51
|
Mirmiran C, Fraser M, Maler L. Finding food in the dark: how trajectories of a gymnotiform fish change with spatial learning. J Exp Biol 2022; 225:285892. [PMID: 36366924 DOI: 10.1242/jeb.244590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
We analyzed the trajectories of freely foraging Gymnotus sp., a pulse-type gymnotiform weakly electric fish, swimming in a dark arena. For each fish, we compared the its initial behavior as it learned the relative location of landmarks and food with its behavior after learning was complete, i.e. after time/distance to locate food had reached a minimal asymptotic level. During initial exploration when the fish did not know the arena layout, trajectories included many sharp angle head turns that occurred at nearly completely random intervals. After spatial learning was complete, head turns became far smoother. Interestingly, the fish still did not take a stereotyped direct route to the food but instead took smooth but variable curved trajectories. We also measured the fish's heading angle error (heading angle - heading angle towards food). After spatial learning, the fish's initial heading angle errors were strongly biased to zero, i.e. the fish mostly turned towards the food. As the fish approached closer to the food, they switched to a random search strategy with a more uniform distribution of heading angle errors.
Collapse
Affiliation(s)
- Camille Mirmiran
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Maia Fraser
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada, K1N 6N5.,Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, K1H 8M5.,Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
52
|
Does path integration contribute to human navigation in large-scale space? Psychon Bull Rev 2022:10.3758/s13423-022-02216-8. [DOI: 10.3758/s13423-022-02216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
|
53
|
Mizuseki K, Kitanishi T. Oscillation-coordinated, noise-resistant information distribution via the subiculum. Curr Opin Neurobiol 2022; 75:102556. [DOI: 10.1016/j.conb.2022.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/03/2022]
|
54
|
Rolls ET. The hippocampus, ventromedial prefrontal cortex, and episodic and semantic memory. Prog Neurobiol 2022; 217:102334. [PMID: 35870682 DOI: 10.1016/j.pneurobio.2022.102334] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
The human ventromedial prefrontal cortex (vmPFC)/anterior cingulate cortex is implicated in reward and emotion, but also in memory. It is shown how the human orbitofrontal cortex connecting with the vmPFC and anterior cingulate cortex provide a route to the hippocampus for reward and emotional value to be incorporated into episodic memory, enabling memory of where a reward was seen. It is proposed that this value component results in primarily episodic memories with some value component to be repeatedly recalled from the hippocampus so that they are more likely to become incorporated into neocortical semantic and autobiographical memories. The same orbitofrontal and anterior cingulate regions also connect in humans to the septal and basal forebrain cholinergic nuclei, thereby helping to consolidate memory, and helping to account for why damage to the vMPFC impairs memory. The human hippocampus and vmPFC thus contribute in complementary ways to forming episodic and semantic memories.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; University of Warwick, Department of Computer Science, Coventry, UK.
| |
Collapse
|
55
|
Green L, Tingley D, Rinzel J, Buzsáki G. Action-driven remapping of hippocampal neuronal populations in jumping rats. Proc Natl Acad Sci U S A 2022; 119:e2122141119. [PMID: 35737843 PMCID: PMC9245695 DOI: 10.1073/pnas.2122141119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
The current dominant view of the hippocampus is that it is a navigation "device" guided by environmental inputs. Yet, a critical aspect of navigation is a sequence of planned, coordinated actions. We examined the role of action in the neuronal organization of the hippocampus by training rats to jump a gap on a linear track. Recording local field potentials and ensembles of single units in the hippocampus, we found that jumping produced a stereotypic behavior associated with consistent electrophysiological patterns, including phase reset of theta oscillations, predictable global firing-rate changes, and population vector shifts of hippocampal neurons. A subset of neurons ("jump cells") were systematically affected by the gap but only in one direction of travel. Novel place fields emerged and others were either boosted or attenuated by jumping, yet the theta spike phase versus animal position relationship remained unaltered. Thus, jumping involves an action plan for the animal to traverse the same route as without jumping, which is faithfully tracked by hippocampal neuronal activity.
Collapse
Affiliation(s)
- Laura Green
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
- Center for Neural Science, New York University, New York, NY 10003
| | - David Tingley
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY 10003
- Courant Institute for Mathematical Sciences, New York University, New York, NY 10012
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016
- Center for Neural Science, New York University, New York, NY 10003
- Department of Neurology, Langone Medical Center, New York University, New York, NY 10016
| |
Collapse
|
56
|
Vafidis P, Owald D, D'Albis T, Kempter R. Learning accurate path integration in ring attractor models of the head direction system. eLife 2022; 11:e69841. [PMID: 35723252 PMCID: PMC9286743 DOI: 10.7554/elife.69841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Ring attractor models for angular path integration have received strong experimental support. To function as integrators, head direction circuits require precisely tuned connectivity, but it is currently unknown how such tuning could be achieved. Here, we propose a network model in which a local, biologically plausible learning rule adjusts synaptic efficacies during development, guided by supervisory allothetic cues. Applied to the Drosophila head direction system, the model learns to path-integrate accurately and develops a connectivity strikingly similar to the one reported in experiments. The mature network is a quasi-continuous attractor and reproduces key experiments in which optogenetic stimulation controls the internal representation of heading in flies, and where the network remaps to integrate with different gains in rodents. Our model predicts that path integration requires self-supervised learning during a developmental phase, and proposes a general framework to learn to path-integrate with gain-1 even in architectures that lack the physical topography of a ring.
Collapse
Affiliation(s)
- Pantelis Vafidis
- Computation and Neural Systems, California Institute of TechnologyPasadenaUnited States
- Bernstein Center for Computational NeuroscienceBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - David Owald
- Institute of Neurophysiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
- NeuroCure, Charité - Universitätsmedizin BerlinBerlinGermany
- Einstein Center for NeurosciencesBerlinGermany
| | - Tiziano D'Albis
- Bernstein Center for Computational NeuroscienceBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - Richard Kempter
- Bernstein Center for Computational NeuroscienceBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for NeurosciencesBerlinGermany
| |
Collapse
|
57
|
Kojima H, Ikegami T. Organization of a Latent Space structure in VAE/GAN trained by navigation data. Neural Netw 2022; 152:234-243. [PMID: 35561527 DOI: 10.1016/j.neunet.2022.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
We present a novel artificial cognitive mapping system using generative deep neural networks, called variational autoencoder/generative adversarial network (VAE/GAN), which can map input images to latent vectors and generate temporal sequences internally. The results show that the distance of the predicted image is reflected in the distance of the corresponding latent vector after training. This indicates that the latent space is self-organized to reflect the proximity structure of the dataset and may provide a mechanism through which many aspects of cognition are spatially represented. The present study allows the network to internally generate temporal sequences that are analogous to the hippocampal replay/pre-play ability, where VAE produces only near-accurate replays of past experiences, but by introducing GANs, the generated sequences are coupled with instability and novelty.
