51
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
52
|
Cheng H, Jin F, Zaman QU, Ding B, Hao M, Wang Y, Huang Y, Wells R, Dong Y, Hu Q. Identification of Bna.IAA7.C05 as allelic gene for dwarf mutant generated from tissue culture in oilseed rape. BMC PLANT BIOLOGY 2019; 19:500. [PMID: 31729952 PMCID: PMC6857212 DOI: 10.1186/s12870-019-2094-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/21/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Plant height is one of the most important agronomic traits in many crops due to its influence on lodging resistance and yield performance. Although progress has been made in the use of dwarfing genes in crop improvement, identification of new dwarf germplasm is still of significant interest for breeding varieties with increased yield. RESULTS Here we describe a dominant, dwarf mutant G7 of Brassica napus with down-curved leaves derived from tissue culture. To explore the genetic variation responsible for the dwarf phenotype, the mutant was crossed to a conventional line to develop a segregating F2 population. Bulks were formed from plants with either dwarf or conventional plant height and subjected to high throughput sequencing analysis via mutation mapping (MutMap). The dwarf mutation was mapped to a 0.6 Mb interval of B. napus chromosome C05. Candidate gene analysis revealed that one SNP causing an amino acid change in the domain II of Bna.IAA7.C05 may contribute to the dwarf phenotype. This is consistent with the phenotype of a gain-of-function indole-3-acetic acid (iaa) mutant in Bna.IAA7.C05 reported recently. GO and KEGG analysis of RNA-seq data revealed the down-regulation of auxin related genes, including many other IAA and small up regulated response (SAUR) genes, in the dwarf mutant. CONCLUSION Our studies characterize a new allele of Bna.IAA7.C05 responsible for the dwarf mutant generated from tissue culture. This may provide a valuable genetic resource for breeding for lodging resistance and compact plant stature in B. napus.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Fenwei Jin
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Qamar U. Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Bingli Ding
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Yi Wang
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Yi Huang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| | - Rachel Wells
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH UK
| | - Yun Dong
- Crop Research Institute, Gansu academy of Agricultural Sciences, Lanzhou, 730070 Gansu China
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062 China
| |
Collapse
|
53
|
Miotto YE, Tesser da Costa C, de Oliveira BH, Guzman F, Margis R, de Almeida RMC, Offringa R, Dos Santos Maraschin F. Identification of root transcriptional responses to shoot illumination in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2019; 101:487-498. [PMID: 31560104 DOI: 10.1007/s11103-019-00918-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/21/2019] [Indexed: 05/25/2023]
Abstract
The transcriptional profile of roots is highly affected by shoot illumination. Transcriptogram analysis allows the identification of cellular processes that are not detected by DESeq. Light is a key environmental factor regulating plant growth and development. Arabidopsis thaliana seedlings grown under light display a photomorphogenic development pattern, showing short hypocotyl and long roots. On the other hand, when grown in darkness, they display skotomorphogenic development, with long hypocotyls and short roots. Although many signals from shoots might be important for triggering root growth, the early transcriptional responses that stimulate primary root elongation are still unknown. Here, we aimed to investigate which genes are involved in the early photomorphogenic root development of dark grown roots. We found that 1616 genes 4 days after germination (days-old), and 3920 genes 7 days-old were differently expressed in roots when the shoot was exposed to light. Of these genes, 979 were up regulated in 4 days and 2784 at 7 days-old. We compared the functional categorization of differentially regulated processes by two methods: GO term enrichment and transcriptogram analysis. Expression analysis of nine selected candidate genes in roots confirmed the data observed in the RNA-seq analysis. Loss-of-function mutants of these selected differentially expressed genes suggest the involvement of these genes in root development in response to shoot illumination. Our findings are consistent with the observation that dark grown roots respond to the shoot-perceived aboveground light environment.
Collapse
Affiliation(s)
- Yohanna Evelyn Miotto
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Cibele Tesser da Costa
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
- PPGBOT - Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Ben Hur de Oliveira
- PPGBCM - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Frank Guzman
- PPGBCM - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Rogério Margis
- PPGBCM - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Rita Maria Cunha de Almeida
- Instituto de Física and Instituto Nacional de Ciência e Tecnologia: Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Programa de Pós Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Felipe Dos Santos Maraschin
- PPGBM - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
- PPGBOT - Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul - UFRGS, Av. Bento Gonçalves 9500, Prédio 43.423, sala 216, Porto Alegre, RS, CEP 91501-970, Brazil.
| |
Collapse
|
54
|
Ren S, Rutto L, Katuuramu D. Melatonin acts synergistically with auxin to promote lateral root development through fine tuning auxin transport in Arabidopsis thaliana. PLoS One 2019; 14:e0221687. [PMID: 31461482 PMCID: PMC6713329 DOI: 10.1371/journal.pone.0221687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/13/2019] [Indexed: 11/18/2022] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) plays important roles in plant developmental growth, especially in root architecture. The similarity in both chemical structure and biosynthetic pathway suggests a potential linkage between melatonin and auxin signaling. However the molecular mechanism regulating this melatonin-mediated root architecture changes is not yet elucidated. In the present study, we re-analyzed previously conducted transcriptome data and identified 16 auxin-related genes whose expression patterns were altered by treatment with melatonin. Several of these genes encoding important auxin transporters or strongly affecting auxin transport were significantly down regulated. In wild type Arabidopsis, Melatonin inhibited both primary root growth and hypocotyl elongation, but enhanced lateral root development in a dose dependent manner. However, the lateral-root-promoting role of melatonin was abolished when each individual null mutant affecting auxin transport including pin5, wag1, tt4 and tt5, was examined. Furthermore, melatonin acts synergistically with auxin to promote lateral root development in wild type Arabidopsis, but such synergistic effects were absent in knockout mutants of individual auxin transport related genes examined. These results strongly suggest that melatonin enhances lateral root development through regulation of auxin distribution via modulation of auxin transport. A working model is proposed to explain how melatonin and auxin act together to promote lateral root development. The present study deepens our understanding of the relationship between melatonin and auxin signaling in plant species.
Collapse
Affiliation(s)
- Shuxin Ren
- Agriculture Research Station, Virginia State University, Petersburg, Virginia, United States of America
- * E-mail:
| | - Laban Rutto
- Agriculture Research Station, Virginia State University, Petersburg, Virginia, United States of America
| | - Dennis Katuuramu
- Agriculture Research Station, Virginia State University, Petersburg, Virginia, United States of America
| |
Collapse
|
55
|
Li A, Chen G, Yu X, Zhu Z, Zhang L, Zhou S, Hu Z. The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. PLANT CELL REPORTS 2019; 38:951-963. [PMID: 31062133 DOI: 10.1007/s00299-019-02417-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Overexpression of SlMBP9 reduced auxin biosynthesis and transport, and negatively regulated lateral root formation and apical dominance. MADS-box transcription factors play a critical role in plant development. In this study, we describe SlMBP9, a novel MADS-box gene that is expressed in the roots of tomato plants. Tomato lines that over- or under-expressed SlMBP9 were generated using a transgenic approach. The number of lateral roots (LRs) were reduced in SlMBP9-overexpressing lines but slightly increased in SlMBP9-silenced lines. A physiological index revealed that the auxin content significantly decreased in the root maturation zone of the overexpression lines. In addition, gene expression analysis revealed that the expression of the polar auxin transporter genes PIN1 and ABCB19/MDR1 and genes involved in auxin biosynthesis was downregulated in the stems of overexpression lines, which is consistent with the reduced accumulation of auxin in the root maturation zone. Exogenous indole-3-acetic acid (auximone) rescued the lateral root phenotypes of the SlMBP9-overexpressing lines. Overexpression of SlMBP9 resulted in dwarf plants, enhanced lateral buds and reduced the gibberellin content in the stems. Together, these results suggest that SlMBP9 plays a negative role in the process of auxin biosynthesis and transport.
Collapse
Affiliation(s)
- Anzhou Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
56
|
Vilches Barro A, Stöckle D, Thellmann M, Ruiz-Duarte P, Bald L, Louveaux M, von Born P, Denninger P, Goh T, Fukaki H, Vermeer JEM, Maizel A. Cytoskeleton Dynamics Are Necessary for Early Events of Lateral Root Initiation in Arabidopsis. Curr Biol 2019; 29:2443-2454.e5. [PMID: 31327713 DOI: 10.1016/j.cub.2019.06.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/31/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022]
Abstract
How plant cells re-establish differential growth to initiate organs is poorly understood. Morphogenesis of lateral roots relies on the asymmetric cell division of initially symmetric founder cells. This division is preceded by the tightly controlled asymmetric radial expansion of these cells. The cellular mechanisms that license and ensure the coordination of these events are unknown. Here, we quantitatively analyze microtubule and F-actin dynamics during lateral root initiation. Using mutants and pharmacological and tissue-specific genetic perturbations, we show that dynamic reorganization of both microtubule and F-actin networks is necessary for the asymmetric expansion of the founder cells. This cytoskeleton remodeling intertwines with auxin signaling in the pericycle and endodermis in order for founder cells to acquire a basic polarity required for initiating lateral root development. Our results reveal the conservation of cell remodeling and polarization strategies between the Arabidopsis zygote and lateral root founder cells. We propose that coordinated, auxin-driven reorganization of the cytoskeleton licenses asymmetric cell growth and divisions during embryonic and post-embryonic organogenesis.
Collapse
Affiliation(s)
- Amaya Vilches Barro
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Dorothee Stöckle
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Martha Thellmann
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Paola Ruiz-Duarte
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Lotte Bald
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Marion Louveaux
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Patrick von Born
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Philipp Denninger
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Tatsuaki Goh
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan; Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Joop E M Vermeer
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland.
| | - Alexis Maizel
- Center for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
57
|
Wang L, Xu K, Li Y, Cai W, Zhao Y, Yu B, Zhu Y. Genome-Wide Identification of the Aux/IAA Family Genes (MdIAA) and Functional Analysis of MdIAA18 for Apple Tree Ideotype. Biochem Genet 2019; 57:709-733. [PMID: 30997626 DOI: 10.1007/s10528-019-09919-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
The Aux/IAA (auxin/indole-3-acetic acid) gene family is one of the early auxin-responsive gene families, which play a central role in auxin response. Few reports are involved in Aux/IAA genes in fruit trees, especially in apple (Malus × domestica Borkh.). A total of 33 MdIAA members were identified, of which 27 members contained four conserved domains, whereas the others lost one or two conserved domains. Several cis-elements in promoters of MdIAAs were predicted responsive to hormones and abiotic stress. Tissue-specific expression patterns of MdIAAs in different apple tree ideotypes were investigated by quantitative real-time PCR. A large number of MdIAAs were highly expressed in leaf buds and reproductive organs, and MdIAAs clustered in same group showed similar expression profiles. Overexpression of MdIAA18 in Arabidopsis resulted in compact phenotype. These results indicated that MdIAA genes may be involved in vegetative and reproductive growth of apple. Taken together, the results provide useful clues to reveal the function of MdIAAs in apple and control apple tree architecture by manipulation of MdIAAs.
