone withdrawal during the last stage of birth leads to arrested blood flow through maternal spiral arterioles, allowing detachment of the deciduous placenta with minimal maternal hemorrhage. In nonpregnant females, progesterone withdrawal from a degenerating corpus luteum initiates menstruation and stops blood flow through uterine spiral arterioles. Both events share similar physiological mechanisms and sequences. This explanation may improve our understanding of a recurrent event experienced by half of the human population and for a quarter of their adult reproductive life.
Collapse
Affiliation(s)
- Vernon G Thomas
- Department of Integrative Biology, College of Biological Science University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
84
|
Alterations of elastin in female reproductive tissues arising from advancing parity. Arch Biochem Biophys 2019; 666:127-137. [PMID: 30914253 DOI: 10.1016/j.abb.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 11/22/2022]
Abstract
Female reproductive tissues undergo significant alterations during pregnancy, which may compromise the structural integrity of extracellular matrix proteins. Here, we report on modifications of elastic fibers, which are primarily composed of elastin and believed to provide a scaffold to the reproductive tissues, due to parity and parturition. Elastic fibers from the upper vaginal wall of virgin Sprague Dawley rats were investigated and compared to rats having undergone one, three, or more than five pregnancies. Optical microscopy was used to study fiber level changes. Mass spectrometry, 13C and 2H NMR, was applied to study alterations of elastin from the uterine horns. Spectrophotometry was used to measure matrix metalloproteinases-2,9 and tissue inhibitor of metalloproteinase-1 concentration changes in the uterine horns. Elastic fibers were found to exhibit increase in tortuosity and fragmentation with increased pregnancies. Surprisingly, secondary structure, dynamics, and crosslinking of elastin from multiparous cohorts appear similar to healthy mammalian tissues, despite fragmentation observed at the fiber level. In contrast, elastic fibers from virgin and single pregnancy cohorts are less fragmented and comprised of elastin exhibiting structure and dynamics distinguishable from multiparous groups, with reduced crosslinking. These alterations were correlated to matrix metalloproteinases-2,9 and tissue inhibitor of metalloproteinase-1 concentrations. This work indicates that fiber level alterations resulting from pregnancy and/or parturition, such as fragmentation, rather than secondary structure (e.g. elastin crosslinking density), appear to govern scaffolding characteristics in the female reproductive tissues.
Collapse
|
85
|
Knapczyk-Stwora K, Nynca A, Ciereszko RE, Paukszto L, Jastrzebski JP, Czaja E, Witek P, Koziorowski M, Slomczynska M. Flutamide-induced alterations in transcriptional profiling of neonatal porcine ovaries. J Anim Sci Biotechnol 2019; 10:35. [PMID: 30988948 PMCID: PMC6446412 DOI: 10.1186/s40104-019-0340-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Androgens are involved in the regulation of ovarian development during fetal/neonatal life. Environmental chemicals displaying anti-androgenic activities may affect multiple signal transduction pathways by blocking endogenous androgen action. The aim of the current study was to examine effects of the anti-androgen flutamide on the expression of coding transcripts and long non-coding RNAs (lncRNAs) in neonatal porcine ovaries. By employing RNA-Seq technology we aimed to extend our understanding of the role of androgens in neonatal folliculogenesis and examine the impact of the anti-androgen flutamide on ovarian function. Method Piglets were subcutaneously injected with flutamide (50 mg/kg BW) or corn oil (controls) between postnatal days 1 and 10 (n = 3/group). Ovaries were excised from the 11-day-old piglets and total cellular RNAs were isolated and sequenced. Results Flutamide-treated piglet ovaries showed 280 differentially expressed genes (DEGs; P-adjusted < 0.05 and log2 fold change ≥1.0) and 98 differentially expressed lncRNAs (DELs; P-adjusted < 0.05 and log2FC ≥ 1.0). The DEGs were assigned to GO term, covering biological processes, molecular functions and cellular components, which linked the DEGs to functions associated with cellular transport, cell divisions and cytoskeleton. In addition, STRING software demonstrated strongest interactions between genes related to cell proliferation. Correlations between DEGs and DELs were also found, revealing that a majority of the genes targeted by the flutamide-affected lncRNAs were associated with intracellular transport and cell division. Conclusions Our results suggest that neonatal exposure of pigs to flutamide alters the expression of genes involved in ovarian cell proliferation, ovarian steroidogenesis and oocyte fertilization, which in turn may affect female reproduction in adult life.
