51
|
Hayes MJ, Shao D, Bailly M, Moss SE. Regulation of actin dynamics by annexin 2. EMBO J 2006; 25:1816-26. [PMID: 16601677 PMCID: PMC1456940 DOI: 10.1038/sj.emboj.7601078] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 03/13/2006] [Indexed: 12/27/2022] Open
Abstract
Annexin 2 is a ubiquitous Ca(2+)-binding protein that is essential for actin-dependent vesicle transport. Here, we show that in spontaneously motile cells annexin 2 is concentrated in dynamic actin-rich protrusions, and that depletion of annexin 2 using siRNA leads to the accumulation of stress fibres and loss of protrusive and retractile activity. Cells co-expressing annexin 2-CFP and actin-YFP exhibit Ca(2+)-dependent fluorescense resonance energy transfer throughout the cytoplasm and in membrane ruffles and protrusions, suggesting that annexin 2 may directly interact with actin. This notion was supported by biochemical studies, in which we show that annexin 2 reduces the polymerisation rate of actin monomers in a dose-dependent manner. By measuring actin polymerisation rates in the presence of barbed-end and pointed-end cappers, we further demonstrate that annexin 2 specifically inhibits filament elongation at the barbed ends. These results show that annexin 2 has an essential role in maintaining the plasticity of the dynamic membrane-associated actin cytoskeleton, and that its activity in this context may be at least partly explained through direct interactions with polymerised and monomeric actin.
Collapse
Affiliation(s)
- Matthew J Hayes
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Dongmin Shao
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Maryse Bailly
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, UK
| | - Stephen E Moss
- Division of Cell Biology, Institute of Ophthalmology, University College London, London, UK
- Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK. Tel.: +44 207 608 6973; Fax: +44 207 608 4034; E-mail:
| |
Collapse
|
52
|
Hayward RD, Leong JM, Koronakis V, Campellone KG. Exploiting pathogenic Escherichia coli to model transmembrane receptor signalling. Nat Rev Microbiol 2006; 4:358-70. [PMID: 16582930 DOI: 10.1038/nrmicro1391] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many microbial pathogens manipulate the actin cytoskeleton of eukaryotic target cells to promote their internalization, intracellular motility and dissemination. Enteropathogenic and enterohaemorrhagic Escherichia coli, which both cause severe diarrhoeal disease, can adhere to mammalian intestinal cells and induce reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. As pedestal assembly is triggered by E. coli virulence factors that mimic several host cell-signalling components, such as transmembrane receptors, their cognate ligands and cytoplasmic adaptor proteins, it can serve as a powerful model system to study eukaryotic transmembrane signalling. Here, we consider the impact of recent data on our understanding of both E. coli pathogenesis and cell biology, and the rich prospects for exploiting these bacterial factors as versatile tools to probe cellular signalling pathways.
Collapse
Affiliation(s)
- Richard D Hayward
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | |
Collapse
|
53
|
Menke M, Gerke V, Steinem C. Phosphatidylserine membrane domain clustering induced by annexin A2/S100A10 heterotetramer. Biochemistry 2006; 44:15296-303. [PMID: 16285733 DOI: 10.1021/bi051585i] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By means of scanning force and fluorescence microscopy of artificial membranes immobilized on mica surfaces, the lateral organization of the annexin A2/S100A10 heterotetramer (annexin A2t) and its influence on the lateral organization of the lipids within the membrane have been elucidated. Planar lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) were prepared on atomically flat mica surfaces by the spreading of unilamellar vesicles. Fluorescence images of fluorescently labeled annexin A2t and scanning force microscopy images of nonlabeled protein bound to POPC/POPS bilayers show the formation of micrometer-sized lateral protein domains in the presence of 1 mM CaCl2. By means of scanning force microscopy, not only protein domains became discernible but also small membrane domains, which were attributed to POPS-enriched areas. A depletion of these POPS domains was observed in the vicinity of annexin A2t protein domains. These results indicate that annexin A2t is a peripheral membrane-binding complex capable of inducing lipid segregation.
Collapse
Affiliation(s)
- Manuela Menke
- Institut für Analytische Chemie, Chemo- und Biosensorik, Universität Regensburg, 93040 Regensburg, Germany
| | | | | |
Collapse
|
54
|
Chintagari NR, Jin N, Wang P, Narasaraju TA, Chen J, Liu L. Effect of cholesterol depletion on exocytosis of alveolar type II cells. Am J Respir Cell Mol Biol 2006; 34:677-87. [PMID: 16439800 PMCID: PMC2644229 DOI: 10.1165/rcmb.2005-0418oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alveolar epithelial type II cells secrete lung surfactant via exocytosis. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) are implicated in this process. Lipid rafts, the cholesterol- and sphingolipid-rich microdomains, may offer a platform for protein organization on the cell membrane. We tested the hypothesis that lipid rafts organize exocytotic proteins in type II cells and are essential for the fusion of lamellar bodies, the secretory granules of type II cells, with the plasma membrane. The lipid rafts, isolated from type II cells using 1% Triton X-100 and a sucrose gradient centrifugation, contained the lipid raft markers, flotillin-1 and -2, whereas they excluded the nonraft marker, Na+-K+ ATPase. SNAP-23, syntaxin 2, and VAMP-2 were enriched in lipid rafts. When type II cells were depleted of cholesterol, the association of SNAREs with the lipid rafts was disrupted and the formation of fusion pore was inhibited. Furthermore, the cholesterol-depleted plasma membrane had less ability to fuse with lamellar bodies, a process mediated by annexin A2. The secretagogue-stimulated secretion of lung surfactant from type II cells was also reduced by methyl-beta-cyclodextrin. When the raft-associated cell surface protein, CD44, was cross-linked using anti-CD44 antibodies, the CD44 clusters were observed. Syntaxin 2, SNAP-23, and annexin A2 co-localized with the CD44 clusters, which were cholesterol dependent. Our results suggested that lipid rafts may form a functional platform for surfactant secretion in alveolar type II cells, and raft integrity was essential for the fusion between lamellar bodies with the plasma membrane.