Collapse
Affiliation(s)
- Hiroki Kojima
- The graduate school of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Takashi Ikegami
- The graduate school of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
58
|
Tukker JJ, Beed P, Brecht M, Kempter R, Moser EI, Schmitz D. Microcircuits for spatial coding in the medial entorhinal cortex. Physiol Rev 2022; 102:653-688. [PMID: 34254836 PMCID: PMC8759973 DOI: 10.1152/physrev.00042.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The hippocampal formation is critically involved in learning and memory and contains a large proportion of neurons encoding aspects of the organism's spatial surroundings. In the medial entorhinal cortex (MEC), this includes grid cells with their distinctive hexagonal firing fields as well as a host of other functionally defined cell types including head direction cells, speed cells, border cells, and object-vector cells. Such spatial coding emerges from the processing of external inputs by local microcircuits. However, it remains unclear exactly how local microcircuits and their dynamics within the MEC contribute to spatial discharge patterns. In this review we focus on recent investigations of intrinsic MEC connectivity, which have started to describe and quantify both excitatory and inhibitory wiring in the superficial layers of the MEC. Although the picture is far from complete, it appears that these layers contain robust recurrent connectivity that could sustain the attractor dynamics posited to underlie grid pattern formation. These findings pave the way to a deeper understanding of the mechanisms underlying spatial navigation and memory.
Collapse
Affiliation(s)
- John J Tukker
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Prateep Beed
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Richard Kempter
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edvard I Moser
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humbold-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Neurocure Cluster of Excellence, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
59
|
Spatial-temporal topography in neurogenesis of the macaque thalamus. Brain Struct Funct 2022; 227:1673-1682. [PMID: 35147755 DOI: 10.1007/s00429-022-02463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 01/23/2022] [Indexed: 11/02/2022]
Abstract
Maternal injection of 3H-thymidine ([3H]dT) during gestation in non-human primates (NHPs) has been used to determine the time of neurogenesis for various brain areas, including the lateral geniculate (LGN) and the pulvinar (PUL) nuclei of the caudal thalamus. Here, we examine neurogenesis in the rostral thalamus, with focus on the mediodorsal (MD) and the anterior nuclei (ANT), to determine if neurogenesis of rostral and caudal thalamic nuclei is concurrent or instead temporally staggered. The MacBrainResource (MBR) search function identified archived cases (N = 10) of [3H]dT labeled specimens, with injection dates ranging from embryonic day 25 (E25)-E50 and postnatal sacrifice dates. Slides were scanned to create digital images for subsequent analysis using Stereo Investigator software. Labeled neurons were mapped within a contour that encompassed the entire rostral thalamus. These maps were superimposed onto closely corresponding sections from the online BrainMaps macaque atlas to facilitate analysis. Our novel approach uncovered a previously undetected spatial-temporal patterning of neurogenesis in the thalamus. At E30, labeled neurons were located in a compact medial band; at E38-E40, labeling was dense ventrolaterally, and at E43, labeling predominated laterally at rostral levels and was widely distributed at caudal levels. Peak neurogenesis occurs earlier in MD (E30-E43) and ANT (E31-E43) than in LGN (E36-E43) and PUL (E36-E45). Birth-dating of neurons in MD and ANT, two higher order relay nuclei implicated in the pathology of schizophrenia, provides further insight into the critical period of vulnerability during which early developmental perturbation may increase incidence of schizophrenia later in life.
Collapse
|
60
|
Purandare CS, Dhingra S, Rios R, Vuong C, To T, Hachisuka A, Choudhary K, Mehta MR. Moving bar of light evokes vectorial spatial selectivity in the immobile rat hippocampus. Nature 2022; 602:461-467. [PMID: 35140401 DOI: 10.1038/s41586-022-04404-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/04/2022] [Indexed: 11/09/2022]
Abstract
Visual cortical neurons encode the position and motion direction of specific stimuli retrospectively, without any locomotion or task demand1. The hippocampus, which is a part of the visual system, is hypothesized to require self-motion or a cognitive task to generate allocentric spatial selectivity that is scalar, abstract2,3 and prospective4-7. Here we measured rodent hippocampal selectivity to a moving bar of light in a body-fixed rat to bridge these seeming disparities. About 70% of dorsal CA1 neurons showed stable activity modulation as a function of the angular position of the bar, independent of behaviour and rewards. One-third of tuned cells also encoded the direction of revolution. In other experiments, neurons encoded the distance of the bar, with preference for approaching motion. Collectively, these demonstrate visually evoked vectorial selectivity (VEVS). Unlike place cells, VEVS was retrospective. Changes in the visual stimulus or its predictability did not cause remapping but only caused gradual changes. Most VEVS-tuned neurons behaved like place cells during spatial exploration and the two selectivities were correlated. Thus, VEVS could form the basic building block of hippocampal activity. When combined with self-motion, reward or multisensory stimuli8, it can generate the complexity of prospective representations including allocentric space9, time10,11 and episodes12.
Collapse
Affiliation(s)
- Chinmay S Purandare
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA.,Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Shonali Dhingra
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Rodrigo Rios
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Cliff Vuong
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Thuc To
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Ayaka Hachisuka
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Krishna Choudhary
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA
| | - Mayank R Mehta
- W.M. Keck Center for Neurophysics, Department of Physics and Astronomy, UCLA, Los Angeles, CA, USA. .,Department of Neurology, UCLA, Los Angeles, CA, USA. .,Department of Electrical and Computer Engineering, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
61
|
Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, Moser MB, Moser EI. Toroidal topology of population activity in grid cells. Nature 2022; 602:123-128. [PMID: 35022611 PMCID: PMC8810387 DOI: 10.1038/s41586-021-04268-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 11/19/2021] [Indexed: 01/24/2023]
Abstract
The medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment1. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 that collectively form a population code for the animal's allocentric position1. The invariance of the correlation structure of this population code across environments4,5 and behavioural states6,7, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern1,8-11. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models12. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.
Collapse
Affiliation(s)
- Richard J Gardner
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Erik Hermansen
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Yoram Burak
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nils A Baas
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Benjamin A Dunn
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
- Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway.
| | - May-Britt Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
62
|
Abstract
By linking the past with the future, our memories define our sense of identity. Because human memory engages the conscious realm, its examination has historically been approached from language and introspection and proceeded largely along separate parallel paths in humans and other animals. Here, we first highlight the achievements and limitations of this mind-based approach and make the case for a new brain-based understanding of declarative memory with a focus on hippocampal physiology. Next, we discuss the interleaved nature and common physiological mechanisms of navigation in real and mental spacetime. We suggest that a distinguishing feature of memory types is whether they subserve actions for single or multiple uses. Finally, in contrast to the persisting view of the mind as a highly plastic blank slate ready for the world to make its imprint, we hypothesize that neuronal networks are endowed with a reservoir of neural trajectories, and the challenge faced by the brain is how to select and match preexisting neuronal trajectories with events in the world.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute and Department of Neurology, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA;
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Sam McKenzie
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY 10027, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962, USA
| |
Collapse
|
63
|
Nguyen TT, Nam GS, Kang JJ, Han GC, Kim JS, Dieterich M, Oh SY. The Differential Effects of Acute Right- vs. Left-Sided Vestibular Deafferentation on Spatial Cognition in Unilateral Labyrinthectomized Mice. Front Neurol 2021; 12:789487. [PMID: 34956067 PMCID: PMC8692718 DOI: 10.3389/fneur.2021.789487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to investigate the disparity in locomotor and spatial memory deficits caused by left- or right-sided unilateral vestibular deafferentation (UVD) using a mouse model of unilateral labyrinthectomy (UL) and to examine the effects of galvanic vestibular stimulation (GVS) on the deficits over 14 days. Five experimental groups were established: the left-sided and right-sided UL (Lt.-UL and Rt.-UL) groups, left-sided and right-sided UL with bipolar GVS with the cathode on the lesion side (Lt.-GVS and Rt.-GVS) groups, and a control group with sham surgery. We assessed the locomotor and cognitive-behavioral functions using the open field (OF), Y maze, and Morris water maze (MWM) tests before (baseline) and 3, 7, and 14 days after surgical UL in each group. On postoperative day (POD) 3, locomotion and spatial working memory were more impaired in the Lt.-UL group compared with the Rt.-UL group (p < 0.01, Tamhane test). On POD 7, there was a substantial difference between the groups; the locomotion and spatial navigation of the Lt.-UL group recovered significantly more slowly compared with those of the Rt.-UL group. Although the differences in the short-term spatial cognition and motor coordination were resolved by POD 14, the long-term spatial navigation deficits assessed by the MWM were significantly worse in the Lt.-UL group compared with the Rt.-UL group. GVS intervention accelerated the vestibular compensation in both the Lt.-GVS and Rt.-GVS groups in terms of improvement of locomotion and spatial cognition. The current data imply that right- and left-sided UVD impair spatial cognition and locomotion differently and result in different compensatory patterns. Sequential bipolar GVS when the cathode (stimulating) was assigned to the lesion side accelerated recovery for UVD-induced spatial cognition, which may have implications for managing the patients with spatial cognitive impairment, especially that induced by unilateral peripheral vestibular damage on the dominant side.
