51
|
Savoy RM, Ghosh PM. The dual role of filamin A in cancer: can't live with (too much of) it, can't live without it. Endocr Relat Cancer 2013; 20:R341-56. [PMID: 24108109 PMCID: PMC4376317 DOI: 10.1530/erc-13-0364] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamin A (FlnA) has been associated with actin as cytoskeleton regulator. Recently its role in the cell has come under scrutiny for FlnA's involvement in cancer development. FlnA was originally revealed as a cancer-promoting protein, involved in invasion and metastasis. However, recent studies have also found that under certain conditions, it prevented tumor formation or progression, confusing the precise function of FlnA in cancer development. Here, we try to decipher the role of FlnA in cancer and the implications for its dual role. We propose that differences in subcellular localization of FlnA dictate its role in cancer development. In the cytoplasm, FlnA functions in various growth signaling pathways, such as vascular endothelial growth factor, in addition to being involved in cell migration and adhesion pathways, such as R-Ras and integrin signaling. Involvement in these pathways and various others has shown a correlation between high cytoplasmic FlnA levels and invasive cancers. However, an active cleaved form of FlnA can localize to the nucleus rather than the cytoplasm and its interaction with transcription factors has been linked to a decrease in invasiveness of cancers. Therefore, overexpression of FlnA has a tumor-promoting effect, only when it is localized to the cytoplasm, whereas if FlnA undergoes proteolysis and the resulting C-terminal fragment localizes to the nucleus, it acts to suppress tumor growth and inhibit metastasis. Development of drugs to target FlnA and cause cleavage and subsequent localization to the nucleus could be a new and potent field of research in treating cancer.
Collapse
Affiliation(s)
- Rosalinda M Savoy
- Department of Urology, University of California Davis School of Medicine, University of California, 4860 Y Street, Suite 3500, Sacramento, California 95817, USA VA Northern California Health Care System, Mather, California, USA
| | | |
Collapse
|
52
|
|
53
|
Targeting the Dbl and dock-family RhoGEFs: a yeast-based assay to identify cell-active inhibitors of Rho-controlled pathways. Enzymes 2013; 33 Pt A:169-91. [PMID: 25033805 DOI: 10.1016/b978-0-12-416749-0.00008-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Ras-like superfamily of low molecular weight GTPases is made of five major families (Arf/Sar, Rab, Ran, Ras, and Rho), highly conserved across evolution. This is in keeping with their roles in basic cellular functions (endo/exocytosis, vesicular trafficking, nucleocytoplasmic trafficking, cell signaling, proliferation and apoptosis, gene regulation, F-actin dynamics), whose alterations are associated with various types of diseases, in particular cancer, neurodegenerative, cardiovascular, and infectious diseases. For these reasons, Ras-like pathways are of great potential in therapeutics and identifying inhibitors that decrease signaling activity is under intense research. Along this line, guanine exchange factors (GEFs) represent attractive targets. GEFs are proteins that promote the active GTP-bound state of GTPases and represent the major entry points whereby extracellular cues are converted into Ras-like signaling. We previously developed the yeast exchange assay (YEA), an experimental setup in the yeast in which activity of a mammalian GEF can be monitored by auxotrophy and color reporter genes. This assay was further engineered for medium-throughput screening of GEF inhibitors, which can readily select for cell-active and specific compounds. We report here on the successful identification of inhibitors against Dbl and CZH/DOCK-family members, GEFs for Rho GTPases, and on the experimental setup to screen for inhibitors of GEFs of the Arf family. We also discuss on inhibitors developed using virtual screening (VS), which target the GEF/GTPase interface with high efficacy and specificity. We propose that using VS and YEA in combination may represent a method of choice for identifying specific and cell-active GEF inhibitors.
Collapse
|
54
|
Abstract
Small G proteins of the Rho family and their activators the guanine nucleotide exchange factors (RhoGEFs) regulate essential cellular functions and their deregulation has been associated with an amazing variety of human disorders, including cancer, inflammation, vascular diseases, and mental retardation. Rho GTPases and RhoGEFs therefore represent important targets for inhibition, not only in basic research but also for therapeutic purposes, and strategies to inhibit their function are actively being sought. Our lab has been very active in this field and has used the peptide aptamer technology to develop the first RhoGEF inhibitor, using the RhoGEF Trio as a model. Trio function has been described mainly in cell motility and axon growth in the nervous system via Rac1 GTPase activation, but recent findings suggest it to play also a role in the aggressive phenotype of various cancers, making it an attractive target for drug discovery. The object of this chapter is to demonstrate that targeting a RhoGEF using the peptide aptamer technology represents a valid and efficient approach to inhibit cellular processes in which Rho GTPase activity is upregulated. This is illustrated here by the first description of a peptide inhibitor of the oncogenic RhoGEF Tgat, TRIP(E32G), which is functional in vivo. On a long-term perspective, these peptide inhibitors can also serve as therapeutic tools or as guides for the discovery of small-molecule drugs, using an aptamer displacement screen.
Collapse
Affiliation(s)
- Susanne Schmidt
- Centre de Recherche en Biochimie Macromoléculaire, CNRS-UMR 5237, Universités Montpellier I et II, 1919 Route de Mende, Montpellier, France.
| | - Anne Debant
- Centre de Recherche en Biochimie Macromoléculaire, CNRS-UMR 5237, Universités Montpellier I et II, 1919 Route de Mende, Montpellier, France.
| |
Collapse
|
55
|
Abstract
Small G proteins of the Rho family are pivotal regulators of several signaling networks. The Ras homolog family (Rho) and one of its targets, Rho-associated protein kinase (ROCK), participate in a wide variety of biological processes, including bone formation. A previous study has demonstrated that the ROCK inhibitor Y-27632 enhanced bone formation induced by recombinant human bone morphogenetic protein-2 (BMP-2) in vivo and in vitro. However, the effect of other Rho family members, such as Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42), on bone formation remains unknown. In this study, we investigated whether Rac1 also participates in BMP-2-induced osteogenesis. Expression of a dominant-negative mutant of Rac1 enhanced BMP-2-induced osteoblastic differentiation in C2C12 cells, whereas a constitutively active mutant of Rac1 attenuated that effect. Knockdown of T-lymphoma invasion and metastasis 1 (Tiam1), a Rac-specific guanine nucleotide exchange factor, enhanced BMP-2-induced alkaline phosphatase activity. Further, we demonstrated that BMP-2 stimulated Rac1 activity. These results indicate that the activation of Rac1 attenuates osteoblastic differentiation in C2C12 cells.
Collapse
|
56
|
High genomic instability predicts survival in metastatic high-risk neuroblastoma. Neoplasia 2013; 14:823-32. [PMID: 23019414 DOI: 10.1593/neo.121114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 07/17/2012] [Accepted: 07/30/2012] [Indexed: 12/13/2022] Open
Abstract
We aimed to identify novel molecular prognostic markers to better predict relapse risk estimate for children with high-risk (HR) metastatic neuroblastoma (NB). We performed genome- and/or transcriptome-wide analyses of 129 stage 4 HR NBs. Children older than 1 year of age were categorized as "short survivors" (dead of disease within 5 years from diagnosis) and "long survivors" (alive with an overall survival time ≥ 5 years). We reported that patients with less than three segmental copy number aberrations in their tumor represent a molecularly defined subgroup with a high survival probability within the current HR group of patients. The complex genomic pattern is a prognostic marker independent of NB-associated chromosomal aberrations, i.e., MYCN amplification, 1p and 11q losses, and 17q gain. Integrative analysis of genomic and expression signatures demonstrated that fatal outcome is mainly associated with loss of cell cycle control and deregulation of Rho guanosine triphosphates (GTPases) functioning in neuritogenesis. Tumors with MYCN amplification show a lower chromosome instability compared to MYCN single-copy NBs (P = .0008), dominated by 17q gain and 1p loss. Moreover, our results suggest that the MYCN amplification mainly drives disruption of neuronal differentiation and reduction of cell adhesion process involved in tumor invasion and metastasis. Further validation studies are warranted to establish this as a risk stratification for patients.