Collapse
Affiliation(s)
- Katarzyna Knapczyk-Stwora
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Anna Nynca
- 2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Renata E Ciereszko
- 2Laboratory of Molecular Diagnostics, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.,3Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Lukasz Paukszto
- 4Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan P Jastrzebski
- 4Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Elzbieta Czaja
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Patrycja Witek
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| | - Marek Koziorowski
- 5Department of Physiology and Reproduction of Animals, University of Rzeszow, Rzeszow, Poland
| | - Maria Slomczynska
- 1Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9 Street, 30-387 Krakow, Poland
| |
Collapse
|
86
|
Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: Parallels With Inflammatory Processes. Endocr Rev 2019; 40:369-416. [PMID: 30496379 PMCID: PMC6405411 DOI: 10.1210/er.2018-00075] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/18/2018] [Indexed: 12/14/2022]
Abstract
The midcycle surge of LH sets in motion interconnected networks of signaling cascades to bring about rupture of the follicle and release of the oocyte during ovulation. Many mediators of these LH-induced signaling cascades are associated with inflammation, leading to the postulate that ovulation is similar to an inflammatory response. First responders to the LH surge are granulosa and theca cells, which produce steroids, prostaglandins, chemokines, and cytokines, which are also mediators of inflammatory processes. These mediators, in turn, activate both nonimmune ovarian cells as well as resident immune cells within the ovary; additional immune cells are also attracted to the ovary. Collectively, these cells regulate proteolytic pathways to reorganize the follicular stroma, disrupt the granulosa cell basal lamina, and facilitate invasion of vascular endothelial cells. LH-induced mediators initiate cumulus expansion and cumulus oocyte complex detachment, whereas the follicular apex undergoes extensive extracellular matrix remodeling and a loss of the surface epithelium. The remainder of the follicle undergoes rapid angiogenesis and functional differentiation of granulosa and theca cells. Ultimately, these functional and structural changes culminate in follicular rupture and oocyte release. Throughout the ovulatory process, the importance of inflammatory responses is highlighted by the commonalities and similarities between many of these events associated with ovulation and inflammation. However, ovulation includes processes that are distinct from inflammation, such as regulation of steroid action, oocyte maturation, and the eventual release of the oocyte. This review focuses on the commonalities between inflammatory responses and the process of ovulation.
Collapse
Affiliation(s)
- Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois Urbana Champaign, Urbana, Illinois
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| | - Mats Brannstrom
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF, Stockholm, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
87
|
A complex of novel protease inhibitor, ovostatin homolog, with its cognate proteases in immature mice uterine luminal fluid. Sci Rep 2019; 9:4973. [PMID: 30899053 PMCID: PMC6428836 DOI: 10.1038/s41598-019-41426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/05/2019] [Indexed: 11/09/2022] Open
Abstract
A predominant gelatinolytic enzyme with approximately 26 kDa was observed in gelatin zymogram of immature mice uterine luminal fluid (ULF). Size exclusion analysis revealed that the native size of this enzyme was close to that of human α2-macroglobulin (α2-MG), a 725 kDa protein. This large protease was isolated by a series of chromatographic steps on the Sephacryl S-400 and DEAE-Sepharose columns. The results from gelatin zymography and SDS-PAGE analysis supported that this large protease consists of gelatinolytic enzyme and a 360 kDa protein. Through tandem mass spectrometry analysis followed by MASCOT database search, the 360 kDa protein was identified as ovostatin homolog (accession: NP_001001179.2) assigned as a homolog of chicken ovostatin, a protease inhibitor. The co-fractionation analysis by gel filtration and mouse ovostatin homolog (mOH) co-immunoprecipitation experiments demonstrated that the mOH formed a complex with three gelatinolytic enzymes in immature mice ULF. Substrate zymography analysis revealed that the mOH-associated gelatinolytic enzymes were suitable to digest type I collagen rather than type IV collagen. In addition, the refolded mOH-associated 26 kDa gelatinolytic enzyme displayed the type I collagen-digesting activity in the assay, but the other two enzymes did not have this function. RT-PCR analysis showed that mOH gene was abundantly expressed in brain, spinal cord, lung, uterus, and in 17-day embryo. Taken together, our data suggest that mOH/cognate protease system may play a potential role in regulation of tissue remodeling and fetal development.