Collapse
Affiliation(s)
- Limin Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Ke Xu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongzhou Li
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Wenbo Cai
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yanan Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Boyang Yu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yuandi Zhu
- Department of Pomology, College of Horticulture, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
58
|
Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proc Natl Acad Sci U S A 2019; 116:6463-6472. [PMID: 30850516 PMCID: PMC6442611 DOI: 10.1073/pnas.1809037116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCFTIR1/AFB functionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1). Here, we report a chemical biology screen that identifies small molecules requiring AXR1 to modulate plant development. We selected four molecules of interest, RubNeddin 1 to 4 (RN1 to -4), among which RN3 and RN4 trigger selective auxin responses at transcriptional, biochemical, and morphological levels. This selective activity is explained by their ability to consistently promote the interaction between TIR1 and a specific subset of AUX/IAA proteins, stimulating the degradation of particular AUX/IAA combinations. Finally, we performed a genetic screen using RN4, the RN with the greatest potential for dissecting auxin perception, which revealed that the chromatin remodeling ATPase BRAHMA is implicated in auxin-mediated apical hook development. These results demonstrate the power of selective auxin agonists to dissect auxin perception for plant developmental functions, as well as offering opportunities to discover new molecular players involved in auxin responses.
Collapse
|
59
|
Challa KR, Rath M, Nath U. The CIN-TCP transcription factors promote commitment to differentiation in Arabidopsis leaf pavement cells via both auxin-dependent and independent pathways. PLoS Genet 2019; 15:e1007988. [PMID: 30742619 PMCID: PMC6386416 DOI: 10.1371/journal.pgen.1007988] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/22/2019] [Accepted: 01/26/2019] [Indexed: 11/18/2022] Open
Abstract
Cells in organ primordia undergo active proliferation at an early stage to generate sufficient number, before exiting proliferation and entering differentiation. However, how the actively proliferating cells are developmentally reprogrammed to acquire differentiation potential during organ maturation is unclear. Here, we induced a microRNA-resistant form of TCP4 at various developmental stages of Arabidopsis leaf primordium that lacked the activity of TCP4 and its homologues and followed its effect on growth kinematics. By combining this with spatio-temporal gene expression analysis, we show that TCP4 commits leaf cells within the transition zone to exit proliferation and enter differentiation. A 24-hour pulse of TCP4 activity was sufficient to impart irreversible differentiation competence to the actively dividing cells. A combination of biochemical and genetic analyses revealed that TCP4 imparts differentiation competence by promoting auxin response as well as by directly activating HAT2, a HD-ZIP II transcription factor-encoding gene that also acts downstream to auxin response. Our study offers a molecular link between the two major organ maturation factors, CIN-like TCPs and HD-ZIP II transcription factors and explains how TCP activity restricts the cell number and final size in a leaf. Cells in a young organ primordium proliferate to generate sufficient number, before they exit division cycle and enter differentiation programme at later stages. While factors that drive cell cycle progression have been identified and studied in detail in diverse eukaryotic species, developmental factors that promote exit from division and entry into differentiation are less known, especially in the plant kingdom. Here, we show that the class II TCP proteins, notably TCP4, irreversibly reprogram the mitotic cells to exit division and acquire differentiation competence by auxin response as well as direct activation of HAT2 transcription. Our work offers a molecular link between class II TCP and HD-ZIP II genes during the cell differentiation and leaf maturation.
Collapse
Affiliation(s)
- Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
60
|
Kumar Meena M, Kumar Vishwakarma N, Tripathi V, Chattopadhyay D. CBL-interacting protein kinase 25 contributes to root meristem development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:133-147. [PMID: 30239807 PMCID: PMC6305191 DOI: 10.1093/jxb/ery334] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/14/2018] [Indexed: 05/08/2023]
Abstract
Co-ordination of auxin and cytokinin activities determines root meristem size during post-embryonic development. Calcineurin B-like proteins (CBLs) and their interacting protein kinases (CIPKs) constitute signaling modules that relay calcium signals. Here we report that CIPK25 is involved in regulating the root meristem size. Arabidopsis plants lacking CIPK25 expression displayed a short root phenotype and a slower root growth rate with fewer meristem cells. This phenotype was rescued by restoration of CIPK25 expression. CIPK25 interacted with CBL4 and -5, and displayed strong gene expression in the flower and root, except in the cell proliferation domain in the root apical meristem. Its expression in the root was positively and negatively regulated by auxin and cytokinin, respectively. The cipk25 T-DNA insertion line was compromised in auxin transport and auxin-responsive promoter activity. The cipk25 mutant line showed altered expression of auxin efflux carriers (PIN1 and PIN2) and an Aux/IAA family gene SHY2. Decreased PIN1 and PIN2 expression in the cipk25 mutant line was completely restored when combined with a SHY2 loss-of-function mutation, resulting in recovery of root growth. SHY2 and PIN1 expression was partially regulated by cytokinin even in the absence of CIPK25, suggesting a CIPK25-independent cytokinin signaling pathway(s). Our results revealed that CIPK25 plays an important role in the co-ordination of auxin and cytokinin signaling in root meristem development.
Collapse
Affiliation(s)
- Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Vineeta Tripathi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- Correspondence:
| |
Collapse
|
61
|
Li W, Li H, Xu P, Xie Z, Ye Y, Li L, Li D, Zhang Y, Li L, Zhao Y. Identification of Auxin Activity Like 1, a chemical with weak functions in auxin signaling pathway. PLANT MOLECULAR BIOLOGY 2018; 98:275-287. [PMID: 30311174 DOI: 10.1007/s11103-018-0779-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/17/2018] [Indexed: 05/05/2023]
Abstract
A new synthetic auxin AAL1 with new structure was identified. Different from known auxins, it has weak effects. By AAL1, we found specific amino acids could restore the effects of auxin with similar structure. Auxin, one of the most important phytohormones, plays crucial roles in plant growth, development and environmental response. Although many critical regulators have been identified in auxin signaling pathway, some factors, especially those with weak fine-tuning roles, are still yet to be discovered. Through chemical genetic screenings, we identified a small molecule, Auxin Activity Like 1 (AAL1), which can effectively inhibit dark-grown Arabidopsis thaliana seedlings. Genetic screening identified AAL1 resistant mutants are also hyposensitive to indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D). AAL1 resistant mutants such as shy2-3c and ecr1-2 are well characterized as mutants in auxin signaling pathway. Genetic studies showed that AAL1 functions through auxin receptor Transport Inhibitor Response1 (TIR1) and its functions depend on auxin influx and efflux carriers. Compared with known auxins, AAL1 exhibits relatively weak effects on plant growth, with 20 µM and 50 µM IC50 (half growth inhibition chemical concentration) in root and hypocotyl growth respectively. Interestingly, we found the inhibitory effects of AAL1 and IAA could be partially restored by tyrosine and tryptophan respectively, suggesting some amino acids can also affect auxin signaling pathway in a moderate manner. Taken together, our results demonstrate that AAL1 acts through auxin signaling pathway, and AAL1, as a weak auxin activity analog, provides us a tool to study weak genetic interactions in auxin pathway.
Collapse
Affiliation(s)
- Wenbo Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Haimin Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Peng Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yajin Ye
- University of Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lingting Li
- University of Chinese Academy of Sciences, Shanghai, 200032, China
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Deqiang Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Zhao
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 68 Wenchang Road, Yunnan, 650000, China.
| |
Collapse
|
62
|
Ristova D, Giovannetti M, Metesch K, Busch W. Natural genetic variation shapes root system responses to phytohormones in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:468-481. [PMID: 30030851 PMCID: PMC6220887 DOI: 10.1111/tpj.14034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 05/21/2023]
Abstract
Plants adjust their architecture by modulating organ growth. This ability is largely dependent on phytohormones. While responses to phytohormones have been studied extensively, it remains unclear to which extent and how these responses are modulated in non-reference strains. Here, we assess variation of root traits upon treatment with auxin, cytokinin and abscisic acid (ABA) in 192 Arabidopsis accessions. We identify common response patterns, uncover the extent of their modulation by specific genotypes, and find that the Col-0 reference accession is not a good representative of the species in this regard. We conduct genome-wide association studies and identify 114 significant associations, most of them relating to ABA treatment. The numerous ABA candidate genes are not enriched for known ABA-associated genes, indicating that we largely uncovered unknown players. Overall, our study provides a comprehensive view of the diversity of hormone responses in the Arabidopsis thaliana species, and shows that variation of genes that are yet mostly not associated with such a role to determine natural variation of the response to phytohormones.
Collapse
Affiliation(s)
- Daniela Ristova
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
| | - Marco Giovannetti
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
| | - Kristina Metesch
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr. Bohr‐Gasse 3Vienna1030Austria
- Salk Institute for Biological StudiesPlant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory10010 N Torrey Pines RdLa JollaCA92037USA
| |
Collapse
|
63
|
Liu K, Li Y, Chen X, Li L, Liu K, Zhao H, Wang Y, Han S. ERF72 interacts with ARF6 and BZR1 to regulate hypocotyl elongation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3933-3947. [PMID: 29897568 PMCID: PMC6054149 DOI: 10.1093/jxb/ery220] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/18/2018] [Indexed: 05/21/2023]
Abstract
The phytohormones brassinosteroid (BR), auxin, and gibberellin (GA) regulate photomorphogenesis-related hypocotyl elongation in Arabidopsis via the co-operative interaction of BZR-ARF-PIF/DELLA (BAP/D) transcription factors/regulators. In addition, ethylene activates the PIF3 or ERF1 pathway through EIN3/EIL1 to balance hypocotyl elongation in Arabidopsis seedlings. However, the mechanism by which ethylene is co-ordinated with other phytohormones to produce light-regulated hypocotyl growth remains elusive. In this study, we found that hypocotyl cell elongation is regulated by a network involving ethylene, auxin, and BR signalling, which is mediated by interactions among ERF72, ARF6, and BZR1. ERF72 interacted directly with ARF6 and BZR1 in vitro and in vivo, and it antagonised regulation by ARF6 and BZR1 of the transcription of BEE3 and XTH7. In addition, light modulated the subcellular localisation of ERF72 and transcription of ERF72 through the EIN2-EIN3/EIL1 pathway, facilitating the function of ERF72 in photomorphogenesis. The expression of BEE3 and XTH7 was also regulated by the EIN2-EIN3/EIL1 pathway. Our findings indicate that a revised BZR-ARF-PIF/DELLA-ERF (BAP/DE) module integrates light and hormone signals to regulate hypocotyl elongation in Arabidopsis.