Collapse
|
57
|
Severin S, Gaits-Iacovoni F, Allart S, Gratacap MP, Payrastre B. A confocal-based morphometric analysis shows a functional crosstalk between the actin filament system and microtubules in thrombin-stimulated platelets. J Thromb Haemost 2013; 11:183-6. [PMID: 23122006 DOI: 10.1111/jth.12053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- S Severin
- Inserm, U1048 and Université Toulouse 3, I2MC, Toulouse Cedex, France.
| | | | | | | | | |
Collapse
|
58
|
Ferri N, Bernini SK, Corsini A, Clerici F, Erba E, Stragliotto S, Contini A. 3-Aryl-N-aminoylsulfonylphenyl-1H-pyrazole-5-carboxamides: a new class of selective Rac inhibitors. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20328f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
59
|
Tyrosine phosphorylation of the Rho guanine nucleotide exchange factor Trio regulates netrin-1/DCC-mediated cortical axon outgrowth. Mol Cell Biol 2012; 33:739-51. [PMID: 23230270 DOI: 10.1128/mcb.01264-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The chemotropic guidance cue netrin-1 mediates attraction of migrating axons during central nervous system development through the receptor Deleted in Colorectal Cancer (DCC). Downstream of netrin-1, activated Rho GTPases Rac1 and Cdc42 induce cytoskeletal rearrangements within the growth cone. The Rho guanine nucleotide exchange factor (GEF) Trio is essential for Rac1 activation downstream of netrin-1/DCC, but the molecular mechanisms governing Trio activity remain elusive. Here, we demonstrate that Trio is phosphorylated by Src family kinases in the embryonic rat cortex in response to netrin-1. In vitro, Trio was predominantly phosphorylated at Tyr(2622) by the Src kinase Fyn. Though the phospho-null mutant Trio(Y2622F) retained GEF activity toward Rac1, its expression impaired netrin-1-induced Rac1 activation and DCC-mediated neurite outgrowth in N1E-115 neuroblastoma cells. Trio(Y2622F) impaired netrin-1-induced axonal extension in cultured cortical neurons and was unable to colocalize with DCC in growth cones, in contrast to wild-type Trio. Furthermore, depletion of Trio in cortical neurons reduced the level of cell surface DCC in growth cones, which could be restored by expression of wild-type Trio but not Trio(Y2622F). Together, these findings demonstrate that Trio(Y2622) phosphorylation is essential for the regulation of the DCC/Trio signaling complex in cortical neurons during netrin-1-mediated axon outgrowth.
Collapse
|
60
|
Abstract
Small Rho-GTPases are enzymes that are bound to GDP or GTP, which determines their inactive or active state, respectively. The exchange of GDP for GTP is catalyzed by so-called Rho-guanine nucleotide exchange factors (GEFs). Rho-GEFs are characterized by a Dbl-homology (DH) and adjacent Pleckstrin-homology (PH) domain that serves as enzymatic unit for the GDP/GTP exchange. Rho-GEFs show different GTPase specificities, meaning that a particular GEF can activate either multiple GTPases or only one specific GTPase. We recently reported that the Rho-GEF Trio, known to be able to exchange GTP on Rac1, RhoG and RhoA, regulates lamellipodia formation to mediate cell spreading and migration in a Rac1-dependent manner. In this commentary, we review the current knowledge of Trio in several aspects of cell biology.
Collapse
Affiliation(s)
- Jos van Rijssel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
61
|
Kwiatkowska A, Didier S, Fortin S, Chuang Y, White T, Berens ME, Rushing E, Eschbacher J, Tran NL, Chan A, Symons M. The small GTPase RhoG mediates glioblastoma cell invasion. Mol Cancer 2012; 11:65. [PMID: 22966858 PMCID: PMC3557187 DOI: 10.1186/1476-4598-11-65] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/18/2012] [Indexed: 11/29/2022] Open
Abstract
Background The invasion of glioblastoma cells into regions of the normal brain is a critical factor that limits current therapies for malignant astrocytomas. Previous work has identified roles for the Rho family guanine nucleotide exchange factors Trio and Vav3 in glioblastoma invasion. Both Trio and Vav3 act on the small GTPase RhoG. We therefore examined the role of RhoG in the invasive behavior of glioblastoma cells. Results We found that siRNA-mediated depletion of RhoG strongly inhibits invasion of glioblastoma cells through brain slices ex vivo. In addition, depletion of RhoG has a marginal effect on glioblastoma cell proliferation, but significantly inhibits glioblastoma cell survival in colony formation assays. We also observed that RhoG is activated by both HGF and EGF, two factors that are thought to be clinically relevant drivers of glioblastoma invasive behavior, and that RhoG is overexpressed in human glioblastoma tumors versus non-neoplastic brain. In search of a mechanism for the contribution of RhoG to the malignant behavior of glioblastoma cells, we found that depletion of RhoG strongly inhibits activation of the Rac1 GTPase by both HGF and EGF. In line with this observation, we also show that RhoG contributes to the formation of lamellipodia and invadopodia, two functions that have been shown to be Rac1-dependent. Conclusions Our functional analysis of RhoG in the context of glioblastoma revealed a critical role for RhoG in tumor cell invasion and survival. These results suggest that targeting RhoG-mediated signaling presents a novel avenue for glioblastoma therapy.
Collapse
Affiliation(s)
- Aneta Kwiatkowska
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, Manhasset, NY, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
van Rijssel J, Kroon J, Hoogenboezem M, van Alphen FPJ, de Jong RJ, Kostadinova E, Geerts D, Hordijk PL, van Buul JD. The Rho-guanine nucleotide exchange factor Trio controls leukocyte transendothelial migration by promoting docking structure formation. Mol Biol Cell 2012; 23:2831-44. [PMID: 22696684 PMCID: PMC3408411 DOI: 10.1091/mbc.e11-11-0907] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophils induce endothelial docking structures prior to crossing the blood vessel wall. The Rho guanine nucleotide exchange factor Trio regulates the formation of these structures through ICAM-1 clustering in a filamin-dependent fashion. We show that Trio is a crucial mediator of the signaling pathway that controls leukocyte extravasation through docking structure formation. Leukocyte transendothelial migration involves the active participation of the endothelium through the formation of apical membrane protrusions that embrace adherent leukocytes, termed docking structures. Using live-cell imaging, we find that prior to transmigration, endothelial docking structures form around 80% of all neutrophils. Previously we showed that endothelial RhoG and SGEF control leukocyte transmigration. In this study, our data reveal that both full-length Trio and the first DH-PH (TrioD1) domain of Trio, which can activate Rac1 and RhoG, interact with ICAM-1 and are recruited to leukocyte adhesion sites. Moreover, upon clustering of ICAM-1, the Rho-guanine nucleotide exchange factor Trio activates Rac1, prior to activating RhoG, in a filamin-dependent manner. We further show that docking structure formation is initiated by ICAM-1 clustering into ring-like structures, which is followed by apical membrane protrusion. Interestingly, we find that Rac1 is required for ICAM-1 clustering, whereas RhoG controls membrane protrusion formation. Finally, silencing endothelial Trio expression or reducing TrioD1 activity without affecting SGEF impairs both docking structure formation and leukocyte transmigration. We conclude that Trio promotes leukocyte transendothelial migration by inducing endothelial docking structure formation in a filamin-dependent manner through the activation of Rac1 and RhoG.
Collapse
Affiliation(s)
- Jos van Rijssel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Mardilovich K, Olson MF, Baugh M. Targeting Rho GTPase signaling for cancer therapy. Future Oncol 2012; 8:165-77. [PMID: 22335581 DOI: 10.2217/fon.11.143] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence from basic and clinical studies supports the concept that signaling pathways downstream of Rho GTPases play important roles in tumor development and progression. As a result, there has been considerable interest in the possibility that specific proteins in these signal transduction pathways could be potential targets for cancer therapy. A number of inhibitors targeting critical effector proteins, activators or the Rho GTPases themselves, have been developed. We will review the strategies currently being used to develop inhibitors of Rho GTPases and downstream signaling kinases and discuss candidate entities. Although molecularly targeted drugs that inhibit Rho GTPase signaling have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to drive considerable pharmaceutical research and development.
Collapse
Affiliation(s)
- Katerina Mardilovich
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | | | |
Collapse
|
64
|
miR-124-regulated RhoG reduces neuronal process complexity via ELMO/Dock180/Rac1 and Cdc42 signalling. EMBO J 2012; 31:2908-21. [PMID: 22588079 DOI: 10.1038/emboj.2012.130] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/05/2012] [Indexed: 12/19/2022] Open
Abstract
The small GTPase RhoG plays a central role in actin remodelling during diverse biological processes such as neurite outgrowth, cell migration, phagocytosis of apoptotic cells, and the invasion of pathogenic bacteria. Although it is known that RhoG stimulates neurite outgrowth in the rat pheochromocytoma PC12 cell line, neither the physiological function nor the regulation of this GTPase in neuronal differentiation is clear. Here, we identify RhoG as an inhibitor of neuronal process complexity, which is regulated by the microRNA miR-124. We find that RhoG inhibits dendritic branching in hippocampal neurons in vitro and in vivo. RhoG also inhibits axonal branching, acting via an ELMO/Dock180/Rac1 signalling pathway. However, RhoG inhibits dendritic branching dependent on the small GTPase Cdc42. Finally, we show that the expression of RhoG in neurons is suppressed by the CNS-specific microRNA miR-124 and connect the regulation of RhoG expression by miR-124 to the stimulation of neuronal process complexity. Thus, RhoG emerges as a cellular conductor of Rac1 and Cdc42 activity, in turn regulated by miR-124 to control axonal and dendritic branching.
