51
|
Ilyasov RA, Gaifullina LR, Saltykova ES, Poskryakov AV, Nikolaenko AG. Defensins in the honeybee antiinfectious protection. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
52
|
Chaimanee V, Pettis JS, Chen Y, Evans JD, Khongphinitbunjong K, Chantawannakul P. Susceptibility of four different honey bee species to Nosema ceranae. Vet Parasitol 2013; 193:260-5. [DOI: 10.1016/j.vetpar.2012.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 11/30/2012] [Accepted: 12/09/2012] [Indexed: 01/06/2023]
|
53
|
Chaimanee V, Chantawannakul P, Chen Y, Evans JD, Pettis JS. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1090-1095. [PMID: 22609362 DOI: 10.1016/j.jinsphys.2012.04.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 05/27/2023]
Abstract
Nosema ceranae is a microsporidium parasite infecting adult honey bees (Apis mellifera) and is known to affects at both the individual and colony level. In this study, the expression levels were measured for four antimicrobial peptide encoding genes that are associated with bee humoral immunity (defensin, abaecin, apidaecin, and hymenoptaecin), eater gene which is a transmembrane protein involved cellular immunity and gene encoding female-specific protein (vitellogenin) in honey bees when inoculated by N. ceranae. The results showed that four of these genes, defensin, abaecin, apidaecin and hymenoptaecin were significantly down-regulated 3 and 6days after inoculations. Additionally, antimicrobial peptide expressions did not significantly differ between control and inoculated bees after 12days post inoculation. Moreover, our results revealed that the mRNA levels of eater and vitellogenin did not differ significantly following N. ceranae inoculation. Therefore, in this study we reaffirmed that N. ceranae infection induces host immunosuppression.
Collapse
Affiliation(s)
- Veeranan Chaimanee
- Bee Protection Center, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | |
Collapse
|
54
|
Tanaka H, Sagisaka A, Fujita K, Furukawa S, Ishibashi J, Yamakawa M. BmEts upregulates promoter activity of lebocin in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:474-481. [PMID: 22484450 DOI: 10.1016/j.ibmb.2012.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 05/31/2023]
Abstract
The Ets family protein BmEts is assumed to be implicated in determination of diapause in the embryogenesis of Bombyx mori. In this study, we found that expression of BmEts was increased in the fat body and other tissues of the 5th instar larvae in response to Escherichia coli injection. Cotransfection experiments using a silkworm cell line revealed that overexpression of BmEts significantly elevated the activity of lebocin promoter but not of cecropin B1, cecropin D, attacin, and moricin promoters. Activation of the lebocin promoter by BmEts was dependent on at least two κB elements and the most proximal GGAA/T motif located on the 5'-upstream region. BmEts further synergistically enhanced E. coli or BmRelish1-d2 (active form)-stimulated lebocin promoter activation. Two κB elements were also found to be involved in promoter activation by BmRelish1-d2 and in synergistic promoter activation by BmEts and BmRelish1-d2 in the silkworm cells. Specific binding of recombinant BmEts to the proximal κB element and the most proximal GGAA/T motif and interaction between BmEts and BmRelish1 were also observed. To our knowledge, this is the first report of an Ets family protein directly regulating immune-related genes in invertebrates.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Insect Mimetics Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan.
| | | | | | | | | | | |
Collapse
|
55
|
Kopacek P, Hajdusek O, Buresova V. Tick as a model for the study of a primitive complement system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 710:83-93. [PMID: 22127888 DOI: 10.1007/978-1-4419-5638-5_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ticks are blood feeding parasites transmitting a wide variety of pathogens to their vertebrate hosts. The transmitted pathogens apparently evolved efficient mechanisms enabling them to evade or withstand the cellular or humoral immune responses within the tick vector. Despite its importance, our knowledge of tick innate immunity still lags far beyond other well established invertebrate models, such as drosophila, horseshoe crab or mosquitoes. However, the recent release of the American deer tick, Ixodes scapularis, genome and feasibility of functional analysis based on RNA interference (RNAi) facilitate the development of this organism as a full-value model for deeper studies of vector-pathogen interactions.
Collapse
Affiliation(s)
- Petr Kopacek
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branisovská 31, Ceské Budejovice, CZ-370 05, Czech Republic.
| | | | | |
Collapse
|
56
|
Lynd A, Lycett GJ. Optimization of the Gal4-UAS system in an Anopheles gambiae cell line. INSECT MOLECULAR BIOLOGY 2011; 20:599-608. [PMID: 21699594 DOI: 10.1111/j.1365-2583.2011.01090.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The development of the bipartite Gal4-UAS system in Anopheles gambiae would improve the functional characterization of genes in this important malaria vector. Towards this aim, we used Gal4 driver plasmids to successfully activate expression of the reporter gene, luciferase, from UAS responder plasmids when cotransfected into an An. gambiae cell line. To optimize Gal4-regulated gene expression in mosquitoes, we compared the efficiency of a series of alternative Gal4 transactivators to drive reporter gene expression from responder plasmids incorporating different numbers of tandemly arrayed Gal4 binding sites or upstream activation sequences (UAS). The results indicated that the native Gal4 is only weakly active in these cells. Modified forms of Gal4, including those carrying minimal VP16 activation domains, as well as a deleted form of Gal4, give up to 20-fold greater activity than the native protein, when used in conjunction with a responder plasmid having 14 UAS repeats. The identification of Gal4-UAS vectors that are efficiently expressed in a mosquito cell line should facilitate the transfer of this versatile expression system to An. gambiae, and potentially to other insects of medical importance.
Collapse
Affiliation(s)
- A Lynd
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, UK
| | | |
Collapse
|
57
|
Abstract
The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations.
Collapse
Affiliation(s)
- David W Severson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
58
|
Das S, Radtke A, Choi YJ, Mendes AM, Valenzuela JG, Dimopoulos G. Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding. BMC Genomics 2010; 11:566. [PMID: 20946652 PMCID: PMC3091715 DOI: 10.1186/1471-2164-11-566] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 10/14/2010] [Indexed: 02/05/2023] Open
Abstract
Background The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host. Results We have performed a global transcriptome analysis of the A. gambiae salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding D7L2, anophelin, peroxidase, the SG2 precursor, and a 5'nucleotidase gene significantly increased probing time of A. gambiae mosquitoes and thereby their capacity to blood-feed. Conclusions The salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds.