Collapse
|
55
|
Abstract
Accumulating reports document the use by pathogens of cholesterol-enriched lipid microdomains, often called lipid rafts, as cell surface platforms to interact, bind and possibly enter into host cells. The challenge is now to understand what could be the functional role of these domains during pathogen invasion. Are they hijacked as general clustering devices for cellular binding sites and/or do they have other roles? In particular, is their cell signalling capacity activated and used by pathogens? In reverse, could lipid rafts activate bacterial mechanisms required for invasion? These issues will be discussed after an introduction on the current view on lipid rafts.
Collapse
Affiliation(s)
- Frank Lafont
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | | |
Collapse
|
56
|
Riff JD, Callahan JW, Sherman PM. Cholesterol-enriched membrane microdomains are required for inducing host cell cytoskeleton rearrangements in response to attaching-effacing Escherichia coli. Infect Immun 2005; 73:7113-25. [PMID: 16239505 PMCID: PMC1273830 DOI: 10.1128/iai.73.11.7113-7125.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diarrheal pathogens enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain CL56 and enteropathogenic Escherichia coli (EPEC) O127:H6 strain E2348/69 adhere intimately to epithelial cells through attaching-effacing lesions, which are characterized by rearrangements of the host cytoskeleton, intimate adherence, and destruction of microvilli. These cytoskeletal responses require activation of host signal transduction pathways. Lipid rafts are signaling microdomains enriched in sphingolipid and cholesterol in the plasma membrane. The effect of perturbing plasma membrane cholesterol on bacterial intimate adherence was assessed. Infection of both HEp-2 cells and primary skin fibroblasts with strains CL56 and E2348/69 caused characteristic rearrangements of the cytoskeleton at sites of bacterial adhesion. CL56- and E2348/69-induced cytoskeletal rearrangements were inhibited following cholesterol depletion. Addition of exogenous cholesterol to depleted HEp-2 cells restored cholesterol levels and rescued bacterially induced alpha-actinin mobilization. Quantitative bacterial adherence assays showed that EPEC adherence to HEp-2 cells was dramatically reduced following cholesterol depletion, whereas the adherence of EHEC remained high. Cytoskeletal rearrangements on skin fibroblasts obtained from children with Niemann-Pick type C disease were markedly reduced. These findings indicate that host membrane cholesterol contained in lipid rafts is necessary for the cytoskeletal rearrangements following infection with attaching-effacing Escherichia coli. Differences in initial adherence indicate divergent roles for host membrane cholesterol in the pathogenesis of EHEC and EPEC infections.
Collapse
Affiliation(s)
- Jason D Riff
- Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
57
|
Abstract
This review article summarizes current knowledge about the locations and possible functions of annexin family members in the kidney. Beginning with an introduction on common structural and biochemical features as well as general functional characteristics of annexins, the paper focuses on individual members with documented and/or proposed physiological relevance for renal development, structure, and functions. Three main aspects of annexin function in kidney epithelia emerge from the available experimental data. First, annexins are required for membrane organization and membrane transport events required for the establishment/maintenance of epithelial polarity. Second, there is accumulating evidence of an association of annexins with ion channels, as membrane-guiding auxiliary proteins or modulators of channel activity. Last but not least, some annexins seem to work as extracellular autocrine modulators of receptor function under different physiological conditions.
Collapse
Affiliation(s)
- Arseni Markoff
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, 48149 Muenster, Germany.
| | | |
Collapse
|
58
|
Gokhale NA, Abraham A, Digman MA, Gratton E, Cho W. Phosphoinositide specificity of and mechanism of lipid domain formation by annexin A2-p11 heterotetramer. J Biol Chem 2005; 280:42831-40. [PMID: 16230353 DOI: 10.1074/jbc.m508129200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin A2 is a phospholipid-binding protein that forms a heterotetramer (annexin II-p11 heterotetramer; A2t) with p11 (S100A10). It has been reported that annexin A2 is involved in binding to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and in inducing membrane microdomain formation. To understand the mechanisms underlying these findings, we determined the membrane binding properties of annexin A2 wild type and mutants both as monomer and as A2t. Our results from surface plasmon resonance analysis showed that A2t and annexin A2 has modest selectivity for PtdIns(4,5)P2 over other phosphoinositides, which is conferred by conserved basic residues, including Lys279 and Lys281, on the convex surface of annexin A2. Fluorescence microscopy measurements using giant unilamellar vesicles showed that A2t of wild type, but not (K279A)2-(p11)2 or (K281A)2-(p11)2, specifically induced the formation of 1-microm-sized PtdIns(4,5)P2 clusters, which were stabilized by cholesterol. Collectively, these studies elucidate the structural determinant of the PtdIns(4,5)P2 selectivity of A2t and suggest that A2t may be involved in the regulation of PtdIns(4,5)P2 clustering in the cell.