Collapse
|
65
|
Elfenbein A, Lanahan A, Zhou TX, Yamasaki A, Tkachenko E, Matsuda M, Simons M. Syndecan 4 regulates FGFR1 signaling in endothelial cells by directing macropinocytosis. Sci Signal 2012; 5:ra36. [PMID: 22569333 DOI: 10.1126/scisignal.2002495] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fibroblast growth factor 2 (FGF2) induces endothelial cell migration and angiogenesis through two classes of receptors: receptor tyrosine kinases, such as FGF receptor 1 (FGFR1), and heparan sulfate proteoglycans, such as syndecan 4 (S4). We examined the distinct contributions of FGFR1 and S4 in shaping the endothelial response to FGF2. S4 determined the kinetics and magnitude of FGF2-induced mitogen-activated protein kinase (MAPK) signaling by promoting the macropinocytosis of the FGFR1-S4-FGF2 signaling complex. Internalization of the S4 receptor complex was independent of clathrin and dynamin, proceeded from lipid raft-enriched membranes, and required activation of the guanosine triphosphatases RhoG and Rab5. Genetic knockout of S4, disruption of S4 function, or inhibition of Rab5 led to increased endocytosis and MAPK signaling. These data define the mechanism by which FGFR1 and S4 coordinate downstream signaling upon FGF2 stimulation: FGFR1 initiates MAPK signaling, whereas S4-dependent FGFR1 macropinocytosis modulates the kinetics of MAPK activation. Our studies identify S4 as a regulator of MAPK signaling and address the question of how distinct classes of FGFRs individually contribute to signal transduction in endothelial cells.
Collapse
Affiliation(s)
- Arye Elfenbein
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
66
|
Detection of Rho GEF and GAP activity through a sensitive split luciferase assay system. Biochem J 2012; 441:869-79. [PMID: 22004470 DOI: 10.1042/bj20111111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rho GTPases regulate the assembly of cellular actin structures and are activated by GEFs (guanine-nucleotide-exchange factors) and rendered inactive by GAPs (GTPase-activating proteins). Using the Rho GTPases Cdc42, Rac1 and RhoA, and the GTPase-binding portions of the effector proteins p21-activated kinase and Rhophilin1, we have developed split luciferase assays for detecting both GEF and GAP regulation of these GTPases. The system relies on purifying split luciferase fusion proteins of the GTPases and effectors from bacteria, and our results show that the assays replicate GEF and GAP specificities at nanomolar concentrations for several previously characterized Rho family GEFs (Dbl, Vav2, Trio and Asef) and GAPs [p190, Cdc42 GAP and PTPL1-associated RhoGAP]. The assay detected activities associated with purified recombinant GEFs and GAPs, cell lysates expressing exogenous proteins, and immunoprecipitates of endogenous Vav1 and p190. The results demonstrate that the split luciferase system provides an effective sensitive alternative to radioactivity-based assays for detecting GTPase regulatory protein activities and is adaptable to a variety of assay conditions.
Collapse
|
67
|
Portales-Casamar E, Briançon-Marjollet A, Fromont S, Triboulet R, Debant A. Identification of novel neuronal isoforms of the Rho-GEF Trio. Biol Cell 2012; 98:183-93. [PMID: 16033331 DOI: 10.1042/bc20050009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The large family of GEFs (guanine nucleotide-exchange factors) for Rho GTPases activate the GTPases by accelerating their GDP/GTP exchange. The multidomain protein Trio is the founding member of an intriguing subfamily of Rho-GEFs exhibiting two Rho-GEF and numerous additional domains. The members of the Trio family play an important role in neuronal physiology, and their structural organization is very well conserved through evolution. It has previously been shown that all the members, except mammalian Trio, display several isoforms, the functions of which have been well established. RESULTS In this study, we have identified, by a combination of different approaches, novel Trio isoforms that have been generated by alternative splicing, giving rise to proteins that exhibit one or two Rho-GEF domains (GEFDs). These isoforms are specifically expressed in the nervous system, at a higher level than the full-length Trio, which is ubiquitously expressed. In addition, we show that all the GEFD1-containing isoforms induce neurite outgrowth in neuroblastoma cells. CONCLUSIONS We have identified neuronal specific isoforms of Trio which could be essential for Trio function in neuronal morphology.
Collapse
|
68
|
Gualdoni S, Albertinazzi C, Corbetta S, Valtorta F, de Curtis I. Normal levels of Rac1 are important for dendritic but not axonal development in hippocampal neurons. Biol Cell 2012; 99:455-64. [PMID: 17428196 DOI: 10.1042/bc20060119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Rho family GTPases are required for cytoskeletal reorganization and are considered important for the maturation of neurons. Among these proteins, Rac1 is known to play a crucial role in the regulation of actin dynamics, and a number of studies indicate the involvement of this protein in different steps of vertebrate neuronal maturation. There are two distinct Rac proteins expressed in neurons, namely the ubiquitous Rac1 and the neuron-specific Rac3. The specific functions of each of these GTPases during early neuronal development are largely unknown. RESULTS The combination of the knockout of Rac3 with Rac1 down-regulation by siRNA (small interfering RNA) has been used to show that down-regulation of Rac1 affects dendritic development in mouse hippocampal neurons, without affecting axons. F-actin levels are strongly decreased in neuronal growth cones following down-regulation of Rac1, and time-lapse analysis indicated that the reduction of Rac1 levels decreases growth-cone dynamics. CONCLUSIONS These results show that normal levels of endogenous Rac1 activity are critical for early dendritic development, whereas dendritic outgrowth is not affected in hippocampal neurons from Rac3-null mice. On the other hand, early axonal development appears normal after Rac1 down-regulation. Our findings also suggest that the initial establishment of neuronal polarity is not affected by Rac1 down-regulation.
Collapse
Affiliation(s)
- Sara Gualdoni
- Dibit, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | |
Collapse
|
69
|
van Rijssel J, Hoogenboezem M, Wester L, Hordijk PL, Van Buul JD. The N-terminal DH-PH domain of Trio induces cell spreading and migration by regulating lamellipodia dynamics in a Rac1-dependent fashion. PLoS One 2012; 7:e29912. [PMID: 22238672 PMCID: PMC3253119 DOI: 10.1371/journal.pone.0029912] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/06/2011] [Indexed: 11/19/2022] Open
Abstract
The guanine-nucleotide exchange factor Trio encodes two DH-PH domains that catalyze nucleotide exchange on Rac1, RhoG and RhoA. The N-terminal DH-PH domain is known to activate Rac1 and RhoG, whereas the C-terminal DH-PH domain can activate RhoA. The current study shows that the N-terminal DH-PH domain, upon expression in HeLa cells, activates Rac1 and RhoG independently from each other. In addition, we show that the flanking SH3 domain binds to the proline-rich region of the C-terminus of Rac1, but not of RhoG. However, this SH3 domain is not required for Rac1 or RhoG GDP-GTP exchange. Rescue experiments in Trio-shRNA-expressing cells showed that the N-terminal DH-PH domain of Trio, but not the C-terminal DH-PH domain, restored fibronectin-mediated cell spreading and migration defects that are observed in Trio-silenced cells. Kymograph analysis revealed that the N-terminal DH-PH domain, independent of its SH3 domain, controls the dynamics of lamellipodia. Using siRNA against Rac1 or RhoG, we found that Trio-D1-induced lamellipodia formation required Rac1 but not RhoG expression. Together, we conclude that the GEF Trio is responsible for lamellipodia formation through its N-terminal DH-PH domain in a Rac1-dependent manner during fibronectin-mediated spreading and migration.
Collapse
Affiliation(s)
- Jos van Rijssel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogenboezem
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lynn Wester
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter L. Hordijk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D. Van Buul
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
70
|
Guilluy C, Garcia-Mata R, Burridge K. Rho protein crosstalk: another social network? Trends Cell Biol 2011; 21:718-26. [PMID: 21924908 DOI: 10.1016/j.tcb.2011.08.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022]
Abstract
Many fundamental processes in cell biology are regulated by Rho GTPases, including cell adhesion, migration and differentiation. While regulating cellular functions, members of the Rho protein family cooperate or antagonize each other. The resulting molecular network exhibits many levels of interaction dynamically regulated in time and space. In the first part of this review we describe the main mechanisms of this crosstalk, which can occur at three different levels of the pathway: (i) through regulation of activity, (ii) through regulation of protein expression and stability, and (iii) through regulation of downstream signaling pathways. In the second part we illustrate the importance of Rho protein crosstalk with two examples: integrin-based adhesion and cell migration.