Collapse
Affiliation(s)
- Suchismita Das
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205-2179, USA
| | | | | | | | | | | |
Collapse
|
59
|
Aboagye-Antwi F, Guindo A, Traoré AS, Hurd H, Coulibaly M, Traoré S, Tripet F. Hydric stress-dependent effects of Plasmodium falciparum infection on the survival of wild-caught Anopheles gambiae female mosquitoes. Malar J 2010; 9:243. [PMID: 20796288 PMCID: PMC2939621 DOI: 10.1186/1475-2875-9-243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whether Plasmodium falciparum, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics. METHODS In natural mosquito populations, Plasmodium fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed Anopheles gambiae s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis. RESULTS Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of Anopheles gambiae. CONCLUSIONS Because these results suggest that infected mosquitoes may incur fitness costs under natural-like conditions, they are particularly relevant to vector control strategies aiming at boosting naturally occurring refractoriness or spreading natural or foreign genes for refractoriness using genetic drive systems in vector populations.
Collapse
Affiliation(s)
- Fred Aboagye-Antwi
- Center for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | | | | | | | | | | | | |
Collapse
|
60
|
Tanaka H, Suzuki N, Nakajima Y, Sato M, Sagisaka A, Fujita K, Ishibashi J, Imanishi S, Mita K, Yamakawa M. Expression profiling of novel bacteria-induced genes from the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 73:148-162. [PMID: 20077574 DOI: 10.1002/arch.20347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study, we have newly identified three bacteria-induced genes from the silkworm Bombyx mori by quantitative reverse transcriptase-polymerase chain reaction. One of these, eukaryotic initiation factor 4E-1 (eIF4E-1), is assumed to encode an eIF4E family, which plays a role in the initiation of translation as a mRNA cap-binding protein. The second gene is BmFOXG1, belonging to a family of forkhead transcription factors, FOXG1. The third gene is MBF2-related (MBF2-R) whose product has high homology to a co-activator protein MBF2 from B. mori. Although BmFOXG1 was up-regulated in the fat body in response to three kinds of bacteria, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, eIF4E-1 and MBF2-R were up-regulated by E. coli and B. subtilis, but not S. aureus, suggesting that bacteria possessing meso-diaminopimelic acid-containing peptidoglycan but not lysine-containing peptidoglycan activate eIF4E-1 and MBF2-R, probably through a conserved immune deficiency pathway. We further profiled the expression of three genes in different tissues and a silkworm cell line, NIAS-Bm-aff3, in response to bacteria, and at different times after bacterial challenge in the fat body.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Innate Immunity Research Unit, National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kopáček P, Hajdušek O, Burešová V, Daffre S. Tick Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-8059-5_8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. PLoS Pathog 2009; 5:e1000582. [PMID: 19763182 PMCID: PMC2738967 DOI: 10.1371/journal.ppat.1000582] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 08/21/2009] [Indexed: 12/15/2022] Open
Abstract
Alphaviruses are RNA viruses transmitted between vertebrate hosts by arthropod vectors, primarily mosquitoes. How arthropods counteract alphaviruses or viruses per se is not very well understood. Drosophila melanogaster is a powerful model system for studying innate immunity against bacterial and fungal infections. In this study we report the use of a novel system to analyze replication of Sindbis virus (type species of the alphavirus genus) RNA following expression of a Sindbis virus replicon RNA from the fly genome. We demonstrate deficits in the immune deficiency (Imd) pathway enhance viral replication while mutations in the Toll pathway fail to affect replication. Similar results were observed with intrathoracic injections of whole virus and confirmed in cultured mosquito cells. These findings show that the Imd pathway mediates an antiviral response to Sindbis virus replication. To our knowledge, this is the first demonstration of an antiviral role for the Imd pathway in insects.
Collapse
|
63
|
Fragkoudis R, Attarzadeh-Yazdi G, Nash AA, Fazakerley JK, Kohl A. Advances in dissecting mosquito innate immune responses to arbovirus infection. J Gen Virol 2009; 90:2061-72. [DOI: 10.1099/vir.0.013201-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
64
|
Differentially expressed genes between female and male adult Anopheles anthropophagus. Parasitol Res 2009; 105:843-51. [DOI: 10.1007/s00436-009-1470-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
|
65
|
Buresova V, Hajdusek O, Franta Z, Sojka D, Kopacek P. IrAM-An alpha2-macroglobulin from the hard tick Ixodes ricinus: characterization and function in phagocytosis of a potential pathogen Chryseobacterium indologenes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:489-498. [PMID: 18948134 DOI: 10.1016/j.dci.2008.09.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/18/2008] [Accepted: 09/26/2008] [Indexed: 05/27/2023]
Abstract
The universal protease inhibitors of the alpha(2)-macroglobulin (alpha(2)M) family are evolutionarily conserved constituents of innate immunity, presumably because they guard organisms against undesired proteolytic attacks of a different origin. Here, we determined the primary structure of alpha(2)-macroglobulin from the hard tick Ixodes ricinus (IrAM) by sequencing of overlapping PCR products. Predicted disulfide and glycosylation patterns, post-translational cleavage and alternative splicing within its 'bait region' demonstrate that IrAM is closely related to the alpha(2)-macroglobulin from the soft tick Ornithodoros moubata. The IrAM message is expressed in all tick developmental stages and tissues, except for the gut, and the protein was detected to be mainly present in the hemolymph. Silencing of IrAM by dsRNA interference markedly reduced the phagocytosis of a potential pathogen, Chryseobacterium indologenes, by tick hemocytes both in vitro and in vivo. In contrast, phagocytosis of the Lyme disease spirochete Borrelia burgdorferi or a commensal bacteria Staphylococcus xylosus was not affected by the IrAM knock-down. Similar results were obtained upon deactivation of all thioester proteins in tick hemolymph by methylamine. We have further demonstrated that phagocytosis of C. indologenes is dependent on an active metalloprotease secreted by the bacteria. These data indicate that interaction of tick alpha(2)-macroglobulin with a protease of an invading pathogen is linked with cellular immune response.
