51
|
Marchioni A, Tonelli R, Cerri S, Castaniere I, Andrisani D, Gozzi F, Bruzzi G, Manicardi L, Moretti A, Demurtas J, Baroncini S, Andreani A, Cappiello GF, Busani S, Fantini R, Tabbì L, Samarelli AV, Clini E. Pulmonary Stretch and Lung Mechanotransduction: Implications for Progression in the Fibrotic Lung. Int J Mol Sci 2021; 22:ijms22126443. [PMID: 34208586 PMCID: PMC8234308 DOI: 10.3390/ijms22126443] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Lung fibrosis results from the synergic interplay between regenerative deficits of the alveolar epithelium and dysregulated mechanisms of repair in response to alveolar and vascular damage, which is followed by progressive fibroblast and myofibroblast proliferation and excessive deposition of the extracellular matrix. The increased parenchymal stiffness of fibrotic lungs significantly affects respiratory mechanics, making the lung more fragile and prone to non-physiological stress during spontaneous breathing and mechanical ventilation. Given their parenchymal inhomogeneity, fibrotic lungs may display an anisotropic response to mechanical stresses with different regional deformations (micro-strain). This behavior is not described by the standard stress–strain curve but follows the mechano-elastic models of “squishy balls”, where the elastic limit can be reached due to the excessive deformation of parenchymal areas with normal elasticity that are surrounded by inelastic fibrous tissue or collapsed induration areas, which tend to protrude outside the fibrous ring. Increasing evidence has shown that non-physiological mechanical forces applied to fibrotic lungs with associated abnormal mechanotransduction could favor the progression of pulmonary fibrosis. With this review, we aim to summarize the state of the art on the relation between mechanical forces acting on the lung and biological response in pulmonary fibrosis, with a focus on the progression of damage in the fibrotic lung during spontaneous breathing and assisted ventilatory support.
Collapse
Affiliation(s)
- Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41125 Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41125 Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Jacopo Demurtas
- Primary Care Department USL Toscana Sud Est-Grosseto, 58100 Grosseto, Italy;
| | - Serena Baroncini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Alessandro Andreani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Gaia Francesca Cappiello
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Stefano Busani
- University Hospital of Modena, Anesthesiology Unit, University of Modena Reggio Emilia, 41124 Modena, Italy;
| | - Riccardo Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Luca Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| |
Collapse
|
52
|
Weinberg SH, Saini N, Lemmon CA. Effects of substrate stiffness and actin velocity on in silico fibronectin fibril morphometry and mechanics. PLoS One 2021; 16:e0248256. [PMID: 34106923 PMCID: PMC8189481 DOI: 10.1371/journal.pone.0248256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/14/2021] [Indexed: 12/03/2022] Open
Abstract
Assembly of the extracellular matrix protein fibronectin (FN) into insoluble, viscoelastic fibrils is a critical step during embryonic development and wound healing; misregulation of FN fibril assembly has been implicated in many diseases, including fibrotic diseases and cancer. We have previously developed a computational model of FN fibril assembly that recapitulates the morphometry and mechanics of cell-derived FN fibrils. Here we use this model to probe two important questions: how is FN fibril formation affected by the contractile phenotype of the cell, and how is FN fibril formation affected by the stiffness of the surrounding tissue? We show that FN fibril formation depends strongly on the contractile phenotype of the cell, but only weakly on in vitro substrate stiffness, which is an analog for in vivo tissue stiffness. These results are consistent with previous experimental data and provide a better insight into conditions that promote FN fibril assembly. We have also investigated two distinct phenotypes of FN fibrils that we have previously identified; we show that the ratio of the two phenotypes depends on both substrate stiffness and contractile phenotype, with intermediate contractility and high substrate stiffness creating an optimal condition for stably stretched fibrils. Finally, we have investigated how re-stretch of a fibril affects cellular response. We probed how the contractile phenotype of the re-stretching cell affects the mechanics of the fibril; results indicate that the number of myosin motors only weakly affects the cellular response, but increasing actin velocity results in a decrease in the apparent stiffness of the fibril and a decrease in the stably-applied force to the fibril. Taken together, these results give novel insights into the combinatorial effects of substrate stiffness and cell contractility on FN fibril assembly.
Collapse
Affiliation(s)
- Seth H. Weinberg
- Department of Biomedical Engineering, Ohio State University, Columbus, OH, United States of America
- * E-mail: (CAL); (SHW)
| | - Navpreet Saini
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
- * E-mail: (CAL); (SHW)
| |
Collapse
|
53
|
Integrin Adhesion Complex Organization in Sheep Myometrium Reflects Changing Mechanical Forces during Pregnancy and Postpartum. BIOLOGY 2021; 10:biology10060508. [PMID: 34201059 PMCID: PMC8227588 DOI: 10.3390/biology10060508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary IACs assemble within the sheep myometrium during early-to-mid gestation in response to increased stretch of the uterine wall and continue to increase as pregnancy progresses. Fibronectin (FN1) is important in its ability to attach to IACs in myometrial cells to generate force to sustain powerful contractions during labor. After parturition, IACs are disassembled but the integrin subunits ITGA5 and ITGB1 remain expressed at the protein level at least two weeks postpartum. Abstract Cells respond to extracellular mechanical forces through the assembly of integrin adhesion complexes (IACs) that provide a scaffold through which cells sense and transduce responses to those forces. IACs are composed of transmembrane integrin receptors that bind to extracellular matrix (ECM) proteins externally and connect with the actomyosin cytoskeleton internally. Myometrial smooth muscle cells respond to forces that arise due to increases in fetal growth/weight, placental fluid volumes, and blood flow. As a result, the uterus transforms into an organ that can forcefully expel the fetus and placental membranes during parturition. While earlier studies focused on IAC expression in the myometrial compartment of rodents and humans to explore pregnancy-associated responses, the present study examines IAC assembly in ovine myometrium where mechanical forces are expected to be amplified in a manner similar to humans. Results indicate that the ITGA5 and ITGB1 heterodimers associate with the ECM protein FN1 externally, and with VCL and TLN1 internally, to form IACs in myometrial cells during the first trimester of pregnancy. These IACs become increasingly ordered until parturition. This ordered structure is lost by one day postpartum; however, the abundance of the integrin proteins remains elevated for at least two weeks postpartum. Implications of the present study are that sheep are similar to humans regarding the assembly of IACs in the pregnant myometrium and suggest that IACs may form much earlier in human gestation than was previously implied by the rat model. Results highlight the continued value of the sheep model as a flagship gynecological model for understanding parturition in humans.
Collapse
|
54
|
Feng F, Feng X, Zhang D, Li Q, Yao L. Matrix Stiffness Induces Pericyte-Fibroblast Transition Through YAP Activation. Front Pharmacol 2021; 12:698275. [PMID: 34135765 PMCID: PMC8202079 DOI: 10.3389/fphar.2021.698275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular pericytes, important mural cells that retain progenitor cell properties and protect vascular integrity in healthy tissues, are often associated with tumor development, but their functions in cancer invasion remain elusive. One prominent outcome of tumor occurrence is that the microenvironment of the lesion often stiffens, which could change resident cell behavior. Here, we found pericytes are matrix stiffness-responsive and mechanical stimuli induce pericyte-fibroblast transition (PFT). Soft PA gels that mimic the stiffness of healthy tissues retain the identity and behavior of pericytes, whereas stiff PA gels that reflect the stiffness of tumorous tissues promote PFT and the mobility and invasiveness of the cells. Matrix stiffness-induced PFT depends on the activation of YAP (Yes-associated protein), a transcription factor, which, upon receiving mechanical signals, transfers from cytoplasm to nucleus to mediate cell transcriptional activities. Our result reveals a mechanism through which vascular pericytes convert to fibroblasts and migrate away from vasculatures to help tumor development, and thus targeting matrix stiffness-induced PFT may offer a new perspective to the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Feng Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xueyan Feng
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Di Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qilong Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
55
|
Mechanical stress influences the morphology and function of human uterosacral ligament fibroblasts and activates the p38 MAPK pathway. Int Urogynecol J 2021; 33:2203-2212. [PMID: 34036402 PMCID: PMC9343297 DOI: 10.1007/s00192-021-04850-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 11/21/2022]
Abstract
Introduction and hypothesis Pelvic organ prolapse (POP) is a common condition in older women that affects quality of life. Mechanical injury of the pelvic floor support system contributes to POP development. In our study, we aimed to examine the mechanical damage to human uterosacral ligament fibroblasts (hUSLFs) to preliminarily explore the mechanism of mechanical transduction in POP. Methods hUSLFs were derived from POP and non-POP patients. Mechanical stress was induced by the FX-5000 T-cell stress loading system. Student’s t-test was used for comparisons between different groups. Results We found that hUSLFs from POP patients were larger and longer than those from non-POP patients and exhibited cytoskeleton F-actin rearrangement. Collagen I and III expression levels were lower and matrix metalloproteinase 1 (MMP1) levels were higher in POP patients than in non-POP patients. Additionally, the apoptosis rate was significantly increased in POP patients compared to non-POP patients. After mechanical stretching, hUSLFs underwent a POP-like transformation. Cells became longer, and the cytoskeleton became thicker and rearranged. The extracellular matrix (ECM) was remodelled because of the upregulation of collagen I and III expression and downregulation of MMP1 expression. Mechanical stress also induced hUSLF apoptosis. Notably, we found that the p38 MAPK pathway was activated by mechanical stretching. Conclusions Mechanical stress induced morphological changes in ligament fibroblasts, leading to cytoskeleton and ECM remodelling and cell apoptosis. p38 MAPK might be involved in this process, providing novel insights into the mechanical biology of and possible therapies for this disease.