Collapse
Affiliation(s)
- Christophe Guilluy
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
71
|
Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal 2010; 23:969-79. [PMID: 21044680 DOI: 10.1016/j.cellsig.2010.10.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/23/2010] [Indexed: 12/12/2022]
Abstract
Rho guanosine triphosphatases (GTPases) are a family of small proteins which function as molecular switches in a variety of signaling pathways following stimulation of cell surface receptors. RhoGTPases regulate numerous cellular processes including cytoskeleton organization, gene transcription, cell proliferation, migration, growth and cell survival. Because of their central role in regulating processes that are dysregulated in cancer, it seems reasonable that defects in the RhoGTPase pathway may be involved in the development of cancer. RhoGTPase activity is regulated by a number of protein families: guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide-dissociation inhibitors (GDIs). This review discusses the participation of RhoGTPases and their regulators, especially GEFs in human cancers. In particular, we focus on the involvement of the RhoGTPase GEF, Vav1, a hematopoietic specific signal transducer which is involved in human neuroblastoma, pancreatic ductal carcinoma and lung cancer. Finally, we summarize recent advances in the design and application of a number of molecules that specifically target individual RhoGTPases or their regulators or effectors, and discuss their potential for cancer therapy.
Collapse
|
72
|
Gibault L, Pérot G, Chibon F, Bonnin S, Lagarde P, Terrier P, Coindre JM, Aurias A. New insights in sarcoma oncogenesis: a comprehensive analysis of a large series of 160 soft tissue sarcomas with complex genomics. J Pathol 2010; 223:64-71. [PMID: 21125665 DOI: 10.1002/path.2787] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 09/09/2010] [Accepted: 09/15/2010] [Indexed: 01/10/2023]
Abstract
Adult soft tissue sarcomas (STS) are rare tumours of mesenchymal lineage. Based on cytogenetic and comparative genomic hybridization (CGH) data, they can be divided into 'STS with simple genomics', displaying a characteristic genetic alteration, and 'STS with complex genomics' (SCG), where multiple genomic alterations occur. This latter group is mostly composed of leiomyosarcomas (LMS) and pleiomorphic undifferentiated tumours previously labelled as 'malignant fibrous histiocytomas' (MFH), corresponding in fact to myxofibrosarcomas (MFS), pleiomorphic liposarcomas/rhabdomyosarcomas (P-LPS, P-RMS), and undifferentiated pleiomorphic sarcomas (UPS). Their pathobiology is still not well understood, leading to challenges in diagnosis and therapeutic management. We report here a comprehensive study encompassing array-CGH and transcriptome analysis data of a large series of 160 SCG. Non-supervised clustering of transcriptome data led to the identification of five groups of tumours, one of them (group A) corresponding to well-differentiated LMS and the other four (B-E) to 'MFH' and poorly differentiated LMS. Welch analysis of transcriptome data in these groups allowed us to retrieve several genes of potential interest. Among them, RB1 alteration is a constant thread in SCG, often associated with RBL2 loss. PTEN tumour suppressor deletion would also stand out as a major recurrent event, especially in groups A, C, and D. The WNT canonical pathway could be potentially involved, as demonstrated by up-regulation of one of its inhibitors, DKK1, in groups D and E, whereas DKK1 is significantly down-regulated in groups A, B, and C. These data suggest a very complex interplay between pathways downstream of PTEN and the WNT canonical pathway, providing new hints about SCG pathobiology and their potential therapeutic targets.
Collapse
Affiliation(s)
- Laure Gibault
- Genetics and Biology of Cancers, Institut Curie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Neubrand VE, Thomas C, Schmidt S, Debant A, Schiavo G. Kidins220/ARMS regulates Rac1-dependent neurite outgrowth by direct interaction with the RhoGEF Trio. J Cell Sci 2010; 123:2111-23. [PMID: 20519585 DOI: 10.1242/jcs.064055] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurite extension depends on extracellular signals that lead to changes in gene expression and rearrangement of the actin cytoskeleton. A factor that might orchestrate these signalling pathways with cytoskeletal elements is the integral membrane protein Kidins220/ARMS, a downstream target of neurotrophins. Here, we identified Trio, a RhoGEF for Rac1, RhoG and RhoA, which is involved in neurite outgrowth and axon guidance, as a binding partner of Kidins220. This interaction is direct and occurs between the N-terminus of Trio and the ankyrin repeats of Kidins220. Trio and Kidins220 colocalise at the tips of neurites in NGF-differentiated PC12 cells, where F-actin and Rac1 also accumulate. Expression of the ankyrin repeats of Kidins220 in PC12 cells inhibits NGF-dependent and Trio-induced neurite outgrowth. Similar results are seen in primary hippocampal neurons. Our data indicate that Kidins220 might localise Trio to specific membrane sites and regulate its activity, leading to Rac1 activation and neurite outgrowth.
Collapse
Affiliation(s)
- Veronika E Neubrand
- Molecular NeuroPathobiology, Cancer Research UK London Research Institute, London, UK.
| | | | | | | | | |
Collapse
|
74
|
Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, Katoh H. Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism. ACTA ACUST UNITED AC 2010; 190:461-77. [PMID: 20679435 PMCID: PMC2922637 DOI: 10.1083/jcb.201005141] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ephexin4 is a RhoG-specific guanine nucleotide exchange factor that interacts with the EphA2 receptor in breast cancer cells. EphA2, a member of the Eph receptor family, is frequently overexpressed in a variety of human cancers, including breast cancers, and promotes cancer cell motility and invasion independently of its ligand ephrin stimulation. In this study, we identify Ephexin4 as a guanine nucleotide exchange factor (GEF) for RhoG that interacts with EphA2 in breast cancer cells, and knockdown and rescue experiments show that Ephexin4 acts downstream of EphA2 to promote ligand-independent breast cancer cell migration and invasion toward epidermal growth factor through activation of RhoG. The activation of RhoG recruits its effector ELMO2 and a Rac GEF Dock4 to form a complex with EphA2 at the tips of cortactin-rich protrusions in migrating breast cancer cells. In addition, the Dock4-mediated Rac activation is required for breast cancer cell migration. Our findings reveal a novel link between EphA2 and Rac activation that contributes to the cell motility and invasiveness of breast cancer cells.
Collapse
Affiliation(s)
- Nao Hiramoto-Yamaki
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
75
|
Samson T, Welch C, Monaghan-Benson E, Hahn KM, Burridge K. Endogenous RhoG is rapidly activated after epidermal growth factor stimulation through multiple guanine-nucleotide exchange factors. Mol Biol Cell 2010; 21:1629-42. [PMID: 20237158 PMCID: PMC2861620 DOI: 10.1091/mbc.e09-09-0809] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In this article it is shown that EGF stimulation leads to rapid activation of RhoG through Vav GEFs and the GEF PLEKHG6. Importantly, different cellular responses induced by EGF are determined by the available GEFs. Furthermore, this article presents results showing that EGF-stimulated cell migration and EGFR internalization are regulated by RhoG. RhoG is a member of the Rac-like subgroup of Rho GTPases and has been linked to a variety of different cellular functions. Nevertheless, many aspects of RhoG upstream and downstream signaling remain unclear; in particular, few extracellular stimuli that modulate RhoG activity have been identified. Here, we describe that stimulation of epithelial cells with epidermal growth factor leads to strong and rapid activation of RhoG. Importantly, this rapid activation was not observed with other growth factors tested. The kinetics of RhoG activation after epidermal growth factor (EGF) stimulation parallel the previously described Rac1 activation. However, we show that both GTPases are activated independently of one another. Kinase inhibition studies indicate that the rapid activation of RhoG and Rac1 after EGF treatment requires the activity of the EGF receptor kinase, but neither phosphatidylinositol 3-kinase nor Src kinases. By using nucleotide-free RhoG pull-down assays and small interfering RNA-mediated knockdown studies, we further show that guanine-nucleotide exchange factors (GEFs) of the Vav family mediate EGF-induced rapid activation of RhoG. In addition, we found that in certain cell types the recently described RhoG GEF PLEKHG6 can also contribute to the rapid activation of RhoG after EGF stimulation. Finally, we present results that show that RhoG has functions in EGF-stimulated cell migration and in regulating EGF receptor internalization.