Collapse
Affiliation(s)
- Veronika Buresova
- Institute of Parasitology, Biology Centre, Academy of Sciences of Czech Republic, Ceske Budejovice CZ-370 05, Czech Republic
| | | | | | | | | |
Collapse
|
66
|
Scott JG, Liu N, Kristensen M, Clark AG. A case for sequencing the genome of Musca domestica (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:175-182. [PMID: 19351068 DOI: 10.1603/033.046.0202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
House flies are carriers of >100 devastating diseases that have severe consequences for human and animal health. Despite the fact that it is a passive vector, a key bottleneck to progress in controlling the human diseases transmitted by house flies is lack of knowledge of the basic molecular biology of this species. Sequencing of the house fly genome will provide important inroads to the discovery of novel target sites for house fly control, understanding of the house fly immune response, rapid elucidation of insecticide resistance genes, and understanding of numerous aspects of the basic biology of this insect pest. The ability of the house fly to prosper in a remarkably septic environment motivates analysis of its innate immune system. Its polymorphic sex determination system, with male-determining factors on either the autosomes or the Y chromosome, is ripe for a genomic analysis. Sequencing of the house fly genome would allow the first opportunity to study the interactions between a pest insect and its parasitoid (Nasonia vitripennis) at the whole genome level. In addition, the house fly is well placed phylogenetically to leverage analysis of the multiple Dipteran genomes that have been sequenced (including several mosquito and Drosophila species). The community of researchers investigating Musca domestica are well prepared and highly motivated to apply genomic analyses to their widely varied research programs.
Collapse
Affiliation(s)
- J G Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
67
|
Arrighi RBG, Debierre-Grockiego F, Schwarz RT, Faye I. The immunogenic properties of protozoan glycosylphosphatidylinositols in the mosquito Anopheles gambiae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:216-223. [PMID: 18822312 DOI: 10.1016/j.dci.2008.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/19/2008] [Accepted: 08/23/2008] [Indexed: 05/26/2023]
Abstract
In contrast to humans, mosquitoes do not have an adaptive immune response to deal with pathogens, and therefore must rely on their innate immune system to deal with invaders. This facilitates the recognition of different microbes on the basis of surface components or antigens. Such antigens have been identified in various types of microbe such as bacteria and fungi, yet none has been identified in the genus protozoa, which includes pathogens such as the malaria parasite, Plasmodium falciparum and Toxoplasma gondii. This study allowed us to test the antigenic properties of protozoan glycosylphosphatidylinositol (GPI) on the mosquito immune system. We found that both P. falciparum GPI and T. gondii GPI induce the strong expression of several antimicrobial peptides following ingestion, and that as a result of the immune response against the GPIs, the number of eggs produced by the mosquito is reduced dramatically. Such effects have been associated with malaria infected mosquitoes, but never associated with a Plasmodium specific antigen. This study demonstrates that protozoan GPIs can be considered as protozoan specific immune elicitors in mosquitoes, and that P. falciparum GPI plays a critical role in the malaria parasite manipulation of the mosquito vector to facilitate its transmission.
Collapse
Affiliation(s)
- Romanico B G Arrighi
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
68
|
Fragkoudis R, Chi Y, Siu RWC, Barry G, Attarzadeh-Yazdi G, Merits A, Nash AA, Fazakerley JK, Kohl A. Semliki Forest virus strongly reduces mosquito host defence signaling. INSECT MOLECULAR BIOLOGY 2008; 17:647-56. [PMID: 18811601 PMCID: PMC2710796 DOI: 10.1111/j.1365-2583.2008.00834.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Alphavirus genus within the Togaviridae family contains several important mosquito-borne arboviruses. Other than the antiviral activity of RNAi, relatively little is known about alphavirus interactions with insect cell defences. Here we show that Semliki Forest virus (SFV) infection of Aedes albopictus-derived U4.4 mosquito cells reduces cellular gene expression. Activation prior to SFV infection of pathways involving STAT/IMD, but not Toll signaling reduced subsequent virus gene expression and RNA levels. These pathways are therefore not only able to mediate protective responses against bacteria but also arboviruses. However, SFV infection of mosquito cells did not result in activation of any of these pathways and suppressed their subsequent activation by other stimuli.
Collapse
Affiliation(s)
- R Fragkoudis
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, College of Medicine & Veterinary Medicine, The University of Edinburgh, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Basseri HR, Doosti S, Akbarzadeh K, Nateghpour M, Whitten MM, Ladoni H. Competency of Anopheles stephensi mysorensis strain for Plasmodium vivax and the role of inhibitory carbohydrates to block its sporogonic cycle. Malar J 2008; 7:131. [PMID: 18627630 PMCID: PMC2500038 DOI: 10.1186/1475-2875-7-131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Accepted: 07/15/2008] [Indexed: 12/17/2022] Open
Abstract
Background Despite the abundance of studies conducted on the role of mosquitoes in malaria transmission, the biology and interaction of Plasmodium with its insect host still holds many mysteries. This paper provides the first study to follow the sporogonic cycle of Plasmodium vivax in a wild insecticide-resistant mysorensis strain of Anopheles stephensi, a major vector of vivax malaria in south-eastern Iran. The study subsequently demonstrates that host-parasite sugar binding interactions are critical to the development of this parasite in the salivary glands of its mosquito host. The identity of the receptors or sugars involved was revealed by a receptor "pre-saturation" strategy in which sugars fed to the mosquitoes inhibited normal host-parasite interactions. Methods Anopheles stephensi mysorensis mosquitoes were artificially infected with P. vivax by feeding on the blood of gametocytaemic volunteers reporting to local malaria clinics in the Sistan-Baluchistan province of south-eastern Iran. In order to determine the inhibitory effect of carbohydrates on sporogonic development, vector mosquitoes were allowed to ingest blood meals containing both gametocytes and added carbohydrates. The carbohydrates tested were GlcNAc, GalNAc, arabinose, fucose, mannose, lactose, glucose and galactose. Sporogonic development was assessed by survival of the parasite at both the oocyst and sporozoite stages. Results Oocyst development was observed among nearly 6% of the fed control mosquitoes but the overall number of mosquitoes exhibiting sporozoite invasion of the salivary glands was 47.5% lower than the number supporting oocysts in their midgut. Of the tested carbohydrates, only arabinose and fucose slightly perturbed the development of P. vivax oocysts at the basal side of the mosquito midgut, and the remaining sugars caused no reductions in oocyst development. Strikingly however, sporozoites were completely absent from the salivary glands of mosquitoes treated with mannose, GalNAc, and lactose. Conclusion The study indicates that An. stephensi in southern Iran has the potential to survive long enough to be re-infected and transmit vivax malaria several times, based on the average adult female longevity (about 30 days) and its gonotrophic cycle (2–3 days) during the malaria transmission season. Certain sugar binding interactions are important for the development of P. vivax sporozoites, and this information may be instrumental for the development of transmission blocking strategies.