Collapse
Affiliation(s)
- Nikhil A Gokhale
- Department of Chemistry, University of Illinois, Chicago, Illinois 60607-7061, USA
| | | | | | | | | |
Collapse
|
59
|
Hayward RD, Cain RJ, McGhie EJ, Phillips N, Garner MJ, Koronakis V. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol Microbiol 2005; 56:590-603. [PMID: 15819617 DOI: 10.1111/j.1365-2958.2005.04568.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A ubiquitous early step in infection of man and animals by enteric bacterial pathogens like Salmonella, Shigella and enteropathogenic Escherichia coli (EPEC) is the translocation of virulence effector proteins into mammalian cells via specialized type III secretion systems (TTSSs). Translocated effectors subvert the host cytoskeleton and stimulate signalling to promote bacterial internalization or survival. Target cell plasma membrane cholesterol is central to pathogen-host cross-talk, but the precise nature of its critical contribution remains unknown. Using in vitro cholesterol-binding assays, we demonstrate that Salmonella (SipB) and Shigella (IpaB) TTSS translocon components bind cholesterol with high affinity. Direct visualization of cell-associated fluorescently labelled SipB and parallel immunogold transmission electron microscopy revealed that cholesterol levels limit both the amount and distribution of plasma membrane-integrated translocon. Correspondingly, cholesterol depletion blocked effector translocation into cultured mammalian cells by not only the related Salmonella and Shigella TTSSs, but also the more divergent EPEC system. The data reveal that cholesterol-dependent association of the bacterial TTSS translocon with the target cell plasma membrane is essential for translocon activation and effector delivery into mammalian cells.
Collapse
Affiliation(s)
- Richard D Hayward
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | |
Collapse
|
60
|
Almeida PFF, Sohma H, Rasch KA, Wieser CM, Hinderliter A. Allosterism in Membrane Binding: A Common Motif of the Annexins? Biochemistry 2005; 44:10905-13. [PMID: 16086593 DOI: 10.1021/bi050474g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Annexins are a family of proteins generally described as Ca(2+)-dependent for phospholipid binding. Yet, annexins have a wide variety of binding behaviors and conformational states, some of which are lipid-dependent and Ca(2+)-independent. We present a model that captures the cation and phospholipid binding behavior of the highly conserved core of the annexins. Experimental data for annexins A4 and A5, which have short N-termini, were globally modeled to gain an understanding of how the lipid-binding affinity of the conserved protein core is modulated. Analysis of the binding behavior was achieved through use of the lanthanide Tb(3+) as a Ca(2+) analogue. Binding isotherms were determined experimentally from the quenching of the intrinsic fluorescence of annexins A4 and A5 by Tb(3+) in the presence or absence of membranes. In the presence of lipid, the affinity of annexin for cation increases, and the binding isotherms change from hyperbolic to weakly sigmoidal. This behavior was modeled by isotherms derived from microscopic binding partition functions. The change from hyperbolic to sigmoidal binding occurs because of an allosteric transition from the annexin solution state to its membrane-associated state. Protein binding to lipid bilayers renders cation binding by annexins cooperative. The two annexin states denote two affinities of the protein for cation, one in the absence and another in the presence of membrane. In the framework of this model, we discuss membrane binding as well as the influence of the N-terminus in modifying the annexin cation-binding affinity by changing the probability of the protein to undergo the postulated two-state transition.
Collapse
Affiliation(s)
- Paulo F F Almeida
- Department of Chemistry and Biochemistry, University of North Carolina-Wilmington, Wilmington North Carolina 28403
| | | | | | | | | |
Collapse
|
61
|
Abstract
Eukaryotic cells contain various Ca(2+)-effector proteins that mediate cellular responses to changes in intracellular Ca(2+) levels. A unique class of these proteins - annexins - can bind to certain membrane phospholipids in a Ca(2+)-dependent manner, providing a link between Ca(2+) signalling and membrane functions. By forming networks on the membrane surface, annexins can function as organizers of membrane domains and membrane-recruitment platforms for proteins with which they interact. These and related properties enable annexins to participate in several otherwise unrelated events that range from membrane dynamics to cell differentiation and migration.