Collapse
Affiliation(s)
- Thomas Samson
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
76
|
Rochlin K, Yu S, Roy S, Baylies MK. Myoblast fusion: when it takes more to make one. Dev Biol 2009; 341:66-83. [PMID: 19932206 DOI: 10.1016/j.ydbio.2009.10.024] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 01/09/2023]
Abstract
Cell-cell fusion is a crucial and highly regulated event in the genesis of both form and function of many tissues. One particular type of cell fusion, myoblast fusion, is a key cellular process that shapes the formation and repair of muscle. Despite its importance for human health, the mechanisms underlying this process are still not well understood. The purpose of this review is to highlight the recent literature pertaining to myoblast fusion and to focus on a comparison of these studies across several model systems, particularly the fly, zebrafish and mouse. Advances in technical analysis and imaging have allowed identification of new fusion genes and propelled further characterization of previously identified genes in each of these systems. Among the cellular steps identified as critical for myoblast fusion are migration, recognition, adhesion, membrane alignment and membrane pore formation and resolution. Importantly, striking new evidence indicates that orthologous genes govern several of these steps across these species. Taken together, comparisons across three model systems are illuminating a once elusive process, providing exciting new insights and a useful framework of genes and mechanisms.
Collapse
Affiliation(s)
- Kate Rochlin
- Program in Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
77
|
Fujimoto S, Negishi M, Katoh H. RhoG promotes neural progenitor cell proliferation in mouse cerebral cortex. Mol Biol Cell 2009; 20:4941-50. [PMID: 19812248 DOI: 10.1091/mbc.e09-03-0200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In early cortical development, neural progenitor cells (NPCs) expand their population in the ventricular zone (VZ), and produce neurons. Although a series of studies have revealed the process of neurogenesis, the molecular mechanisms regulating NPC proliferation are still largely unknown. Here we found that RhoG, a member of Rho family GTPases, was expressed in the VZ at early stages of cortical development. Expression of constitutively active RhoG promoted NPC proliferation and incorporation of bromodeoxyuridine (BrdU) in vitro, and the proportion of Ki67-positive cells in vivo. In contrast, knockdown of RhoG by RNA interference suppressed the proliferation, BrdU incorporation, and the proportion of Ki67-positive cells in NPCs. However, knockdown of RhoG did not affect differentiation and survival of NPC. The RhoG-induced promotion of BrdU incorporation required phosphatidylinositol 3-kinase (PI3K) activity but not the interaction with ELMO. Taken together, these results indicate that RhoG promotes NPC proliferation through PI3K in cortical development.
Collapse
Affiliation(s)
- Satoshi Fujimoto
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
78
|
Bouquier N, Vignal E, Charrasse S, Weill M, Schmidt S, Léonetti JP, Blangy A, Fort P. A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway. ACTA ACUST UNITED AC 2009; 16:657-66. [PMID: 19549603 DOI: 10.1016/j.chembiol.2009.04.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/13/2009] [Accepted: 04/29/2009] [Indexed: 11/18/2022]
Abstract
RhoGEFs (guanine nucleotide exchange factors of the Rho GTPase family) are upstream regulators of cell adhesion and migration pathways, thus representing attractive yet relatively unexplored targets for the development of anti-invasive drugs. We screened for chemical inhibitors of TrioN, the N-terminal GEF domain of the multidomain Trio protein, and identified ITX3 as a nontoxic inhibitor. In transfected mammalian cells, ITX3 blocked TrioN-mediated dorsal membrane ruffling and Rac1 activation while having no effect on GEF337-, Tiam1-, or Vav2-mediated RhoA or Rac1 activation. ITX3 specifically inhibited endogenous TrioN activity, as evidenced by its ability to inhibit neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells or C2C12 differentiation into myotubes. This study introduces a selective cell active inhibitor of the Trio/RhoG/Rac1 pathway and validates RhoGEFs as druggable targets.
Collapse
Affiliation(s)
- Nathalie Bouquier
- Centre de Recherche de Biochimie Macromoléculaire, Universités Montpellier I et II, CNRS, 34293 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Ho E, Irvine T, Vilk GJA, Lajoie G, Ravichandran KS, D'Souza SJA, Dagnino L. Integrin-linked kinase interactions with ELMO2 modulate cell polarity. Mol Biol Cell 2009; 20:3033-43. [PMID: 19439446 DOI: 10.1091/mbc.e09-01-0050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell polarization is a key prerequisite for directed migration during development, tissue regeneration, and metastasis. Integrin-linked kinase (ILK) is a scaffold protein essential for cell polarization, but very little is known about the precise mechanisms whereby ILK modulates polarization in normal epithelia. Elucidating these mechanisms is essential to understand tissue morphogenesis, transformation, and repair. Here we identify a novel ILK protein complex that includes Engulfment and Cell Motility 2 (ELMO2). We also demonstrate the presence of RhoG in ILK-ELMO2 complexes, and the localization of this multiprotein species specifically to the leading lamellipodia of polarized cells. Significantly, the ability of RhoG to bind ELMO is crucial for ILK induction of cell polarization, and the joint expression of ILK and ELMO2 synergistically promotes the induction of front-rear polarity and haptotactic migration. This places RhoG-ELMO2-ILK complexes in a key position for the development of cell polarity and forward movement. Although ILK is a component of many diverse multiprotein species that may contribute to cell polarization, expression of dominant-negative ELMO2 mutants is sufficient to abolish the ability of ILK to promote cell polarization. Thus, its interaction with ELMO2 and RhoG is essential for the ability of ILK to induce front-rear cell polarity.
Collapse
Affiliation(s)
- Ernest Ho
- Department of Physiology and Pharmacology, Child Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
80
|
Roppenser B, Röder A, Hentschke M, Ruckdeschel K, Aepfelbacher M. Yersinia enterocolitica differentially modulates RhoG activity in host cells. J Cell Sci 2009; 122:696-705. [PMID: 19208761 DOI: 10.1242/jcs.040345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pathogenic bacteria of the genus Yersinia (Y. pestis, Y. enterocolitica and Y. pseudotuberculosis) have evolved numerous virulence factors (termed a stratagem) to manipulate the activity of Rho GTPases. Here, we show that Y. enterocolitica modulates RhoG, an upstream regulator of other Rho GTPases. At the contact site of virulent Y. enterocolitica and host cells, we could visualise spatiotemporally organised activation and deactivation of RhoG. On the one hand, the beta1-integrin clustering protein Invasin on the bacterial surface was found to activate RhoG and this promoted cell invasion. On the other hand, active RhoG was downregulated by the type III secretion system effector YopE acting as a GTPase-activating protein (GAP). YopE localised to Golgi and endoplasmic reticulum, and this determined its specificity for RhoG and other selected Rho GTPases. RhoG and its downstream effector module Elmo/Dock180 controlled both Rac1 activation by Invasin and Rac1 deactivation by YopE. We propose that RhoG is a central target of the Yersinia stratagem and a major upstream regulator of Rac1 during different phases of the Yersinia infection cycle.
Collapse
Affiliation(s)
- Bernhard Roppenser
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistrabetae 52, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
81
|
Lippman JJ, Lordkipanidze T, Buell ME, Yoon SO, Dunaevsky A. Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia 2009; 56:1463-77. [PMID: 18615636 DOI: 10.1002/glia.20712] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes have an important role in synaptic formation and function but how astrocytic processes become associated with synaptic structures during development is not well understood. Here we analyzed the pattern of growth of the processes extending off the main Bergmann glial (BG) shafts during synaptogenesis in the cerebellum. We found that during this period, BG process outgrowth was correlated with increased ensheathment of dendritic spines. In addition, two-photon time-lapse imaging revealed that BG processes were highly dynamic, and processes became more stable as the period of spine ensheathment progressed. While process motility was dependent on actin polymerization, activity of cytoskeletal regulators Rac1 and RhoG did not play a role in glial process dynamics or density, but was critical for maintaining process length. We extended this finding to probe the relationship between process morphology and ensheathment, finding that shortened processes result in decreased coverage of the spine. Furthermore, we found that areas in which BG expressed dn-Rac1, and therefore had a lower level of synaptic ensheathment, showed an overall increase in synapse number. These analyses reveal how BG processes grow to surround synaptic structures, elucidate the importance of BG process structure for proper development of synaptic ensheathment, and reveal a role for ensheathment in synapse formation.