Collapse
|
88
|
Ghasemi A, Saeidi J, Azimi-Nejad M, Hashemy SI. Leptin-induced signaling pathways in cancer cell migration and invasion. Cell Oncol (Dordr) 2019; 42:243-260. [PMID: 30877623 DOI: 10.1007/s13402-019-00428-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Increasing evidence indicates that obesity is associated with tumor development and progression. Leptin is an adipocyte-related hormone with a key role in energy metabolism and whose circulating levels are elevated in obesity. The effect of leptin on cancer progression and metastasis and its underlying mechanisms are still unclear. Leptin can impact various steps in tumor metastasis, including epithelial-mesenchymal transition, cell adhesion to the extracellular matrix (ECM), and proteolysis of ECM components. To do so, leptin binds to its receptor (OB-Rb) to activate signaling pathways and downstream effectors that participate in tumor cell invasion as well as distant metastasis. CONCLUSIONS In this review, we describe metastasis steps in detail and characterize metastasis-related molecules activated by leptin, which may help to develop a roadmap that guides future work. In addition, we conclude that a profound understanding of the fundamental molecular processes that contribute to leptin-induced metastasis may pave the way for the development of new prognostic molecules and appropriate approaches to the treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mohsen Azimi-Nejad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Genetic, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
89
|
Dutra GA, Ishak GM, Pechanova O, Pechan T, Peterson DG, Jacob JCF, Willard ST, Ryan PL, Gastal EL, Feugang JM. Seasonal variation in equine follicular fluid proteome. Reprod Biol Endocrinol 2019; 17:29. [PMID: 30841911 PMCID: PMC6404268 DOI: 10.1186/s12958-019-0473-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Proteomic studies of follicular fluid (FF) exist for several species, including the horse; however, the seasonal influence on FF proteome has not been explored in livestock. The application of high-throughput proteomics of FF in horse has the potential to identify seasonal variations of proteins involved in follicle and oocyte growth. METHODS This study (i) profiles the proteomes of equine FF collected from dominant growing follicles during the spring anovulatory season (SAN), and spring (SOV), summer (SUM), and fall (FOV) ovulatory seasons; and (ii) identifies season-dependent regulatory networks and associated key proteins. RESULTS Regardless of season, a total of 90 proteins were identified in FF, corresponding to 63, 72, 69, and 78 proteins detected in the SAN, SOV, SUM, and FOV seasons, respectively. Fifty-two proteins were common to all seasons, a total of 13 were unique to either season, and 25 were shared between two seasons or more. Protein-to-protein interaction (PPI) analysis indicated the likely critical roles of plasminogen in the SAN season, the prothrombin/plasminogen combination in SUM, and plasminogen/complement C3 in both SOV and FOV seasons. The apolipoprotein A1 appeared crucial in all seasons. The present findings show that FF proteome of SUM differs from other seasons, with FF having high fluidity (low viscosity). CONCLUSIONS The balance between the FF contents in prothrombin, plasminogen, and coagulation factor XII proteins favoring FF fluidity may be crucial at the peak of the ovulatory season (SUM) and may explain the reported lower incidence of hemorrhagic anovulatory follicles during the SUM season.
Collapse
Affiliation(s)
- G A Dutra
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - G M Ishak
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - O Pechanova
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - T Pechan
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - D G Peterson
- Institute for Genomics, Biocomputing and Bioinformatics, University, Mississippi State, Oxford, MS, USA
| | - J C F Jacob
- Department of Reproduction and Animal Evaluation, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - S T Willard
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - P L Ryan
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - J M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, 4025 Wise Center, PO Box 9815, Mississippi State, MS, 39762, USA.
| |
Collapse
|
90
|
Li M, Yao L, Xin M, Gao M. Dysregulation of collagen expression in peri-implantation endometrium of women with high ovarian response. J Obstet Gynaecol Res 2019; 45:1035-1044. [PMID: 30779263 DOI: 10.1111/jog.13936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 01/13/2019] [Indexed: 11/27/2022]
Abstract
AIM To analyze the effects of high ovarian response on endometrial collagen synthesis and related gene expression during the peri-implantation period in patients undergoing in vitro fertilization-embryo transfer. METHODS Peripheral blood and endometrial biopsies were obtained from infertile women on day 6 after oocytes retrieval or ovulation in 16 stimulated cycles (SC) and 16 natural cycles (NC) respectively. Serum estrogen (E2 ), progesterone (P4 ), histological staging, endometrial collagen, matrix metalloproteinases (MMP2, 9) and tissue inhibitors of metalloproteinases (TIMP1, 3) were assayed. RESULTS Serum levels of both E2 and P4 were significantly higher in the SC group than those in the NC group. All endometrial samples were in the secretory phase. The collagen in the stroma of the SC group was more dense and higher than that in the NC group. MMP2 and MMP9 were detected significantly lower in the SC group than those in the NC group, while TIMP1 and TIMP3 were significantly higher. MMP2, 9 expressions are increased by estrogen and reduced by progesterone in dose-dependent manner through estrogen receptor and progesterone receptor. Correspondingly, TIMP1, 3 expressions decreased by estrogen dose-dependently while progesterone played the opposite role. CONCLUSION High levels of P4 could stimulate excessive synthesis of collagen in peri-implantation endometrium of women with high ovarian response, and the mechanisms may be related to the decrease of MMP2, 9 and the increase of TIMP1, 3 through P4 receptor.