Collapse
Affiliation(s)
- Hamid R Basseri
- Department of Medical Entomology, School of Public Health, Tehran University of Medical Science, Iran.
| | | | | | | | | | | |
Collapse
|
70
|
Warr E, Das S, Dong Y, Dimopoulos G. The Gram-negative bacteria-binding protein gene family: its role in the innate immune system of anopheles gambiae and in anti-Plasmodium defence. INSECT MOLECULAR BIOLOGY 2008; 17:39-51. [PMID: 18237283 DOI: 10.1111/j.1365-2583.2008.00778.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Gram-negative bacteria-binding proteins (GNBPs) are pattern recognition receptors which contribute to the defensive response against Plasmodium infection in Anopheles. We have characterized the GNBP gene family in Anopheles gambiae at the molecular level, and show that they are functionally diverse components of the A. gambiae innate immune system. GNBPB4 is a major factor in the defence against a broad range of pathogens, while the other GNBPs have narrower defence specificities. GNBPB4 is associated with the regulation of immune signalling pathways and was found to interact with the Gram-negative Escherichia coli and weakly co-localized with Plasmodium berghei ookinetes in the mosquito midgut epithelium.
Collapse
Affiliation(s)
- E Warr
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | | | | | | |
Collapse
|
71
|
Schlüns H, Crozier RH. Relish regulates expression of antimicrobial peptide genes in the honeybee, Apis mellifera, shown by RNA interference. INSECT MOLECULAR BIOLOGY 2007; 16:753-9. [PMID: 18093004 DOI: 10.1111/j.1365-2583.2007.00768.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Relationships of immune genes in adult honeybees (Apis mellifera) were investigated using RNA interference (RNAi). Quantitative RT-PCR was applied to estimate gene expression and the extent of gene silencing. Relish is a transcription factor and forms an important part of the IMD signalling pathway. The expression of the immune gene Relish was significantly reduced by RNAi (ca. 70%). The proposed regulation of antimicrobial peptide genes by Relish could be established for abaecin and hymenoptaecin. These two genes showed a reduction in gene expression to the same extent as Relish. However, the antimicrobial peptide gene defensin-1 was not affected which suggests defensin-1 is regulated by a different signalling pathway.
Collapse
Affiliation(s)
- H Schlüns
- School of Marine and Tropical Biology and Centre for Comparative Genomics, James Cook University, Townsville, QLD 4811, Australia.
| | | |
Collapse
|
72
|
Bartholomay LC, Mayhew GF, Fuchs JF, Rocheleau TA, Erickson SM, Aliota MT, Christensen BM. Profiling infection responses in the haemocytes of the mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2007; 16:761-776. [PMID: 18093005 DOI: 10.1111/j.1365-2583.2007.00773.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pathogens that infect and/or are transmitted by mosquitoes typically are exposed to the body cavity, and to haemocytes circulating therein, during development or dissemination. Aedes aegypti haemocytes produce a range of immune response-related gene products, and an endpoint response of phagocytosis and/or melanization that is temporally and structurally distinct for the invading pathogen. Expressed sequence tags were generated from haemocyte libraries and then used to design oligonucleotide microarrays. Arrays were screened with haemocyte material collected 1-, 8- and 24-h post-inoculation with Escherichia coli or Micrococcus luteus bacteria. Data from these studies support the discovery of novel immune response-activated genes, provide an expanded understanding of antimicrobial peptide biology and highlight the coordination of immune factors that leads to an endpoint response.
Collapse
Affiliation(s)
- L C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Arino J, Bowman C, Gumel A, Portet S. Effect of pathogen-resistant vectors on the transmission dynamics of a vector-borne disease. JOURNAL OF BIOLOGICAL DYNAMICS 2007; 1:320-346. [PMID: 22876820 DOI: 10.1080/17513750701605614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A model is introduced for the transmission dynamics of a vector-borne disease with two vector strains, one wild and one pathogen-resistant; resistance comes at the cost of reduced reproductive fitness. The model, which assumes that vector reproduction can lead to the transmission or loss of resistance (reversion), is analyzed in a particular case with specified forms for the birth and force of infection functions. The vector component can have, in the absence of disease, a coexistence equilibrium where both strains survive. In the case where reversion is possible, this coexistence equilibrium is globally asymptotically stable when it exists. This equilibrium is still present in the full vector-host system, leading to a reduction of the associated reproduction number, thereby making elimination of the disease more feasible. When reversion is not possible, there can exist an additional equilibrium with only resistant vectors.
Collapse
Affiliation(s)
- Julien Arino
- Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.
| | | | | | | |
Collapse
|
74
|
Zhu L, Song L, Mao Y, Zhao J, Li C, Xu W. A novel serine protease with clip domain from scallop Chlamys farreri. Mol Biol Rep 2007; 35:257-64. [PMID: 17484057 DOI: 10.1007/s11033-007-9078-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 04/09/2007] [Indexed: 10/22/2022]
Abstract
The serine proteases with clip domain are involved in various innate immune functions in invertebrate such as antimicrobial activity, cell adhesion, pattern recognition and regulation of the prophenoloxidase system. A serine protease with clip-domain cDNA (Cf SP) was obtained by Expressed sequence taggings (ESTs) method and rapid amplification of cDNA ends (RACE). The Cf SP full-length cDNA was of 1,152 bp, including a 5'-terminal untranslated region (UTR) of 63 bp, a 3'-terminal UTR of 81 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 1,008 bp encoding a polypeptide of 336 amino acids with a putative signal peptide of 19 amino acids. The deduced amino acid sequence of Cf SP contained an amino-terminal clip domain with three disulfide bonds formed six conserved Cys residues, a carboxyl-terminal trypsin-like domain with the conserved His-Asp-Ser catalytic triad, and a low complexity linker sequence. The Cf SP was strongly expressed in hemocytes and the mRNA expression of Cf SP was up-regulated and increased 3.2-fold and 2.6-fold at 16 h after injection of Vibrio anguillarum and Micrococcus luteus. The results suggested that Cf SP gene might be involved in immune response of Gram-negative and Gram-positive microbial infection in scallop.