Collapse
Affiliation(s)
- Jocelyn J Lippman
- Department of Neuroscience, Brown University, Box G-LN, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
82
|
Salhia B, Tran NL, Chan A, Wolf A, Nakada M, Rutka F, Ennis M, McDonough WS, Berens ME, Symons M, Rutka JT. The guanine nucleotide exchange factors trio, Ect2, and Vav3 mediate the invasive behavior of glioblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1828-38. [PMID: 19008376 DOI: 10.2353/ajpath.2008.080043] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malignant gliomas are characterized by their ability to invade normal brain tissue. We have previously shown that the small GTPase Rac1 plays a role in both migration and invasion in gliomas. Here, we aim to identify Rac-activating guanine nucleotide exchange factors (GEFs) that mediate glioblastoma invasiveness. Using a brain tumor expression database, we identified three GEFs, Trio, Ect2, and Vav3, that are expressed at higher levels in glioblastoma versus low-grade glioma. The expression of these GEFs is also associated with poor patient survival. Quantitative real-time polymerase chain reaction and immunohistochemical analyses on an independent set of tumors confirmed that these GEFs are overexpressed in glioblastoma as compared with either nonneoplastic brain or low-grade gliomas. In addition, depletion of Trio, Ect2, and Vav3 by siRNA oligonucleotides suppresses glioblastoma cell migration and invasion. Depletion of either Ect2 or Trio also reduces the rate of cell proliferation. These results suggest that targeting GEFs may present novel strategies for anti-invasive therapy for malignant gliomas.
Collapse
Affiliation(s)
- Bodour Salhia
- Arthur and Sonia Labatt Brain Tumor Research Centre, Cancer and Cell Biology Division, The Hospital for Sick Children, the University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Provenzano PP, Inman DR, Eliceiri KW, Beggs HE, Keely PJ. Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1551-65. [PMID: 18845837 DOI: 10.2353/ajpath.2008.080308] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Focal adhesion kinase (FAK) is a central regulator of the focal adhesion, influencing cell proliferation, survival, and migration. Despite evidence demonstrating FAK overexpression in human cancer, its role in tumor initiation and progression is not well understood. Using Cre/LoxP technology to specifically knockout FAK in the mammary epithelium, we showed that FAK is not required for tumor initiation but is required for tumor progression. The mechanistic underpinnings of these results suggested that FAK regulates clinically relevant gene signatures and multiple signaling complexes associated with tumor progression and metastasis, such as Src, ERK, and p130Cas. Furthermore, a systems-level analysis identified FAK as a major regulator of the tumor transcriptome, influencing genes associated with adhesion and growth factor signaling pathways, and their cross talk. Additionally, FAK was shown to down-regulate the expression of clinically relevant proliferation- and metastasis-associated gene signatures, as well as an enriched group of genes associated with the G(2) and G(2)/M phases of the cell cycle. Computational analysis of transcription factor-binding sites within ontology-enriched or clustered gene sets suggested that the differentially expressed proliferation- and metastasis-associated genes in FAK-null cells were regulated through a common set of transcription factors, including p53. Therefore, FAK acts as a primary node in the activated signaling network in transformed motile cells and is a prime candidate for novel therapeutic interventions to treat aggressive human breast cancers.
Collapse
Affiliation(s)
- Paolo P Provenzano
- Department of Pharmacology, Laboratory of Molecular Biology, Madison, WI 53706, USA. ppproven@ wisc.edu
| | | | | | | | | |
Collapse
|
84
|
Meller J, Vidali L, Schwartz MA. Endogenous RhoG is dispensable for integrin-mediated cell spreading but contributes to Rac-independent migration. J Cell Sci 2008; 121:1981-9. [PMID: 18505794 DOI: 10.1242/jcs.025130] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rac activation by integrins is essential for cell spreading, migration, growth and survival. Based mainly on overexpression of dominant-negative mutants, RhoG has been proposed to mediate integrin-dependent Rac activation upstream of ELMO and Dock180. RhoG-knockout mice, however, display no significant developmental or functional abnormalities. To clarify the role of RhoG in integrin-mediated signaling, we developed a RhoG-specific antibody, which, together with shRNA-mediated knockdown, allowed analysis of the endogenous protein. Despite dramatic effects of dominant-negative constructs, nearly complete RhoG depletion did not substantially inhibit cell adhesion, spreading, migration or Rac activation. Additionally, RhoG was not detectably activated by adhesion to fibronectin. Using Rac1(-/-) cells, we found that constitutively active RhoG induced membrane ruffling via both Rac-dependent and -independent pathways. Additionally, endogenous RhoG was important for Rac-independent cell migration. However, RhoG did not significantly contribute to cell spreading even in these cells. These data therefore clarify the role of RhoG in integrin signaling and cell motility.
Collapse
Affiliation(s)
- Julia Meller
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
85
|
Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance. Mol Cell Biol 2008; 28:2314-23. [PMID: 18212043 DOI: 10.1128/mcb.00998-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The chemotropic guidance cue netrin-1 promotes neurite outgrowth through its receptor Deleted in Colorectal Cancer (DCC) via activation of Rac1. The guanine nucleotide exchange factor (GEF) linking netrin-1/DCC to Rac1 activation has not yet been identified. Here, we show that the RhoGEF Trio mediates Rac1 activation in netrin-1 signaling. We found that Trio interacts with the netrin-1 receptor DCC in mouse embryonic brains and that netrin-1-induced Rac1 activation in brain is impaired in the absence of Trio. Trio(-/-) cortical neurons fail to extend neurites in response to netrin-1, while they are able to respond to glutamate. Accordingly, netrin-1-induced commissural axon outgrowth is reduced in Trio(-/-) spinal cord explants, and the guidance of commissural axons toward the floor plate is affected by the absence of Trio. The anterior commissure is absent in Trio-null embryos, and netrin-1/DCC-dependent axonal projections that form the internal capsule and the corpus callosum are defective in the mutants. Taken together, these findings establish Trio as a GEF that mediates netrin-1 signaling in axon outgrowth and guidance through its ability to activate Rac1.
Collapse
|
86
|
de Curtis I. Functions of Rac GTPases during neuronal development. Dev Neurosci 2008; 30:47-58. [PMID: 18075254 DOI: 10.1159/000109851] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/27/2007] [Indexed: 12/11/2022] Open
Abstract
The small GTPases of the Rho family are important regulators of the actin cytoskeleton and are critical for several aspects of neuronal development including the establishment of neuronal polarity, extension of axon and dendrites, neurite branching, axonal navigation and synapse formation. The aim of this review is to present evidence supporting the function of Rac and Rac-related proteins in different aspects of neuronal maturation, based on work performed with organisms including nematodes, Drosophila, Xenopus and mice, and with primary cultures of developing neurons. Three of the 4 vertebrate Rac-related genes, namely Rac1, Rac3 and RhoG, are expressed in the nervous system, and several data support an essential role of all 3 GTPases in distinct aspects of neuronal development and function. Two important points emerge from the analysis presented: highly homologous Rac-related proteins may perform different functions in the developing nervous system; on the other hand, the data also indicate that similar GTPases may perform redundant functions in vivo.
Collapse
Affiliation(s)
- Ivan de Curtis
- Cell Adhesion Unit, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
87
|
Ravichandran KS, Lorenz U. Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 2007; 7:964-74. [PMID: 18037898 DOI: 10.1038/nri2214] [Citation(s) in RCA: 498] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clearance of apoptotic cells by phagocytes is an integral component of normal life, and defects in this process can have significant implications for self tolerance and autoimmunity. Recent studies have provided new insights into the engulfment process, including how phagocytes seek apoptotic cells, how they recognize and ingest these targets and how they maintain cellular homeostasis after the 'meal'. Several new factors that regulate engulfment have been identified, whereas the roles of some of the older players require revision. This Review focuses on these recent developments and attempts to highlight some of the important questions in this field.
Collapse
Affiliation(s)
- Kodi S Ravichandran
- Carter Immunology Center and the Department of Microbiology, University of Virginia, Charlottesville, Virginia, 22908, USA.
| | | |
Collapse
|
88
|
D'Angelo R, Aresta S, Blangy A, Del Maestro L, Louvard D, Arpin M. Interaction of ezrin with the novel guanine nucleotide exchange factor PLEKHG6 promotes RhoG-dependent apical cytoskeleton rearrangements in epithelial cells. Mol Biol Cell 2007; 18:4780-93. [PMID: 17881735 PMCID: PMC2096603 DOI: 10.1091/mbc.e06-12-1144] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 07/18/2006] [Accepted: 09/11/2007] [Indexed: 01/12/2023] Open
Abstract
The mechanisms underlying functional interactions between ERM (ezrin, radixin, moesin) proteins and Rho GTPases are not well understood. Here we characterized the interaction between ezrin and a novel Rho guanine nucleotide exchange factor, PLEKHG6. We show that ezrin recruits PLEKHG6 to the apical pole of epithelial cells where PLEKHG6 induces the formation of microvilli and membrane ruffles. These morphological changes are inhibited by dominant negative forms of RhoG. Indeed, we found that PLEKHG6 activates RhoG and to a much lesser extent Rac1. In addition we show that ezrin forms a complex with PLEKHG6 and RhoG. Furthermore, we detected a ternary complex between ezrin, PLEKHG6, and the RhoG effector ELMO. We demonstrate that PLEKHG6 and ezrin are both required in macropinocytosis. After down-regulation of either PLEKHG6 or ezrin expression, we observed an inhibition of dextran uptake in EGF-stimulated A431 cells. Altogether, our data indicate that ezrin allows the local activation of RhoG at the apical pole of epithelial cells by recruiting upstream and downstream regulators of RhoG and that both PLEKHG6 and ezrin are required for efficient macropinocytosis.