Collapse
|
56
|
Cai X, Wang KC, Meng Z. Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression. Front Cell Dev Biol 2021; 9:673599. [PMID: 34109179 PMCID: PMC8182050 DOI: 10.3389/fcell.2021.673599] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Biophysical cues, such as mechanical properties, play a critical role in tissue growth and homeostasis. During organ development and tissue injury repair, compressive and tensional forces generated by cell-extracellular matrix or cell-cell interaction are key factors for cell fate determination. In the vascular system, hemodynamic forces, shear stress, and cyclic stretch modulate vascular cell phenotypes and susceptibility to atherosclerosis. Despite that emerging efforts have been made to investigate how mechanotransduction is involved in tuning cell and tissue functions in various contexts, the regulatory mechanisms remain largely unknown. One of the challenges is to understand the signaling cascades that transmit mechanical cues from the plasma membrane to the cytoplasm and then to the nuclei to generate mechanoresponsive transcriptomes. YAP and its homolog TAZ, the Hippo pathway effectors, have been identified as key mechanotransducers that sense mechanical stimuli and relay the signals to control transcriptional programs for cell proliferation, differentiation, and transformation. However, the upstream mechanosensors for YAP/TAZ signaling and downstream transcriptome responses following YAP/TAZ activation or repression have not been well characterized. Moreover, the mechanoregulation of YAP/TAZ in literature is highly context-dependent. In this review, we summarize the biomechanical cues in the tissue microenvironment and provide an update on the roles of YAP/TAZ in mechanotransduction in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
57
|
Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis. Acta Biomater 2021; 126:326-338. [PMID: 33737201 DOI: 10.1016/j.actbio.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In the last decade, cellular forces in three-dimensional hydrogels that mimic the extracellular matrix have been calculated by means of Traction Force Microscopy (TFM). However, characterizing the accuracy limits of a traction recovery method is critical to avoid obscuring physiological information due to traction recovery errors. So far, 3D TFM algorithms have only been validated using simplified cell geometries, bypassing image processing steps or arbitrarily simulating focal adhesions. Moreover, it is still uncertain which of the two common traction recovery methods, i.e., forward and inverse, is more robust against the inherent challenges of 3D TFM. In this work, we established an advanced in silico validation framework that is applicable to any 3D TFM experimental setup and that can be used to correctly couple the experimental and computational aspects of 3D TFM. Advancements relate to the simultaneous incorporation of complex cell geometries, simulation of microscopy images of varying bead densities and different focal adhesion sizes and distributions. By measuring the traction recovery error with respect to ground truth solutions, we found that while highest traction recovery errors occur for cases with sparse and small focal adhesions, our implementation of the inverse method improves two-fold the accuracy with respect to the forward method (average error of 23% vs. 50%). This advantage was further supported by recovering cellular tractions around angiogenic sprouts in an in vitro model of angiogenesis. The inverse method recovered higher traction peaks and a clearer pulling pattern at the sprout protrusion tips than the forward method. STATEMENT OF SIGNIFICANCE: Biomaterial performance is often studied by quantifying cell-matrix mechanical interactions by means of Traction Force Microscopy (TFM). However, 3D TFM algorithms are often validated in simplified scenarios, which do not allow to fully assess errors that could obscure physiological information. Here, we established an advanced in silico validation framework that mimics real TFM experimental conditions and that characterizes the expected errors of a 3D TFM workflow. We apply this framework to demonstrate the enhanced accuracy of a novel inverse traction recovery method that is illustrated in the context of an in vitro model of sprouting angiogenesis. Together, our study shows the importance of a proper traction recovery method to minimise errors and the need for an advanced framework to assess those errors.
Collapse
|
58
|
Murtada SI, Kawamura Y, Li G, Schwartz MA, Tellides G, Humphrey JD. Developmental origins of mechanical homeostasis in the aorta. Dev Dyn 2021; 250:629-639. [PMID: 33341996 PMCID: PMC8089041 DOI: 10.1002/dvdy.283] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/25/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mechanical homeostasis promotes proper aortic structure and function. Pathological conditions may arise, in part, from compromised or lost homeostasis. There is thus a need to quantify the homeostatic state and when it emerges. Here we quantify changes in mechanical loading, geometry, structure, and function of the murine aorta from the late prenatal period into maturity. RESULTS Our data suggest that a homeostatic set-point is established by postnatal day P2 for the flow-induced shear stress experienced by endothelial cells; this value deviates from its set-point from P10 to P21 due to asynchronous changes in mechanical loading (flow, pressure) and geometry (radius, wall thickness), but is restored thereafter consistent with homeostasis. Smooth muscle contractility also decreases during this period of heightened matrix deposition but is also restored in maturity. The pressure-induced mechanical stress experienced by intramural cells initially remains low despite increasing blood pressure, and then increases while extracellular matrix accumulates. CONCLUSIONS These findings suggest that cell-level mechanical homeostasis emerges soon after birth to allow mechanosensitive cells to guide aortic development, with deposition of matrix after P2 increasingly stress shielding intramural cells. The associated tissue-level set-points that emerge for intramural stress can be used to assess and model the aorta that matures biomechanically by P56.
Collapse
Affiliation(s)
- Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Yuki Kawamura
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Guangxin Li
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
59
|
Xu Z, Orkwis JA, Harris GM. Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases. Int J Mol Sci 2021; 22:ijms22094821. [PMID: 34062912 PMCID: PMC8124465 DOI: 10.3390/ijms22094821] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role in regulating SCs, and therefore highly impact nerve regeneration outcomes. However, the roles of the ECM and mechanotransduction relating to SC phenotype are largely unknown. Here, we describe the role that matrix stiffness and cell morphology play in SC phenotype specification via known mechanotransducers YAP/TAZ and RhoA. Using engineered microenvironments to precisely control ECM stiffness, cell shape, and cell spreading, we show that ECM stiffness and SC spreading downregulated SC regenerative associated proteins by the activation of RhoA and YAP/TAZ. Additionally, cell elongation promoted a distinct SC regenerative capacity by the upregulation of Rac1/MKK7/JNK, both necessary for the ECM and morphology changes found during nerve regeneration. These results confirm the role of ECM signaling in peripheral nerve regeneration as well as provide insight to the design of future biomaterials and cellular therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Jacob A. Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Greg M. Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-(513)-556-4167
| |
Collapse
|
60
|
Inbody SC, Sinquefield BE, Lewis JP, Horton RE. Biomimetic microsystems for cardiovascular studies. Am J Physiol Cell Physiol 2021; 320:C850-C872. [PMID: 33760660 DOI: 10.1152/ajpcell.00026.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditional tissue culture platforms have been around for several decades and have enabled key findings in the cardiovascular field. However, these platforms failed to recreate the mechanical and dynamic features found within the body. Organs-on-chips (OOCs) are cellularized microfluidic-based devices that can mimic the basic structure, function, and responses of organs. These systems have been successfully utilized in disease, development, and drug studies. OOCs are designed to recapitulate the mechanical, electrical, chemical, and structural features of the in vivo microenvironment. Here, we review cardiovascular-themed OOC studies, design considerations, and techniques used to generate these cellularized devices. Furthermore, we will highlight the advantages of OOC models over traditional cell culture vessels, discuss implementation challenges, and provide perspectives on the state of the field.