Collapse
Affiliation(s)
- Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Germany.
| | | | | |
Collapse
|
62
|
Zhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-β2 glycoprotein I antibodies. Blood 2005; 105:1964-9. [PMID: 15471954 DOI: 10.1182/blood-2004-05-1708] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractPatients with antiphospholipid antibodies (APLAs) are at increased risk for arterial and venous thrombosis. Many APLAs associated with these events react with β2 glycoprotein I (β2GPI), and endothelial cell reactive antibodies that activate endothelial cells in a β2GPI-dependent manner occur commonly in these patients. We previously reported that β2GPI binds with high affinity to annexin A2 on the endothelial surface, though the relevance of this interaction to APLA/anti-β2GPI antibody–induced endothelial activation has not been determined. In this report, we confirm that anti-β2GPI antibodies activate endothelial cells in the presence of β2GPI, and demonstrate that anti–annexin A2 antibodies directly cause endothelial cell activation of a similar magnitude and with a similar time course. Moreover, bivalent anti–annexin A2 F(ab′)2 fragments also caused endothelial cell activation, whereas monomeric Fab fragments not only did not cause activation, but blocked activation induced by anti–annexin A2 antibodies and F(ab′)2 fragments, as well as that caused by anti-β2GPI antibodies in the presence of β2GPI. These observations suggest a novel pathway for endothelial activation induced by APLA/anti-β2GPI antibodies that is initiated by cross-linking or clustering of annexin A2 on the endothelial surface.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Medicine, Hematology-Oncology Division, BRB 3, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH 44106-4937, USA
| | | |
Collapse
|
63
|
Abstract
Many bacteria have been found to interact with specialized domains, rich in cholesterol and sphingolipids, of the host plasma membrane, termed lipid rafts. The mechanisms that underlie this interaction are starting to be unravelled. In this issue, Hayward et al. show that early effector proteins secreted by type III secretion harbouring Gram-negative bacteria are in fact cholesterol-binding proteins. Combined with other recent findings, this work shows that multiple steps leading to infection by these bacteria depend on raft components: activation of secretion, binding, perforation of the host cell membrane and signalling to trigger bacterial engulfment.
Collapse
Affiliation(s)
- Frank Lafont
- Department Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
64
|
Ma G, Greenwell-Wild T, Lei K, Jin W, Swisher J, Hardegen N, Wild CT, Wahl SM. Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. ACTA ACUST UNITED AC 2005; 200:1337-46. [PMID: 15545357 PMCID: PMC2211913 DOI: 10.1084/jem.20041115] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The distribution of secretory leukocyte protease inhibitor (SLPI) at entry portals indicates its involvement in defending the host from pathogens, consistent with the ability of SLPI to inhibit human immunodeficiency virus (HIV)-1 infection by an unknown mechanism. We now demonstrate that SLPI binds to the membrane of human macrophages through the phospholipid-binding protein, annexin II. Based on the recent identification of human cell membrane phosphatidylserine (PS) in the outer coat of HIV-1, we define a novel role for annexin II, a PS-binding moiety, as a cellular cofactor supporting macrophage HIV-1 infection. Moreover, this HIV-1 PS interaction with annexin II can be disrupted by SLPI or other annexin II–specific inhibitors. The PS–annexin II connection may represent a new target to prevent HIV-1 infection.
Collapse
Affiliation(s)
- Ge Ma
- Oral Infection and Immunity Branch, NIDCR, NIH, 30 Convent Dr., MSC4352, Building 30, Room 320, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Kirschnek S, Adams C, Gulbins E. Annexin II is a novel receptor for Pseudomonas aeruginosa. Biochem Biophys Res Commun 2005; 327:900-6. [PMID: 15649430 DOI: 10.1016/j.bbrc.2004.12.089] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Indexed: 11/25/2022]
Abstract
Infections with Pseudomonas aeruginosa (P. aeruginosa) are critical in ventilated and poly-traumatized patients. Most important, these bacteria cause frequent and chronic pulmonary infections in patients with cystic fibrosis. Therefore, identification of molecular mechanisms that mediate the infection of mammalian cells with P. aeruginosa is urgently required. Here, we aimed to identify novel receptors that are involved in internalization of P. aeruginosa into mammalian epithelial cells. Employing SDS-PAGE purification and mass spectrometry we demonstrate that annexin II specifically binds to P. aeruginosa. The significance of the interaction of annexin II with P. aeruginosa for the infection of mammalian cells is indicated by the finding that neutralization of the ligands on P. aeruginosa by incubation of the bacteria with recombinant, soluble annexin II prevents internalization of P. aeruginosa into human epithelial cells.
Collapse
Affiliation(s)
- Susanne Kirschnek
- Department of Medical Microbiology, Technical University Munich, 81675 Munich, Germany
| | | | | |
Collapse
|
66
|
Tsuda K, Amano A, Umebayashi K, Inaba H, Nakagawa I, Nakanishi Y, Yoshimori T. Molecular Dissection of Internalization of Porphyromonas gingivalis by Cells using Fluorescent Beads Coated with Bacterial Membrane Vesicle. Cell Struct Funct 2005; 30:81-91. [PMID: 16428861 DOI: 10.1247/csf.30.81] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Porphyromonas gingivalis is one of the causative agents of adult periodontitis, and has been reported to be internalized by nonphagocytic epithelial cells. However, the mechanism for the internalization remains unclear. In the present study, we addressed this issue using fluorescent beads coated with bacterial membrane vesicles (MVs) that retain surface components of P. gingivalis. We established an assay system in which we could easily quantify the bead internalization to cells. MVs-coated beads were internalized by HeLa cells in kinetics similar to that of living bacteria. The internalization depended on dynamin but not clathrin. The beads were internalized through the actin-mediated pathway that is controlled by phosphatidylinositol (PI) 3-kinase. The dynamics of microtubule assembly and disassembly was also required. Further, the treatment of cells with cholesterol-binding reagents significantly inhibited bead internalization, and the internalized beads were apparently colocalized with ganglioside GM1 and caveolin-1, which suggest the involvement of the lipid raft in the process. These results suggest that P. gingivalis accomplishes its internalization utilizing membrane lipid raft and cytoskeletal functions of the target cells.