Collapse
Affiliation(s)
- Thanh Tin Nguyen
- Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Gi-Sung Nam
- Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Gwangju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| | - Jin-Ju Kang
- Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| | - Gyu Cheol Han
- Department of Otolaryngology-Head and Neck Surgery, Gachon University of Medicine and Science, Graduate School of Medicine, Incheon, South Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University Bundang Hospital & School of Medicine, Seoul, South Korea
| | - Marianne Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders-IFB, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sun-Young Oh
- Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
64
|
Ma Q, Rolls ET, Huang CC, Cheng W, Feng J. Extensive cortical functional connectivity of the human hippocampal memory system. Cortex 2021; 147:83-101. [PMID: 35026557 DOI: 10.1016/j.cortex.2021.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/12/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023]
Abstract
The cortical connections of the human hippocampal memory system are fundamental to understanding its operation in health and disease, especially in the context of the great development of the human cortex. The functional connectivity of the human hippocampal system was analyzed in 172 participants imaged at 7T in the Human Connectome Project. The human hippocampus has high functional connectivity not only with the entorhinal cortex, but also with areas that are more distant in the ventral 'what' stream including the perirhinal cortex and temporal cortical visual areas. Parahippocampal gyrus TF in humans has connectivity with this ventral 'what' subsystem. Correspondingly for the dorsal stream, the hippocampus has high functional connectivity not only with the presubiculum, but also with areas more distant, the medial parahippocampal cortex TH which includes the parahippocampal place or scene area, the posterior cingulate including retrosplenial cortex, and the parietal cortex. Further, there is considerable cross connectivity between the ventral and dorsal streams with the hippocampus. The findings are supported by anatomical connections, which together provide an unprecedented and quantitative overview of the extensive cortical connectivity of the human hippocampal system that goes beyond hierarchically organised and segregated pathways connecting the hippocampus and neocortex, and leads to new concepts on the operation of the hippocampal memory system in humans.
Collapse
Affiliation(s)
- Qing Ma
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Edmund T Rolls
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, UK; Oxford Centre for Computational Neuroscience, Oxford, UK.
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, UK; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai 200433, China; Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua, China.
| |
Collapse
|
65
|
Linking hippocampal multiplexed tuning, Hebbian plasticity and navigation. Nature 2021; 599:442-448. [PMID: 34671157 DOI: 10.1038/s41586-021-03989-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/01/2021] [Indexed: 11/08/2022]
Abstract
Three major pillars of hippocampal function are spatial navigation1, Hebbian synaptic plasticity2 and spatial selectivity3. The hippocampus is also implicated in episodic memory4, but the precise link between these four functions is missing. Here we report the multiplexed selectivity of dorsal CA1 neurons while rats performed a virtual navigation task using only distal visual cues5, similar to the standard water maze test of spatial memory1. Neural responses primarily encoded path distance from the start point and the head angle of rats, with a weak allocentric spatial component similar to that in primates but substantially weaker than in rodents in the real world. Often, the same cells multiplexed and encoded path distance, angle and allocentric position in a sequence, thus encoding a journey-specific episode. The strength of neural activity and tuning strongly correlated with performance, with a temporal relationship indicating neural responses influencing behaviour and vice versa. Consistent with computational models of associative and causal Hebbian learning6,7, neural responses showed increasing clustering8 and became better predictors of behaviourally relevant variables, with the average neurometric curves exceeding and converging to psychometric curves. Thus, hippocampal neurons multiplex and exhibit highly plastic, task- and experience-dependent tuning to path-centric and allocentric variables to form episodic sequences supporting navigation.
Collapse
|
66
|
Rueckemann JW, Sosa M, Giocomo LM, Buffalo EA. The grid code for ordered experience. Nat Rev Neurosci 2021; 22:637-649. [PMID: 34453151 PMCID: PMC9371942 DOI: 10.1038/s41583-021-00499-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Entorhinal cortical grid cells fire in a periodic pattern that tiles space, which is suggestive of a spatial coordinate system. However, irregularities in the grid pattern as well as responses of grid cells in contexts other than spatial navigation have presented a challenge to existing models of entorhinal function. In this Perspective, we propose that hippocampal input provides a key informative drive to the grid network in both spatial and non-spatial circumstances, particularly around salient events. We build on previous models in which neural activity propagates through the entorhinal-hippocampal network in time. This temporal contiguity in network activity points to temporal order as a necessary characteristic of representations generated by the hippocampal formation. We advocate that interactions in the entorhinal-hippocampal loop build a topological representation that is rooted in the temporal order of experience. In this way, the structure of grid cell firing supports a learned topology rather than a rigid coordinate frame that is bound to measurements of the physical world.
Collapse
Affiliation(s)
- Jon W Rueckemann
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA.
- Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
67
|
Madhav MS, Jayakumar RP, Lashkari SG, Savelli F, Blair HT, Knierim JJ, Cowan NJ. The Dome: A virtual reality apparatus for freely locomoting rodents. J Neurosci Methods 2021; 368:109336. [PMID: 34453979 PMCID: PMC9178503 DOI: 10.1016/j.jneumeth.2021.109336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 01/20/2023]
Abstract
The cognitive map in the hippocampal formation of rodents and other mammals integrates multiple classes of sensory and motor information into a coherent representation of space. Here, we describe the Dome, a virtual reality apparatus for freely locomoting rats, designed to examine the relative contributions of various spatial inputs to an animal’s spatial representation. The Dome was designed to preserve the range of spatial inputs typically available to an animal in free, untethered locomotion while providing the ability to perturb specific sensory cues. We present the design rationale and corresponding specifications of the Dome, along with a variety of engineering and biological analyses to validate the efficacy of the Dome as an experimental tool to examine the interaction between visual information and path integration in place cells in rodents.