Collapse
Affiliation(s)
- Shelby C Inbody
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Bridgett E Sinquefield
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Joshua P Lewis
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| | - Renita E Horton
- Cardiovascular Tissue Engineering Laboratory, Biomedical Engineering Department, Cullen College of Engineering, University of Houston, Houston, Texas
| |
Collapse
|
61
|
Nigro EA, Boletta A. Role of the polycystins as mechanosensors of extracellular stiffness. Am J Physiol Renal Physiol 2021; 320:F693-F705. [PMID: 33615892 DOI: 10.1152/ajprenal.00545.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polycystin-1 (PC-1) is a transmembrane protein, encoded by the PKD1 gene, mutated in autosomal dominant polycystic kidney disease (ADPKD). This common genetic disorder, characterized by cyst formation in both kidneys, ultimately leading to renal failure, is still waiting for a definitive treatment. The overall function of PC-1 and the molecular mechanism responsible for cyst formation are slowly coming to light, but they are both still intensively studied. In particular, PC-1 has been proposed to act as a mechanosensor, although the precise signal that activates the mechanical properties of this protein has been long debated and questioned. In this review, we report studies and evidence of PC-1 function as a mechanosensor, starting from the peculiarity of its structure, through the long journey that progressively shed new light on the potential initiating events of cystogenesis, concluding with the description of PC-1 recently shown ability to sense the mechanical stimuli provided by the stiffness of the extracellular environment. These new findings have potentially important implications for the understanding of ADPKD pathophysiology and potentially for designing new therapies.NEW & NOTEWORTHY Polycystin-1 has recently emerged as a possible receptor able to sense extracellular stiffness and to negatively control the cellular actomyosin contraction machinery. Here, we revisit a large body of literature on autosomal dominant polycystic kidney disease providing a new possible mechanistic view on the topic.
Collapse
Affiliation(s)
- Elisa A Nigro
- Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
62
|
Response of Pluripotent Stem Cells to Environmental Stress and Its Application for Directed Differentiation. BIOLOGY 2021; 10:biology10020084. [PMID: 33498611 PMCID: PMC7912122 DOI: 10.3390/biology10020084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Environmental changes in oxygen concentration, temperature, and mechanical stimulation lead to the activation of specific transcriptional factors and induce the expression of each downstream gene. In general, these responses are protective machinery against such environmental stresses, while these transcriptional factors also regulate cell proliferation, differentiation, and organ development in mammals. In the case of pluripotent stem cells, similar response mechanisms normally work and sometimes stimulate the differentiation cues. Up to now, differentiation protocols utilizing such environmental stresses have been reported to obtain various types of somatic cells from pluripotent stem cells. Basically, environmental stresses as hypoxia (low oxygen), hyperoxia, (high oxygen) and mechanical stress from cell culture plates are relatively safer than chemicals and gene transfers, which affect the genome irreversibly. Therefore, protocols designed with such environments in mind could be useful for the technology development of cell therapy and regenerative medicine. In this manuscript, we summarize recent findings of environmental stress-induced differentiation protocols and discuss their mechanisms. Abstract Pluripotent stem cells have unique characteristics compared to somatic cells. In this review, we summarize the response to environmental stresses (hypoxic, oxidative, thermal, and mechanical stresses) in embryonic stem cells (ESCs) and their applications in the differentiation methods directed to specific lineages. Those stresses lead to activation of each specific transcription factor followed by the induction of downstream genes, and one of them regulates lineage specification. In short, hypoxic stress promotes the differentiation of ESCs to mesodermal lineages via HIF-1α activation. Concerning mechanical stress, high stiffness tends to promote mesodermal differentiation, while low stiffness promotes ectodermal differentiation via the modulation of YAP1. Furthermore, each step in the same lineage differentiation favors each appropriate stiffness of culture plate; for example, definitive endoderm favors high stiffness, while pancreatic progenitor favors low stiffness during pancreatic differentiation of human ESCs. Overall, treatments utilizing those stresses have no genotoxic or carcinogenic effects except oxidative stress; therefore, the differentiated cells are safe and could be useful for cell replacement therapy. In particular, the effect of mechanical stress on differentiation is becoming attractive for the field of regenerative medicine. Therefore, the development of a stress-mediated differentiation protocol is an important matter for the future.
Collapse
|
63
|
Asadi N, Pazoki-Toroudi H, Del Bakhshayesh AR, Akbarzadeh A, Davaran S, Annabi N. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels. Int J Biol Macromol 2020; 170:728-750. [PMID: 33387543 DOI: 10.1016/j.ijbiomac.2020.12.202] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023]
Abstract
Hydrogels are widely used for wound healing applications due to their similarity to the native extracellular matrix (ECM) and ability to provide a moist environment. However, lack of multifunctionality and low mechanical properties of previously developed hydrogels may limit their ability to support skin tissue regeneration. Incorporating various biomaterials and nanostructures into the hydrogels is an emerging approach to develop multifunctional hydrogels with new functions that are beneficial for wound healing. These multifunctional hydrogels can be fabricated with a wide range of functions and properties, including antibacterial, antioxidant, bioadhesive, and appropriate mechanical properties. Two approaches can be used for development of multifunctional hydrogel-based dressings; taking the advantages of the chemical composition of biomaterials and addition of nanomaterials or nanostructures. A large number of synthetic and natural polymers, bioactive molecules, or nanomaterials have been used to obtain hydrogel-based dressings with multifunctionality for wound healing applications. In the present review paper, advances in the development of multifunctional hydrogel-based dressings for wound healing have been highlighted.
Collapse
Affiliation(s)
- Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center and Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
| | - Soodabeh Davaran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasim Annabi
- Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
64
|
Ibata N, Terentjev EM. Development of Nascent Focal Adhesions in Spreading Cells. Biophys J 2020; 119:2063-2073. [PMID: 33068539 DOI: 10.1016/j.bpj.2020.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/11/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic cell develops organelles to sense and respond to the mechanical properties of its surroundings. These mechanosensing organelles aggregate into symmetry-breaking patterns to mediate cell motion and differentiation on substrate. The spreading of a cell plated onto a substrate is one of the simplest paradigms in which angular symmetry-breaking assemblies of mechanical sensors are seen to develop. We review evidence for the importance of the edge of the cell-extracellular matrix adhesion area in the aggregation of mechanosensors and develop a theoretical model for the clustering of mechanosensors into nascent focal adhesions on this contact ring. To study the spatial patterns arising on this topological feature, we use a one-dimensional lattice model with a nearest-neighbor interaction between individual integrin-mediated mechanosensors. We find the effective Ginzburg-Landau free energy for this model and determine the spectrum of spatial modes as the cell spreads and increases its contact area with the substrate. To test our model, we compare its predictions with measured distributions of paxillin in spreading fibroblasts.