Collapse
Affiliation(s)
- Kun Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yihao Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xuena Chen
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lijuan Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kai Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Correspondence: or
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- Correspondence: or
| |
Collapse
|
64
|
Liu M, Chen Y, Chen Y, Shin JH, Mila I, Audran C, Zouine M, Pirrello J, Bouzayen M. The tomato Ethylene Response Factor Sl-ERF.B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27. THE NEW PHYTOLOGIST 2018; 219:631-640. [PMID: 29701899 DOI: 10.1111/nph.15165] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 05/02/2023]
Abstract
Plant growth and development is coordinated by complex networks of interacting hormones, and cross-talk between ethylene and auxin signaling is essential for a wide range of plant developmental processes. Nevertheless, the molecular links underlying the interaction between the two hormones remain poorly understood. In order to decipher the cross-talk between the Ethylene Response Factor Sl-ERF.B3 and Sl-IAA27, mediating ethylene and auxin signaling, respectively, we combined reverse genetic approaches, physiological methods, transactivation experiments and electrophoretic mobility shift assays. Sl-ERF.B3 is responsive to both ethylene and auxin and ectopic expression of its dominant repressor version (ERF.B3-SRDX) results in impaired sensitivity to auxin with phenotypes recalling those previously reported for Sl-IAA27 downregulated tomato lines. The expression of Sl-IAA27 is dramatically reduced in the ERF.B3-SRDX lines and Sl-ERF.B3 is shown to regulate the expression of Sl-IAA27 via direct binding to its promoter. The data support a model in which the ethylene-responsive Sl-ERF.B3 integrates ethylene and auxin signaling via regulation of the expression of the auxin signaling component Sl-IAA27. The study uncovers a molecular mechanism that links ethylene and auxin signaling in tomato.
Collapse
Affiliation(s)
- Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ya Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jun-Hye Shin
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| | - Isabelle Mila
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| | - Corinne Audran
- LIPM, INRA, CNRS, Université de Toulouse, Castanet-Tolosan, CS, 31326, France
| | - Mohamed Zouine
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| | - Julien Pirrello
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| | - Mondher Bouzayen
- INP-ENSA Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Université de Toulouse, Avenue de l'Agrobiopole, Castanet-Tolosan, CS, 32607, F-31326, France
- UMR990 Génomique et Biotechnologie des Fruits, INRA, 24 Chemin de Borde Rouge, Castanet-Tolosan, CS, 52627, F-31326, France
| |
Collapse
|
65
|
Han W, Han D, He Z, Hu H, Wu Q, Zhang J, Jiang J, Qin G, Cui Y, Lai J, Yang C. The SWI/SNF subunit SWI3B regulates IAMT1 expression via chromatin remodeling in Arabidopsis leaf development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:127-132. [PMID: 29650150 DOI: 10.1016/j.plantsci.2018.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 05/26/2023]
Abstract
The SWI/SNF complex is crucial to chromatin remodeling in various biological processes in different species, but the distinct functions of its components in plant development remain unclear. Here we uncovered the role of SWI3B, a subunit of the Arabidopsis thaliana SWI/SNF complex, via RNA interference. Knockdown of SWI3B resulted in an upward-curling leaf phenotype. Further investigation showed that the RNA level of IAA carboxyl methyltransferase 1 (IAMT1), encoding an enzyme involved in auxin metabolism, was dramatically elevated in the knockdown (SWI3B-RNAi) plants. In addition, activation of IAMT1 produced a leaf-curling phenotype similar to that of the SWI3B-RNAi lines. Database analysis suggested that the last intron of IAMT contains a site of polymerase V (Pol V) stabilized nucleosome, which may be associated with SWI3B. Data from a micrococcal nuclease (MNase) digestion assay showed that nucleosome occupancy around this site was downregulated in the leaves of SWI3B-RNAi plants. In addition, knockdown of IAMT1 in the SWI3B-RNAi background repressed the abnormal leaf development. Thus, SWI3B-mediated chromatin remodeling is critical in regulating the expression of IAMT1 in leaf development.
Collapse
Affiliation(s)
- Wenxing Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Zhipeng He
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Huan Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Juanjuan Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuhai Cui
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, Western University, London, Ontario, Canada
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
66
|
Feng X, Xue-Mei Y, Yang Z, Fu-Hua F. Transcriptome Analysis of Pinus Massoniana Lamb. Microstrobili During Sexual Reversal. Open Life Sci 2018; 13:97-106. [PMID: 33817074 PMCID: PMC7874727 DOI: 10.1515/biol-2018-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/08/2018] [Indexed: 11/15/2022] Open
Abstract
The normal megastrobilli and microstrobilli before and after the sexual reversal in Pinus massoniana Lamb. were studied and classified using a transcriptomic approach. In the analysis, a total of 190,023 unigenes were obtained with an average length of 595 bp. The annotated unigenes were divided into 56 functional groups and 130 metabolic pathways involved in the physiological and biochemical processes related to ribosome biogenesis, carbon metabolism, and amino acid biosynthesis. Analysis revealed 4,758 differentially expressed genes (DEGs) between the mega- and microstrobili from the polycone twig. The DEGs between the mega- and microstrobili from the normal twig were 5,550. In the polycone twig, 1,188 DEGs were identified between the microstrobili and the sexually reversed megastrobili. Concerning plant hormone signal transduction pathways, the DEGs from both the normal and polycone twigs displayed distinct male or female associated expression patterns. There were 36 common hormone-related DEGs from the two types of twigs of P. massoniana. Interestingly, expression of these DEGs was up-regulated in the bisexual strobili, which underwent the sexual reversal. A portion of MADS-box genes in the bisexual strobili were up-regulated relative to expression in microstrobili.
Collapse
Affiliation(s)
- Xiao Feng
- Foresty college of Guizhou University, Institute for Forest Resources & Environment of Guizhou, Guiyang, 550225, China
| | - Yang Xue-Mei
- Foresty college of Guizhou University, Institute for Forest Resources & Environment of Guizhou, Guiyang, 550225, China
| | - Zhao Yang
- Foresty college of Guizhou University, Institute for Forest Resources & Environment of Guizhou, Guiyang, 550225, China
| | - Fan Fu-Hua
- Foresty college of Guizhou University, Institute for Forest Resources & Environment of Guizhou, Guiyang, 550225, China
| |
Collapse
|
67
|
Cross-resistance to dicamba, 2,4-D, and fluroxypyr in Kochia scoparia is endowed by a mutation in an AUX/IAA gene. Proc Natl Acad Sci U S A 2018. [PMID: 29531066 DOI: 10.1073/pnas.1712372115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The understanding and mitigation of the appearance of herbicide-resistant weeds have come to the forefront of study in the past decade, as the number of weed species that are resistant to one or more herbicide modes of action is on the increase. Historically, weed resistance to auxin herbicides has been rare, but examples, such as Kochia scoparia L. Schrad (kochia), have appeared, posing a challenge to conventional agricultural practices. Reports of dicamba-resistant kochia populations began in the early 1990s in areas where auxin herbicides were heavily utilized for weed control in corn and wheat cropping systems, and some biotypes are resistant to other auxin herbicides as well. We have further characterized the auxin responses of one previously reported dicamba-resistant biotype isolated from western Nebraska and found that it is additionally cross-resistant to other auxin herbicides, including 2,4-dichlorophenoxyacetic acid (2,4-D) and fluroxypyr. We have utilized transcriptome sequencing and comparison to identify a 2-nt base change in this biotype, which results in a glycine to asparagine amino acid change within a highly conserved region of an AUX/indole-3-acetic acid (IAA) protein, KsIAA16. Through yeast two-hybrid analysis, characterization of F2 segregation, and heterologous expression and characterization of the gene in Arabidopsis thaliana, we show that that the single dominant KsIAA16R resistance allele is the causal basis for dicamba resistance in this population. Furthermore, we report the development of a molecular marker to identify this allele in populations and facilitate inheritance studies. We also report that the resistance allele confers a fitness penalty in greenhouse studies.
Collapse
|
68
|
Luo J, Zhou JJ, Zhang JZ. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function. Int J Mol Sci 2018; 19:ijms19010259. [PMID: 29337875 PMCID: PMC5796205 DOI: 10.3390/ijms19010259] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/31/2022] Open
Abstract
Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response factor (ARF) family, small auxin upregulated RNA (SAUR), and the auxin-responsive Gretchen Hagen3 (GH3) family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein-protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.
Collapse
Affiliation(s)
- Jie Luo
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Jing Zhou
- College of Horticulture and Forestry Science, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
69
|
Xiao W, Yang Y, Yu J. ZmNST3 and ZmNST4 are master switches for secondary wall deposition in maize (Zea mays L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 266:83-94. [PMID: 29241570 DOI: 10.1016/j.plantsci.2017.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/22/2017] [Indexed: 05/18/2023]
Abstract
Secondary walls are the most abundant biomass produced by plants, and they consist mainly of lignin, cellulose and hemicellulose. Understanding how secondary wall biosynthesis is regulated could potentially provide genetic tools for engineering biomass components, especially in maize and Sorghum bicolor. Although many works have focused on secondary wall biosynthesis in dicotyledons, little has been reported for these monocotyledons. In this study, we cloned two NAC transcriptional factor genes, ZmNST3 and ZmNST4, and analyzed their functions in maize secondary wall formation process. ZmNST3 and ZmNST4 were expressed specifically in secondary wall-forming cells, expression of ZmNST3/4 can restore the pendent phenotype of Arabidopsis nst1nst3 double mutant. ZmNST3/4-overexpressing Arabidopsis and maize displayed a thickened secondary wall in the stem, and knockdown maize showed defective secondary wall deposition. ZmNST3/4 could regulate the expression of ZmMYB109/128/149. Our results revealed that ZmNST3/4 are master switches of the maize secondary wall biosynthesis process and provides new evidence that the secondary wall regulatory pathway is conserved in different plant species.
Collapse
Affiliation(s)
- Wenhan Xiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Yue Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
70
|
Li L, Cheng Z, Ma Y, Bai Q, Li X, Cao Z, Wu Z, Gao J. The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:72-85. [PMID: 28499069 PMCID: PMC5785349 DOI: 10.1111/pbi.12750] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 05/13/2023]
Abstract
Moso bamboo is a large, woody bamboo with the highest ecological, economic and cultural value of all the bamboo types and accounts for up to 70% of the total area of bamboo grown. However, the spatiotemporal variation role of moso bamboo shoot during growth period is still unclear. We found that the bamboo shoot growth can be divided into three distinct periods, including winter growth, early growth and late growth based on gene expression and anatomy. In the early growth period, lateral buds germinated from the top of the bamboo joint in the shoot tip. Intercalary meristems grew vigorously during the winter growth period and early growth period, but in the late growth period, mitosis in the intercalary meristems decreased. The expression of cell cycle-associated genes and the quantity of differentially expressed genes were higher in early growth than those in late growth, appearing to be influenced by hormonal concentrations. Gene expression analysis indicates that hormone signalling genes play key roles in shoot growth, while auxin signalling genes play a central role. In situ hybridization analyses illustrate how auxin signalling genes regulate apical dominance, meristem maintenance and lateral bud development. Our study provides a vivid picture of the dynamic changes in anatomy and gene expression during shoot growth in moso bamboo, and how hormone signalling-associated genes participate in moso bamboo shoot growth.