Collapse
Affiliation(s)
- Manu S Madhav
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA; School of Biomedical Engineering, Djawad Mowafaghian Centre for Brain Health, University of British Columbia, BC, Canada.
| | - Ravikrishnan P Jayakumar
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA; Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Shahin G Lashkari
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA; Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Francesco Savelli
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA; Francesco Savelli is currently affiliated with the Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hugh T Blair
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| | - James J Knierim
- Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Noah J Cowan
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD, USA; Mechanical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
68
|
Rodríguez F, Quintero B, Amores L, Madrid D, Salas-Peña C, Salas C. Spatial Cognition in Teleost Fish: Strategies and Mechanisms. Animals (Basel) 2021; 11:2271. [PMID: 34438729 PMCID: PMC8388456 DOI: 10.3390/ani11082271] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023] Open
Abstract
Teleost fish have been traditionally considered primitive vertebrates compared to mammals and birds in regard to brain complexity and behavioral functions. However, an increasing amount of evidence suggests that teleosts show advanced cognitive capabilities including spatial navigation skills that parallel those of land vertebrates. Teleost fish rely on a multiplicity of sensory cues and can use a variety of spatial strategies for navigation, ranging from relatively simple body-centered orientation responses to allocentric or "external world-centered" navigation, likely based on map-like relational memory representations of the environment. These distinct spatial strategies are based on separate brain mechanisms. For example, a crucial brain center for egocentric orientation in teleost fish is the optic tectum, which can be considered an essential hub in a wider brain network responsible for the generation of egocentrically referenced actions in space. In contrast, other brain centers, such as the dorsolateral telencephalic pallium of teleost fish, considered homologue to the hippocampal pallium of land vertebrates, seem to be crucial for allocentric navigation based on map-like spatial memory. Such hypothetical relational memory representations endow fish's spatial behavior with considerable navigational flexibility, allowing them, for example, to perform shortcuts and detours.
Collapse
Affiliation(s)
| | | | | | | | | | - Cosme Salas
- Laboratorio de Psicobiología, Universidad de Sevilla, 41018 Sevilla, Spain; (F.R.); (B.Q.); (L.A.); (D.M.); (C.S.-P.)
| |
Collapse
|
69
|
Nguyen TT, Nam GS, Kang JJ, Han GC, Kim JS, Dieterich M, Oh SY. Galvanic Vestibular Stimulation Improves Spatial Cognition After Unilateral Labyrinthectomy in Mice. Front Neurol 2021; 12:716795. [PMID: 34393985 PMCID: PMC8358680 DOI: 10.3389/fneur.2021.716795] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives: To investigate the deficits of spatial memory and navigation from unilateral vestibular deafferentation (UVD) and to determine the efficacy of galvanic vestibular stimulation (GVS) for recovery from these deficits using a mouse model of unilateral labyrinthectomy (UL). Methods: Thirty-six male C57BL/6 mice were allocated into three groups that comprise a control group and two experimental groups, UVD with (GVS group) and without GVS intervention (non-GVS group). In the experimental groups, we assessed the locomotor and cognitive behavioral function before (baseline) and 3, 7, and 14 days after surgical UL, using the open field (OF), Y maze, and Morris water maze (MWM) tests. In the GVS group, the stimulations were applied for 30 min daily from postoperative day (POD) 0–4 via the electrodes inserted subcutaneously close to both bony labyrinths. Results: Locomotion and spatial cognition were significantly impaired in the mice with UVD non-GVS group compared to the control group. GVS significantly accelerated recovery of locomotion compared to the control and non-GVS groups on PODs 3 (p < 0.001) and 7 (p < 0.05, Kruskal–Wallis and Mann–Whitney U tests) in the OF and Y maze tests. The mice in the GVS group were better in spatial working memory assessed with spontaneous alternation performance and spatial reference memory assessed with place recognition during the Y maze test than those in the non-GVS group on POD 3 (p < 0.001). In addition, the recovery of long-term spatial navigation deficits during the MWM, as indicated by the escape latency and the probe trial, was significantly better in the GVS group than in the non-GVS group 2 weeks after UVD (p < 0.01). Conclusions: UVD impairs spatial memory, navigation, and motor coordination. GVS accelerated recoveries in short- and long-term spatial memory and navigation, as well as locomotor function in mice with UVD, and may be applied to the patients with acute unilateral vestibular failure.
Collapse
Affiliation(s)
- Thanh Tin Nguyen
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Gi-Sung Nam
- Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chosun University College of Medicine, Kwangju, South Korea
| | - Jin-Ju Kang
- Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| | - Gyu Cheol Han
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Gachon University of Medicine and Science, Incheon, South Korea
| | - Ji-Soo Kim
- Department of Neurology, Seoul National University Hospital & School of Medicine, Seoul, South Korea
| | - Marianne Dieterich
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,German Center for Vertigo and Balance Disorders-IFB, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sun-Young Oh
- Jeonbuk National University College of Medicine, Jeonju, South Korea.,Department of Neurology, Jeonbuk National University Hospital & School of Medicine, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
70
|
Psychometric Properties of Cognitive-Motor Dual-Task Studies With the Aim of Developing a Test Protocol for Persons With Vestibular Disorders: A Systematic Review. Ear Hear 2021; 41:3-16. [PMID: 31283530 DOI: 10.1097/aud.0000000000000748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Patients suffering from vestibular disorders (VD) often present with impairments in cognitive domains such as visuospatial ability, memory, executive function, attention, and processing speed. These symptoms can be attributed to extensive vestibular projections throughout the cerebral cortex and subcortex on the one hand, and to increased cognitive-motor interference (CMI) on the other hand. CMI can be assessed by performing cognitive-motor dual-tasks (DTs). The existing literature on this topic is scarce and varies greatly when it comes to test protocol, type and degree of vestibular impairment, and outcome. To develop a reliable and sensitive test protocol for VD patients, an overview of the existing reliability and validity studies on DT paradigms will be given in a variety of populations, such as dementia, multiple sclerosis, Parkinson's disease, stroke, and elderly. DESIGN The systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An extensive literature search on psychometric properties of cognitive-motor DTs was run on MEDLINE, Embase, and Cochrane Databases. The studies were assessed for eligibility by two independent researchers, and their methodological quality was subsequently evaluated using the Consensus-based Standards for the selection of health Measurement Instruments (COSMIN). RESULTS AND CONCLUSIONS Thirty-three studies were included in the current review. Based on the reliability and validity calculations, including a static as well as dynamic motor task seems valuable in a DT protocol for VD patients. To evoke CMI maximally in this population, both motor tasks should be performed while challenging the vestibular cognitive domains. Out of the large amount of cognitive tasks employed in DT studies, a clear selection for each of these domains, except for visuospatial abilities, could be made based on this review. The use of the suggested DTs will give a more accurate and daily life representation of cognitive and motor deficiencies and their interaction in the VD population.
Collapse
|
71
|
Niedecker RW, Kloc ML, Holmes GL, Barry JM. Effects of early life seizures on coordination of hippocampal-prefrontal networks: Influence of sex and dynamic brain states. Epilepsia 2021; 62:1701-1714. [PMID: 34002378 PMCID: PMC8260466 DOI: 10.1111/epi.16927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Early life seizures (ELSs) alter activity-dependent maturation of neuronal circuits underlying learning and memory. The pathophysiological mechanisms underpinning seizure-induced cognitive impairment are not fully understood, and critical variables such as sex and dynamic brain states with regard to cognitive outcomes have not been explored. We hypothesized that in comparison to control (CTL) rats, ELS rats would exhibit deficits in spatial cognition correlating with impaired dynamic neural signal coordination between the hippocampus and medial prefrontal cortex (mPFC). METHODS Male and female rat pups were given 50 flurothyl-induced seizures over 10 days starting at postnatal Day 15. As adults, spatial cognition was tested through active avoidance on a rotating arena. Microwire tetrodes were implanted in the mPFC and CA1 subfield. Single cells and local field potentials were recorded and analyzed in each region during active avoidance and sleep. RESULTS ELS males exhibited avoidance impairments, whereas female rats were unaffected. During avoidance, hippocampus-mPFC coherence was higher in CTL females than CTL males across bandwidths. In comparison to CTL males, ELS male learners exhibit increased coherence within theta bandwidth as well as altered burst-timing in mPFC cell activity. Hippocampus-mPFC coherence levels are predictive of cognitive outcome in the active avoidance spatial task. SIGNIFICANCE Spatial cognitive outcome post-ELS is sex-dependent, as females fare better than males. ELS males that learn the task exhibit increased mPFC coherence levels at low-theta frequency, which may compensate for ELS effects on mPFC cell timing. These results suggest that coherence may serve as a biomarker for spatial cognitive outcome post-ELS and emphasize the significance of analyzing sex and dynamic cognition as variables in understanding seizure effects on the developing brain.