Collapse
Affiliation(s)
- Neil Ibata
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eugene M Terentjev
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
65
|
Tran R, Moraes C, Hoesli CA. Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Front Bioeng Biotechnol 2020; 8:583970. [PMID: 33117786 PMCID: PMC7576674 DOI: 10.3389/fbioe.2020.583970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022] Open
Abstract
Insulin-producing beta cells sourced from pluripotent stem cells hold great potential as a virtually unlimited cell source to treat diabetes. Directed pancreatic differentiation protocols aim to mimic various stimuli present during embryonic development through sequential changes of in vitro culture conditions. This is commonly accomplished by the timed addition of soluble signaling factors, in conjunction with cell-handling steps such as the formation of 3D cell aggregates. Interestingly, when stem cells at the pancreatic progenitor stage are transplanted, they form functional insulin-producing cells, suggesting that in vivo microenvironmental cues promote beta cell specification. Among these cues, biophysical stimuli have only recently emerged in the context of optimizing pancreatic differentiation protocols. This review focuses on studies of cell–microenvironment interactions and their impact on differentiating pancreatic cells when considering cell signaling, cell–cell and cell–ECM interactions. We highlight the development of in vitro cell culture models that allow systematic studies of pancreatic cell mechanobiology in response to extracellular matrix proteins, biomechanical effects, soluble factor modulation of biomechanics, substrate stiffness, fluid flow and topography. Finally, we explore how these new mechanical insights could lead to novel pancreatic differentiation protocols that improve efficiency, maturity, and throughput.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Corinne A Hoesli
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
66
|
Putame G, Gabetti S, Carbonaro D, Meglio FD, Romano V, Sacco AM, Belviso I, Serino G, Bignardi C, Morbiducci U, Castaldo C, Massai D. Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs. Med Eng Phys 2020; 84:1-9. [DOI: 10.1016/j.medengphy.2020.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
|
67
|
Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF. The Roles of Tissue Rigidity and Its Underlying Mechanisms in Promoting Tumor Growth. Cancer Invest 2020; 38:445-462. [PMID: 32713210 DOI: 10.1080/07357907.2020.1802474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
Collapse
Affiliation(s)
- Muhammad Asyaari Zakaria
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Faculty of Health Sciences, Centre for Healthy Ageing and Wellness, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Eng Wee Chua
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Gayathri Thevi Selvarajah
- Faculty of Veterinary Medicine, Department of Veterinary Clinical Studies, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Siti Fathiah Masre
- Faculty of Health Sciences, Biomedical Science Programme, Centre for Toxicology & Health Risk Studies, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
68
|
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐Mendez S. Physically Active Bioreactors for Tissue Engineering Applications. ACTA ACUST UNITED AC 2020; 4:e2000125. [DOI: 10.1002/adbi.202000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- N. Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
| | - S. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- Centre of Molecular and Environmental Biology (CBMA) University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - M. M. Fernandes
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - C. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - V. Cardoso
- CMEMS‐UMinho Universidade do Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - V. Correia
- Algoritmi Research Centre University of Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - R. Minguez
- Department of Graphic Design and Engineering Projects University of the Basque Country UPV/EHU Bilbao E‐48013 Spain
| | - S. Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
- IKERBASQUE Basque Foundation for Science Bilbao E‐48013 Spain
| |
Collapse
|
69
|
Song M, Kim J, Shin H, Kim Y, Jang H, Park Y, Kim SJ. Development of Magnetic Torque Stimulation (MTS) Utilizing Rotating Uniform Magnetic Field for Mechanical Activation of Cardiac Cells. NANOMATERIALS 2020; 10:nano10091684. [PMID: 32867131 PMCID: PMC7557977 DOI: 10.3390/nano10091684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Regulation of cell signaling through physical stimulation is an emerging topic in biomedicine. Background: While recent advances in biophysical technologies show capabilities for spatiotemporal stimulation, interfacing those tools with biological systems for intact signal transfer and noncontact stimulation remains challenging. Here, we describe the use of a magnetic torque stimulation (MTS) system combined with engineered magnetic particles to apply forces on the surface of individual cells. MTS utilizes an externally rotating magnetic field to induce a spin on magnetic particles and generate torsional force to stimulate mechanotransduction pathways in two types of human heart cells—cardiomyocytes and cardiac fibroblasts. Methods: The MTS system operates in a noncontact mode with two magnets separated (60 mm) from each other and generates a torque of up to 15 pN µm across the entire area of a 35-mm cell culture dish. The MTS system can mechanically stimulate both types of human heart cells, inducing maturation and hypertrophy. Results: Our findings show that application of the MTS system under hypoxic conditions induces not only nuclear localization of mechanoresponsive YAP proteins in human heart cells but also overexpression of hypertrophy markers, including β-myosin heavy chain (βMHC), cardiotrophin-1 (CT-1), microRNA-21 (miR-21), and transforming growth factor beta-1 (TGFβ-1). Conclusions: These results have important implications for the applicability of the MTS system to diverse in vitro studies that require remote and noninvasive mechanical regulation.
Collapse
Affiliation(s)
- Myeongjin Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Jongseong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Hyundo Shin
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea;
| | - Yekwang Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Hwanseok Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
- Correspondence: (Y.P.); (S.-J.K.); Tel.: +82-2-2286-1460 (Y.P.)
| | - Seung-Jong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
- Correspondence: (Y.P.); (S.-J.K.); Tel.: +82-2-2286-1460 (Y.P.)
| |
Collapse
|
70
|
De Felice D, Alaimo A. Mechanosensitive Piezo Channels in Cancer: Focus on altered Calcium Signaling in Cancer Cells and in Tumor Progression. Cancers (Basel) 2020; 12:cancers12071780. [PMID: 32635333 PMCID: PMC7407875 DOI: 10.3390/cancers12071780] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
Mechanotransduction, the translation of mechanical stimuli into biological signals, is a crucial mechanism involved in the function of fundamentally all cell types. In many solid tumors, the malignant transformation is often associated with drastic changes in cell mechanical features. Extracellular matrix stiffness, invasive growth, and cell mobility are just a few hallmarks present in cancer cells that, by inducing mechanical stimuli, create positive feedbacks promoting cancer development. Among the molecular players involved in these pathophysiological processes, the mechanosensitive Ca2+-permeable Piezo channels have emerged as major transducers of mechanical stress into Ca2+ dependent signals. Piezo channels are overexpressed in several cancers, such as in breast, gastric, and bladder, whereas their downregulation has been described in other cancers. Still, the roles of mechanosensitive Piezos in cancer are somewhat puzzling. In this review, we summarize the current knowledge on the pathophysiological roles of these Ca2+-permeable channels, with special emphasis on their functional involvement in different cancer types progression.
Collapse
|
71
|
Del Favero G, Kraegeloh A. Integrating Biophysics in Toxicology. Cells 2020; 9:E1282. [PMID: 32455794 PMCID: PMC7290780 DOI: 10.3390/cells9051282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Integration of biophysical stimulation in test systems is established in diverse branches of biomedical sciences including toxicology. This is largely motivated by the need to create novel experimental setups capable of reproducing more closely in vivo physiological conditions. Indeed, we face the need to increase predictive power and experimental output, albeit reducing the use of animals in toxicity testing. In vivo, mechanical stimulation is essential for cellular homeostasis. In vitro, diverse strategies can be used to model this crucial component. The compliance of the extracellular matrix can be tuned by modifying the stiffness or through the deformation of substrates hosting the cells via static or dynamic strain. Moreover, cells can be cultivated under shear stress deriving from the movement of the extracellular fluids. In turn, introduction of physical cues in the cell culture environment modulates differentiation, functional properties, and metabolic competence, thus influencing cellular capability to cope with toxic insults. This review summarizes the state of the art of integration of biophysical stimuli in model systems for toxicity testing, discusses future challenges, and provides perspectives for the further advancement of in vitro cytotoxicity studies.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 38-40, 1090 Vienna, Austria
- Core Facility Multimodal Imaging, Faculty of Chemistry, University of Vienna Währinger Straße 38-40, 1090 Vienna, Austria
| | - Annette Kraegeloh
- INM—Leibniz-Institut für Neue Materialien GmbH, Campus D2 2, 66123 Saarbrücken, Germany;
| |
Collapse
|
72
|
Vandaele J, Louis B, Liu K, Camacho R, Kouwer PHJ, Rocha S. Structural characterization of fibrous synthetic hydrogels using fluorescence microscopy. SOFT MATTER 2020; 16:4210-4219. [PMID: 32292943 DOI: 10.1039/c9sm01828j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The structural features of the matrix surrounding the cells play a crucial role in regulating their behavior. Here, we used fluorescence microscopy and customized analysis algorithms to characterize the architecture of fibrous hydrogel networks. As a model system, we investigated a new class of synthetic biomimetic material, hydrogels prepared from polyisocyanides. Our results show that these synthetic gels present a highly heterogeneous fibrous network, with pores reaching a few micrometers in diameter. By encapsulating HeLa cells in different hydrogels, we show that a more porous structure is linked to a higher proliferation rate. The approach described here, for the characterization of the network of fibrous hydrogels, can be easily applied to other polymer-based materials and provide new insights into the influence of structural features in cell behavior. This knowledge is crucial to develop the next generation of biomimetic materials for 3D cell models and tissue engineering applications.