Collapse
Affiliation(s)
- Long Li
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Zhanchao Cheng
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Yanjun Ma
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Qingsong Bai
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Xiangyu Li
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| | - Zhihua Cao
- Anhui Academy of ForestryHefeiAnhui ProvinceChina
| | - Zhongneng Wu
- Anhui Academy of ForestryHefeiAnhui ProvinceChina
| | - Jian Gao
- International Center for Bamboo and RattanKey Laboratory of Bamboo and Rattan Science and TechnologyState Forestry AdministrationBeijingChina
| |
Collapse
|
71
|
Cui X, Liang Z, Shen L, Zhang Q, Bao S, Geng Y, Zhang B, Leo V, Vardy LA, Lu T, Gu X, Yu H. 5-Methylcytosine RNA Methylation in Arabidopsis Thaliana. MOLECULAR PLANT 2017; 10:1387-1399. [PMID: 28965832 DOI: 10.1016/j.molp.2017.09.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 09/23/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
5-Methylcytosine (m5C) is a well-characterized DNA modification, and is also predominantly reported in abundant non-coding RNAs in both prokaryotes and eukaryotes. However, the distribution and biological functions of m5C in plant mRNAs remain largely unknown. Here, we report transcriptome-wide profiling of RNA m5C in Arabidopsis thaliana by applying m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). LC-MS/MS and dot blot analyses reveal a dynamic pattern of m5C mRNA modification in various tissues and at different developmental stages. m5C-RIP-seq analysis identified 6045 m5C peaks in 4465 expressed genes in young seedlings. We found that m5C is enriched in coding sequences with two peaks located immediately after start codons and before stop codons, and is associated with mRNAs with low translation activity. We further demonstrated that an RNA (cytosine-5)-methyltransferase, tRNA-specific methyltransferase 4B (TRM4B), exhibits m5C RNA methyltransferase activity. Mutations in TRM4B display defects in root development and decreased m5C peaks. TRM4B affects the transcript levels of the genes involved in root development, which is positively correlated with their mRNA stability and m5C levels. Our results suggest that m5C in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development.
Collapse
Affiliation(s)
- Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhe Liang
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore, Singapore
| | - Lisha Shen
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore, Singapore
| | - Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shengjie Bao
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore, Singapore
| | - Yuke Geng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Zhang
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore, Singapore
| | - Vonny Leo
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore, Singapore
| | - Leah A Vardy
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore, Singapore
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore, Singapore.
| |
Collapse
|
72
|
Xu D, Miao J, Yumoto E, Yokota T, Asahina M, Watahiki M. YUCCA9-Mediated Auxin Biosynthesis and Polar Auxin Transport Synergistically Regulate Regeneration of Root Systems Following Root Cutting. PLANT & CELL PHYSIOLOGY 2017; 58:1710-1723. [PMID: 29016906 PMCID: PMC5921505 DOI: 10.1093/pcp/pcx107] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 05/21/2023]
Abstract
Recovery of the root system following physical damage is an essential issue for plant survival. An injured root system is able to regenerate by increases in lateral root (LR) number and acceleration of root growth. The horticultural technique of root pruning (root cutting) is an application of this response and is a common garden technique for controlling plant growth. Although root pruning is widely used, the molecular mechanisms underlying the subsequent changes in the root system are poorly understood. In this study, root pruning was employed as a model system to study the molecular mechanisms of root system regeneration. Notably, LR defects in wild-type plants treated with inhibitors of polar auxin transport (PAT) or in the auxin signaling mutant auxin/indole-3-acetic acid19/massugu2 were recovered by root pruning. Induction of IAA19 following root pruning indicates an enhancement of auxin signaling by root pruning. Endogenous levels of IAA increased after root pruning, and YUCCA9 was identified as the primary gene responsible. PAT-related genes were induced after root pruning, and the YUCCA inhibitor yucasin suppressed root regeneration in PAT-related mutants. Therefore, we demonstrate the crucial role of YUCCA9, along with other redundant YUCCA family genes, in the enhancement of auxin biosynthesis following root pruning. This further enhances auxin transport and activates downstream auxin signaling genes, and thus increases LR number.
Collapse
Affiliation(s)
- Dongyang Xu
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Jiahang Miao
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Emi Yumoto
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551 Japan
| | - Takao Yokota
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551 Japan
| | - Masashi Asahina
- Department of Biosciences, Teikyo University, Utsunomiya, 320-8551 Japan
| | - Masaaki Watahiki
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810 Japan
- Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
- Corresponding author: E-mail, ; Fax, +81-11-706-4473
| |
Collapse
|
73
|
Li X, Chen L, Forde BG, Davies WJ. The Biphasic Root Growth Response to Abscisic Acid in Arabidopsis Involves Interaction with Ethylene and Auxin Signalling Pathways. FRONTIERS IN PLANT SCIENCE 2017; 8:1493. [PMID: 28890725 PMCID: PMC5574904 DOI: 10.3389/fpls.2017.01493] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/11/2017] [Indexed: 05/18/2023]
Abstract
Exogenous abscisic acid (ABA) is known to either stimulate or inhibit root growth, depending on its concentration. In this study, the roles of ethylene and auxin in this biphasic effect of ABA on root elongation were investigated using chemical inhibitors and mutants. Inhibitors of ethylene perception and biosynthesis and an auxin influx inhibitor were all found to block the inhibitory effect of high ABA concentrations, but not the stimulatory effect of low ABA concentrations. In addition, three ethylene-insensitive mutants (etr1-1, ein2-1, and ein3-1), two auxin influx mutants (aux1-7, aux1-T) and an auxin-insensitive mutant (iaa7/axr2-1) were all insensitive to the inhibitory effect of high ABA concentrations. In the case of the stimulatory effect of low ABA concentrations, it was blocked by two different auxin efflux inhibitors and was less pronounced in an auxin efflux mutant (pin2/eir1-1) and in the iaa7/axr2-1 auxin-insensitive mutant. Thus it appears that the stimulatory effect seen at low ABA concentrations is via an ethylene-independent pathway requiring auxin signalling and auxin efflux through PIN2/EIR1, while the inhibitory effect at high ABA concentrations is via an ethylene-dependent pathway requiring auxin signalling and auxin influx through AUX1.
Collapse
Affiliation(s)
| | - Lin Chen
- *Correspondence: Lin Chen, ; Xiaoqing Li,
| | | | | |
Collapse
|
74
|
Singh M, Gupta A, Laxmi A. Striking the Right Chord: Signaling Enigma during Root Gravitropism. FRONTIERS IN PLANT SCIENCE 2017; 8:1304. [PMID: 28798760 PMCID: PMC5529344 DOI: 10.3389/fpls.2017.01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/11/2017] [Indexed: 05/29/2023]
Abstract
Plants being sessile can often be judged as passive acceptors of their environment. However, plants are actually even more active in responding to the factors from their surroundings. Plants do not have eyes, ears or vestibular system like animals, still they "know" which way is up and which way is down? This is facilitated by receptor molecules within plant which perceive changes in internal and external conditions such as light, touch, obstacles; and initiate signaling pathways that enable the plant to react. Plant responses that involve a definite and specific movement are called "tropic" responses. Perhaps the best known and studied tropisms are phototropism, i.e., response to light, and geotropism, i.e., response to gravity. A robust root system is vital for plant growth as it can provide physical anchorage to soil as well as absorb water, nutrients and essential minerals from soil efficiently. Gravitropic responses of both primary as well as lateral root thus become critical for plant growth and development. The molecular mechanisms of root gravitropism has been delved intensively, however, the mechanism behind how the potential energy of gravity stimulus converts into a biochemical signal in vascular plants is still unknown, due to which gravity sensing in plants still remains one of the most fascinating questions in molecular biology. Communications within plants occur through phytohormones and other chemical substances produced in plants which have a developmental or physiological effect on growth. Here, we review current knowledge of various intrinsic signaling mechanisms that modulate root gravitropism in order to point out the questions and emerging developments in plant directional growth responses. We are also discussing the roles of sugar signals and their interaction with phytohormone machinery, specifically in context of root directional responses.
Collapse
Affiliation(s)
- Manjul Singh
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Aditi Gupta
- National Institute of Plant Genome ResearchNew Delhi, India
- Interdisciplinary Centre for Plant Genomics, University of Delhi South CampusNew Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
75
|
Cui P, Liu H, Ruan S, Ali B, Gill RA, Ma H, Zheng Z, Zhou W. A zinc finger protein, interacted with cyclophilin, affects root development via IAA pathway in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:496-505. [PMID: 28267270 DOI: 10.1111/jipb.12531] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/28/2017] [Indexed: 05/23/2023]
Abstract
The plant hormone auxin plays a crucial role in lateral root development. To better understand the molecular mechanisms underlying lateral root formation, an auxin-responsive gene OsCYP2 (Os02g0121300) was characterized from rice. Compared to the wild type, OsCYP2-RNAi (RNA interference) lines exhibited distinctive defects in lateral root development. Yeast two-hybrid and glutathione S-transferase pull-down results confirmed that OsCYP2 interacted with a C2HC-type zinc finger protein (OsZFP, Os01g0252900) which is located in the rice nucleus. T2 OsZFP-RNAi lines had significantly fewer lateral roots than did wild-type plants, which suggests a role for OsCYP2 and OsZFP in regulating lateral root development. Quantitative real-time polymerase chain reaction showed that the expression of certain Aux/IAA (auxin/indole-3-acetic acid) genes was altered in OsCYP2- and OsZFP-RNAi lines in response to IAA. These findings imply that OsCYP2 and OsZFP participate in IAA signal pathways controlling lateral root development. More importantly, OsIAA11 showed functional redundancy not only in OsCYP2-RNAi lines but also in OsZFP-RNAi lines, which provides important clues for the elucidation of mechanisms controlling lateral root development in response to auxin.