Collapse
Affiliation(s)
- Kayoko Tsuda
- Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
67
|
Zhao H, Hardy R. Long-chain saturated fatty acids induce annexin II translocation to detergent-resistant membranes. Biochem J 2004; 381:463-9. [PMID: 15099193 PMCID: PMC1133853 DOI: 10.1042/bj20031083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 04/13/2004] [Accepted: 04/20/2004] [Indexed: 11/17/2022]
Abstract
DRM (detergent-resistant membranes), which are resistant to solublization by non-ionic detergents, have been demonstrated to be involved in many key cell functions such as signal transduction, endocytosis and cholesterol trafficking. Covalent modification of proteins by fatty acylation has been proposed to be an important protein-targeting mechanism for DRM association. However, little is known concerning the effects of LCSFA (long-chain saturated fatty acids) on protein composition of DRM in human cancer cells. In the present study, we found that, in Hs578T human breast cancer cells, the major protein increased in DRM in response to the LCSFA stearate (C18:0) was annexin II. Our results demonstrated that annexin II accumulated in DRM specifically in response to physiological concentrations of stearate and palmitate (C16:0), but not long-chain unsaturated fatty acids, in a time- and concentration-dependent manner. This process was reversible and dependent on cholesterol and intracellular calcium. Although calcium was necessary for this translocation, it was not sufficient to induce the annexin II translocation to DRM. We also demonstrate that stearate induced the acylation of caveolin but not that of annexin II. Association of annexin II with caveolin, although not necessarily direct, specifically occurs in DRM in response to stearate. Finally, bromostearate, a stearate analogue that effectively blocks protein acylation, does not induce annexin II translocation to DRM. We conclude that exogenously added LCSFA strongly induces the translocation of annexin II to DRM in Hs578T human breast cancer cells at least partially by association with acylated caveolin.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0007, U.S.A
| | - Robert W. Hardy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294-0007, U.S.A
- To whom correspondence should be addressed (e-mail )
| |
Collapse
|
68
|
Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 2004; 23:4538-49. [PMID: 15549136 PMCID: PMC533055 DOI: 10.1038/sj.emboj.7600471] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 10/12/2004] [Indexed: 11/09/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a prevalent cause of traveler's diarrhea and infant mortality in third-world countries. Heat-labile enterotoxin (LT) is secreted from ETEC via vesicles composed of outer membrane and periplasm. We investigated the role of ETEC vesicles in pathogenesis by analyzing vesicle association and entry into eukaryotic cells. Fluorescently labeled vesicles from LT-producing and LT-nonproducing strains were compared in their ability to bind adrenal and intestinal epithelial cells. ETEC-derived vesicles, but not control nonpathogen-derived vesicles, associated with cells in a time-, temperature-, and receptor-dependent manner. Vesicles were visualized on the cell surface at 4 degrees C and detected intracellularly at 37 degrees C. ETEC vesicle endocytosis depended on cholesterol-rich lipid rafts. Entering vesicles partially colocalized with caveolin, and the internalized vesicles accumulated in a nonacidified compartment. We conclude that ETEC vesicles serve as specifically targeted transport vehicles that mediate entry of active enterotoxin and other bacterial envelope components into host cells. These data demonstrate a role in virulence for ETEC vesicles.
Collapse
Affiliation(s)
- Nicole C Kesty
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Kevin M Mason
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Mary Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Sara E Miller
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- Department of Biochemistry, Duke University Medical Center, 132 Nanaline Duke, Box 3711, Durham, NC 27710, USA. Tel.: +1 919 684 2545; Fax: +1 919 684 8885; E-mail:
| |
Collapse
|
69
|
Conlin VS, Curtis SB, Zhao Y, Moore EDW, Smith VC, Meloche RM, Finlay BB, Buchan AMJ. Helicobacter pylori infection targets adherens junction regulatory proteins and results in increased rates of migration in human gastric epithelial cells. Infect Immun 2004; 72:5181-92. [PMID: 15322013 PMCID: PMC517469 DOI: 10.1128/iai.72.9.5181-5192.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gastric pathogen Helicobacter pylori attaches to antral epithelial cells in vivo. Cultured human antral epithelial cells, AGS and NCI-N87 cell lines, were grown in the absence or presence of H. pylori and compared with respect to gene transcript levels, protein expression, organization of the actin cytoskeleton, and the regulation of cell migration. The Clontech Neurobiology array detected differentially expressed transcripts, while Western blots were used to investigate related changes in protein levels. Infection with H. pylori consistently upregulated annexin II, S100 A7, Rho-GTP, and IQGAP-1, whereas SSTR-1 was downregulated upon H. pylori infection. In the adherens junction, E-cadherin and IQGAP-1 were translocated from the plasma membrane to intracellular vesicles. The primary and NCI-N87 cells were similar with respect to cell-cell and cell-matrix adhesion and cell migratory behavior; in contrast the AGS cells were significantly different from the primary gastric epithelial cell preparations, and thus caution must be used when using this cell line for studies of gastric disease. These studies demonstrate a correlation between H. pylori infection and alterations to epithelial cell adhesion molecules, including increased levels of Rho-GTP and cell migration. These data indicate that destabilizing epithelial cell adherence is one of the factors increasing the risk of H. pylori-infected individuals developing gastric cancer.