Collapse
|
73
|
Intracellular nonequilibrium fluctuating stresses indicate how nonlinear cellular mechanical properties adapt to microenvironmental rigidity. Sci Rep 2020; 10:5902. [PMID: 32246074 PMCID: PMC7125211 DOI: 10.1038/s41598-020-62567-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/09/2020] [Indexed: 11/08/2022] Open
Abstract
Living cells are known to be in thermodynamically nonequilibrium, which is largely brought about by intracellular molecular motors. The motors consume chemical energies to generate stresses and reorganize the cytoskeleton for the cell to move and divide. However, since there has been a lack of direct measurements characterizing intracellular stresses, questions remained unanswered on the intricacies of how cells use such stresses to regulate their internal mechanical integrity in different microenvironments. This report describes a new experimental approach by which we reveal an environmental rigidity-dependent intracellular stiffness that increases with intracellular stress - a revelation obtained, surprisingly, from a correlation between the fluctuations in cellular stiffness and that of intracellular stresses. More surprisingly, by varying two distinct parameters, environmental rigidity and motor protein activities, we observe that the stiffness-stress relationship follows the same curve. This finding provides some insight into the intricacies by suggesting that cells can regulate their responses to their mechanical microenvironment by adjusting their intracellular stress.
Collapse
|
74
|
Wang T, Nanda SS, Papaefthymiou GC, Yi DK. Mechanophysical Cues in Extracellular Matrix Regulation of Cell Behavior. Chembiochem 2020; 21:1254-1264. [DOI: 10.1002/cbic.201900686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Tuntun Wang
- Department of ChemistryMyongji University Yongin 449-728 Republic of Korea
| | | | | | - Dong Kee Yi
- Department of ChemistryMyongji University Yongin 449-728 Republic of Korea
| |
Collapse
|
75
|
Zhu C, Lee CY, McIntire LV. From cellular to molecular mechanobiology. APL Bioeng 2020; 4:010902. [PMID: 32095735 PMCID: PMC7021513 DOI: 10.1063/1.5129937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Mechanobiology at the cellular level is concerned with what phenotypes that cells exhibit to maintain homeostasis in their normal physiological mechanical environment, as well as what phenotypical changes that cells have to make when their environment is altered. Mechanobiology at the molecular level aims to understand the molecular underpinning of how cells sense, respond to, and adapt to mechanical cues in their environment. In this Perspective, we use our work inspired by and in collaboration with Professor Shu Chien as an example with which we connect the mechanobiology between the cellular and molecular levels. We discuss how physical forces acting on intracellular proteins may impact protein-protein interaction, change protein conformation, crosstalk with biochemical signaling molecules, induce mechanotransduction, and alter the cell structure and function.
Collapse
Affiliation(s)
- Cheng Zhu
- Author to whom correspondence should be addressed:
| | | | | |
Collapse
|
76
|
Mitchell RN, Schoen FJ. Functional Tissue Architecture, Homeostasis, and Responses to Injury. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
77
|
Veith A, Conway D, Mei L, Eskin SG, McIntire LV, Baker AB. Effects of Mechanical Forces on Cells and Tissues. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Seo H, Li X, Wu G, Bazer FW, Burghardt RC, Bayless KJ, Johnson GA. Mechanotransduction drives morphogenesis to develop folding during placental development in pigs. Placenta 2019; 90:62-70. [PMID: 32056554 DOI: 10.1016/j.placenta.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Our aim was to evaluate whether mechanical forces applied to the placenta of pigs correlate with morphological changes that coordinate the development of placental folds. METHODS We examined changes in the length of placental folds, expression of mechanotransduction-implicated molecules in placental tissues, changes in the size of subepithelial blood vessels within the endometrium, and effects of in vivo supplementation with arginine on fold development. RESULTS We observed that: 1) the length of folds increased 2) osteopontin, talin and focal adhesion kinase co-localized into aggregates at the maternal placental (uterine)-fetal placental interface; 3) filamin, actin related protein 2, and F-actin were enriched in the tops of maternal placental folds extending into fetal placental tissue; 4) maternal stromal fibroblasts acquired alpha smooth muscle actin; 5) endometrial blood vessels increased in size; and 6) supplementation with arginine increased fold length. CONCLUSION Results indicate that lengthening of folds associates with polymerization of actin that coincides with FA assembly, endometrial fibroblasts differentiate into myofibroblasts, and dilation of subepithelial blood vessels correlates with development of folds that is enhanced by arginine. We propose that dilation of subepithelial endometrial blood vessels delivers increased blood flow that pushes upward on the interface between the uterine luminal epithelium (LE) and the placental chorionic epithelium (CE), protrusive forces from growing uterine blood vessels trigger focal adhesion assembly and actin polymerization between the LE and CE, and endometrial fibroblasts differentiate into contractile myofibroblasts that pull connective tissue downward and inward to sculpt folds at the maternal placental-fetal placental interface.
Collapse
Affiliation(s)
- Heewon Seo
- Department of Veterinary Integrative Biosciences, College Station, TX, 77843, USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College Station, TX, 77843, USA
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M System Health Sciences Center, College Station, TX, 77843, USA
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, College Station, TX, 77843, USA.
| |
Collapse
|
79
|
Stewart TA, Davis FM. Formation and Function of Mammalian Epithelia: Roles for Mechanosensitive PIEZO1 Ion Channels. Front Cell Dev Biol 2019; 7:260. [PMID: 31750303 PMCID: PMC6843007 DOI: 10.3389/fcell.2019.00260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/17/2019] [Indexed: 11/17/2022] Open
Abstract
Mechanical forces play important roles in shaping mammalian development. In the embryo, cells experience force both during the formation of the mammalian body plan and in the ensuing phase of organogenesis. Physical forces - including fluid flow, compression, radial pressure, contraction, and osmotic pressure - continue to play central roles as organs mature, function, and ultimately dysfunction. Multiple mechanisms exist to receive, transduce, and transmit mechanical forces in mammalian epithelial tissues and to integrate these cues, which can both fluctuate and coincide, with local and systemic chemical signals. Drawing near a decade since the discovery of the bona fide mechanically activated ion channel, PIEZO1, we discuss in this mini-review established and emerging roles for this protein in the form and function of mammalian epithelia.
Collapse
Affiliation(s)
- Teneale A. Stewart
- Faculty of Medicine, Mater Research-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| | - Felicity M. Davis
- Faculty of Medicine, Mater Research-The University of Queensland, Brisbane, QLD, Australia
- Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
80
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
81
|
Zeng Y, Cao Y, Liu L, Zhao J, Zhang T, Xiao L, Jia M, Tian Q, Yu H, Chen S, Cai Y. SEPT9_i1 regulates human breast cancer cell motility through cytoskeletal and RhoA/FAK signaling pathway regulation. Cell Death Dis 2019; 10:720. [PMID: 31558699 PMCID: PMC6763430 DOI: 10.1038/s41419-019-1947-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Increasing cell mobility is the basis of tumor invasion and metastasis, and is therefore a therapeutic target for preventing the spread of many types of cancer. Septins are a family of cytoskeletal proteins with GTPase activity, and play a role in many important cellular functions, including cell migration. SEPT9 isoform 1 protein (SEPT9_i1) has been associated with breast tumor development and the enhancement of cell migration; however, the exact mechanism of how SEPT9_i1 might affect breast cancer progression remains to be elucidated. Here, we report that the expression of SEPT9_i1 positively correlated with paxillin, and both were significantly upregulated in invasive breast cancer tissues of patients with lymph node metastases. Lentivirus-mediated shRNA knockdown of SEPT9 in MCF-7 cells diminished tumor cell migration, focal adhesion (FA) maturation and the expression of β-actin, β-tubulin, Cdc42, RhoA, and Rac, whereas overexpression of SEPT9_i1 in SEPT9-knockdown MCF-7 cells promoted cell migration, FA maturation and relevant protein expression. Furthermore, overexpression of SEPT9_i1 in MCF-7 cells markedly increased FAK/Src/paxillin signaling, at least in part through RhoA/ROCK1 upstream activation. Transcriptome profiling suggested that SEPT9_i1 may directly affect “Focal adhesion” and “Regulation of actin cytoskeleton” signaling mechanisms. Finally, overexpression of SEPT9_i1 markedly enhanced lung metastases in vivo 6 weeks after tumor inoculation. These findings suggest that a mechanism of Septin-9-induced aberrant cancer cell migration is through cytoskeletal regulation and FA modulation, and encourages the use of SEPT9 as novel therapeutic target in the prevention of tumor metastasis.