Collapse
Affiliation(s)
- Mingyang Li
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Lihua Yao
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Meizhen Xin
- Staff Room of Pathology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minzhi Gao
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
91
|
Bojić-Trbojević Ž, Jovanović Krivokuća M, Vilotić A, Kolundžić N, Stefanoska I, Zetterberg F, Nilsson UJ, Leffler H, Vićovac L. Human trophoblast requires galectin-3 for cell migration and invasion. Sci Rep 2019; 9:2136. [PMID: 30765738 PMCID: PMC6376043 DOI: 10.1038/s41598-018-38374-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022] Open
Abstract
Invasive extravillous cytotrophoblast of the human placenta expresses galectins-1, -3, and -8 in vivo and in vitro. This study aimed to investigate the potential role of galectin-3 in cell migration and invasion, using recombinant human galectin-3 (rhgalectin-3), small molecule galectin inhibitor I47, and galectin-3 silencing. HTR-8/SVneo cell migration was stimulated by rhgalectin-3 and reduced by I47, which could be neutralised by rhgalectin-3. Inhibitor specificity and selectivity for the galectins expressed in extravillous trophoblast were validated in solid phase assays using recombinant galectin-1, -3, -8, confirming selectivity for galectin-3. HTR-8/SVneo cell migration and invasion, and invasion by isolated trophoblast cells in primary culture were significantly reduced in the presence of I47, which could be restored by rhgalectin-3. Upon HTR-8/SVneo cell treatment with galectin-3 siRNA both LGALS3 and galectin-3 protein were dramatically decreased. Silencing of galectin-3 induced significant reduction in cell migration and invasion, which was restored by rhgalectin-3. The influence on known mediators of cell invasion, MMP2 and -9, and integrins α1, α5, and β1 was followed in silenced cells, showing lower levels of MMPs and a large reduction in integrin subunit β1. These results show that galectin-3 acts as a pro-invasive autocrine/paracrine factor in trophoblast in vitro.
Collapse
Affiliation(s)
- Ž Bojić-Trbojević
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - M Jovanović Krivokuća
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - A Vilotić
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - N Kolundžić
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.,King's College London, Faculty of Life Sciences & Medicine, Department of Women & Children's Health, Guy's Hospital, London SE1 9RT, London, United Kingdom
| | - I Stefanoska
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia
| | - F Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46, Gothenburg, Sweden
| | - U J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, POB 124, SE-22100, Lund, Sweden
| | - H Leffler
- Section MIG, Department of Laboratory Medicine Lund University, BMC-C1228b, Klinikgatan 28, 221 84, Lund, Sweden
| | - Lj Vićovac
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| |
Collapse
|
92
|
Kim SH, Lee JH, Yoon JT. Expression of matrix metalloproteinases to induce the expression of genes associated with apoptosis during corpus luteum development in bovine. PeerJ 2019; 7:e6344. [PMID: 30729068 PMCID: PMC6361312 DOI: 10.7717/peerj.6344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/22/2018] [Indexed: 01/11/2023] Open
Abstract
Here we investigated the expressions of apoptosis-associated genes known to induce programed cell death through mRNA expressions of two matrix metalloproteinases (MMPs) that are involved in the degradation of collagen and basal membrane in luteal cells cultured in the treatment media. Our results show that the activity of MMP-2 gelatinase was higher in the CL2 and CL1 of luteal phase, was gradually decreased in the CH2 and CH3 of luteal phase. In particular, the expressions of P4-r and survival-associated genes (IGFr, PI3K, AKT, and mTOR) were strongly induced during CL3 stage, whereas the levels of these genes in corpus luteum (CL) were lower during CL2 and CL1 stages. In the cultured lutein cells analyzed, we found that as MMPs increase, genes related to apoptosis (20α-hydroxy steroid dehydrogenase and caspase-3) also increase. In other words, the results for P4-r and survival-related gene expression patterns in the luteal cells were contrary to the MMPs activation results. These results indicate that active MMPs are differentially expressed to induce the expression of genes associated with programed cell death from the degrading luteal cells. Therefore, our results suggest that the MMPs activation may lead to luteal cell development or death.