Collapse
Affiliation(s)
- Victoria S Conlin
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, B.C. V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
70
|
van der Goot FG, Tran van Nhieu G, Allaoui A, Sansonetti P, Lafont F. Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-based mechanism. J Biol Chem 2004; 279:47792-8. [PMID: 15364928 DOI: 10.1074/jbc.m406824200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infection by the Gram-negative bacterial pathogen Shigella flexneri depends on its ability to invade host cells. Bacterial engulfment requires a functional type III secretion system (TTSS) allowing the translocation into host cells of bacterial effectors that activate cell-signaling cascades. We demonstrated previously that specialized lipid membrane domains enriched in cholesterol and sphingolipids (rafts) are involved during early steps of invasion, namely in binding and host cell entry. In this study, we addressed the issue of contact-mediated secretion by the TTSS. We show that contact-mediated and TTSS-induced hemolysis depend on the presence of cholesterol on the host cell surface. We found that purified detergent resistant membranes were able to activate TTSS. Finally, we found that artificial liposomes, devoid of proteins, were able to activate the TTSS but only when their composition mimicked that of lipid rafts. Altogether, these data indicate that specific lipid packing can trigger contact-mediated secretion by S. flexneri.
Collapse
Affiliation(s)
- Françoise G van der Goot
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH1211 Genève 4, Switzerland
| | | | | | | | | |
Collapse
|
71
|
Knop M, Aareskjold E, Bode G, Gerke V. Rab3D and annexin A2 play a role in regulated secretion of vWF, but not tPA, from endothelial cells. EMBO J 2004; 23:2982-92. [PMID: 15257287 PMCID: PMC514934 DOI: 10.1038/sj.emboj.7600319] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 06/18/2004] [Indexed: 12/30/2022] Open
Abstract
von-Willebrand factor (vWF) and tissue-type plasminogen activator (tPA) are products of endothelial cells acutely released into the vasculature following cell activation. Both factors are secreted after intraendothelial Ca2+ mobilization, but exhibit opposing physiological effects with vWF inducing coagulation and tPA triggering fibrinolysis. To identify components that could regulate differentially the release of pro- and antithrombogenic factors, we analyzed the contribution of Rab3D and the annexin A2/S100A10 complex, proteins implicated in exocytotic events in other systems. We show that mutant Rab3D proteins interfere with the formation of bona fide Weibel-Palade bodies (WPbs), the principal storage granules of multimeric vWF, and consequently the acute, histamine-induced release of vWF. In contrast, neither appearance nor exocytosis of tPA storage granules is affected. siRNA-mediated downregulation of annexin A2/S100A10 and disruption of the complex by microinjection of peptide competitors result in a marked reduction in vWF but not tPA secretion, without affecting the appearance of WPbs. This indicates that distinct mechanisms underlie the acute secretion of vWF and tPA, enabling endothelial cells to fine-regulate the release of thrombogenic and fibrinolytic factors.
Collapse
Affiliation(s)
- Markus Knop
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Elin Aareskjold
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Günther Bode
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany. Tel.: +49 251 835 6722; Fax: +49 251 835 6748; E-mail:
| |
Collapse
|
72
|
Kansau I, Berger C, Hospital M, Amsellem R, Nicolas V, Servin AL, Bernet-Camard MF. Zipper-like internalization of Dr-positive Escherichia coli by epithelial cells is preceded by an adhesin-induced mobilization of raft-associated molecules in the initial step of adhesion. Infect Immun 2004; 72:3733-42. [PMID: 15213113 PMCID: PMC427432 DOI: 10.1128/iai.72.7.3733-3742.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 12/18/2003] [Accepted: 02/26/2004] [Indexed: 11/20/2022] Open
Abstract
We undertook a study of the mechanism by which Dr-positive bacteria invade epithelial cells. Our findings show that Dr-positive bacteria enter via a zipper-like mechanism that is independent of the Dr-induced mobilization of F-actin and of the signaling molecules that control Dr-induced F-actin rearrangements. We also observed that Dr-positive IH11128 bacteria entered cells that were positive for the caveola marker VIP21/caveolin (HeLa and Caco-2/Cav-1 cells) to the same extent as those that were not (parental Caco-2 cells). Using fluorescence labeling and confocal laser scanning microscopy, we provide evidence that during the adhesion step, the alpha5beta1 integrin, which plays a pivotal role in Afa/Dr diffusely adhering Escherichia coli bacterial entry, is mobilized around adhering Dr-positive bacteria. We show that the receptor for Afa/Dr adhesins, glycosylphosphatidylinositol-anchored CD55; the raft marker, ganglioside GM1; and VIP21/caveolin are all recruited around adhering Dr-positive bacteria. We also observed that extracting membrane cholesterol with methyl-beta-cyclodextrin (MBCD) did not affect the recruitment of CD55, GM1, or beta1 integrin to adhering Dr-positive bacteria. In contrast, extracting or changing membrane-bound cholesterol by means of drugs that modify lipid rafts (MBCD, filipin III, or mevalonate plus lovastatin plus MBCD) inhibited the entry of Dr-positive IH11128 both into cells that expressed VIP21/caveolin (HeLa and Caco-2/Cav-1 cells) and into those that did not (parental Caco-2 cells). Finally, restoring cholesterol within the cell membrane of MBCD-treated cells restored Dr-positive IH11128 internalization.