Collapse
Affiliation(s)
- Rhys W Niedecker
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Michelle L Kloc
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Gregory L Holmes
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jeremy M Barry
- Department of Neurological Sciences, Epilepsy Development and Cognition Group, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| |
Collapse
|
72
|
McNamee DC, Stachenfeld KL, Botvinick MM, Gershman SJ. Flexible modulation of sequence generation in the entorhinal-hippocampal system. Nat Neurosci 2021; 24:851-862. [PMID: 33846626 PMCID: PMC7610914 DOI: 10.1038/s41593-021-00831-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023]
Abstract
Exploration, consolidation and planning depend on the generation of sequential state representations. However, these algorithms require disparate forms of sampling dynamics for optimal performance. We theorize how the brain should adapt internally generated sequences for particular cognitive functions and propose a neural mechanism by which this may be accomplished within the entorhinal-hippocampal circuit. Specifically, we demonstrate that the systematic modulation along the medial entorhinal cortex dorsoventral axis of grid population input into the hippocampus facilitates a flexible generative process that can interpolate between qualitatively distinct regimes of sequential hippocampal reactivations. By relating the emergent hippocampal activity patterns drawn from our model to empirical data, we explain and reconcile a diversity of recently observed, but apparently unrelated, phenomena such as generative cycling, diffusive hippocampal reactivations and jumping trajectory events.
Collapse
Affiliation(s)
- Daniel C McNamee
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Max Planck UCL Centre for Computational Psychiatry, London, UK.
- Department of Psychology, Harvard University, Cambridge, MA, USA.
| | | | - Matthew M Botvinick
- Google DeepMind, London, UK
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Samuel J Gershman
- Department of Psychology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Center for Brains, Minds and Machines, MIT, Cambridge, MA, USA
| |
Collapse
|
73
|
Rolls ET. Neurons including hippocampal spatial view cells, and navigation in primates including humans. Hippocampus 2021; 31:593-611. [PMID: 33760309 DOI: 10.1002/hipo.23324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 01/11/2023]
Abstract
A new theory is proposed of mechanisms of navigation in primates including humans in which spatial view cells found in the primate hippocampus and parahippocampal gyrus are used to guide the individual from landmark to landmark. The navigation involves approach to each landmark in turn (taxis), using spatial view cells to identify the next landmark in the sequence, and does not require a topological map. Two other cell types found in primates, whole body motion cells, and head direction cells, can be utilized in the spatial view cell navigational mechanism, but are not essential. If the landmarks become obscured, then the spatial view representations can be updated by self-motion (idiothetic) path integration using spatial coordinate transform mechanisms in the primate dorsal visual system to transform from egocentric to allocentric spatial view coordinates. A continuous attractor network or time cells or working memory is used in this approach to navigation to encode and recall the spatial view sequences involved. I also propose how navigation can be performed using a further type of neuron found in primates, allocentric-bearing-to-a-landmark neurons, in which changes of direction are made when a landmark reaches a particular allocentric bearing. This is useful if a landmark cannot be approached. The theories are made explicit in models of navigation, which are then illustrated by computer simulations. These types of navigation are contrasted with triangulation, which requires a topological map. It is proposed that the first strategy utilizing spatial view cells is used frequently in humans, and is relatively simple because primates have spatial view neurons that respond allocentrically to locations in spatial scenes. An advantage of this approach to navigation is that hippocampal spatial view neurons are also useful for episodic memory, and for imagery.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.,Department of Computer Science, University of Warwick, Coventry, UK
| |
Collapse
|
74
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
75
|
Banta Lavenex P, Lavenex P. A Critical Review of Spatial Abilities in Down and Williams Syndromes: Not All Space Is Created Equal. Front Psychiatry 2021; 12:669320. [PMID: 34122185 PMCID: PMC8193736 DOI: 10.3389/fpsyt.2021.669320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 01/13/2023] Open
Abstract
Down syndrome (DS, Trisomy 21) and Williams syndrome (WS) are two neurodevelopmental disorders of genetic origin that are accompanied by mild to moderate intellectual disability but exhibit distinct cognitive profiles. In this review we discuss our recent work characterizing the real-world spatial learning and memory abilities of adult individuals with DS and WS. We used several different paradigms in which participants locomote freely and have access to coherent input from all sensory modalities to investigate their fundamental egocentric (body-centered or viewpoint-dependent) and allocentric (world-centered or viewpoint-independent) spatial abilities. We found unequivocal evidence that most individuals with DS exhibit low-resolution egocentric and allocentric spatial learning and memory abilities similar to typically developing (TD) children in the same mental age range. In contrast, most individuals with DS exhibit impaired high-resolution allocentric spatial learning and facilitated response learning as compared to TD children. In comparison, whereas most individuals with WS also exhibit facilitated response learning, their low-resolution allocentric spatial learning and memory abilities are severely impaired as compared to both TD children and individuals with DS. Together with work from other laboratories using real-world or virtual reality paradigms, these findings indicate that in order to navigate in their environment most individuals with DS may use either egocentric route learning that does not integrate individual landmarks, or a low-resolution allocentric spatial representation that encodes the relationships between different locations (i.e., cognitive mapping). In contrast, since most individuals with WS are unable to build or use a low-resolution allocentric or configural representation of the environment they may use visually and verbally encoded landmarks as beacons to learn routes. Finally, we discuss the main neural structures implicated in these different spatial processes and explain how the relative preservation or impairment of specific brain functions may engender the unique cognitive profiles observed in individuals with these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pamela Banta Lavenex
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland.,Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Pierre Lavenex
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
76
|
Flossmann T, Rochefort NL. Spatial navigation signals in rodent visual cortex. Curr Opin Neurobiol 2020; 67:163-173. [PMID: 33360769 DOI: 10.1016/j.conb.2020.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022]
Abstract
During navigation, animals integrate sensory information with body movements to guide actions. The impact of both navigational and movement-related signals on cortical visual information processing remains largely unknown. We review recent studies in awake rodents that have revealed navigation-related signals in the primary visual cortex (V1) including speed, distance travelled and head-orienting movements. Both cortical and subcortical inputs convey self-motion related information to V1 neurons: for example, top-down inputs from secondary motor and retrosplenial cortices convey information about head movements and spatial expectations. Within V1, subtypes of inhibitory neurons are critical for the integration of navigation-related and visual signals. We conclude with potential functional roles of navigation-related signals in V1 including gain control, motor error signals and predictive coding.