Collapse
Affiliation(s)
- Sang Hwan Kim
- Institute of Genetic Engineering, Hankyong National University, Ansung, Gyeonggi-do, Korea
| | - Ji Hye Lee
- Major in the Animal Biotechnology, Graduate School of Future Convergence Technology, Hankyong National University, Anseong, Gyeonggi-do, Korea
| | - Jong Taek Yoon
- Department of Animal Life Science, Hankyong National University, Ansung, Gyeonggi-do, Korea
| |
Collapse
|
93
|
Berisha B, Rodler D, Schams D, Sinowatz F, Pfaffl MW. Prostaglandins in Superovulation Induced Bovine Follicles During the Preovulatory Period and Early Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:467. [PMID: 31354631 PMCID: PMC6635559 DOI: 10.3389/fendo.2019.00467] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to characterize the regulation pattern of prostaglandin family members namely prostaglandin F2alpha (PTGF), prostaglandin E2 (PTGE), their receptors (PTGFR, PTGER2, PTGER4), cyclooxygenase 2 (COX-2), PTGF synthase (PTGFS), and PTGE synthase (PTGES) in the bovine follicles during preovulatory period and early corpus luteum (CL). Ovaries containing preovulatory follicles or CL were collected by transvaginal ovariectomy (n = 5 cows/group), and the follicles were classified: (I) before GnRH treatment; (II) 4 h after GnRH; (III) 10 h after GnRH; (IV) 20 h after GnRH; (V) 25 h after GnRH, and (VI) 60 h after GnRH (early CL). In these samples, the concentrations of progesterone (P4), estradiol (E2), PTGF and PTGE were investigated in the follicular fluid (FF) by validated EIA. Relative mRNA abundance of genes encoding for prostaglandin receptors (PTGFR, PTGER2, PTGER4), COX-2, PTGFS and PTGES were quantified by RT-qPCR. The localization of COX-2 and PTGES were investigated by established immunohistochemistry in fixed follicular and CL tissue samples. The high E2 concentration in the FF of the follicle group before GnRH treatment (495.8 ng/ml) and during luteinizing hormone (LH) surge (4 h after GnRH, 574.36 ng/ml), is followed by a significant (P<0.05) downregulation afterwards with the lowest level during ovulation (25 h after GnRH, 53.11 ng/ml). In contrast the concentration of P4 was very low before LH surge (50.64 mg/ml) followed by a significant upregulation (P < 0.05) during ovulation (537.18 ng/ml). The mRNA expression of COX-2 increased significantely (P < 0.05) 4 h after GnRH and again 20 h after GnRH, followed by a significant decrease (P < 0.05) after ovulation (early CL). The mRNA of PTGFS in follicles before GnRH was high followed by a continuous and significant downregulation (P < 0.05) afterwards. In contrast, PTGES mRNA abundance increased significantely (P < 0.05) in follicles 20 h after GnRH treatment and remained high afterwards. The mRNA abundance of PTGFR, PTGER2, and PTGER4 in follicles before GnRH was high, followed by a continuous and significant down regulation afterwards and significant increase (P < 0.05) only after ovulation (early CL). The low concentration of PTGF (0.04 ng/ml) and PTGE (0.15 ng/ml) in FF before GnRH, increased continuously in follicle groups before ovulation and displayed a further significant and dramatic increase (P < 0.05) around ovulation (101.01 ng/ml, respectively, 484.21 ng/ml). Immunohistochemically, the granulosa cells showed an intensive signal for COX-2 and PTGES in follicles during preovulation and in granulosa-luteal cells of the early CL. In conclusion, our results indicate that the examined bovine prostaglandin family members are involved in the local mechanisms regulating final follicle maturation and ovulation during the folliculo-luteal transition and CL formation.