Collapse
Affiliation(s)
- Ling Zhu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd, Qingdao, 266071, P.R. China.
| | | | | | | | | | | |
Collapse
|
75
|
Frischknecht F, Amino R, Franke-Fayard B, Janse C, Waters A, Ménard R. Imaging Parasites in Vivo. IMAGING CELLULAR AND MOLECULAR BIOLOGICAL FUNCTIONS 2007. [DOI: 10.1007/978-3-540-71331-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
76
|
Simard F, Licht M, Besansky NJ, Lehmann T. Polymorphism at the defensin gene in the Anopheles gambiae complex: testing different selection hypotheses. INFECTION GENETICS AND EVOLUTION 2006; 7:285-92. [PMID: 17161659 PMCID: PMC1876661 DOI: 10.1016/j.meegid.2006.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 11/20/2022]
Abstract
Genetic variation in defensin, a gene encoding a major effector molecule of insects immune response was analyzed within and between populations of three members of the Anopheles gambiae complex. The species selected included the two anthropophilic species, An. gambiae and An. arabiensis and the most zoophilic species of the complex, An. quadriannulatus. The first species was represented by four populations spanning its extreme genetic and geographical ranges, whereas each of the other two species was represented by a single population. We found (i) reduced overall polymorphism in the mature peptide region and in the total coding region, together with specific reductions in rare and moderately frequent mutations (sites) in the coding region compared with non-coding regions, (ii) markedly reduced rate of non-synonymous diversity compared with synonymous variation in the mature peptide and virtually identical mature peptide across the three species, and (iii) increased divergence between species in the mature peptide together with reduced differentiation between populations of An. gambiae in the same DNA region. These patterns suggest a strong purifying selection on the mature peptide and probably the whole coding region. Because An. quadriannulatus is not exposed to human pathogens, identical mature peptide and similar pattern of polymorphism across species implies that human pathogens played no role as selective agents on this peptide.
Collapse
Affiliation(s)
- Frédéric Simard
- Organisation de Coordination pour la lutte Contre les Endémies en Afrique Centrale (OCEAC), BP 288, Yaoundé, Cameroon.
| | | | | | | |
Collapse
|
77
|
Warburg A, Shtern A, Cohen N, Dahan N. Laminin and a Plasmodium ookinete surface protein inhibit melanotic encapsulation of Sephadex beads in the hemocoel of mosquitoes. Microbes Infect 2006; 9:192-9. [PMID: 17224290 DOI: 10.1016/j.micinf.2006.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/02/2006] [Accepted: 11/07/2006] [Indexed: 10/23/2022]
Abstract
In refractory mosquitoes, melanotic encapsulation of Plasmodium ookinetes and oocysts is a commonly observed immune response. However, in susceptible mosquitoes, Plasmodium oocysts develop extracellularly in the body cavity without being recognized by the immune system. Like Plasmodium gallinaceum oocysts, negatively charged carboxymethyl (CM)-Sephadex beads implanted in the hemocoel of Aedes aegypti female mosquitoes were not usually melanized, but were coated with mosquito-derived laminin. Conversely, electrically neutral G-Sephadex beads were routinely melanized. Since mosquito laminin coated both CM-Sephadex beads and P. gallinaceum oocysts, we hypothesized that laminin prevents melanization of both. To test this hypothesis, we coated cyanogen-bromide-activated G-Sephadex beads with laminin, recombinant P. gallinaceum ookinete surface protein (PgS28) or bovine serum albumin (BSA). Beads were implanted into the abdominal body cavity of female Aedes aegypti and retrieved 4 days later. Uncoated controls as well as BSA-coated G-Sephadex beads were melanized in a normal manner. However, melanization of beads coated with mouse laminin, Drosophila L2-secreted proteins or PgS28 was markedly reduced. Fluorescent antibody labeling showed that PgS28-coated beads had adsorbed mosquito laminin on their surface. Thus, mosquito laminin interacting with Plasmodium surface proteins probably masks oocysts from the mosquito's immune system, thereby facilitating their development in the body cavity.
Collapse
Affiliation(s)
- Alon Warburg
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, P.O. Box 12272, Ein Kerem, Jerusalem 91120, Israel.
| | | | | | | |
Collapse
|
78
|
Hurd H, Grant KM, Arambage SC. Apoptosis-like death as a feature of malaria infection in mosquitoes. Parasitology 2006; 132 Suppl:S33-47. [PMID: 17018164 DOI: 10.1017/s0031182006000849] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Malaria parasites of the genusPlasmodiummake a hazardous journey through their mosquito vectors. The majority die in the process, many as a result of the action of mosquito defence mechanisms. The mosquito too is not unscathed by the encounter with these parasites. Tissue damage occurs as a result of mid-gut invasion and reproductive fitness is lost when many developing ovarian follicles are resorbed. Here we discuss some of the mechanisms that are involved in killing the parasite and in the self-defence mechanisms employed by the mosquito to repair the mid-gut epithelium and to manipulate resources altering the trade-off position that balances reproduction and survival. In all cases, cells die by apoptotic-like mechanisms. In the midgut cells, apoptosis-induction pathways are being elucidated, the molecules involved in apoptosis are being recognised andDrosophilahomologues sought. The death of ookinetes in the mosquito mid-gut lumen is associated with caspase-like activity and, although homologues of mammalian caspases are not present in the malaria genome, other cysteine proteases that are potential candidates have been discussed. In the ovary, apoptosis of patches of follicular epithelial cells is followed by resorption of the developing follicle and a subsequent loss of egg production in that follicle.