Collapse
Affiliation(s)
- Peng Cui
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
- College of Agriculture and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Hongbo Liu
- College of Agriculture and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Songlin Ruan
- Plant Molecular Biology and Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Basharat Ali
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Rafaqat Ali Gill
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Huasheng Ma
- Plant Molecular Biology and Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Zhifu Zheng
- College of Agriculture and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Weijun Zhou
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
76
|
Xu Z, Wang M, Shi D, Zhou G, Niu T, Hahn MG, O'Neill MA, Kong Y. DGE-seq analysis of MUR3-related Arabidopsis mutants provides insight into how dysfunctional xyloglucan affects cell elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:156-169. [PMID: 28330559 DOI: 10.1016/j.plantsci.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/14/2016] [Accepted: 01/14/2017] [Indexed: 06/06/2023]
Abstract
Our previous study of the Arabidopsis mur3-3 mutant and mutant plants in which the mur3-3 phenotypes are suppressed (xxt2mur3-3, xxt5mur3-3, xxt1xxt2mur3-3 and 35Spro:XLT2:mur3-3) showed that hypocotyl cell elongation is decreased in plants that synthesize galactose-deficient xyloglucan. To obtain genome-wide insight into the transcriptome changes and regulatory networks that may be involved in this decreased elongation, we performed digital gene expression analyses of the etiolated hypocotyls of wild type (WT), mur3-3 and the four suppressor lines. Numerous differentially expressed genes (DEGs) were detected in comparisons between WT and mur3-3 (1423), xxt2mur3-3 and mur3-3 (675), xxt5mur3-3 and mur3-3 (1272), xxt1xxt2mur3-3 and mur3-3 (1197) and 35Spro:XLT2:mur3-3 vs mur3-3 (121). 550 overlapped DEGs were detected among WT vs mur3-3, xxt2mur3-3 vs mur3-3, xxt5mur3-3 vs mur3-3, and xxt1xxt2mur3-3 vs mur3-3 comparisons. These DEGs include 46 cell wall-related genes, 24 transcription factors, 6 hormone-related genes, 9 protein kinase genes and 9 aquaporin genes. The expression of all of the 550 overlapped genes is restored to near wild-type levels in the four mur3-3 suppressor lines. qRT-PCR of fifteen of these 550 genes showed that their expression levels are consistent with the digital gene expression data. Overexpression of some of these genes (XTH4, XTH30, PME3, EXPA11, MYB88, ROT3, AT5G37790, WAG2 and TIP2;3) that are down-regulated in mur3-3 partially rescued the short hypocotyl phenotype but not the aerial phenotype of mur3-3, indicating that different mechanisms exist between hypocotyl cell elongation and leaf cell elongation.
Collapse
Affiliation(s)
- Zongchang Xu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, PR China.
| | - Meng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, PR China.
| | - Dachuan Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| | - Gongke Zhou
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Tiantian Niu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA; Department of Plant Biology, University of Georgia, Athens, GA 30602-4712 USA.
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA.
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| |
Collapse
|
77
|
Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. PLANTA 2017; 245:467-489. [PMID: 28188422 DOI: 10.1007/s00425-017-2651-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/08/2017] [Indexed: 05/06/2023]
Abstract
This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
78
|
Ren Z, Liu R, Gu W, Dong X. The Solanum lycopersicum auxin response factor SlARF2 participates in regulating lateral root formation and flower organ senescence. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:103-111. [PMID: 28167023 DOI: 10.1016/j.plantsci.2016.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 05/04/2023]
Abstract
ARF2 as apleiotropic developmental regulator has been reported in Arabidopsis thaliana and tomato (Solanum lycopersicum). The present study showed SlARF2 transcripts in all tomato plant tissues but with higher accumulation in flowers. During bud-anthesis stages, SlARF2 transcripts showed a dynamic expression pattern in sepal, stamen, ovary and petal. Hormone treatment analysis suggested that SlARF2 transcript accumulation was positively regulated by auxin and gibberellic acid, and negatively regulated by ethylene in tomato seedlings. Phenotypes and molecular analyses of SlARF2-upregulated transgenic tomato indicated that SlARF2 regulated tomato lateral root formation and flower organ senescence may be partially mediated by regulating the gene expression of auxin and ethylene response factors. The data enlarges the functional characterization of SlARF2 in tomato, and broadens our understanding of auxin signaling in regulating plant growth and development.
Collapse
Affiliation(s)
- Zhenxin Ren
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, China.
| | - Ruiyuan Liu
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, China
| | - Wenting Gu
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, China
| | - Xicun Dong
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, China.
| |
Collapse
|
79
|
Liang C, Li A, Yu H, Li W, Liang C, Guo S, Zhang R, Chu C. Melatonin Regulates Root Architecture by Modulating Auxin Response in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:134. [PMID: 28223997 PMCID: PMC5293752 DOI: 10.3389/fpls.2017.00134] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/23/2017] [Indexed: 05/17/2023]
Abstract
It has been suggested that melatonin acts as an important regulator in controlling root growth and development, but the underlying molecular mechanism driving this relationship remains undetermined. In this study, we demonstrated that melatonin acts as a potent molecule to govern root architecture in rice. Treatments with melatonin significantly inhibited embryonic root growth, and promoted lateral root formation and development. Genome-wide expression profiling by RNA-sequencing revealed auxin-related genes were significantly activated under melatonin treatment. Moreover, several transcription factors and candidate cis-regulatory elements involved in root growth and developments, as well as auxin-related processes, were over-represented in both co-up and -down differentially expressed genes, suggesting that melatonin-mediated root growth occurs in an auxin signal pathway-dependent manner. Further, gravitropic response analysis determined that melatonin affects auxin-regulated processes in rice root. These data show that melatonin shapes root architecture by directly or indirectly activating the auxin signaling pathway.
Collapse
Affiliation(s)
- Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Aifu Li
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Hua Yu
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Wenzhen Li
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chengzhi Liang
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Rui Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Chengcai Chu
- National Center for Plant Gene Research (Beijing), State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
80
|
Shani E, Salehin M, Zhang Y, Sanchez SE, Doherty C, Wang R, Mangado CC, Song L, Tal I, Pisanty O, Ecker JR, Kay SA, Pruneda-Paz J, Estelle M. Plant Stress Tolerance Requires Auxin-Sensitive Aux/IAA Transcriptional Repressors. Curr Biol 2017; 27:437-444. [PMID: 28111153 DOI: 10.1016/j.cub.2016.12.016] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/02/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
The Aux/IAA proteins are auxin-sensitive repressors that mediate diverse physiological and developmental processes in plants [1, 2]. There are 29 Aux/IAA genes in Arabidopsis that exhibit unique but partially overlapping patterns of expression [3]. Although some studies have suggested that individual Aux/IAA genes have specialized function, genetic analyses of the family have been limited by the scarcity of loss-of-function phenotypes [4]. Furthermore, with a few exceptions, our knowledge of the factors that regulate Aux/IAA expression is limited [1, 5]. We hypothesize that transcriptional control of Aux/IAA genes plays a central role in the establishment of the auxin-signaling pathways that regulate organogenesis, growth, and environmental response. Here, we describe a screen for transcription factors (TFs) that regulate the Aux/IAA genes. We identify TFs from 38 families, including 26 members of the DREB/CBF family. Several DREB/CBF TFs directly promote transcription of the IAA5 and IAA19 genes in response to abiotic stress. Recessive mutations in these IAA genes result in decreased tolerance to stress conditions, demonstrating a role for auxin in abiotic stress. Our results demonstrate that stress pathways interact with the auxin gene regulatory network (GRN) through transcription of the Aux/IAA genes. We propose that the Aux/IAA genes function as hubs that integrate genetic and environmental information to achieve the appropriate developmental or physiological outcome.
Collapse
Affiliation(s)
- Eilon Shani
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mohammad Salehin
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yuqin Zhang
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sabrina E Sanchez
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Colleen Doherty
- Department of Molecular and Structural Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Renhou Wang
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cristina Castillejo Mangado
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Liang Song
- Genome Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Iris Tal
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Odelia Pisanty
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Joseph R Ecker
- Genome Analysis Laboratory, Howard Hughes Medical Institute and The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Steve A Kay
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jose Pruneda-Paz
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
81
|
Merchante C, Stepanova AN. The Triple Response Assay and Its Use to Characterize Ethylene Mutants in Arabidopsis. Methods Mol Biol 2017; 1573:163-209. [PMID: 28293847 DOI: 10.1007/978-1-4939-6854-1_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exposure of plants to ethylene results in drastic morphological changes. Seedlings germinated in the dark in the presence of saturating concentrations of ethylene display a characteristic phenotype known as the triple response. This phenotype is robust and easy to score. In Arabidopsis the triple response is usually evaluated at 3 days post germination in seedlings grown in the dark in rich media supplemented with 10 μM of the ethylene precursor ACC in air or in unsupplemented media in the presence of 10 ppm ethylene. The triple response in Arabidopsis consists of shortening and thickening of hypocotyls and roots and exaggeration of the curvature of apical hooks. The search for Arabidopsis mutants that fail to show this phenotype in ethylene or, vice versa, display the triple response in the absence of exogenously supplied hormone has allowed the identification of the key components of the ethylene biosynthesis and signaling pathways. Herein, we describe a simple protocol for assaying the triple response in Arabidopsis. The method can also be employed in many other dicot species, with minor modifications to account for species-specific differences in germination. We also compiled a comprehensive table of ethylene-related mutants of Arabidopsis, including many lines with auxin-related defects, as wild-type levels of auxin biosynthesis, transport, signaling, and response are necessary for the normal response of plants to ethylene.
Collapse
Affiliation(s)
- Catharina Merchante
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterranea (IHSM)-UMA-CSIC, Universidad de Málaga, 29071, Málaga, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA. .,Genetics Graduate Program, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
82
|
Ristova D, Carré C, Pervent M, Medici A, Kim GJ, Scalia D, Ruffel S, Birnbaum KD, Lacombe B, Busch W, Coruzzi GM, Krouk G. Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root. Sci Signal 2016; 9:rs13. [PMID: 27811143 DOI: 10.1126/scisignal.aaf2768] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plants form the basis of the food webs that sustain animal life. Exogenous factors, such as nutrients and sunlight, and endogenous factors, such as hormones, cooperate to control both the growth and the development of plants. We assessed how Arabidopsis thaliana integrated nutrient and hormone signaling pathways to control root growth and development by investigating the effects of combinatorial treatment with the nutrients nitrate and ammonium; the hormones auxin, cytokinin, and abscisic acid; and all binary combinations of these factors. We monitored and integrated short-term genome-wide changes in gene expression over hours and long-term effects on root development and architecture over several days. Our analysis revealed trends in nutrient and hormonal signal crosstalk and feedback, including responses that exhibited logic gate behavior, which means that they were triggered only when specific combinations of signals were present. From the data, we developed a multivariate network model comprising the signaling molecules, the early gene expression modulation, and the subsequent changes in root phenotypes. This multivariate network model pinpoints several genes that play key roles in the control of root development and may help understand how eukaryotes manage multifactorial signaling inputs.