Collapse
Affiliation(s)
- Romina D'Angelo
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris 75248, France
- Institut Curie, Centre de Recherche, Paris 75248, France
| | | | - Anne Blangy
- Centre National de la Recherche Scientifique, Centre de Recherche de Biochimie Macromoléculaire, 34293 Montpellier Cedex 5, France
| | - Laurence Del Maestro
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris 75248, France
- Institut Curie, Centre de Recherche, Paris 75248, France
| | - Daniel Louvard
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris 75248, France
- Institut Curie, Centre de Recherche, Paris 75248, France
| | - Monique Arpin
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris 75248, France
- Institut Curie, Centre de Recherche, Paris 75248, France
| |
Collapse
|
89
|
Ferraro F, Ma XM, Sobota JA, Eipper BA, Mains RE. Kalirin/Trio Rho guanine nucleotide exchange factors regulate a novel step in secretory granule maturation. Mol Biol Cell 2007; 18:4813-25. [PMID: 17881726 PMCID: PMC2096607 DOI: 10.1091/mbc.e07-05-0503] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms involved in the maturation of secretory granules, organelles that store hormones and neuropeptides, are poorly understood. As granule content proteins are processed, the composition of granule membranes changes, yielding constitutive-like secretion of immature content proteins and producing secretagogue-responsive mature granules. Constitutive-like secretion was not previously recognized as a process subject to regulation. We show that Kalirin and Trio, homologous Rho guanine nucleotide exchange factors (GEFs), which interact with a secretory granule resident protein, modulate cargo secretion from immature granules. Some of the Kalirin and Trio isoforms expressed in neuroendocrine cells colocalize with immature granules. Overexpression of their N-terminal GEF domain (GEF1) enhances secretion from immature granules, depleting cells of secretory cargo in the absence of secretagogue. This response requires GEF1 activity and is mimicked by Kalirin/Trio substrates Rac1 and RhoG. Accordingly, selective pharmacological inhibition of endogenous GEF1 activity decreases secretagogue-independent release of hormone precursors, accumulating product peptide in mature secretory granules. Kalirin/Trio modulation of cargo secretion from immature granules provides secretory cells with an extra layer of control over the sets of peptides released. Control of this step enhances the range of physiological responses that can be elicited, whereas lack of control could have pathological consequences.
Collapse
Affiliation(s)
- Francesco Ferraro
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Xin-Ming Ma
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Jacqueline A. Sobota
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Betty A. Eipper
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Richard E. Mains
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| |
Collapse
|
90
|
Abstract
Most cells are polarized. Embryonic and stem cells can use their polarity to generate cell diversity by asymmetric cell division, whereas differentiated cells use their polarity to execute specific functions. For example, fibroblasts form an actin-rich leading edge required for cell migration, neurons form distinctive axonal and dendritic compartments important for directional signaling, and epithelial cells have apical and basolateral cortical domains necessary for maintaining tissue impermeability. It is well established that actin and actin-associated proteins are essential for generating molecular and morphological cell polarity, but only recently has it become accepted that microtubules can induce and/or maintain polarity. One common feature among different cell types is that microtubules can establish the position of cortical polarity, but are not required for cortical polarity per se. In this review, we discuss how different cell types utilize microtubules and microtubule-associated signaling pathways to generate cortical cell polarity, highlight common mechanisms, and discuss open questions for directing future research.
Collapse
Affiliation(s)
- Sarah E Siegrist
- Institutes of Neuroscience and Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | |
Collapse
|
91
|
Charrasse S, Comunale F, Fortier M, Portales-Casamar E, Debant A, Gauthier-Rouvière C. M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Mol Biol Cell 2007; 18:1734-43. [PMID: 17332503 PMCID: PMC1855016 DOI: 10.1091/mbc.e06-08-0766] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.
Collapse
Affiliation(s)
- Sophie Charrasse
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Franck Comunale
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Mathieu Fortier
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Elodie Portales-Casamar
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Anne Debant
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Cécile Gauthier-Rouvière
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| |
Collapse
|
92
|
Chhatriwala MK, Betts L, Worthylake DK, Sondek J. The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation. J Mol Biol 2007; 368:1307-20. [PMID: 17391702 PMCID: PMC1890047 DOI: 10.1016/j.jmb.2007.02.060] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 12/20/2022]
Abstract
Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.
Collapse
Affiliation(s)
- Mariya K Chhatriwala
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|
93
|
Affiliation(s)
- Rami N Hannoush
- Department of Protein Engineering, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, USA.
| |
Collapse
|
94
|
Tabony J, Rigotti N, Glade N, Cortès S. Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations. Biophys Chem 2007; 127:172-80. [PMID: 17321031 DOI: 10.1016/j.bpc.2007.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/22/2022]
Abstract
Weightlessness is known to effect cellular functions by as yet undetermined processes. Many experiments indicate a role of the cytoskeleton and microtubules. Under appropriate conditions in vitro microtubule preparations behave as a complex system that self-organises by a combination of reaction and diffusion. This process also results in the collective transport and organisation of any colloidal particles present. In large centimetre-sized samples, self-organisation does not occur when samples are exposed to a brief early period of weightlessness. Here, we report both space-flight and ground-based (clinorotation) experiments on the effect of weightlessness on the transport and segregation of colloidal particles and chromosomes. In centimetre-sized containers, both methods show that a brief initial period of weightlessness strongly inhibits particle transport. In miniature cell-sized containers under normal gravity conditions, the particle transport that self-organisation causes results in their accumulation into segregated regions of high and low particle density. The gravity dependence of this behaviour is strongly shape dependent. In square wells, neither self-organisation nor particle transport and segregation occur under conditions of weightlessness. On the contrary, in rectangular canals, both phenomena are largely unaffected by weightlessness. These observations suggest, depending on factors such as cell and embryo shape, that major biological functions associated with microtubule driven particle transport and organisation might be strongly perturbed by weightlessness.
Collapse
Affiliation(s)
- James Tabony
- Commissariat à l'Energie Atomique, DSV, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, Cedex 9, France.
| | | | | | | |
Collapse
|
95
|
Blangy A, Bouquier N, Gauthier-Rouvière C, Schmidt S, Debant A, Leonetti JP, Fort P. Identification of TRIO-GEFD1 chemical inhibitors using the yeast exchange assay. Biol Cell 2006; 98:511-22. [PMID: 16686599 DOI: 10.1042/bc20060023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND INFORMATION Rho GTPases are involved in many biological processes and participate in cancer development. Their activation is catalysed by exchange factors [RhoGEFs (Rho GTPase guanine nucleotide-exchange factor)] of the Dbl family. RhoGEFs display proto-oncogenic features, thus appearing as candidate targets for anticancer drugs. Dominant-negative Rho GTPase mutants have been widely used to block RhoGEF signalling. However, these tools suffer from limitations, due to the high number of RhoGEFs and the complex mechanisms that control Rho GTPase activation. RESULTS RhoG-T17N is a poor inhibitor of its exchange factor TRIO-GEFD1 (first exchange domain of the exchange factor TRIO) in vivo: although it binds to TRIO-GEFD1, RhoG-T17N does not block the downstream signalling. Using the yeast exchange assay, we show that in the presence of TRIO-GEFD1, RhoG-T17N can bind to its effectors, which illustrates how negative mutants may produce misleading interpretations and emphasizes the need for new types of RhoGEF inhibitors. In that prospect, we adapted the yeast exchange assay method to identify RhoGEF inhibitors. Using this novel approach, we screened a 3500-chemical-compound library and identified a potential inhibitor of TRIO-GEFD1. This molecule inhibited TRIO-GEFD1 in vitro. Among the chemical analogues of this compound, we identified two molecules with better inhibitory activity. The three TRIO-GEFD1 inhibitors had no effect on ARHGEF17 and ARNO [ARF (ADP-ribosylation factor) nucleotide-binding-site opener], two exchange factors for RhoA and Arf1 respectively. CONCLUSIONS The development of RhoGEF inhibitors appears as a valuable tool for the study of Rho GTPase signalling pathways. The yeast exchange assay adaptation we present here is suitable to screen for chemical or peptide libraries and identify candidate inhibitors.