Collapse
Affiliation(s)
- Tom Flossmann
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom.
| |
Collapse
|
77
|
Keinath AT, Rechnitz O, Balasubramanian V, Epstein RA. Environmental deformations dynamically shift human spatial memory. Hippocampus 2020; 31:89-101. [PMID: 32941670 DOI: 10.1002/hipo.23265] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/30/2022]
Abstract
Place and grid cells in the hippocampal formation are commonly thought to support a unified and coherent cognitive map of space. This mapping mechanism faces a challenge when a navigator is placed in a familiar environment that has been deformed from its original shape. Under such circumstances, many transformations could plausibly serve to map a navigator's familiar cognitive map to the deformed space. Previous empirical results indicate that the firing fields of rodent place and grid cells stretch or compress in a manner that approximately matches the environmental deformation, and human spatial memory exhibits similar distortions. These effects have been interpreted as evidence that reshaping a familiar environment elicits an analogously reshaped cognitive map. However, recent work has suggested an alternative explanation, whereby deformation-induced distortions of the grid code are attributable to a mechanism that dynamically anchors grid fields to the most recently experienced boundary, thus causing history-dependent shifts in grid phase. This interpretation raises the possibility that human spatial memory will exhibit similar history-dependent dynamics. To test this prediction, we taught participants the locations of objects in a virtual environment and then probed their memory for these locations in deformed versions of this environment. Across three experiments with variable access to visual and vestibular cues, we observed the predicted pattern, whereby the remembered locations of objects were shifted from trial to trial depending on the boundary of origin of the participant's movement trajectory. These results provide evidence for a dynamic anchoring mechanism that governs both neuronal firing and spatial memory.
Collapse
Affiliation(s)
- Alexandra T Keinath
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ohad Rechnitz
- Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
78
|
Abstract
Contemporary brain research seeks to understand how cognition is reducible to neural activity. Crucially, much of this effort is guided by a scientific paradigm that views neural activity as essentially driven by external stimuli. In contrast, recent perspectives argue that this paradigm is by itself inadequate and that understanding patterns of activity intrinsic to the brain is needed to explain cognition. Yet, despite this critique, the stimulus-driven paradigm still dominates-possibly because a convincing alternative has not been clear. Here, we review a series of findings suggesting such an alternative. These findings indicate that neural activity in the hippocampus occurs in one of three brain states that have radically different anatomical, physiological, representational, and behavioral correlates, together implying different functional roles in cognition. This three-state framework also indicates that neural representations in the hippocampus follow a surprising pattern of organization at the timescale of ∼1 s or longer. Lastly, beyond the hippocampus, recent breakthroughs indicate three parallel states in the cortex, suggesting shared principles and brain-wide organization of intrinsic neural activity.
Collapse
Affiliation(s)
- Kenneth Kay
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| | - Loren M Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
79
|
Ju M, Gaussier P. A model of path integration and representation of spatial context in the retrosplenial cortex. BIOLOGICAL CYBERNETICS 2020; 114:303-313. [PMID: 32306125 DOI: 10.1007/s00422-020-00833-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Inspired by recent biological experiments, we simulate animals moving in different environments (open space, spiral mazes and on a treadmill) to test the performances of a simple model of the retrosplenial cortex (RSC) acting as a path integration (PI) and as a categorization mechanism. The connection between the hippocampus, RSC and the entorhinal cortex is revealed through a novel perspective. We suppose that the path integration is performed by the information coming from RSC. Grid cells in the entorhinal cortex then can be built as the result of a modulo projection of RSC activity. In our model, PI is performed by a 1D field of neurons acting as a simple low-pass filter of head direction (HD) cells modulated by the linear velocity of the animal. Our paper focuses on the constraints on the HD cells shape for a good approximation of PI. Recording of neurons on our 1D PI field shows these neurons would not be intuitively interpreted as performing PI. Using inputs coming from a narrow neighbouring projection of our PI field creates place cell-like activities in the RSC when the mouse runs on the treadmill. This can be the result of local self-organizing maps representing blobs of neurons in the RSC (e.g. cortical columns). Other simulations show that accessing the whole PI field would induce place cells whatever the environment is. Since this property is not observed, we conclude that the categorization neurons in the RSC should have access to only a small fraction of the PI field.
Collapse
Affiliation(s)
- Mingda Ju
- ETIS UMR8051, CY Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France.
| | - Philippe Gaussier
- ETIS UMR8051, CY Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
| |
Collapse
|
80
|
Scleidorovich P, Llofriu M, Fellous JM, Weitzenfeld A. A computational model for spatial cognition combining dorsal and ventral hippocampal place field maps: multiscale navigation. BIOLOGICAL CYBERNETICS 2020; 114:187-207. [PMID: 31915905 DOI: 10.1007/s00422-019-00812-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Classic studies have shown that place cells are organized along the dorsoventral axis of the hippocampus according to their field size, with dorsal hippocampal place cells having smaller field sizes than ventral place cells. Studies have also suggested that dorsal place cells are primarily involved in spatial navigation, while ventral place cells are primarily involved in context and emotional encoding. Additionally, recent work has shown that the entire longitudinal axis of the hippocampus may be involved in navigation. Based on the latter, in this paper we present a spatial cognition reinforcement learning model inspired by the multiscale organization of the dorsal-ventral axis of the hippocampus. The model analyzes possible benefits of a multiscale architecture in terms of the learning speed, the path optimality, and the number of cells in the context of spatial navigation. The model is evaluated in a goal-oriented task where simulated rats need to learn a path to the goal from multiple starting locations in various open-field maze configurations. The results show that smaller scales of representation are useful for improving path optimality, whereas larger scales are useful for reducing learning time and the number of cells required. The results also show that combining scales can enhance the performance of the multiscale model, with a trade-off between path optimality and learning time.
Collapse
Affiliation(s)
- Pablo Scleidorovich
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA.
| | - Martin Llofriu
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
- Department of Computer Science and Engineering, Universidad de la Republica, Montevideo, Uruguay
| | | | - Alfredo Weitzenfeld
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
| |
Collapse
|
81
|
Li T, Arleo A, Sheynikhovich D. Modeling place cells and grid cells in multi-compartment environments: Entorhinal–hippocampal loop as a multisensory integration circuit. Neural Netw 2020; 121:37-51. [DOI: 10.1016/j.neunet.2019.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 01/11/2023]
|
82
|
Jin W, Qin H, Zhang K, Chen X. Spatial Navigation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:63-90. [PMID: 32852741 DOI: 10.1007/978-981-15-7086-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus is critical for spatial navigation. In this review, we focus on the role of the hippocampus in three basic strategies used for spatial navigation: path integration, stimulus-response association, and map-based navigation. First, the hippocampus is not required for path integration unless the path of path integration is too long and complex. The hippocampus provides mnemonic support when involved in the process of path integration. Second, the hippocampus's involvement in stimulus-response association is dependent on how the strategy is conducted. The hippocampus is not required for the habit form of stimulus-response association. Third, while the hippocampus is fully engaged in map-based navigation, the shared characteristics of place cells, grid cells, head direction cells, and other spatial encoding cells, which are detected in the hippocampus and associated areas, offer a possibility that there is a stand-alone allocentric space perception (or mental representation) of the environment outside and independent of the hippocampus, and the spatially specific firing patterns of these spatial encoding cells are the unfolding of the intermediate stages of the processing of this allocentric spatial information when conveyed into the hippocampus for information storage or retrieval. Furthermore, the presence of all the spatially specific firing patterns in the hippocampus and the related neural circuits during the path integration and map-based navigation support such a notion that in essence, path integration is the same allocentric space perception provided with only idiothetic inputs. Taken together, the hippocampus plays a general mnemonic role in spatial navigation.