Collapse
Affiliation(s)
- Yongqiu Zeng
- Key Laboratory of Obstetric, Gynecologic, and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan, China. .,Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Yang Cao
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Liu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiao Zhao
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ting Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Lifan Xiao
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Man Jia
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Tian
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Hong Yu
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shaokun Chen
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yansen Cai
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
82
|
Helical structure of actin stress fibers and its possible contribution to inducing their direction-selective disassembly upon cell shortening. Biomech Model Mechanobiol 2019; 19:543-555. [PMID: 31549258 DOI: 10.1007/s10237-019-01228-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
Abstract
Mechanisms of the assembly of actin stress fibers (SFs) have been extensively studied, while those of the disassembly-particularly cell shortening-induced ones-remain unclear. Here, we show that SFs have helical structures composed of multi-subbundles, and they tend to be delaminated upon cell shortening. Specifically, we observed with atomic force microscopy delamination of helical SFs into their subbundles. We physically caught individual SFs using a pair of glass needles to observe rotational deformations during stretching as well as ATP-driven active contraction, suggesting that they deform in a manner reflecting their intrinsic helical structure. A minimal analytical model was then developed based on the Frenet-Serret formulas with force-strain measurement data to suggest that helical SFs can be delaminated into the constituent subbundles upon axial shortening. Given that SFs are large molecular clusters that bear cellular tension but must promptly disassemble upon loss of the tension, the resulting increase in their surface area due to the shortening-induced delamination may facilitate interaction with surrounding molecules to aid subsequent disintegration. Thus, our results suggest a new mechanism of the disassembly that occurs only in the specific SFs exposed to forced shortening.
Collapse
|
83
|
DelNero P, Hopkins BD, Cantley LC, Fischbach C. Cancer metabolism gets physical. Sci Transl Med 2019; 10:10/442/eaaq1011. [PMID: 29794058 DOI: 10.1126/scitranslmed.aaq1011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/22/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022]
Abstract
Patient-derived culture models enable assessment of drug sensitivity and can connect personalized genomics with therapeutic options. However, their clinical translation is constrained by limited fidelity. We outline how the physical microenvironment regulates cell metabolism and describe how engineered culture systems could enhance the predictive power for precision medicine.
Collapse
Affiliation(s)
- Peter DelNero
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Benjamin D Hopkins
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Lewis C Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA. .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
84
|
Mehta AS, Singh A. Insights into regeneration tool box: An animal model approach. Dev Biol 2019; 453:111-129. [PMID: 30986388 PMCID: PMC6684456 DOI: 10.1016/j.ydbio.2019.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/20/2022]
Abstract
For ages, regeneration has intrigued countless biologists, clinicians, and biomedical engineers. In recent years, significant progress made in identification and characterization of a regeneration tool kit has helped the scientific community to understand the mechanism(s) involved in regeneration across animal kingdom. These mechanistic insights revealed that evolutionarily conserved pathways like Wnt, Notch, Hedgehog, BMP, and JAK/STAT are involved in regeneration. Furthermore, advancement in high throughput screening approaches like transcriptomic analysis followed by proteomic validations have discovered many novel genes, and regeneration specific enhancers that are specific to highly regenerative species like Hydra, Planaria, Newts, and Zebrafish. Since genetic machinery is highly conserved across the animal kingdom, it is possible to engineer these genes and regeneration specific enhancers in species with limited regeneration properties like Drosophila, and mammals. Since these models are highly versatile and genetically tractable, cross-species comparative studies can generate mechanistic insights in regeneration for animals with long gestation periods e.g. Newts. In addition, it will allow extrapolation of regenerative capabilities from highly regenerative species to animals with low regeneration potential, e.g. mammals. In future, these studies, along with advancement in tissue engineering applications, can have strong implications in the field of regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Abijeet S Mehta
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, USA; Premedical Program, University of Dayton, Dayton, OH, 45469, USA; Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, 45469, USA; The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, 45469, USA; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA.
| |
Collapse
|
85
|
Comparative study of variations in mechanical stress and strain of human blood vessels: mechanical reference for vascular cell mechano-biology. Biomech Model Mechanobiol 2019; 19:519-531. [PMID: 31494790 DOI: 10.1007/s10237-019-01226-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
Abstract
The diseases of human blood vessels are closely associated with local mechanical variations. A better understanding of the quantitative correlation in mechanical environment between the current mechano-biological studies and vascular physiological or pathological conditions in vivo is crucial for evaluating numerous existing results and exploring new factors for disease discovery. In this study, six representative human blood vessels with known experimental measurements were selected, and their stress and strain variations in vessel walls under different blood pressures were analyzed based on nonlinear elastic theory. The results suggest that conventional mechano-biological experiments seeking the different biological expressions of cells at high/low mechanical loadings are ambiguous as references for studying vascular diseases, because distinct "site-specific" characteristics appear in different vessels. The present results demonstrate that the inner surface of the vessel wall does not always suffer the most severe stretch under high blood pressures comparing to the outer surface. Higher tension on the outer surface of aortas supports the hypothesis of the outside-in inflammation dominated by aortic adventitial fibroblasts. These results indicate that cellular studies at different mechanical niches should be "disease-specific" as well. The present results demonstrate considerable stress gradients across the wall thickness, which indicate micro-scale mechanical variations existing around the vascular cells, and imply that the physiological or pathological changes are not static processes confined within isolated regions, but are coupled with dynamic cell behaviors such as migration. The results suggest that the stress gradients, as well as the mechanical stresses and strains, are key factors constituting the mechanical niches, which may shed new light on "factor-specific" experiments of vascular cell mechano-biology.
Collapse
|
86
|
Norahan MH, Amroon M, Ghahremanzadeh R, Rabiee N, Baheiraei N. Reduced graphene oxide: osteogenic potential for bone tissue engineering. IET Nanobiotechnol 2019; 13:720-725. [PMID: 31573541 PMCID: PMC8676151 DOI: 10.1049/iet-nbt.2019.0125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/09/2019] [Accepted: 06/04/2019] [Indexed: 09/28/2023] Open
Abstract
Collagen (Col) type I, as the major component of the bone extracellular matrix has been broadly studied for bone tissue engineering. However,inferior mechanical properties limit its usage for load bearing applications. In this research, freeze dried Col scaffolds are coated with graphene oxide (GO) through a covalent bond of the amine Col with the graphene carboxyl groups. The prepared scaffolds were then reduced using a chemical agent. Scanning electron microscopy exhibited a porous structure for the synthesized scaffolds with an approximate pore size of 100-220 ± 12 µm, which is in the suitable range for bone tissue engineering application. Reducing the GO coating improved the compressive modulus of the Col from 250 to 970 kPa. Apatite formation was also indicated by immersing the scaffolds in simulated body fluid after five days. The cytocompatibility of the scaffolds, using human bone marrow-derived mesenchymal stem cells, was confirmed with MTT analysis. Alkaline phosphatase assay revealed that reducing the Col-GO scaffolds can effectively activate the differentiation of hBM-MSCs into osteoblasts after 14 days, even without the addition of an osteogenic differentiation medium. The results of this study highlight that GO and its reduced form have considerable potential as bone substitutes for orthopaedic and dental applications.
Collapse
Affiliation(s)
| | - Masoud Amroon
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna research institute, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
87
|
Ellefsen KL, Holt JR, Chang AC, Nourse JL, Arulmoli J, Mekhdjian AH, Abuwarda H, Tombola F, Flanagan LA, Dunn AR, Parker I, Pathak MM. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca 2+ flickers. Commun Biol 2019; 2:298. [PMID: 31396578 PMCID: PMC6685976 DOI: 10.1038/s42003-019-0514-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Piezo channels transduce mechanical stimuli into electrical and chemical signals to powerfully influence development, tissue homeostasis, and regeneration. Studies on Piezo1 have largely focused on transduction of "outside-in" mechanical forces, and its response to internal, cell-generated forces remains poorly understood. Here, using measurements of endogenous Piezo1 activity and traction forces in native cellular conditions, we show that cellular traction forces generate spatially-restricted Piezo1-mediated Ca2+ flickers in the absence of externally-applied mechanical forces. Although Piezo1 channels diffuse readily in the plasma membrane and are widely distributed across the cell, their flicker activity is enriched near force-producing adhesions. The mechanical force that activates Piezo1 arises from Myosin II phosphorylation by Myosin Light Chain Kinase. We propose that Piezo1 Ca2+ flickers allow spatial segregation of mechanotransduction events, and that mobility allows Piezo1 channels to explore a large number of mechanical microdomains and thus respond to a greater diversity of mechanical cues.