Collapse
Affiliation(s)
- Daniela Ristova
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA.,Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Clément Carré
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France.,Institut Montpelliérain Alexander Grothendieck, Place Eugene Bataillon, 34090 Montpellier, France
| | - Marjorie Pervent
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Anna Medici
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Grace Jaeyoon Kim
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Domenica Scalia
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sandrine Ruffel
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Benoît Lacombe
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France
| | - Wolfgang Busch
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, Dr. Bohr-Gasse 3, A-1030 Vienna, Austria
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Gabriel Krouk
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, UMR CNRS/INRA/SupAgro/UM, Institut de Biologie Intégrative des Plantes "Claude Grignon," Place Viala, 34060 Montpellier Cedex, France.
| |
Collapse
|
83
|
Orman-Ligeza B, Parizot B, de Rycke R, Fernandez A, Himschoot E, Van Breusegem F, Bennett MJ, Périlleux C, Beeckman T, Draye X. RBOH-mediated ROS production facilitates lateral root emergence in Arabidopsis. Development 2016; 143:3328-39. [PMID: 27402709 PMCID: PMC5047660 DOI: 10.1242/dev.136465] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
Abstract
Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation; however, their mode of action is poorly understood. Here, we report that Arabidopsis roots exposed to ROS show increased LR numbers due to the activation of LR pre-branch sites and LR primordia (LRP). Strikingly, ROS treatment can also restore LR formation in pCASP1:shy2-2 and aux1 lax3 mutant lines in which auxin-mediated cell wall accommodation and remodeling in cells overlying the sites of LR formation is disrupted. Specifically, ROS are deposited in the apoplast of these cells during LR emergence, following a spatiotemporal pattern that overlaps the combined expression domains of extracellular ROS donors of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH). We also show that disrupting (or enhancing) expression of RBOH in LRP and/or overlying root tissues decelerates (or accelerates) the development and emergence of LRs. We conclude that RBOH-mediated ROS production facilitates LR outgrowth by promoting cell wall remodeling of overlying parental tissues. Summary: Reactive oxygen species promote cell wall remodeling of cells overlying the sites of lateral root formation, thereby contributing to lateral root emergence in Arabidopsis.
Collapse
Affiliation(s)
- Beata Orman-Ligeza
- Université Catholique de Louvain, Earth and Life Institute, Louvain-la-Neuve B-1348, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Riet de Rycke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ana Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Claire Périlleux
- PhytoSYSTEMS, Laboratory of Plant Physiology, University of Liège, Sart Tilman Campus, 4 Chemin de la Vallée, Liège B-4000, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium Department of Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Xavier Draye
- Université Catholique de Louvain, Earth and Life Institute, Louvain-la-Neuve B-1348, Belgium
| |
Collapse
|
84
|
Kong D, Hao Y, Cui H. The WUSCHEL Related Homeobox Protein WOX7 Regulates the Sugar Response of Lateral Root Development in Arabidopsis thaliana. MOLECULAR PLANT 2016; 9:261-270. [PMID: 26621542 DOI: 10.1016/j.molp.2015.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Sugars promote lateral root formation at low levels but become inhibitory at high C/N or C/P ratios. How sugars suppress lateral root formation is unclear, however. Here we report that WOX7, a member of the WUSCHEL related homeobox (WOX) family transcription factors, inhibits lateral root development in a sugar-dependent manner. The number of lateral root primordia increased in wox7 mutants but decreased in plants over-expressing WOX7. Plants expressing the WOX7-VP16 fusion protein produced even more lateral roots than wox7, suggesting that WOX7 acts as a transcriptional repressor in lateral root development. WOX7 is expressed at all stages of lateral root development, but it is primarily involved in lateral root initiation. Consistent with this, the wox7 mutant had a higher mitotic activity only at early stages of lateral root development. Further studies suggest that WOX7 regulates lateral root development through direct repression of cell cycle genes, particularly CYCD6;1. WOX7 expression was enhanced by sugar, reduced by auxin, but did not respond to salt and mannitol. In the wox7 mutant, the effect of sugar on lateral root formation was mitigated. These results together suggest that WOX7 plays an important role in coupling the lateral root development program and sugar status in plants.
Collapse
Affiliation(s)
- Danyu Kong
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Yueling Hao
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
85
|
de Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H, Bräutigam A, Carlsbecker A, Gould SB. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. THE NEW PHYTOLOGIST 2016; 209:705-20. [PMID: 26358624 PMCID: PMC5049668 DOI: 10.1111/nph.13630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/04/2015] [Indexed: 05/10/2023]
Abstract
The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system.
Collapse
Affiliation(s)
- Jan de Vries
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Angela Melanie Fischer
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Mayo Roettger
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Sophie Rommel
- Population GeneticsHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Henriette Schluepmann
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 83584CH Utrechtthe Netherlands
| | - Andrea Bräutigam
- Plant BiochemistryHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological BotanyUppsala BioCenterLinnean Centre for Plant BiologyUppsala UniversityUlls väg 24ESE‐756 51UppsalaSweden
| | - Sven Bernhard Gould
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| |
Collapse
|
86
|
Biancucci M, Mattioli R, Moubayidin L, Sabatini S, Costantino P, Trovato M. Proline affects the size of the root meristematic zone in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:263. [PMID: 26514776 PMCID: PMC4625561 DOI: 10.1186/s12870-015-0637-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND We reported previously that root elongation in Arabidopsis is promoted by exogenous proline, raising the possibility that this amino acid may modulate root growth. RESULTS To evaluate this hypothesis we used a combination of genetic, pharmacological and molecular analyses, and showed that proline specifically affects root growth by modulating the size of the root meristem. The effects of proline on meristem size are parallel to, and independent from, hormonal pathways, and do not involve the expression of genes controlling cell differentiation at the transition zone. On the contrary, proline appears to control cell division in early stages of postembryonic root development, as shown by the expression of the G2/M-specific CYCLINB1;1 (CYCB1;1) gene. CONCLUSIONS The overall data suggest that proline can modulate the size of root meristematic zone in Arabidopsis likely controlling cell division and, in turn, the ratio between cell division and cell differentiation.
Collapse
Affiliation(s)
- Marco Biancucci
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Roberto Mattioli
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Laila Moubayidin
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Sabrina Sabatini
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Maurizio Trovato
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
87
|
Villacorta-Martín C, Sánchez-García AB, Villanova J, Cano A, van de Rhee M, de Haan J, Acosta M, Passarinho P, Pérez-Pérez JM. Gene expression profiling during adventitious root formation in carnation stem cuttings. BMC Genomics 2015; 16:789. [PMID: 26467528 PMCID: PMC4606512 DOI: 10.1186/s12864-015-2003-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/03/2015] [Indexed: 12/29/2022] Open
Abstract
Background Adventitious root (AR) formation is a critical step in vegetative propagation of most ornamental plants, such as carnation. AR formation from stem cuttings is usually divided into several stages according to physiological and metabolic markers. Auxin is often applied exogenously to promote the development of ARs on stem cuttings of difficult-to-root genotypes. Results By whole transcriptome sequencing, we identified the genes involved in AR formation in carnation cuttings and in response to exogenous auxin. Their expression profiles have been analysed through RNA-Seq during a time-course experiment in the stem cutting base of two cultivars with contrasting efficiencies of AR formation. We explored the kinetics of root primordia formation in these two cultivars and in response to exogenously-applied auxin through detailed histological and physiological analyses. Conclusions Our results provide, for the first time, a number of molecular, histological and physiological markers that characterize the different stages of AR formation in this species and that could be used to monitor adventitious rooting on a wide collection of carnation germplasm with the aim to identify the best-rooting cultivars for breeding purposes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2003-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Joan Villanova
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Antonio Cano
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain.
| | - Miranda van de Rhee
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Jorn de Haan
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | - Manuel Acosta
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia, Spain.
| | - Paul Passarinho
- Genetwister Technologies B.V., P.O. Box 193, NL6700 AD, Wageningen, The Netherlands.
| | | |
Collapse
|
88
|
Wachsman G, Sparks EE, Benfey PN. Genes and networks regulating root anatomy and architecture. THE NEW PHYTOLOGIST 2015; 208:26-38. [PMID: 25989832 DOI: 10.1111/nph.13469] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/20/2015] [Indexed: 05/05/2023]
Abstract
The root is an excellent model for studying developmental processes that underlie plant anatomy and architecture. Its modular structure, the lack of cell movement and relative accessibility to microscopic visualization facilitate research in a number of areas of plant biology. In this review, we describe several examples that demonstrate how cell type-specific developmental mechanisms determine cell fate and the formation of defined tissues with unique characteristics. In the last 10 yr, advances in genome-wide technologies have led to the sequencing of thousands of plant genomes, transcriptomes and proteomes. In parallel with the development of these high-throughput technologies, biologists have had to establish computational, statistical and bioinformatic tools that can deal with the wealth of data generated by them. These resources provide a foundation for posing more complex questions about molecular interactions, and have led to the discovery of new mechanisms that control phenotypic differences. Here we review several recent studies that shed new light on developmental processes, which are involved in establishing root anatomy and architecture. We highlight the power of combining large-scale experiments with classical techniques to uncover new pathways in root development.
Collapse
Affiliation(s)
- Guy Wachsman
- Department of Biology and Center for Systems Biology, Duke University, Durham, NC, 27708, USA
| | - Erin E Sparks
- Department of Biology and Center for Systems Biology, Duke University, Durham, NC, 27708, USA
| | - Philip N Benfey
- Department of Biology and Center for Systems Biology, Duke University, Durham, NC, 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
89
|
Mukhopadhyay P, Tyagi AK. OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci Rep 2015; 5:9998. [PMID: 25925167 PMCID: PMC4415230 DOI: 10.1038/srep09998] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 03/25/2015] [Indexed: 01/22/2023] Open
Abstract
Class-I TCP transcription factors are plant-specific developmental regulators. In this study, the role of one such rice gene, OsTCP19, in water-deficit and salt stress response was explored. Besides a general upregulation by abiotic stresses, this transcript was more abundant in tolerant than sensitive rice genotypes during early hours of stress. Stress, tissue and genotype-dependent retention of a small in-frame intron in this transcript was also observed. Overexpression of OsTCP19 in Arabidopsis caused upregulation of IAA3, ABI3 and ABI4 and downregulation of LOX2, and led to developmental abnormalities like fewer lateral root formation. Moreover, decrease in water loss and reactive oxygen species, and hyperaccumulation of lipid droplets in the transgenics contributed to better stress tolerance both during seedling establishment and in mature plants. OsTCP19 was also shown to directly regulate a rice triacylglycerol biosynthesis gene in transient assays. Genes similar to those up- or downregulated in the transgenics were accordingly found to coexpress positively and negatively with OsTCP19 in Rice Oligonucleotide Array Database. Interactions of OsTCP19 with OsABI4 and OsULT1 further suggest its function in modulation of abscisic acid pathways and chromatin structure. Thus, OsTCP19 appears to be an important node in cell signaling which crosslinks stress and developmental pathways.