Collapse
Affiliation(s)
- H Hurd
- Centre for Applied Entomology and Parasitology, Institute for Science and Technology in Medicine, University of Keele, Staffordshire, ST5 5BG, UK. h.hurd.keele.ac.uk
| | | | | |
Collapse
|
79
|
Warr E, Lambrechts L, Koella JC, Bourgouin C, Dimopoulos G. Anopheles gambiae immune responses to Sephadex beads: involvement of anti-Plasmodium factors in regulating melanization. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:769-78. [PMID: 17027843 DOI: 10.1016/j.ibmb.2006.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 07/12/2006] [Accepted: 07/18/2006] [Indexed: 05/12/2023]
Abstract
We have performed a global genome expression analysis of mosquito responses to CM-25 Sephadex beads and identified 27 regulated immune genes, including several anti-Plasmodium factors and other components with likely roles in melanization. Silencing of two bead injection responsive genes, TEP1 and LRIM1, which encode proteins known to mediate Plasmodium killing, significantly compromised the ability to melanize the beads. In contrast, silencing of two Plasmodium protective c-type lectins, CTL4 and CTLMA2, did not affect bead melanization. This data suggest that the anti-Plasmodium factors have dual functions, as determinants of both Plasmodium killing and melanization of the parasite and other foreign bodies, while the Plasmodium protective factors are specifically utilized by the parasite for evasion of mosquito defense mechanisms.
Collapse
Affiliation(s)
- Emma Warr
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205-2179, USA
| | | | | | | | | |
Collapse
|
80
|
Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2006; 2:e52. [PMID: 16789837 PMCID: PMC1475661 DOI: 10.1371/journal.ppat.0020052] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 04/24/2006] [Indexed: 12/14/2022] Open
Abstract
Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito's immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Twelve selected genes were assessed for effect on infection with both parasite species and bacteria using RNAi gene silencing assays, and seven of these genes were found to influence mosquito resistance to both parasite species. An MD2-like receptor, AgMDL1, and an immunolectin, FBN39, showed specificity in regulating only resistance to P. falciparum, while the antimicrobial peptide gambicin and a novel putative short secreted peptide, IRSP5, were more specific for defense against the rodent parasite P. berghei. While all the genes that affected Plasmodium development also influenced mosquito resistance to bacterial infection, four of the antimicrobial genes had no effect on Plasmodium development. Our study shows that the impact of P. falciparum and P. berghei infection on A. gambiae biology at the gene transcript level is quite diverse, and the defense against the two Plasmodium species is mediated by antimicrobial factors with both universal and Plasmodium-species specific activities. Furthermore, our data indicate that the mosquito is capable of sensing infected blood constituents in the absence of invading ookinetes, thereby inducing anti-Plasmodium immune responses. The malarial parasite Plasmodium has to traverse the gut wall of the Anopheles mosquito in order to complete its lifecycle and to be transmitted between hosts. At the midgut stage of infection, the mosquito activates immune responses to eliminate most invading parasites. The features of these immune responses are not very well understood and have mainly been examined using the rodent parasite model P. berghei. Here the authors investigated the relationship between the Anopheles gambiae responses against the human pathogen P. falciparum, the rodent parasite P. berghei, and bacterial infections, at both the gene expression and functional levels. The mosquito responses against these pathogens were quite diverse, and the defense against the two malaria parasite species involved both common and species-specific components. Malaria-infected blood was sufficient to activate anti-Plasmodium immune responses, even in the absence of midgut invasion. Through this mechanism, the mosquito can initiate its defense against Plasmodium prior to invasion of the gut. Mosquito genes that could negatively influence Plasmodium development were also capable of regulating the resistance to bacterial infection, but several of the antibacterial genes had no effect on Plasmodium; thus, the mosquito apparently utilizes its antibacterial defense systems against the malaria parasite.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ruth Aguilar
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Zhiyong Xi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Emma Warr
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Emmanuel Mongin
- Department of Human Genetics and Genome Quebec Innovation Centre, McGill University, Montreal, Quebec, Canada
- European Molecular Biology Laboratory, European Bioinformatics Institute, The Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
81
|
Boulanger N, Bulet P, Lowenberger C. Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends Parasitol 2006; 22:262-8. [PMID: 16635587 DOI: 10.1016/j.pt.2006.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 03/07/2006] [Accepted: 04/04/2006] [Indexed: 11/17/2022]
Abstract
Innate immunity has a key role in the control of microbial infections in both vertebrates and invertebrates. In insects, including vectors that transmit parasites that cause major human and animal diseases, antimicrobial peptides (AMPs) are important components of innate immunity. AMPs are induced upon parasitic infections and can participate in regulating parasite development in the digestive tract and in the hemolymph. This review presents our current knowledge of a field that is in its infancy: the role of innate immunity in different models of insects infected with flagellate parasites, and in particular the potential role of AMPs in regulating these parasitic infections.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Equipe d'Accueil 3432, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch Cedex, France.
| | | | | |
Collapse
|
82
|
Whitten MMA, Shiao SH, Levashina EA. Mosquito midguts and malaria: cell biology, compartmentalization and immunology. Parasite Immunol 2006; 28:121-30. [PMID: 16542314 DOI: 10.1111/j.1365-3024.2006.00804.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The malaria parasite Plasmodium has an absolute requirement for both a vertebrate and a mosquito host in order to complete its life cycle, and its interactions with the latter provide the focus for this review. The mosquito midgut represents one of the most challenging environments for the survival and development of Plasmodium, and is thus also one of the most attractive sites for novel targeted malaria control strategies. During their attempts to cross the midgut epithelium en route to the salivary glands, motile ookinetes are swiftly detected and labelled by mosquito recognition factors and targeted for destruction by a variety of immune responses that recruit killing factors both from the midgut and from other tissues in the surrounding body cavity. The exact interplay between these factors and the parasite is highly species- and strain-specific, as are the timing and the route of parasite invasion. These features are paramount to determining the success of the infection and the vector competence of the mosquito. Here we discuss recent advances in genomic analyses, coupled with detailed microscopical investigations, which are helping to unravel the identity and roles of the major players of these complex systems.