Collapse
Affiliation(s)
- Bajram Berisha
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Pristina, Kosovo
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
- *Correspondence: Bajram Berisha
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Fred Sinowatz
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
94
|
Hu S, Liang X, Ren X, Shi Y, Su H, Li Y, Du K, Wang J, Jia X, Chen S, Lai S. Integrated Analysis of mRNA and miRNA Expression Profiles in the Ovary of Oryctolagus cuniculus in Response to Gonadotrophic Stimulation. Front Endocrinol (Lausanne) 2019; 10:744. [PMID: 31736880 PMCID: PMC6828822 DOI: 10.3389/fendo.2019.00744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022] Open
Abstract
Molecular mechanisms responsible for gonadotrophic control of ovarian follicle development and ovulation have not been fully delineated. In this study, prepubertal female rabbits were subjected to a combined PMSG/hCG treatment for the induction of follicle maturation and ovulation. Ovaries of 6 does at different time points during gonadotrophic stimulation were collected for histomorphological examination and genome-wide analysis of miRNA and mRNA transcriptomes, and the plasma were separated for detecting melatonin (MT), prostaglandin E2 (PGE2), estradiol (E2), and progesterone (P4) levels. The results suggested that PMSG promoted the development of the reproductive tract by decreasing plasma levels of E2 and slightly increasing those of MT and PGE2 and that hCG induced ovulation and corpus luteum formation by significantly increasing MT, PGE2, and P4 levels. At the transcriptomic level, a total of 1,122 differentially expressed genes (DEGs) and 12 DE miRNAs were identified using three-group comparisons. Meanwhile, pairwise comparisons revealed that 279 and 103 genes as well as 36 and 20 miRNAs were up- and down-regulated during PMSG-stimulated follicle development while 11 and 5 genes as well as 33 and 16 miRNAs were up- and down-regulated during hCG-induced luteinization. KEGG enrichment analysis of the DEGs derived from both three-group- and two-group comparisons as well as the predicted target genes of DE miRNAs highlighted the crucial roles of pathways involving tissue remodeling, energy metabolism, and regulation of cellular functions in mediating gonadotrophin-induced follicle maturation. Specifically, 3 genes including the matrix metallopeptidase 13 (MMP13), protein phosphatase 1 regulatory subunit 3C (PPP1R3C), and solute carrier family 2 member 12 (SLC2A12), together with 2 miRNAs including the miR-205-1 and miR-34c, were predicted to be the promising downstream targets of both PMSG and hCG. Significantly, the miRNA-mRNA interaction pairs containing top 10 up- and down-regulated mRNAs/miRNAs upon PMSG/hCG stimulation were established, and so were those involved in the PI3K-Akt, ECM-receptor interaction, and focal adhesion pathways during PMSG-induced follicle maturation. Finally, qRT-PCR analysis confirmed the results from RNA-Seq and Small RNA-Seq. Our work may contribute to a better understanding of the regulatory mechanisms of gonadotrophins on ovarian follicle development and ovulation.
Collapse
|
95
|
Luddi A, Gori M, Marrocco C, Capaldo A, Pavone V, Bianchi L, Boschi L, Morgante G, Piomboni P, de Leo V. Matrix metalloproteinases and their inhibitors in human cumulus and granulosa cells as biomarkers for oocyte quality estimation. Fertil Steril 2018; 109:930-939.e3. [PMID: 29778391 DOI: 10.1016/j.fertnstert.2018.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/12/2018] [Accepted: 01/20/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To study the molecular profile of metalloproteinases and their tissue inhibitors in granulosa and cumulus cells in a subset of fertile and infertile women. DESIGN Molecular study with granulosa and cumulus cells. SETTING University hospital. PATIENT(S) Forty-four women undergoing assisted reproductive techniques for female infertility factor, with partners having a normal spermiogram and 15 normally fertile women with male partner affected by severe oligoasthenoteratozoospermia or nonobstructive azoospermia. INTERVENTION(S) In vitro fertilization. MAIN OUTCOME MEASUREMENT(S) We investigated gene expression level of metalloproteinases (MMP2, MMP9, MMP11) and their tissue inhibitors (TIMP1, TIMP2) by means of quantitative reverse-transcription polymerase chain reaction, protein quantification by means of Western blot, and localization by means of immunofluorescence. RESULT(S) We firstly validated HPRT1 as the most reliable housekeeping gene enabling correct gene expression analysis in both granulosa and cumulus cells. Gene expression, Western blot, and immunofluorescence analysis of MMP2, MMP9, and MMP11 and their tissue inhibitors TIMP1 and TIMP2 demonstrated that these enzymes are finely tuned in these cells. MMP9 is specifically expressed only in granulosa, whereas MMP2 is more expressed in cumulus and granulosa cells in cases of reduced ovarian response and decreased fertilization rate. CONCLUSION(S) This study sheds light on MMP and TIMP expression in granulosa and cumulus cells, and it may help in understanding the fine regulation of oocyte maturation inside the follicle. Although further studies are needed to fully understand the molecular mechanisms involved in these processes, our findings may be useful in the identification of biomarkers of oocyte maturation, competence acquiring, and fertilization.