Collapse
Affiliation(s)
- Pradipto Mukhopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi. 110067, India
| | - Akhilesh Kumar Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi. 110067, India
| |
Collapse
|
90
|
Yu H, Soler M, San Clemente H, Mila I, Paiva JAP, Myburg AA, Bouzayen M, Grima-Pettenati J, Cassan-Wang H. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation. PLANT & CELL PHYSIOLOGY 2015; 56:700-14. [PMID: 25577568 DOI: 10.1093/pcp/pcu215] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/23/2014] [Indexed: 05/23/2023]
Abstract
Auxin plays a pivotal role in various plant growth and development processes, including vascular differentiation. The modulation of auxin responsiveness through the auxin perception and signaling machinery is believed to be a major regulatory mechanism controlling cambium activity and wood formation. To gain more insights into the roles of key Aux/IAA gene regulators of the auxin response in these processes, we identified and characterized members of the Aux/IAA family in the genome of Eucalyptus grandis, a tree of worldwide economic importance. We found that the gene family in Eucalyptus is slightly smaller than that in Populus and Arabidopsis, but all phylogenetic groups are represented. High-throughput expression profiling of different organs and tissues highlighted several Aux/IAA genes expressed in vascular cambium and/or developing xylem, some showing differential expression in response to developmental (juvenile vs. mature) and/or to environmental (tension stress) cues. Based on the expression profiles, we selected a promising candidate gene, EgrIAA4, for functional characterization. We showed that EgrIAA4 protein is localized in the nucleus and functions as an auxin-responsive repressor. Overexpressing a stabilized version of EgrIAA4 in Arabidopsis dramatically impeded plant growth and fertility and induced auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root emergence and agravitropism. Interestingly, the lignified secondary walls of the interfascicular fibers appeared very late, whereas those of the xylary fibers were virtually undetectable, suggesting that EgrIAA4 may play crucial roles in fiber development and secondary cell wall deposition.
Collapse
Affiliation(s)
- Hong Yu
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| | - Marçal Soler
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| | - Hélène San Clemente
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| | - Isabelle Mila
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, F-31326 Castanet-Tolosan, France INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Jorge A P Paiva
- Instituto de Investigação Científica e Tropical (IICT/MNE), Palácio Burnay, Rua da Junqueira, 30, 1349-007 Lisboa, Portugal IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Alexander A Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute (GRI), University of Pretoria, Private Bag X20, Pretoria, 0028, South Africa
| | - Mondher Bouzayen
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, F-31326 Castanet-Tolosan, France INRA, UMR990 Génomique et Biotechnologie des Fruits, Chemin de Borde Rouge, F-31326 Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| | - Hua Cassan-Wang
- LRSV Laboratoire de Recherche en Sciences Végétales, UMR5546, Université Toulouse III, UPS, CNRS, BP 42617, Auzeville, F-31326 Castanet Tolosan, France
| |
Collapse
|
91
|
Uga Y, Kitomi Y, Ishikawa S, Yano M. Genetic improvement for root growth angle to enhance crop production. BREEDING SCIENCE 2015; 65:111-9. [PMID: 26069440 PMCID: PMC4430504 DOI: 10.1270/jsbbs.65.111] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/09/2014] [Indexed: 05/06/2023]
Abstract
The root system is an essential organ for taking up water and nutrients and anchoring shoots to the ground. On the other hand, the root system has rarely been regarded as breeding target, possibly because it is more laborious and time-consuming to evaluate roots (which require excavation) in a large number of plants than aboveground tissues. The root growth angle (RGA), which determines the direction of root elongation in the soil, affects the area in which roots capture water and nutrients. In this review, we describe the significance of RGA as a potential trait to improve crop production, and the physiological and molecular mechanisms that regulate RGA. We discuss the prospects for breeding to improve RGA based on current knowledge of quantitative trait loci for RGA in rice.
Collapse
Affiliation(s)
- Yusaku Uga
- National Institute of Agrobiological Sciences (NIAS),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Yuka Kitomi
- National Institute of Agrobiological Sciences (NIAS),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| | - Satoru Ishikawa
- National Institute of Agro-Environmental Sciences (NIAES),
Tsukuba, Ibaraki 305-8604,
Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences (NIAS),
2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602,
Japan
| |
Collapse
|
92
|
Yu H, Zhang Y, Moss BL, Bargmann BOR, Wang R, Prigge M, Nemhauser JL, Estelle M. Untethering the TIR1 auxin receptor from the SCF complex increases its stability and inhibits auxin response. NATURE PLANTS 2015; 1:14030. [PMID: 26236497 PMCID: PMC4520256 DOI: 10.1038/nplants.2014.30] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant genomes encode large numbers of F-box proteins (FBPs), the substrate recognition subunit of SKP1-CULLIN-F-box (SCF) ubiquitin ligases. There are ~700 FBPs in Arabidopsis, most of which are uncharacterized. TIR1 is among the best-studied plant FBPs and functions as a receptor for the plant hormone auxin. Here we use a yeast two-hybrid system to identify novel TIR1 mutants with altered properties. The analysis of these mutants reveals that TIR1 associates with the CULLIN1 (CUL1) subunit of the SCF through the N-terminal H1 helix of the F-box domain. Mutations that untether TIR1 from CUL1 stabilize the FBP and cause auxin resistance and associated growth defects, probably by protecting TIR1 substrates from degradation. Based on these results we propose that TIR1 is subject to autocatalytic degradation when assembled into an SCF. Further, our results suggest a general method for determining the physiological function of uncharacterized FBPs. Finally, we show that a key amino acid variation in the F-box domain of auxin signalling F-box (AFB1), a closely related FBP, reduces its ability to form an SCF, resulting in an increase in AFB1 levels.
Collapse
Affiliation(s)
- Hong Yu
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Yi Zhang
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Britney L. Moss
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Bastiaan O. R. Bargmann
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Renhou Wang
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | - Michael Prigge
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| | | | - Mark Estelle
- Howard Hughes Medical Institute and Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
93
|
Liu S, Hu Q, Luo S, Li Q, Yang X, Wang X, Wang S. Expression of wild-type PtrIAA14.1, a poplar Aux/IAA gene causes morphological changes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:388. [PMID: 26082787 PMCID: PMC4451736 DOI: 10.3389/fpls.2015.00388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/15/2015] [Indexed: 05/21/2023]
Abstract
Aux/IAA proteins are transcriptional repressors that control auxin signaling by interacting with auxin response factors (ARFs). So far all of the identified Aux/IAA mutants with auxin-related phenotypes in Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants, with mutations in Domain II that affected stability of the corresponding Aux/IAA proteins. On the other hand, morphological changes were observed in knock-down mutants of Aux/IAA genes in tomato (Solanum lycopersicum), suggesting that functions of Aux/IAA proteins may be specific for certain plant species. We report here the characterization of PtrIAA14.1, a poplar (Populus trichocarpa) homolog of IAA7. Bioinformatics analysis showed that PtrIAA14.1 is a classic Aux/IAA protein. It contains four conserved domains with the repressor motif in Domain I, the degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. Protoplast transfection assays showed that PtrIAA14.1 is localized in nucleus. It is unable in the presence of auxin, and it represses auxin response reporter gene expression. Expression of wild-type PtrIAA14.1 in Arabidopsis resulted in auxin-related phenotypes including down-curling leaves, semi-draft with increased number of branches, and greatly reduced fertility, but expression of the Arabidopsis Aux/IAA genes tested remain largely unchanged in the transgenic plants. Protein-protein interaction assays in yeast and protoplasts showed that PtrIAA14.1 interacted with ARF5, but not other ARFs. Consistent with this observation, vascular patterning was altered in the transgenic plants, and the expression of AtHB8 (Arabidopsis thaliana homeobox gene 8) was reduced in transgenic plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shucai Wang
- *Correspondence: Shucai Wang, School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China,
| |
Collapse
|
94
|
Luo S, Li Q, Liu S, Pinas NM, Tian H, Wang S. Constitutive Expression of OsIAA9 Affects Starch Granules Accumulation and Root Gravitropic Response in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:1156. [PMID: 26734051 PMCID: PMC4686622 DOI: 10.3389/fpls.2015.01156] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/04/2015] [Indexed: 05/18/2023]
Abstract
Auxin/Indole-3-Acetic Acid (Aux/IAA) genes are early auxin response genes ecoding short-lived transcriptional repressors, which regulate auxin signaling in plants by interplay with Auxin Response Factors (ARFs). Most of the Aux/IAA proteins contain four different domains, namely Domain I, Domain II, Domain III, and Domain IV. So far all Aux/IAA mutants with auxin-related phenotypes identified in both Arabidopsis and rice (Oryza sativa) are dominant gain-of-function mutants with mutations in Domain II of the corresponding Aux/IAA proteins, suggest that Aux/IAA proteins in both Arabidopsis and rice are largely functional redundantly, and they may have conserved functions. We report here the functional characterization of a rice Aux/IAA gene, OsIAA9. RT-PCR results showed that expression of OsIAA9 was induced by exogenously applied auxin, suggesting that OsIAA9 is an auxin response gene. Bioinformatic analysis showed that OsIAA9 has a repressor motif in Domain I, a degron in Domain II, and the conserved amino acid signatures for protein-protein interactions in Domain III and Domain IV. By generating transgenic plants expressing GFP-OsIAA9 and examining florescence in the transgenic plants, we found that OsIAA9 is localized in the nucleus. When transfected into protoplasts isolated from rosette leaves of Arabidopsis, OsIAA9 repressed reporter gene expression, and the repression was partially released by exogenously IAA. These results suggest that OsIAA9 is a canonical Aux/IAA protein. Protoplast transfection assays showed that OsIAA9 interacted ARF5, but not ARF6, 7, 8 and 19. Transgenic Arabidopsis plants expressing OsIAA9 have increased number of lateral roots, and reduced gravitropic response. Further analysis showed that OsIAA9 transgenic Arabidopsis plants accumulated fewer granules in their root tips and the distribution of granules was also affected. Taken together, our study showed that OsIAA9 is a transcriptional repressor, and it regulates gravitropic response when expressed in Arabidopsis by regulating granules accumulation and distribution in root tips.