Collapse
Affiliation(s)
- M M A Whitten
- Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| | | | | |
Collapse
|
83
|
Abstract
To complete their life cycle, Plasmodium parasites must survive the environment in the insect host, cross multiple barriers including epithelial layers, and avoid destruction by the mosquito immune system. Completion of the Anopheles gambiae and Plasmodium falciparum genomes has opened the opportunity to apply high throughput methods to the analysis of gene function. The burst of information generated by these approaches and the use of molecular markers to investigate the cell biology of these interactions is broadening our understanding of this complex system. This review discusses our current understanding of the critical interactions that take place during the journey of Plasmodium through the mosquito host, with special emphasis on the responses of midgut epithelial cells to parasite invasion.
Collapse
Affiliation(s)
- Carolina Barillas-Mury
- Mosquito Immunity & Vector Competence Unit, Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD 20852, USA.
| | | |
Collapse
|
84
|
Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005; 107:222-39. [PMID: 15908010 PMCID: PMC7112686 DOI: 10.1016/j.pharmthera.2005.03.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 12/23/2022]
Abstract
In the past 4 years, RNA interference (RNAi) has become widely used as an experimental tool to analyse the function of mammalian genes, both in vitro and in vivo. By harnessing an evolutionary conserved endogenous biological pathway, first identified in plants and lower organisms, double-stranded RNA (dsRNA) reagents are used to bind to and promote the degradation of target RNAs, resulting in knockdown of the expression of specific genes. RNAi can be induced in mammalian cells by the introduction of synthetic double-stranded small interfering RNAs (siRNAs) 21–23 base pairs (bp) in length or by plasmid and viral vector systems that express double-stranded short hairpin RNAs (shRNAs) that are subsequently processed to siRNAs by the cellular machinery. RNAi has been widely used in mammalian cells to define the functional roles of individual genes, particularly in disease. In addition, siRNA and shRNA libraries have been developed to allow the systematic analysis of genes required for disease processes such as cancer using high throughput RNAi screens. RNAi has been used for the knockdown of gene expression in experimental animals, with the development of shRNA systems that allow tissue-specific and inducible knockdown of genes promising to provide a quicker and cheaper way to generate transgenic animals than conventional approaches. Finally, because of the ability of RNAi to silence disease-associated genes in tissue culture and animal models, the development of RNAi-based reagents for clinical applications is gathering pace, as technological enhancements that improve siRNA stability and delivery in vivo, while minimising off-target and nonspecific effects, are developed.
Collapse
|
85
|
Fraunholz MJ. Systems biology in malaria research. Trends Parasitol 2005; 21:393-5. [PMID: 16043412 DOI: 10.1016/j.pt.2005.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 05/05/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
A recent publication of genome and expression analyses of the murine parasites Plasmodium chabaudi chabaudi and Plasmodium berghei presents the state of the art in Plasmodium systems biology. By integrating genomics, transcriptomics and proteomics, the authors can classify and annotate genes by their expression profiles and can even detect evidence of posttranscriptional gene silencing in the murine malaria species.
Collapse
Affiliation(s)
- Martin J Fraunholz
- Junior Group Applied Bioinformatics and Cell Biology, Institute of Microbiology, Ernst Moritz Arndt University, Friedrich-Ludwig-Jahn Strasse 15, D-17487 Greifswald, Germany.
| |
Collapse
|
86
|
Michel K, Kafatos FC. Mosquito immunity against Plasmodium. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:677-89. [PMID: 15894185 DOI: 10.1016/j.ibmb.2005.02.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2005] [Indexed: 05/02/2023]
Abstract
Understanding the molecular mechanisms of the innate immune responses of Anopheles gambiae against Plasmodium parasites is of great importance for current efforts to develop novel strategies for malaria disease control. The parasite undergoes substantial stage-specific losses during its development in the mosquito, which in some cases lead to complete refractoriness of the mosquito against the parasite. The underlying genetics of refractoriness are complex and multifactorial. Completion of the genome sequence of An. gambiae 2 years ago, together with the development of DNA microarrays in this species and the extension of the RNAi technique to adult mosquitoes, has allowed comparative and functional genomic approaches of the mosquito innate immune system. A variety of factors were shown to negatively affect the development of Plasmodium parasites in the mosquito, in some cases leading to complete transmission blockage. In addition, mosquito factors have been identified that play positive roles and are required for successful transmission of the parasite. These findings indicate a highly complex interplay between parasite and vector. Research is continuing to identify new factors involved in this interaction and to decipher the interplay of these molecules and their regulation.
Collapse
Affiliation(s)
- K Michel
- European Molecular Biology Laboratory, Meyerhofstr.1, 69117 Heidelberg, Germany
| | | |
Collapse
|
87
|
Abstract
The production and deposition of melanin pigments on invading pathogens and parasites represents a unique, innate immune response in the phylum Arthropoda. This immune response has started to receive considerable attention because of the potential to exploit this mechanism to control mosquito-borne diseases. In this article, we summarize knowledge about this complex biochemistry, the use of melanin biosynthesis in diverse physiological processes and the gaps in knowledge that must be addressed if this immune process is to be manipulated in genetic-based control strategies.