Collapse
Affiliation(s)
- Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China.
| | - Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
83
|
Segev A, Yanagi M, Scott D, Southcott SA, Lister JM, Tan C, Li W, Birnbaum SG, Kourrich S, Tamminga CA. Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors. Mol Psychiatry 2020; 25:2832-2843. [PMID: 30038231 PMCID: PMC6344327 DOI: 10.1038/s41380-018-0124-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
Recent findings from in vivo-imaging and human post-mortem tissue studies in schizophrenic psychosis (SzP), have demonstrated functional and molecular changes in hippocampal subfields that can be associated with hippocampal hyperexcitability. In this study, we used a subfield-specific GluN1 knockout mouse with a disease-like molecular perturbation expressed only in hippocampal dentate gyrus (DG) and assessed its association with hippocampal physiology and psychosis-like behaviors. First, we used whole-cell patch-clamp recordings to measure the physiological changes in hippocampal subfields and cFos immunohistochemistry to examine cellular excitability. DG-GluN1 KO mice show CA3 cellular hyperactivity, detected using two approaches: (1) increased excitatory glutamate transmission at mossy fibers (MF)-CA3 synapses, and (2) an increased number of cFos-activated pyramidal neurons in CA3, an outcome that appears to project downstream to CA1 and basolateral amygdala (BLA). Furthermore, we examined psychosis-like behaviors and pathological memory processing; these show an increase in fear conditioning (FC), a reduction in prepulse inhibition (PPI) in the KO animal, along with a deterioration in memory accuracy with Morris Water Maze (MWM) and reduced social memory (SM). Moreover, with DREADD vectors, we demonstrate a remarkably similar behavioral profile when we induce CA3 hyperactivity. These hippocampal subfield changes could provide the basis for the observed increase in human hippocampal activity in SzP, based on the shared DG-specific GluN1 reduction. With further characterization, these animal model systems may serve as targets to test psychosis mechanisms related to hippocampus and assess potential hippocampus-directed treatments.
Collapse
Affiliation(s)
- Amir Segev
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Masaya Yanagi
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA ,grid.258622.90000 0004 1936 9967Present Address: Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka, Japan
| | - Daniel Scott
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Sarah A. Southcott
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Jacob M. Lister
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA ,grid.47100.320000000419368710Yale University, School of Medicine, 333 Cedar Street, New Haven, CT 06510 USA ,grid.47100.320000000419368710Present Address: Yale University, School of Medicine, New Haven, CT USA
| | - Chunfeng Tan
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Wei Li
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Shari G. Birnbaum
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA.
| | - Carol A. Tamminga
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| |
Collapse
|
84
|
Góis ZHTD, Tort ABL. Characterizing Speed Cells in the Rat Hippocampus. Cell Rep 2019; 25:1872-1884.e4. [PMID: 30428354 DOI: 10.1016/j.celrep.2018.10.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/15/2018] [Accepted: 10/12/2018] [Indexed: 12/20/2022] Open
Abstract
Spatial navigation relies on visual landmarks as well as on self-motion information. In familiar environments, both place and grid cells maintain their firing fields in darkness, suggesting that they continuously receive information about locomotion speed required for path integration. Consistently, "speed cells" have been previously identified in the hippocampal formation and characterized in detail in the medial entorhinal cortex. Here we investigated speed-correlated firing in the hippocampus. We show that CA1 has speed cells that are stable across contexts, position in space, and time. Moreover, their speed-correlated firing occurs within theta cycles, independently of theta frequency. Interestingly, a physiological classification of cell types reveals that all CA1 speed cells are inhibitory. In fact, while speed modulates pyramidal cell activity, only the firing rate of interneurons can accurately predict locomotion speed on a sub-second timescale. These findings shed light on network models of navigation.
Collapse
Affiliation(s)
- Zé Henrique T D Góis
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil
| | - Adriano B L Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59056-450, Brazil.
| |
Collapse
|
85
|
Stellate Cells in the Medial Entorhinal Cortex Are Required for Spatial Learning. Cell Rep 2019; 22:1313-1324. [PMID: 29386117 PMCID: PMC5809635 DOI: 10.1016/j.celrep.2018.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/05/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022] Open
Abstract
Spatial learning requires estimates of location that may be obtained by path integration or from positional cues. Grid and other spatial firing patterns of neurons in the superficial medial entorhinal cortex (MEC) suggest roles in behavioral estimation of location. However, distinguishing the contributions of path integration and cue-based signals to spatial behaviors is challenging, and the roles of identified MEC neurons are unclear. We use virtual reality to dissociate linear path integration from other strategies for behavioral estimation of location. We find that mice learn to path integrate using motor-related self-motion signals, with accuracy that decreases steeply as a function of distance. We show that inactivation of stellate cells in superficial MEC impairs spatial learning in virtual reality and in a real world object location recognition task. Our results quantify contributions of path integration to behavior and corroborate key predictions of models in which stellate cells contribute to location estimation. Mice learn to estimate location by path integration and cue-based strategies Motor-related self-motion signals are used for path integration Accuracy of path integration decreases with distance Stellate cells in medial entorhinal cortex are required for spatial learning
Collapse
|
86
|
Correlation structure of grid cells is preserved during sleep. Nat Neurosci 2019; 22:598-608. [DOI: 10.1038/s41593-019-0360-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/06/2019] [Indexed: 01/16/2023]
|
87
|
Sadeh T, Chen J, Goshen-Gottstein Y, Moscovitch M. Overlap between hippocampal pre-encoding and encoding patterns supports episodic memory. Hippocampus 2019; 29:836-847. [PMID: 30779457 DOI: 10.1002/hipo.23079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/15/2018] [Accepted: 01/15/2019] [Indexed: 01/13/2023]
Abstract
It is well-established that whether the information will be remembered or not depends on the extent to which the learning context is reinstated during post-encoding rest and/or at retrieval. It has yet to be determined, however, if the fundamental importance of contextual reinstatement to memory extends to periods of spontaneous neurocognitive activity prior to learning. We thus asked whether memory performance can be predicted by the extent to which spontaneous pre-encoding neural patterns resemble patterns elicited during encoding. Individuals studied and retrieved lists of words while undergoing fMRI-scanning. Multivoxel hippocampal patterns during resting periods prior to encoding resembled hippocampal patterns at encoding most strongly for items that were subsequently remembered. Furthermore, across subjects, the magnitude of similarity correlated with a behavioral measure of episodic recall. The results indicate that the neural context before learning is an important determinant of memory.
Collapse
Affiliation(s)
- Talya Sadeh
- Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| | - Janice Chen
- Psychological & Brain Sciences, Johns Hopkins University, Baltimore, Maryland
| | | | - Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| |
Collapse
|
88
|
Gaussier P, Banquet JP, Cuperlier N, Quoy M, Aubin L, Jacob PY, Sargolini F, Save E, Krichmar JL, Poucet B. Merging information in the entorhinal cortex: what can we learn from robotics experiments and modeling? J Exp Biol 2019; 222:222/Suppl_1/jeb186932. [DOI: 10.1242/jeb.186932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Place recognition is a complex process involving idiothetic and allothetic information. In mammals, evidence suggests that visual information stemming from the temporal and parietal cortical areas (‘what’ and ‘where’ information) is merged at the level of the entorhinal cortex (EC) to build a compact code of a place. Local views extracted from specific feature points can provide information important for view cells (in primates) and place cells (in rodents) even when the environment changes dramatically. Robotics experiments using conjunctive cells merging ‘what’ and ‘where’ information related to different local views show their important role for obtaining place cells with strong generalization capabilities. This convergence of information may also explain the formation of grid cells in the medial EC if we suppose that: (1) path integration information is computed outside the EC, (2) this information is compressed at the level of the EC owing to projection (which follows a modulo principle) of cortical activities associated with discretized vector fields representing angles and/or path integration, and (3) conjunctive cells merge the projections of different modalities to build grid cell activities. Applying modulo projection to visual information allows an interesting compression of information and could explain more recent results on grid cells related to visual exploration. In conclusion, the EC could be dedicated to the build-up of a robust yet compact code of cortical activity whereas the hippocampus proper recognizes these complex codes and learns to predict the transition from one state to another.