Collapse
Affiliation(s)
- Imad Kansau
- Unité 510 INSERM, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
73
|
Phillips N, Hayward RD, Koronakis V. Phosphorylation of the enteropathogenic E. coli receptor by the Src-family kinase c-Fyn triggers actin pedestal formation. Nat Cell Biol 2004; 6:618-25. [PMID: 15220932 DOI: 10.1038/ncb1148] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Accepted: 05/25/2004] [Indexed: 02/08/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) causes diarrhoeal disease worldwide. Pathogen adherence to host cells induces reorganization of the actin cytoskeleton into 'pedestal-like' pseudopods beneath the extracellular bacteria. This requires two bacterial virulence factors that mimic a ligand-receptor interaction. EPEC delivers its own receptor, the translocated intimin receptor (Tir), into the target cell plasma membrane, which is phosphorylated on interaction with the bacterial surface protein intimin. Tir phosphorylated on Tyr 474 (ref. 4) binds the cellular adaptor Nck, triggering actin polymerization. Nevertheless, despite its critical role, the mechanism of Tir Tyr 474 phosphorylation remains unknown. Here, by artificially uncoupling Tir delivery and activity, we show that Tir phosphorylation and Nck-dependent pedestal formation require the Src-family kinase (SFK) c-Fyn. SFK inhibitors prevent Tyr 474 phosphorylation, and cells lacking c-fyn are resistant to pedestal formation. c-Fyn exclusively phosphorylates clustered Tir in vitro, and kinase knockdown suppresses Tir phosphorylation and pedestal formation in cultured cells. These results identify the transient interaction with host c-Fyn as a pivotal link between bacterial Tir and the cellular Nck-WASP-Arp2/3 cascade, illuminating a tractable experimental system in which to dissect tyrosine kinase signalling.
Collapse
Affiliation(s)
- Neil Phillips
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
74
|
Abstract
The actin cytoskeleton is a malleable framework of polymerised actin monomers that may be rapidly restructured to enable diverse cellular activities such as motility, endocytosis and cytokinesis. The regulation of actin dynamics involves the coordinated activity of numerous proteins, among which members of the annexin family of Ca2+- and phospholipid-binding proteins play an important role. Although the roles of annexins in actin dynamics are not understood at a mechanistic level, annexins have the requisite properties to integrate Ca2+-signaling with actin dynamics at membrane contact sites. In this review we discuss the current state of knowledge on this topic, and consider how and where annexins may fit into the complex molecular machinery that regulates the actin cytoskeleton.
Collapse
Affiliation(s)
- Matthew J Hayes
- Division of Cell Biology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | | | |
Collapse
|
75
|
Kirshner J, Schumann D, Shively JE. CEACAM1, a Cell-Cell Adhesion Molecule, Directly Associates with Annexin II in a Three-dimensional Model of Mammary Morphogenesis. J Biol Chem 2003; 278:50338-45. [PMID: 14522961 DOI: 10.1074/jbc.m309115200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The epithelial cell adhesion molecule CEACAM1 (carcinoembryonic antigen cell adhesion molecule-1) is down-regulated in colon, prostate, breast, and liver cancer. Here we show that CEACAM1-4S, a splice form with four Ig-like ectodomains and a short cytoplasmic domain (14 amino acids), directly associates with annexin II, a lipid raft-associated molecule, which is also down-regulated in many cancers. Annexin II was identified using a glutathione S-transferase pull-down assay in which the cytoplasmic domain of CEACAM-4S was fused to glutathione S-transferase, the fusion protein was incubated with cell lysates, and isolated proteins were sequenced by mass spectrometry. The interaction was confirmed first by reciprocal immunoprecipitations using anti-CEACAM1 and anti-annexin II antibodies and second by confocal laser microscopy showing co-localization of CEACAM1 with annexin II in mammary epithelial cells grown in Matrigel. In addition, CEACAM1 co-localized with p11, a component of the tetrameric AIIt complex at the plasma membrane, and with annexin II in secretory vesicles. Immobilized, oriented peptides from the cytoplasmic domain of CEACAM1-4S were shown to directly associate with bovine AIIt, which is 98% homologous to human AIIt, with average KD values of about 30 nM using surface plasmon resonance, demonstrating direct binding of functionally relevant AIIt to the cytoplasmic domain of CEACAM1-4S.