Collapse
Affiliation(s)
- Kyle L. Ellefsen
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697 USA
| | - Jesse R. Holt
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Center for Complex Biological Systems, UC Irvine, Irvine, CA 92697 USA
| | - Alice C. Chang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Jamison L. Nourse
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
| | - Janahan Arulmoli
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697 USA
| | - Armen H. Mekhdjian
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Hamid Abuwarda
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
| | - Francesco Tombola
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
| | - Lisa A. Flanagan
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697 USA
- Department of Neurology, UC Irvine, Irvine, CA 92697 USA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305 USA
| | - Ian Parker
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697 USA
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
| | - Medha M. Pathak
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Center for Complex Biological Systems, UC Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697 USA
| |
Collapse
|
88
|
Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25637-25653. [PMID: 31283160 DOI: 10.1021/acsami.9b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toward imitating the natural smartness and responsivity of biological systems, surface interfacial properties are considered to be responsive and tunable if they show a reactive behavior to an environmental stimulus. This is still quite different from many contemporary biomaterials that lack responsiveness to interact with blood and different body tissues in a physiological manner. Meanwhile it is possible to even go one step further from responsiveness to dual-mode switchability and explore "switchable" or "reversible" responses of synthetic materials. We understand "switchable biomaterials" as materials undergoing a stepwise, structural transformation coupled with considerable changes of interfacial and other surface properties as a response to a stimulus. Therewith, a survey on stimuli-induced dynamic changes of charge, wettability, stiffness, topography, porosity, and thickness/swelling is presented here, as potentially powerful new technologies especially for future biomaterial development. Since living cells constantly sense their environment through a variety of surface receptors and other mechanisms, these obedient interfacial properties were particularly discussed regarding their advantageous multifunctionality for protein adsorption and cell adhesion signaling, which may alter in time and with environmental conditions.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Applied Sciences , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
89
|
Mohammed D, Versaevel M, Bruyère C, Alaimo L, Luciano M, Vercruysse E, Procès A, Gabriele S. Innovative Tools for Mechanobiology: Unraveling Outside-In and Inside-Out Mechanotransduction. Front Bioeng Biotechnol 2019; 7:162. [PMID: 31380357 PMCID: PMC6646473 DOI: 10.3389/fbioe.2019.00162] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Cells and tissues can sense and react to the modifications of the physico-chemical properties of the extracellular environment (ECM) through integrin-based adhesion sites and adapt their physiological response in a process called mechanotransduction. Due to their critical localization at the cell-ECM interface, transmembrane integrins are mediators of bidirectional signaling, playing a key role in “outside-in” and “inside-out” signal transduction. After presenting the basic conceptual fundamentals related to cell mechanobiology, we review the current state-of-the-art technologies that facilitate the understanding of mechanotransduction signaling pathways. Finally, we highlight innovative technological developments that can help to advance our understanding of the mechanisms underlying nuclear mechanotransduction.
Collapse
Affiliation(s)
- Danahe Mohammed
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marie Versaevel
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Céline Bruyère
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laura Alaimo
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Eléonore Vercruysse
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Anthony Procès
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Department of Neurosciences, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Soft Matter Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
90
|
Tan GZ, Zhou Y. Electrospinning of biomimetic fibrous scaffolds for tissue engineering: a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1636248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- George Z. Tan
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| | - Yingge Zhou
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
91
|
Thibeaux R, Duval H, Smaniotto B, Vennat E, Néron D, David B. Assessment of the interplay between scaffold geometry, induced shear stresses, and cell proliferation within a packed bed perfusion bioreactor. Biotechnol Prog 2019; 35:e2880. [PMID: 31271252 DOI: 10.1002/btpr.2880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/29/2019] [Accepted: 06/27/2019] [Indexed: 11/12/2022]
Abstract
By favoring cell proliferation and differentiation, perfusion bioreactors proved efficient at optimizing cell culture. The aim of this study was to quantify cell proliferation within a perfusion bioreactor and correlate it to the wall shear stress (WSS) distribution by combining 3-D imaging and computational fluid dynamics simulations.NIH-3T3 fibroblasts were cultured onto a scaffold model made of impermeable polyacetal spheres or Polydimethylsiloxane cubes. After 1, 2, and 3 weeks of culture, constructs were analyzed by micro-computed tomography (μCT) and quantification of cell proliferation was assessed. After 3 weeks, the volume of cells was found four times higher in the stacking of spheres than in the stacking of cube.3D-μCT reconstruction of bioreactors was used as input for the numerical simulations. Using a lattice-Boltzmann method, we simulated the fluid flow within the bioreactors. We retrieved the WSS distribution (PDF) on the scaffolds surface at the beginning of cultivation and correlated this distribution to the local presence of cells after 3 weeks of cultivation. We found that the WSS distributions strongly differ between spheres and cubes even if the porosity and the specific wetted area of the stackings were very similar. The PDF is narrower and the mean WSS is lower for cubes (11 mPa) than for spheres (20 mPa). For the stacking of spheres, the relative occupancy of the surface sites by cells is maximal when WSS is greater than 20 mPa. For cubes, the relative occupancy is maximal when the WSS is lower than 10 mPa. The discrepancies between spheres and cubes are attributed to the more numerous sites in stacking of spheres that may induce 3-D (multi-layered) proliferation.
Collapse
Affiliation(s)
- Roman Thibeaux
- MSSMat, CentraleSupélec, Université Paris Saclay, CNRS, Gif sur Yvette, France
| | - Hervé Duval
- LGPM, CentraleSupélec, Université Paris Saclay, Gif sur Yvette, France
| | | | - Elsa Vennat
- MSSMat, CentraleSupélec, Université Paris Saclay, CNRS, Gif sur Yvette, France
| | - David Néron
- LMT, ENS Paris-Saclay, CNRS, Université Paris-Saclay, Cachan, France
| | - Bertrand David
- MSSMat, CentraleSupélec, Université Paris Saclay, CNRS, Gif sur Yvette, France
| |
Collapse
|
92
|
Manjua AC, Alves VD, Crespo JG, Portugal CAM. Magnetic Responsive PVA Hydrogels for Remote Modulation of Protein Sorption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21239-21249. [PMID: 31141340 DOI: 10.1021/acsami.9b03146] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This work shows the ability to reversibly modulate the hydrophilicity of the hydrogels doped with iron oxide nanoparticles (MNPs) in a noninvasive way when exposed to a cyclic variation of the intensity (ON/OFF) of an external magnetic field. A reversible switching of surface contact angles was observed for magnetic PVA hydrogels when exposed to consecutive variation of the magnetic field intensity between 0 and 0.08 T. Motivated by the magnetic dependence of the hydrophilicity of these hybrid hydrogels, the impact of the magnetic field on protein sorption was also evaluated. The noninvasive regulation of protein sorption-released mechanisms was achieved by ON/OFF magnetic field switches, suggesting the possible influence of magnetic-induced hydrogel shrinking effect and changes of surface wettability on protein sorption. The capacity to magnetically modulate surface wettability and protein sorption make these magnetic hydrogels promising candidates for development of functional devices for tissue engineering, drug release applications, or biosensor systems, where the control of protein sorption and mobility are essential steps to improve the efficiency of these processes.