Collapse
Affiliation(s)
- Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Martina Gori
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Camilla Marrocco
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Angela Capaldo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Laura Bianchi
- Department of Life Science, University of Siena, Siena, Italy
| | - Letizia Boschi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Morgante
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; Center for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; Center for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy.
| | - Vincenzo de Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; Center for Diagnosis and Treatment of Couple Sterility, S. Maria alle Scotte Hospital, Siena, Italy
| |
Collapse
|
96
|
Bou Nemer L, Shi H, Carr BR, Word RA, Bukulmez O. Effect of single-dose ibuprofen on follicular fluid levels of interleukins in poor responders undergoing in vitro fertilization. Syst Biol Reprod Med 2018; 65:48-53. [DOI: 10.1080/19396368.2018.1557761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Laurice Bou Nemer
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility and the Cecil H and Ida Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haolin Shi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility and the Cecil H and Ida Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Richard Carr
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility and the Cecil H and Ida Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Ann Word
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility and the Cecil H and Ida Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Orhan Bukulmez
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility and the Cecil H and Ida Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
97
|
Hrabia A, Wolak D, Kwaśniewska M, Kieronska A, Socha JK, Sechman A. Expression of gelatinases (MMP-2 and MMP-9) and tissue inhibitors of metalloproteinases (TIMP-2 and TIMP-3) in the chicken ovary in relation to follicle development and atresia. Theriogenology 2018; 125:268-276. [PMID: 30481606 DOI: 10.1016/j.theriogenology.2018.11.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of peptidases that possess the ability to break down extracellular matrix macromolecules associated with tissue turnover in various physiological and pathological conditions. Their activity is largely regulated by specific tissue inhibitors of MMPs (TIMPs). Information concerning the role of MMPs in the chicken ovary is very limited. The aim of the present study was to determine the expression and localization of selected members of the MMP system in different compartments of the laying hen ovary and to investigate whether their expression changes at different stages of the ovulatory cycle. MMP-2 and -9 activity was also examined. Expression of MMP-2, -9 and tissue inhibitors of MMPs (TIMP-2 and -3) in the ovarian follicles was examined 22 h and 3 h before F1 ovulation. Real-time polymerase chain reaction and western blot revealed differential mRNA and protein expression of MMP-2, MMP-9, TIMP-2, and TIMP-3 in the ovarian follicles: white, yellowish, small yellow, the largest preovulatory (F3-F1), and white atretic. Within the ovary, the relative expression of MMP and TIMP mRNA depended on follicle development, the layer of follicular wall, and ovulation stage. The relatively higher expression of MMP-2 and MMP-9 mRNA in the ovarian follicles 3 h compared to 22 h before ovulation was found. As follicle development progressed toward ovulation, elevated MMP-2 and -9 activity was noted. Atresia of white follicles was accompanied by an increase in gelatinase activities. Immunohistochemistry demonstrated tissue- and follicle-dependent immunoreactivity of the examined MMPs and TIMPs. In summary, the results show tissue- and stage of the ovulatory cycle-dependent differences in MMP and TIMP expression, as well as MMP-2 and -9 activity. Findings that suggest these molecules might significantly participate in the complex remodeling of extracellular matrix required for follicle development, ovulation, and atresia in the chicken ovary.
Collapse
Affiliation(s)
- Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - Dominika Wolak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Maria Kwaśniewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Kieronska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Joanna K Socha
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Andrzej Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
98
|
Levin G, Coelho TM, Nóbrega NG, Trombetta-Lima M, Sogayar MC, Carreira ACO. Spatio-temporal expression profile of matrix metalloproteinase (Mmp) modulators Reck and Sparc during the rat ovarian dynamics. Reprod Biol Endocrinol 2018; 16:116. [PMID: 30424792 PMCID: PMC6234678 DOI: 10.1186/s12958-018-0422-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 10/14/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Matrix metalloproteinases (Mmps) and their tissue inhibitors (Timps) are widely recognized as crucial factors for extracellular matrix remodeling in the ovary and are involved in follicular growth, ovulation, luteinization, and luteolysis during the estrous cycle. Recently, several genes have been associated to the modulation of Mmps activity, including Basigin (Bsg), which induces the expression of Mmps in rat ovaries; Sparc, a TGF-β modulator that is related to increased expression of Mmps in cancer; and Reck, which is associated with Mmps inhibition. However, the expression pattern of Mmp modulators in ovary dynamics is still largely uncharacterized. METHODS To characterize the expression pattern of Mmps network members in ovary dynamics, we analyzed the spatio-temporal expression pattern of Reck and Sparc, as well as of Mmp2, Mmp9 and Mmp14 proteins, by immunohistochemistry (IHC), in pre-pubertal rat ovaries obtained from an artificial cycle induced by eCG/hCG, in the different phases of the hormone-induced estrous cycle. We also determined the gene expression profiles of Mmps (2, 9, 13 14), Timps (1, 2, 3), Sparc, Bsg, and Reck to complement this panel. RESULTS IHC analysis revealed that Mmp protein expression peaks at the early stages of folliculogenesis and ovulation, decreases during ovulation-luteogenesis transition and luteogenesis, increasing again during corpus luteum maintenance and luteolysis. The protein expression patterns of these metalloproteinases and Sparc were inverse relative to the pattern displayed by Reck. We observed that the gene expression peaks of Mmps inhibitors Reck and Timp2 were closely paraleled by Mmp2 and Mmp9 suppression. The opposite was also true: increased Mmp2 and Mmp9 expression was concomitant to reduced Reck and Timp2 levels. CONCLUSION Therefore, our results generate a spatio-temporal expression profile panel of Mmps and their regulators, suggesting that Reck and Sparc seem to play a role during ovarian dynamics: Reck as a possible inhibitor and Sparc as an inducer of Mmps.