Collapse
Affiliation(s)
- Julia Kirshner
- Graduate School of the City of Hope and Beckman Research Institute, Duarte, California 91010, USA
| | | | | |
Collapse
|
76
|
Koltzscher M, Neumann C, König S, Gerke V. Ca2+-dependent binding and activation of dormant ezrin by dimeric S100P. Mol Biol Cell 2003; 14:2372-84. [PMID: 12808036 PMCID: PMC194886 DOI: 10.1091/mbc.e02-09-0553] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
S100 proteins are EF hand type Ca2+ binding proteins thought to function in stimulus-response coupling by binding to and thereby regulating cellular targets in a Ca2+-dependent manner. To isolate such target(s) of the S100P protein we devised an affinity chromatography approach that selects for S100 protein ligands requiring the biologically active S100 dimer for interaction. Hereby we identify ezrin, a membrane/F-actin cross-linking protein, as a dimer-specific S100P ligand. S100P-ezrin complex formation is Ca2+ dependent and most likely occurs within cells because both proteins colocalize at the plasma membrane after growth factor or Ca2+ ionophore stimulation. The S100P binding site is located in the N-terminal domain of ezrin and is accessible for interaction in dormant ezrin, in which binding sites for F-actin and transmembrane proteins are masked through an association between the N- and C-terminal domains. Interestingly, S100P binding unmasks the F-actin binding site, thereby at least partially activating the ezrin molecule. This identifies S100P as a novel activator of ezrin and indicates that activation of ezrin's cross-linking function can occur directly in response to Ca2+ transients.
Collapse
Affiliation(s)
- Max Koltzscher
- Institute for Medical Biochemistry, University of Muenster, Germany
| | | | | | | |
Collapse
|
77
|
Abstract
Enteropathogenic Escherichia coli (EPEC) adhere to the intestinal mucosa and to tissue culture cells in a distinctive fashion, destroying microvilli, altering the cytoskeleton and attaching intimately to the host cell membrane in a manner termed the attaching and effacing effect. Typical EPEC strains also form three-dimensional microcolonies in a pattern termed localized adherence. Attaching and effacing, and in particular intimate attachment requires an outer membrane adhesin called intimin, which binds to the translocated intimin receptor, Tir. Tir is produced by the bacteria and delivered to the host cell via a type III secretion system. In addition to this well-established adhesin-receptor pair, numerous other adhesin interactions between EPEC and host cells have been described including those between intimin and cellular receptors and those involving a bundle-forming pilus and flagella and unknown receptors. Much additional work is needed before a full understanding of EPEC adhesion to host cells comes to light.
Collapse
Affiliation(s)
- Jean-Philippe Nougayrède
- Division of Infectious Diseases, University of Maryland, Baltimore, 10 S Pine Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
78
|
Harris TJC, Ravandi A, Awrey DE, Siu CH. Cytoskeleton interactions involved in the assembly and function of glycoprotein-80 adhesion complexes in dictyostelium. J Biol Chem 2003; 278:2614-23. [PMID: 12421828 DOI: 10.1074/jbc.m206241200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adhesion complexes typically assemble from clustered receptors that link to the cytoskeleton via cytoplasmic adapter proteins. However, it is unclear how phospholipid-anchored adhesion molecules, such as the Dictyostelium receptor gp80, interact with the cytoskeleton. gp80 has been found to form adhesion complexes from raftlike membrane domains, which can be isolated as a Triton X-100-insoluble floating fraction (TIFF). We report here that the actin-binding protein ponticulin mediates TIFF-cytoskeleton interactions. Analysis of gp80-null cells revealed that these interactions were minimal in the absence of gp80. During development, gp80 was required to enhance these interactions as its adhesion complexes assembled. Whereas ponticulin and gp80 could partition independently into TIFF, gp80 was shown to recruit ponticulin to cell-cell contacts and to increase its partitioning into TIFF. However, these proteins did not co-immunoprecipitate. Furthermore, sterol sequestration abrogated the association of ponticulin with TIFF without affecting gp80, suggesting that sterols may mediate the interactions between ponticulin and gp80. In ponticulin-null cells, large gp80 adhesion complexes assembled in the absence of ponticulin despite the lack of cytoskeleton association. We propose that such nascent gp80 adhesion complexes produce expanded raftlike domains that recruit ponticulin and thereby establish stable cytoskeleton interactions to complete the assembly process.
Collapse
Affiliation(s)
- Tony J C Harris
- Banting and Best Department of Medical Research, University of Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
79
|
|
80
|
Babiychuk EB, Babiychuk VS, Danilova VM, Tregubov VS, Sagach VF, Draeger A. Stress fibres-a Ca2+ -independent store for annexins? BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:154-61. [PMID: 12445471 DOI: 10.1016/s1570-9639(02)00456-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Annexins belong to a family of lipid-binding proteins that are implicated in membrane organization. Several members are capable of binding to actin and, in smooth muscle cells, annexin 6 is known to form a Ca(2+)-dependent, plasmalemmal complex with actin filaments. Annexins can also associate with F-actin containing stress fibres within cultured smooth muscle cells or fibroblasts in a Ca(2+)-independent manner. Depolymerization of stress-fibre systems with cytochalasin D leads to the translocation of actin-bound annexin 2 from the cytoplasm to the plasma membrane at high intracellular levels of Ca(2+). This type of Ca(2+)-dependent annexin mobility is observed only in cells of mesenchymal phenotype, which have a well-developed stress-fibre system; not in epithelial cells.
Collapse
Affiliation(s)
- E B Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bühlstrasse 26, 3012, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|