Collapse
Affiliation(s)
- Anne Blangy
- Centre de Recherches en Biochimie Macromoléculaire, CNRS (Centre National de la Recherche Scientifique) FRE2593, 1919 route de Mende, 34293 Montpellier Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
96
|
Santy LC, Ravichandran KS, Casanova JE. The DOCK180/Elmo complex couples ARNO-mediated Arf6 activation to the downstream activation of Rac1. Curr Biol 2006; 15:1749-54. [PMID: 16213822 DOI: 10.1016/j.cub.2005.08.052] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/12/2005] [Accepted: 08/17/2005] [Indexed: 01/27/2023]
Abstract
Cell motility requires extensions of the plasma membrane driven by reorganization of the actin cytoskeleton. Small GTPases, particularly the Rho family, are key regulators of this process. A second class of GTPases, the ADP-ribosylation factors (ARFs), have also been implicated in the regulation of the actin cytoskeleton and motility. ARF6 is intimately involved in the regulation of Rac activity; however, the mechanisms by which ARF activation leads to activation of Rac remain poorly understood. We have previously shown that expression of the ARF-GEF ARNO in MDCK cells induces robust activation of Rac, the formation of large lamellipodia, and the onset of motility. We report here that ARNO-dependent activation of Rac is mediated by a bipartite Rac GEF, the Dock180/Elmo complex. Both DOCK180 and Elmo colocalize extensively with ARNO in migrating MDCK cells. Importantly, both a catalytically inactive Dock180 mutant and an Elmo mutant that fails to couple to Dock180 block ARNO-induced Rac activation and motility. In contrast, a similar mutant of the Rac GEF beta-PIX fails to inhibit ARNO-induced Rac activation or motility. Together, these data suggest that ARNO and ARF6 coordinate with the Dock180/Elmo complex to promote Rac activation at the leading edge of migrating cells.
Collapse
Affiliation(s)
- Lorraine C Santy
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
97
|
Grimsley CM, Lu M, Haney LB, Kinchen JM, Ravichandran KS. Characterization of a novel interaction between ELMO1 and ERM proteins. J Biol Chem 2005; 281:5928-37. [PMID: 16377631 DOI: 10.1074/jbc.m510647200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
ERMs are closely related proteins involved in cell migration, cell adhesion, maintenance of cell shape, and formation of microvilli through their ability to cross-link the plasma membrane with the actin cytoskeleton. ELMO proteins are also known to regulate actin cytoskeleton reorganization through activation of the small GTPbinding protein Rac via the ELMO-Dock180 complex. Here we showed that ERM proteins associate directly with ELMO1 as purified recombinant proteins in vitro and at endogenous levels in intact cells. We mapped ERM binding on ELMO1 to the N-terminal 280 amino acids, which overlaps with the region required for binding to the GTPase RhoG, but is distinct from the C-terminal Dock180 binding region. Consistent with this, ELMO1 could simultaneously bind both radixin and Dock180, although radixin did not alter Rac activation via the Dock180-ELMO complex. Most interestingly, radixin binding did not affect ELMO binding to active RhoG and a trimeric complex of active RhoG-ELMO-radixin could be detected. Moreover, the three proteins colocalized at the plasma membrane. Finally, in contrast to most other ERM-binding proteins, ELMO1 binding occurred independently of the state of radixin C-terminal phosphorylation, suggesting an ELMO1 interaction with both the active and inactive forms of ERM proteins and implying a possible role of ELMO in localizing or retaining ERM proteins in certain cellular sites. Together these data suggest that ELMO1-mediated cytoskeletal changes may be coordinated with ERM protein crosslinking activity during dynamic cellular functions.
Collapse
Affiliation(s)
- Cynthia M Grimsley
- Beirne Carter Center for Immunology Research, and Department of Microbiology, University of Virginia, Lane Road, Charlottesville, VA 22903, USA
| | | | | | | | | |
Collapse
|
98
|
Katoh H, Hiramoto K, Negishi M. Activation of Rac1 by RhoG regulates cell migration. J Cell Sci 2005; 119:56-65. [PMID: 16339170 DOI: 10.1242/jcs.02720] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell migration is essential for normal development and many pathological processes. Rho-family small GTPases play important roles in this event. In particular, Rac regulates lamellipodia formation at the leading edge during migration. The small GTPase RhoG activates Rac through its effector ELMO and the ELMO-binding protein Dock180, which functions as a Rac-specific guanine nucleotide exchange factor. Here we investigated the role of RhoG in cell migration. RNA interference-mediated knockdown of RhoG in HeLa cells reduced cell migration in Transwell and scratch-wound migration assays. In RhoG-knockdown cells, activation of Rac1 and formation of lamellipodia at the leading edge in response to wounding were attenuated. By contrast, expression of active RhoG promoted cell migration through ELMO and Dock180. However, the interaction of Dock180 with Crk was dispensable for the activation of Rac1 and promotion of cell migration by RhoG. Taken together, these results suggest that RhoG contributes to the regulation of Rac activity in migrating cells.
Collapse
Affiliation(s)
- Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
99
|
Ryan XP, Alldritt J, Svenningsson P, Allen PB, Wu GY, Nairn AC, Greengard P. The Rho-specific GEF Lfc interacts with neurabin and spinophilin to regulate dendritic spine morphology. Neuron 2005; 47:85-100. [PMID: 15996550 DOI: 10.1016/j.neuron.2005.05.013] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 01/24/2004] [Accepted: 05/06/2005] [Indexed: 01/07/2023]
Abstract
Neurabin and spinophilin are homologous protein phosphatase 1 and actin binding proteins that regulate dendritic spine function. A yeast two-hybrid analysis using the coiled-coil domain of neurabin revealed an interaction with Lfc, a Rho GEF. Lfc was highly expressed in brain, where it interacted with either neurabin or spinophilin. In neurons, Lfc was largely found in the shaft of dendrites in association with microtubules but translocated to spines upon neuronal stimulation. Moreover, expression of Lfc resulted in reduction in spine length and size. Both the translocation and the effect on spine morphology depended on the coiled-coil domain of Lfc. Coexpression of neurabin or spinophilin with Lfc resulted in their clustering together with F-actin, a process that depended on Rho activity. Thus, interaction between Lfc and neurabin/spinophilin selectively regulates Rho-dependent organization of F-actin in spines and is a link between the microtubule and F-actin cytoskeletons in dendrites.
Collapse
Affiliation(s)
- Xiaozhou P Ryan
- Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
deBakker CD, Haney LB, Kinchen JM, Grimsley C, Lu M, Klingele D, Hsu PK, Chou BK, Cheng LC, Blangy A, Sondek J, Hengartner MO, Wu YC, Ravichandran KS. Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO. Curr Biol 2005; 14:2208-16. [PMID: 15620647 DOI: 10.1016/j.cub.2004.12.029] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 10/24/2004] [Accepted: 10/27/2004] [Indexed: 01/20/2023]
Abstract
BACKGROUND Phagocytosis of cells undergoing apoptosis is essential during development, cellular turnover, and wound healing. Failure to promptly clear apoptotic cells has been linked to autoimmune disorders. C. elegans CED-12 and mammalian ELMO are evolutionarily conserved scaffolding proteins that play a critical role in engulfment from worm to human. ELMO functions together with Dock180 (a guanine nucleotide exchange factor for Rac) to mediate Rac-dependent cytoskeletal reorganization during engulfment and cell migration. However, the components upstream of ELMO and Dock180 during engulfment remain elusive. RESULTS Here, we define a conserved signaling module involving the small GTPase RhoG and its exchange factor TRIO, which functions upstream of ELMO/Dock180/Rac during engulfment. Complementary studies in C. elegans show that MIG-2 (which we identify as the homolog of mammalian RhoG) and UNC-73 (the TRIO homolog) also regulate corpse clearance in vivo, upstream of CED-12. At the molecular level, we identify a novel set of evolutionarily conserved Armadillo (ARM) repeats within CED-12/ELMO that mediate an interaction with activated MIG-2/RhoG; this, in turn, promotes Dock180-mediated Rac activation and cytoskeletal reorganization. CONCLUSIONS The combination of in vitro and in vivo studies presented here identify two evolutionarily conserved players in engulfment, TRIO/UNC73 and RhoG/MIG-2, and the TRIO --> RhoG signaling module is linked by ELMO/CED-12 to Dock180-dependent Rac activation during engulfment. This work also identifies ARM repeats within CED-12/ELMO and their role in linking RhoG and Rac, two GTPases that function in tandem during engulfment.
Collapse
Affiliation(s)
- Colin D deBakker
- Department of Microbiology, Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|