Collapse
Affiliation(s)
- Bruce M Christensen
- Department of Animal Health and Biomedical Sciences, 1656 Linden Drive, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
88
|
Yang X, Cox-Foster DL. Impact of an ectoparasite on the immunity and pathology of an invertebrate: evidence for host immunosuppression and viral amplification. Proc Natl Acad Sci U S A 2005; 102:7470-5. [PMID: 15897457 PMCID: PMC1140434 DOI: 10.1073/pnas.0501860102] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Varroa mites (Varroa destructor) are ectoparasites of honey bees (Apis mellifera) and cause serious damage to bee colonies. The mechanism of how varroa mites kill honey bees remains unclear. We have addressed the effects of the mites on bee immunity and the replication of a picorna-like virus, the deformed wing virus (DWV). The expression of genes encoding three antimicrobial peptides (abaecin, defensin, and hymenoptaecin) and four immunity-related enzymes (phenol oxidase, glucose dehydrogenase, glucose oxidase, and lysozyme) were used as markers to measure the difference in the immune response. We have demonstrated an example of an ectoparasite immunosuppressing its invertebrate host with the evidence that parasitization significantly suppressed expression of these immunity-related genes. Given that ticks immunosuppress their vertebrate hosts, our finding indicates that immunosuppression of hosts may be a common phenomenon in the interaction and coevolution between ectoparasites and their vertebrate and invertebrate hosts. DWV viral titers were significantly negatively correlated with the expression levels of the immunity-related enzymes. All bees had detectable DWV. Mite-infested pupae developed into adults with either normal or deformed wings. All of the deformed-wing bees were greatly infected by DWV (approximately 10(6) times higher than varroa-infested but normal-winged bees). Injection with heat-killed bacteria dramatically promoted DWV titers (10(5) times in 10 h) in the mite-infested, normal-winged bees to levels similar to those found in mite-infested, deformed-wing bees. Varroa mites may cause the serious demise of honey bees by suppressing bee immunity and by boosting the amplification of DWV in bees exposed to microbes.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
89
|
Shin SW, Kokoza V, Bian G, Cheon HM, Kim YJ, Raikhel AS. REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. J Biol Chem 2005; 280:16499-507. [PMID: 15722339 DOI: 10.1074/jbc.m500711200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling by Drosophila Toll pathway activates two Rel/NF-kappaB transcription factors, Dorsal (Dl) and Dorsal-related immune factor (Dif). Dl plays a central role in the establishment of dorsoventral polarity during early embryogenesis, whereas Dif mediates the Toll receptor-dependent antifungal immune response in adult Drosophila. The absence of a Dif ortholog in mosquito genomes suggests that Dl may play its functional role in the mosquito Toll-mediated innate immune responses. We have cloned and molecularly characterized the gene homologous to Drosophila Dl and to Anopheles gambiae REL1 (Gambif1) from the yellow fever mosquito Aedes aegypti, named AaREL1. AaREL1 alternative transcripts encode two isoforms, AaREL1-A and AaREL1-B. Both transcripts are enriched during embryogenesis and are inducible by septic injury in larval and female mosquitoes. AaREL1 and AaREL2 (Aedes Relish) selectively bind to different kappaB motifs from insect immune gene promoters. Ectopic expression of AaREL1-A in both Drosophila mbn-2 cells and transgenic flies specifically activates Drosomycin and results in increased resistance against the fungus Beauveria bassiana. AaREL1-B acted cooperatively with AaREL1-A to enhance the immune gene activation in Aag-2 cells. The RNA interference knock-outs revealed that AaREL1 affected the expression of Aedes homologue of Drosophila Serpin-27A and mediated specific antifungal immune response against B. bassiana. These results indicate that the homologue of Dl, but not that of Dif, is a key regulator of the Toll antifungal immune pathway in A. aegypti female mosquitoes.
Collapse
Affiliation(s)
- Sang Woon Shin
- Department of Entomology and the Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | | | | | | | | | |
Collapse
|
90
|
Gupta S, Wang Y, Jiang H. Purification and characterization of Manduca sexta prophenoloxidase-activating proteinase-1, an enzyme involved in insect immune responses. Protein Expr Purif 2005; 39:261-8. [PMID: 15642478 DOI: 10.1016/j.pep.2004.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/19/2004] [Indexed: 11/24/2022]
Abstract
Early on, we reported the partial purification of prophenoloxidase-activating proteinase-1 (PAP-1) from the tobacco hornworm, Manduca sexta [Proc. Natl. Acad. Sci. USA 95 (1998) 12220]. PAP-1 requires an auxiliary factor for generating active phenoloxidase (PO) [Insect Biochem. Mol. Biol. 33 (2003) 197; Insect Biochem. Mol. Biol. 34 (2004) 731]. To further characterize their roles in the proteolytic activation of prophenoloxidase (proPO), we purified PAP-1 to near homogeneity by hydroxylapatite, dextran sulfate, gel filtration, and lectin affinity chromatography. With 2.4 x 10(3)-fold purification and 20% yield, we obtained 63 microg PAP-1 from about 120 M. sexta prepupal cuticles (approximately 400 g). The purified glycoprotein (Mr=39,810+/-20; pI=5.6) had the highest amidase activity at pH 8.0 and a low salt concentration. The optimal conditions for proPO activation by PAP-1 and SPHs were: pH 8.0-8.4, PAP:SPH=1.5:1, and 0-10 degrees C for 40-50 min. While PAP-1 and SPHs are reasonably heat stable, PO activity generated after 1h incubation was lower at 20 or 30 degrees C than 0-10 degrees C because activated PO was unstable at a higher temperature. The KMs of PAP-1 toward IEARpNA and proPO were 201+/-18 microM and 16.6+/-3.0 microg/ml, respectively, and the absence of SPHs did not significantly affect KM for the synthetic substrate. PO activity and proPO cleavage were reduced in reaction mixtures containing the same amounts of proPO, PAP-1, and SPHs but increasing concentrations of NaCl. Ionic strength of the reaction buffer may reduce proPO-PAP-SPH interactions, proPO processing, and PO assembly.
Collapse
Affiliation(s)
- Snehalata Gupta
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | |
Collapse
|
91
|
Abstract
The Molecular Approaches to Malaria 2004 meeting provided an opportunity to see the impressive progress in all research fields and in the four years since the previous Molecular Approaches to Malaria meeting, when much of the Plasmodium falciparum genome sequence was already available. Study of the part of the Plasmodium life cycle associated with transmission through the vector, which begins with the commitment of blood-stage forms to sexual development, has been especially fruitful. This success is a result of several reasons including: (i) the availability of the genome sequence; (ii) the availability of good animal models that allow parasite culture and facile in vivo studies of many of the life cycle stages involved in transmission; (iii) the availability of genetic manipulation technologies for the animal models of malaria, as well as P. falciparum; and (iv) the ability to study lethal gene knockouts at this stage of the life cycle.
Collapse
Affiliation(s)
- Shahid M Khan
- Department of Parasitology, Centre of Infectious Disease, Leiden University Medical Centre, Albinusdreef 1, 2333 ZA Leiden, The Netherlands
| | | |
Collapse
|
92
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
93
|
Affiliation(s)
- Kenneth D Vernick
- Center for Microbial and Plant Genomics and the Department of Microbiology, University of Minnesota, St. Paul, USA
| | | |
Collapse
|