Collapse
Affiliation(s)
- Gabriel Levin
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
| | - Tatiane Maldonado Coelho
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
- 0000 0004 1937 0722grid.11899.38Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP 05508-000 Brazil
| | - Nathali Guimarães Nóbrega
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
| | - Marina Trombetta-Lima
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
- 0000 0004 1937 0722grid.11899.38Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP 05508-000 Brazil
| | - Mari Cleide Sogayar
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
- 0000 0004 1937 0722grid.11899.38Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP 05508-000 Brazil
| | - Ana Claudia Oliveira Carreira
- 0000 0004 1937 0722grid.11899.38NUCEL (Cell and Molecular Therapy Center), Internal Medicine Department, Medical School, University of São Paulo, Rua Pangaré, 100, Cidade Universitária, São Paulo, SP 05360-130 Brazil
- 0000 0004 1937 0722grid.11899.38Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP 05508-000 Brazil
- 0000 0004 1937 0722grid.11899.38Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP 05508-270 Brazil
| |
Collapse
|
99
|
Fujihara M, Yamamizu K, Comizzoli P, Wildt DE, Songsasen N. Retinoic acid promotes in vitro follicle activation in the cat ovary by regulating expression of matrix metalloproteinase 9. PLoS One 2018; 13:e0202759. [PMID: 30142172 PMCID: PMC6108478 DOI: 10.1371/journal.pone.0202759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Retinoic acid (RA) facilitates tissue morphogenesis by regulating matrix matalloproteinase (MMPs) expression. Our objective was to examine the influence of RA on in vitro development of follicles enclosed within domestic cat ovarian tissues. Ovarian cortices from 9 prepubertal and 13 adult cats were incubated for 7 d in medium containing 0 (control), 1 or 5 μM RA and then analyzed for viability. Cortices from additional three animals of each age group were cultured in the same condition and follicle morphology, stage and size were histologically evaluated. In a separate study, cortices from 14 donors (7 prepubertal; 7 adult cats) were incubated in 0 or 5 μM RA for 7 d and assessed for (1) MMP1, 2, 3, 7, 9 and TIMP1 expression by qPCR and (2) protein expression of MMP9 by immunohistochemistry. Donor age did not influence follicle response to RA. Collective data from both age groups revealed that percentages of primordial follicles in 5 μM RA treatment were lower (P < 0.05; 40.5 ± 4.5%) than in fresh cortices (66.7 ± 5.3%) or controls (60.1 ± 4.0%) with 1 μM-RA treatment producing intermediate (56.3 ± 4.0%) results. Proportion of primary follicles in 5 μM RA (21.7 ± 3.3%) was higher than in fresh cortices (4.9 ± 2.9%) and controls (9.0 ± 2.8%) with 1 μM-RA treatment producing an intermediate value (13.8 ± 2.0%). Furthermore, proportion of secondary follicles increased after 7 d in the presence of 5 μM RA (9.5 ± 2.7%) compared to other groups (fresh, 1.9 ± 0.8%; control, 2.6 ± 1.1%; 1 μM RA, 2.5 ± 0.2%). MMP9 transcript and protein were upregulated, whereas MMP7 mRNA was suppressed by 5 μM-RA treatment compared to fresh counterparts. RA did not impact MMP1, 2, 3, 13 or TIMP1 expression. In summary, RA activated cat primordial follicle growth likely via a mechanism related to upregulation of MMP9 and down-regulation of MMP7 transcripts.
Collapse
Affiliation(s)
- Mayako Fujihara
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Kohei Yamamizu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Pierre Comizzoli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - David E. Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Nucharin Songsasen
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| |
Collapse
|
100
|
|