Collapse
Affiliation(s)
- Ana C Manjua
- LAQV-Requimte , FCT-Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica , Portugal
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences , IST-Universidade de Lisboa , Av. Rovisco Pais , 1049-001 Lisboa , Portugal
| | - Vitor D Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia , Universidade de Lisboa , Tapada da Ajuda , 1349-017 Lisboa , Portugal
| | - João G Crespo
- LAQV-Requimte , FCT-Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica , Portugal
| | - Carla A M Portugal
- LAQV-Requimte , FCT-Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica , Portugal
| |
Collapse
|
93
|
Sasikumar S, Chameettachal S, Cromer B, Pati F, Kingshott P. Decellularized extracellular matrix hydrogels—cell behavior as a function of matrix stiffness. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
94
|
Burrowes KS, Iravani A, Kang W. Integrated lung tissue mechanics one piece at a time: Computational modeling across the scales of biology. Clin Biomech (Bristol, Avon) 2019; 66:20-31. [PMID: 29352607 DOI: 10.1016/j.clinbiomech.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
The lung is a delicately balanced and highly integrated mechanical system. Lung tissue is continuously exposed to the environment via the air we breathe, making it susceptible to damage. As a consequence, respiratory diseases present a huge burden on society and their prevalence continues to rise. Emergent function is produced not only by the sum of the function of its individual components but also by the complex feedback and interactions occurring across the biological scales - from genes to proteins, cells, tissue and whole organ - and back again. Computational modeling provides the necessary framework for pulling apart and putting back together the pieces of the body and organ systems so that we can fully understand how they function in both health and disease. In this review, we discuss models of lung tissue mechanics spanning from the protein level (the extracellular matrix) through to the level of cells, tissue and whole organ, many of which have been developed in isolation. This is a vital step in the process but to understand the emergent behavior of the lung, we must work towards integrating these component parts and accounting for feedback across the scales, such as mechanotransduction. These interactions will be key to unlocking the mechanisms occurring in disease and in seeking new pharmacological targets and improving personalized healthcare.
Collapse
Affiliation(s)
- Kelly S Burrowes
- Department of Chemical and Materials Engineering, University of Auckland, 2-6 Park Avenue, Auckland 1023, New Zealand; Auckland Bioengineering Institute, University of Auckland, 70 Symonds Street, Auckland 1010, New Zealand.
| | - Amin Iravani
- Department of Chemical and Materials Engineering, University of Auckland, 2-6 Park Avenue, Auckland 1023, New Zealand.
| | - Wendy Kang
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
95
|
Xu K. Ellipse packing in two-dimensional cell tessellation: a theoretical explanation for Lewis's law and Aboav-Weaire's law. PeerJ 2019; 7:e6933. [PMID: 31143548 PMCID: PMC6525589 DOI: 10.7717/peerj.6933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/09/2019] [Indexed: 11/20/2022] Open
Abstract
Background Lewis’s law and Aboav-Weaire’s law are two fundamental laws used to describe the topology of two-dimensional (2D) structures; however, their theoretical bases remain unclear. Methods We used R software with the Conicfit package to fit ellipses based on the geometric parameters of polygonal cells of ten different kinds of natural and artificial 2D structures. Results Our results indicated that the cells could be classified as an ellipse’s inscribed polygon (EIP) and that they tended to form the ellipse’s maximal inscribed polygon (EMIP). This phenomenon was named as ellipse packing. On the basis of the number of cell edges, cell area, and semi-axes of fitted ellipses, we derived and verified new relations of Lewis’s law and Aboav-Weaire’s law. Conclusions Ellipse packing is a short-range order that places restrictions on the cell topology and growth pattern. Lewis’s law and Aboav-Weaire’s law mainly reflect the effect of deformation from circle to ellipse on cell area and the edge number of neighboring cells, respectively. The results of this study could be used to simulate the dynamics of cell topology during growth.
Collapse
Affiliation(s)
- Kai Xu
- Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
96
|
Griffin BP, Largaespada CJ, Rinaldi NA, Lemmon CA. A novel method for quantifying traction forces on hexagonal micropatterned protein features on deformable poly-dimethyl siloxane sheets. MethodsX 2019; 6:1343-1352. [PMID: 31417850 PMCID: PMC6690417 DOI: 10.1016/j.mex.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/09/2019] [Indexed: 11/24/2022] Open
Abstract
Many methods exist for quantifying cellular traction forces, including traction force microscopy and microfabricated post arrays. However, these methodologies have limitations, including a requirement to remove cells to determine undeflected particle locations and the inability to quantify forces of cells with low cytoskeletal stiffness, respectively. Here we present a novel method of traction force quantification that eliminates both of these limitations. Through the use of a hexagonal pattern of microcontact-printed protein spots, a novel computational algorithm, and thin surfaces of polydimethyl siloxane (PDMS) blends, we demonstrate a system that: •quantifies cellular forces on a homogeneous surface that is stable and easily manufactured.•utilizes hexagonal patterns of protein spots and computational geometry to quantify cellular forces without need for cell removal.•quantifies cellular forces in cells with low cytoskeletal rigidity.
Collapse
Affiliation(s)
- Brian P. Griffin
- Department of Biomedical Engineering, Virginia Commonwealth University, United States
| | | | - Nicole A. Rinaldi
- Department of Biomedical Engineering, University of Rochester, United States
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, United States
| |
Collapse
|
97
|
Abstract
A wide range of cell–microenvironmental interactions are mediated by membrane-localized receptors that bind ligands present on another cell or the extracellular matrix. This situation introduces a number of physical effects including spatial organization of receptor–ligand complexes and development of mechanical forces in cells. Unlike traditional experimental approaches, hybrid live cell–supported lipid bilayer (SLB) systems, wherein a live cell interacts with a synthetic substrate supported membrane, allow interrogation of these aspects of receptor signaling. The SLB system directly offers facile control over the identity, density, and mobility of ligands used for engaging cellular receptors. Further, application of various nano- and micropatterning techniques allows for spatial patterning of ligands. In this review, we describe the hybrid live cell–SLB system and its application in uncovering a range of spatial and mechanical aspects of receptor signaling. We highlight the T cell immunological synapse, junctions formed between EphA2- and ephrinA1-expressing cells, and adhesions formed by cadherin and integrin receptors.
Collapse
Affiliation(s)
- Kabir H. Biswas
- NTU Institute for Health Technologies, Nanyang Technological University, Singapore 637553
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
98
|
Gargalionis AN, Basdra EK, Papavassiliou AG. Polycystins and Mechanotransduction in Human Disease. Int J Mol Sci 2019; 20:ijms20092182. [PMID: 31052533 PMCID: PMC6539061 DOI: 10.3390/ijms20092182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022] Open
Abstract
Alterations in the process of mechanotransduction have been implicated in the pathogenesis of several diseases such as genetic diseases, osteoporosis, cardiovascular anomalies, and cancer. Several studies over the past twenty years have demonstrated that polycystins (polycystin-1, PC1; and polycystin-2, PC2) respond to changes of extracellular mechanical cues, and mediate pathogenic mechanotransduction and cyst formation in kidney cells. However, recent reports reveal the emergence of polycystins as key proteins that facilitate the transduction of mechano-induced signals in various clinical entities besides polycystic kidney disease, such as cancer, cardiovascular defects, bone loss, and deformations, as well as inflammatory processes like psoriasis. Herewith, we discuss data from recent studies that establish this role with potential clinical utility.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Efthimia K Basdra
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
99
|
Di Giacinto F, De Spirito M, Maulucci G. Low-Intensity Ultrasound Induces Thermodynamic Phase Separation of Cell Membranes through a Nucleation-Condensation Process. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1143-1150. [PMID: 30773378 DOI: 10.1016/j.ultrasmedbio.2019.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 05/24/2023]
Abstract
Membrane fluidity, a broad term adopted to describe the thermodynamic phase state of biological membranes, can be altered by local pressure variations caused by ultrasound exposure. The alterations in lipid spatial configuration and dynamics can modify their interactions with membrane proteins and activate signal transduction pathways, thus regulating several cellular functions. Here fluidity maps of murine fibroblast cells are generated at a sub-micrometric scale during ultrasound stimulation with an intensity and frequency typical of medical applications. Ultrasound induces a phase separation characterized by two-step kinetics leading to a time-dependent decrease in fluidity. First, nucleation of liquid crystallin domains with an average dimension of ∼1 μm occurs. Then, these domains condense into larger clusters with an average dimension of ∼1.5 μm. The induced phase separation could be an important driving force critical for the cellular response connecting the ultrasound-induced mechanical stress and signal transduction.
Collapse
Affiliation(s)
- Flavio Di Giacinto
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Istituto di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Istituto di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy; Istituto di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
100
|
Boudou T, Andersen T, Balland M. On the spatiotemporal regulation of cell tensional state. Exp Cell Res 2019; 378:113-117. [DOI: 10.1016/j.yexcr.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/18/2019] [Indexed: 01/22/2023]
|