Collapse
|
95
|
Dong Y, Li M, Zhang P, Wang X, Fan C, Zhou Y. Patatin-related phospholipase pPLAIIIδ influences auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. BMC PLANT BIOLOGY 2014; 14:332. [PMID: 25428555 PMCID: PMC4253999 DOI: 10.1186/s12870-014-0332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/11/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND The members of the patatin-related phospholipase subfamily III (pPLAIIIs) have been implicated in the auxin response. However, it is not clear whether and how these genes affect plant and cell morphogenesis. Here, we studied the roles of the patatin-related phospholipase pPLAIIIδ in auxin-responsive cell morphology and organ size in Arabidopsis and Brassica napus. RESULTS We show that overexpression of pPLAIIIδ inhibited longitudinal growth but promoted transverse growth in most organs of Arabidopsis and Brassica napus. Compared to wild-type plants, pPLAIIIδ-KO plants exhibited enhanced cell elongation in hypocotyls, and pPLAIIIδ-OE plants displayed broadened radial cell growth of hypocotyl and reduced leaf pavement cell polarity. For the hypocotyl phenotype in pPLAIIIδ mutants, which resembles the "triple response" to ethylene, we examined the expression of the ACS and ACO genes involved in ethylene biosynthesis and found that ACS4 and ACS5 were up-regulated by 2.5-fold on average in two OE lines compared with WT plants. The endogenous auxin distribution was disturbed in plants with altered pPLAIIIδ expression. pPLAIIIδ-OE and KO plants exhibited different sensitivities to indole-3-acetic acid-promoted hypocotyl elongation in both light and dark conditions. Gene expression analysis of auxin-induced genes in the dark showed that OE plants maintained a higher auxin response compared with WT and KO plants after treatment with 1 μM IAA for 12 h. Following treatment with 10 μM IAA for 30 min in the light, early auxin-induced genes were significantly up-regulated in two OE plant lines. CONCLUSIONS These data suggest that the PLAIIIδ gene plays an important role in cell morphology and organ size through its involvement in the regulation of auxin distribution in plants.
Collapse
Affiliation(s)
- Yanni Dong
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Maoyin Li
- />Donald Danforth Plant Science Center, St Louis, Missouri USA
| | - Peng Zhang
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuemin Wang
- />Donald Danforth Plant Science Center, St Louis, Missouri USA
| | - Chuchuan Fan
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- />National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
96
|
An R, Liu X, Wang R, Wu H, Liang S, Shao J, Qi Y, An L, Yu F. The over-expression of two transcription factors, ABS5/bHLH30 and ABS7/MYB101, leads to upwardly curly leaves. PLoS One 2014; 9:e107637. [PMID: 25268707 PMCID: PMC4182325 DOI: 10.1371/journal.pone.0107637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022] Open
Abstract
Proper leaf development is essential for plant growth and development, and leaf morphogenesis is under the control of intricate networks of genetic and environmental cues. We are interested in dissecting these regulatory circuits genetically and report here the isolation of two Arabidopsis dominant mutants, abnormal shoot5-1D (abs5-1D) and abs7-1D identified through activation tagging screens. Both abs5-1D and abs7-1D display an intriguing upwardly curly leaf phenotype. Molecular cloning showed that the elevated expression of a bHLH transcription factor ABS5/T5L1/bHLH30 or a MYB transcription factor ABS7/MYB101 is the cause for the abnormal leaf phenotypes found in abs5-1D or abs7-1D, respectively. Protoplast transient expression assays confirmed that both ABS5/T5L1 and ABS7/MYB101 are targeted to the nucleus. Interestingly, the expression domains of auxin response reporter DR5::GUS were abnormal in leaves of abs5-1D and ABS5/T5L1 over-expression lines. Moreover, cotyledon venation analysis showed that more areoles and free-ending veins are formed in abs5-1D. We found that the epidermis-specific expressions of ABS5/T5L1 or ABS7/MYB101 driven by the Arabidopsis Meristem Layer 1 promoter (PAtML1) were sufficient to recapitulate the curly leaf phenotype of abs5-1D or abs7-1D. In addition, PAtML1::ABS5 lines exhibited similar changes in DR5::GUS expression patterns as those found in 35S-driven ABS5/T5L1 over-expression lines. Our work demonstrated that enhanced expressions of two transcription factors, ABS5/T5L1 and ABS7/MYB101, are able to alter leaf lamina development and reinforce the notion that leaf epidermis plays critical roles in regulating plant organ morphogenesis.
Collapse
Affiliation(s)
- Rui An
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xiayan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Rui Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Haicui Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shuang Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jingxia Shao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yafei Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- * E-mail:
| |
Collapse
|
97
|
Ludwig Y, Berendzen KW, Xu C, Piepho HP, Hochholdinger F. Diversity of stability, localization, interaction and control of downstream gene activity in the Maize Aux/IAA protein family. PLoS One 2014; 9:e107346. [PMID: 25203637 PMCID: PMC4159291 DOI: 10.1371/journal.pone.0107346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/13/2014] [Indexed: 12/13/2022] Open
Abstract
AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) proteins are central regulators of auxin signal transduction. They control many aspects of plant development, share a conserved domain structure and are localized in the nucleus. In the present study, five maize Aux/IAA proteins (ZmIAA2, ZmIAA11, ZmIAA15, ZmIAA20 and ZmIAA33) representing the evolutionary, phylogenetic and expression diversity of this gene family were characterized. Subcellular localization studies revealed that ZmIAA2, ZmIAA11 and ZmIAA15 are confined to the nucleus while ZmIAA20 and ZmIAA33 are localized in both the nucleus and the cytoplasm. Introduction of specific point mutations in the degron sequence (VGWPPV) of domain II by substituting the first proline by serine or the second proline by leucine stabilized the Aux/IAA proteins. While protein half-life times between ∼11 min (ZmIAA2) to ∼120 min (ZmIAA15) were observed in wild-type proteins, the mutated forms of all five proteins were almost as stable as GFP control proteins. Moreover, all five maize Aux/IAA proteins repressed downstream gene expression in luciferase assays to different degrees. In addition, bimolecular fluorescence complementation (BiFC) analyses demonstrated interaction of all five Aux/IAA proteins with RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1, ZmIAA10) while only ZmIAA15 and ZmIAA33 interacted with the RUM1 paralog RUL1 (RUM-LIKE 1, ZmIAA29). Moreover, ZmIAA11, ZmIAA15 ZmIAA33 displayed homotypic interaction. Hence, despite their conserved domain structure, maize Aux/IAA proteins display a significant variability in their molecular characteristics which is likely associated with the wide spectrum of their developmental functions.
Collapse
Affiliation(s)
- Yvonne Ludwig
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, Bonn, Germany
| | - Kenneth W. Berendzen
- Center for Plant Molecular Biology (ZMBP), Central Facilities, University of Tübingen, Tübingen, Germany
| | - Changzheng Xu
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, Bonn, Germany
- College of Resources and Environment (RCBB), Southwest University, Chongqing, China
| | - Hans-Peter Piepho
- Institute for Crop Science, Bioinformatics Unit, University of Hohenheim, Stuttgart, Germany
| | - Frank Hochholdinger
- Institute of Crop Science and Resource Conservation (INRES), Crop Functional Genomics, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
98
|
Sato A, Sasaki S, Matsuzaki J, Yamamoto KT. Light-dependent gravitropism and negative phototropism of inflorescence stems in a dominant Aux/IAA mutant of Arabidopsis thaliana, axr2. JOURNAL OF PLANT RESEARCH 2014; 127:627-39. [PMID: 24938853 DOI: 10.1007/s10265-014-0643-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/09/2014] [Indexed: 05/20/2023]
Abstract
Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.
Collapse
Affiliation(s)
- Atsuko Sato
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | | | | | | |
Collapse
|
99
|
Gibbs DJ, Voß U, Harding SA, Fannon J, Moody LA, Yamada E, Swarup K, Nibau C, Bassel GW, Choudhary A, Lavenus J, Bradshaw SJ, Stekel DJ, Bennett MJ, Coates JC. AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. THE NEW PHYTOLOGIST 2014; 203:1194-1207. [PMID: 24902892 PMCID: PMC4286813 DOI: 10.1111/nph.12879] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/07/2014] [Indexed: 05/18/2023]
Abstract
Plant root system plasticity is critical for survival in changing environmental conditions. One important aspect of root architecture is lateral root development, a complex process regulated by hormone, environmental and protein signalling pathways. Here we show, using molecular genetic approaches, that the MYB transcription factor AtMYB93 is a novel negative regulator of lateral root development in Arabidopsis. We identify AtMYB93 as an interaction partner of the lateral-root-promoting ARABIDILLO proteins. Atmyb93 mutants have faster lateral root developmental progression and enhanced lateral root densities, while AtMYB93-overexpressing lines display the opposite phenotype. AtMYB93 is expressed strongly, specifically and transiently in the endodermal cells overlying early lateral root primordia and is additionally induced by auxin in the basal meristem of the primary root. Furthermore, Atmyb93 mutant lateral root development is insensitive to auxin, indicating that AtMYB93 is required for normal auxin responses during lateral root development. We propose that AtMYB93 is part of a novel auxin-induced negative feedback loop stimulated in a select few endodermal cells early during lateral root development, ensuring that lateral roots only develop when absolutely required. Putative AtMYB93 homologues are detected throughout flowering plants and represent promising targets for manipulating root systems in diverse crop species.
Collapse
Affiliation(s)
- Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ute Voß
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Susan A Harding
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jessica Fannon
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura A Moody
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Erika Yamada
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Kamal Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Candida Nibau
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - George W Bassel
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anushree Choudhary
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Julien Lavenus
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Susan J Bradshaw
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
100
|
Yang F, Song Y, Yang H, Liu Z, Zhu G, Yang Y. An auxin-responsive endogenous peptide regulates root development in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:635-47. [PMID: 24479837 DOI: 10.1111/jipb.12178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/27/2014] [Indexed: 05/07/2023]
Abstract
Auxin plays critical roles in root formation and development. The components involved in this process, however, are not well understood. Here, we newly identified a peptide encoding gene, auxin-responsive endogenous polypeptide 1 (AREP1), which is induced by auxin, and mediates root development in Arabidopsis. Expression of AREP1 was specific to the cotyledon and to root and shoot meristem tissues. Amounts of AREP1 transcripts and AREP1-green fluorescent protein fusion proteins were elevated in response to indoleacetic acid treatment. Suppression of AREP1 through RNAi silencing resulted in reduction of primary root length, increase of lateral root number, and expansion of adventitious roots, compared to the observations in wild-type plants in the presence of auxin. By contrast, transgenic plants overexpressing AREP1 showed enhanced growth of the primary root under auxin treatment. Additionally, root morphology, including lateral root number and adventitious roots, differed greatly between transgenic and wild-type plants. Further analysis indicated that the expression of auxin-responsive genes, such as IAA3, IAA7, IAA17, GH3.2, GH3.3, and SAUR-AC1, was significantly higher in AREP1 RNAi plants, and was slightly lower in AREP1 overexpressing plants than in wild-type plants. These results suggest that the novel endogenous peptide AREP1 plays an important role in the process of auxin-mediated root development.
Collapse
Affiliation(s)
- Fengxi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China; Floricultural Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | | | | | | | | | | |
Collapse
|