Collapse
Affiliation(s)
- Philippe Gaussier
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
| | - Jean Paul Banquet
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
| | - Nicolas Cuperlier
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
| | - Mathias Quoy
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
| | - Lise Aubin
- ETIS - UMR 8051, Université Paris-Seine, Université de Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise 95302, France
- Euromov, Université de Montpellier, Montpellier 34090, France
| | - Pierre-Yves Jacob
- Laboratory of Cognitive Neuroscience (LNC - UMR 7291), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13331, France
| | - Francesca Sargolini
- Laboratory of Cognitive Neuroscience (LNC - UMR 7291), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13331, France
| | - Etienne Save
- Laboratory of Cognitive Neuroscience (LNC - UMR 7291), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13331, France
| | - Jeffrey L. Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Bruno Poucet
- Laboratory of Cognitive Neuroscience (LNC - UMR 7291), Aix-Marseille Université, Centre National de la Recherche Scientifique, Marseille 13331, France
| |
Collapse
|
89
|
Savelli F, Knierim JJ. Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions. J Exp Biol 2019; 222:jeb188912. [PMID: 30728236 PMCID: PMC7375830 DOI: 10.1242/jeb.188912] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Path integration is a straightforward concept with varied connotations that are important to different disciplines concerned with navigation, such as ethology, cognitive science, robotics and neuroscience. In studying the hippocampal formation, it is fruitful to think of path integration as a computation that transforms a sense of motion into a sense of location, continuously integrated with landmark perception. Here, we review experimental evidence that path integration is intimately involved in fundamental properties of place cells and other spatial cells that are thought to support a cognitive abstraction of space in this brain system. We discuss hypotheses about the anatomical and computational origin of path integration in the well-characterized circuits of the rodent limbic system. We highlight how computational frameworks for map-building in robotics and cognitive science alike suggest an essential role for path integration in the creation of a new map in unfamiliar territory, and how this very role can help us make sense of differences in neurophysiological data from novel versus familiar and small versus large environments. Similar computational principles could be at work when the hippocampus builds certain non-spatial representations, such as time intervals or trajectories defined in a sensory stimulus space.
Collapse
Affiliation(s)
- Francesco Savelli
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - James J Knierim
- The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
90
|
Campbell MG, Giocomo LM. Self-motion processing in visual and entorhinal cortices: inputs, integration, and implications for position coding. J Neurophysiol 2018; 120:2091-2106. [PMID: 30089025 PMCID: PMC6230811 DOI: 10.1152/jn.00686.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 01/12/2023] Open
Abstract
The sensory signals generated by self-motion are complex and multimodal, but the ability to integrate these signals into a unified self-motion percept to guide navigation is essential for animal survival. Here, we summarize classic and recent work on self-motion coding in the visual and entorhinal cortices of the rodent brain. We compare motion processing in rodent and primate visual cortices, highlighting the strengths of classic primate work in establishing causal links between neural activity and perception, and discuss the integration of motor and visual signals in rodent visual cortex. We then turn to the medial entorhinal cortex (MEC), where calculations using self-motion to update position estimates are thought to occur. We focus on several key sources of self-motion information to MEC: the medial septum, which provides locomotor speed information; visual cortex, whose input has been increasingly recognized as essential to both position and speed-tuned MEC cells; and the head direction system, which is a major source of directional information for self-motion estimates. These inputs create a large and diverse group of self-motion codes in MEC, and great interest remains in how these self-motion codes might be integrated by MEC grid cells to estimate position. However, which signals are used in these calculations and the mechanisms by which they are integrated remain controversial. We end by proposing future experiments that could further our understanding of the interactions between MEC cells that code for self-motion and position and clarify the relationship between the activity of these cells and spatial perception.
Collapse
Affiliation(s)
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University , Stanford, California
| |
Collapse
|
91
|
Buzsáki G, Tingley D. Space and Time: The Hippocampus as a Sequence Generator. Trends Cogn Sci 2018; 22:853-869. [PMID: 30266146 PMCID: PMC6166479 DOI: 10.1016/j.tics.2018.07.006] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 01/27/2023]
Abstract
Neural computations are often compared to instrument-measured distance or duration, and such relationships are interpreted by a human observer. However, neural circuits do not depend on human-made instruments but perform computations relative to an internally defined rate-of-change. While neuronal correlations with external measures, such as distance or duration, can be observed in spike rates or other measures of neuronal activity, what matters for the brain is how such activity patterns are utilized by downstream neural observers. We suggest that hippocampal operations can be described by the sequential activity of neuronal assemblies and their internally defined rate of change without resorting to the concept of space or time.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute, 435 East 30th Street, Langone Medical Center, New York University, New York, NY 10016, USA; Department of Neurology, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| | - David Tingley
- Neuroscience Institute, 435 East 30th Street, Langone Medical Center, New York University, New York, NY 10016, USA
| |
Collapse
|
92
|
Bhatt T, Patel P, Dusane S, DelDonno SR, Langenecker SA. Neural Mechanisms Involved in Mental Imagery of Slip-Perturbation While Walking: A Preliminary fMRI Study. Front Behav Neurosci 2018; 12:203. [PMID: 30319366 PMCID: PMC6168704 DOI: 10.3389/fnbeh.2018.00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/16/2018] [Indexed: 11/21/2022] Open
Abstract
Background: Behavioral evidence for cortical involvement in reactive balance control in response to environmental perturbation is established, however, the neural correlates are not known. This study aimed to examine the neural mechanisms involved in reactive balance control for recovery from slip-like perturbations using mental imagery and to evaluate the difference in activation patterns between imagined and observed slipping. Methods: Ten healthy young participants after an exposure to regular walking and slip-perturbation trial on a treadmill, performed mental imagery and observation tasks in the MR scanner. Participants received verbal instructions to imagine walking (IW), observe walking (OW), imagine slipping (IS) and observe slipping (OS) while walking. Results: Analysis using general linear model showed increased activation during IS versus IW condition in precentral gyrus, middle frontal gyrus, superior, middle and transverse temporal gyrus, parahippocampal gyrus, cingulate gyrus, insula, pulvinar nucleus of the thalamus, pons, anterior and posterior cerebellar lobes. During IS versus OS condition, there was additional activation in parahippocampus, cingulate gyrus, inferior parietal lobule, superior temporal, middle and inferior frontal gyrus. Conclusion: The findings of the current study support involvement of higher cortical and subcortical structures in reactive balance control. Greater activation during slipping could be attributed to the complexity of the sensorimotor task and increased demands to maintain postural stability during slipping as compared with regular walking. Furthermore, our findings suggest that mental imagery of slipping recruited greater neural substrates rather than observation of slipping, possibly due to increased sensory, cognitive and perceptual processing demands. New and Noteworthy: The behavioral factors contributing to falls from external perturbations while walking are better understood than neural mechanisms underlying the behavioral response. This study examines the neural activation pattern associated with reactive balance control during slip-like perturbations while walking through an fMRI paradigm. This study identified specific neural mechanisms involved in complex postural movements during sudden perturbations, to particularly determine the role of cortical structures in reactive balance control. It further highlights the specific differences in neural structures involved in regular unperturbed versus perturbed walking.
Collapse
Affiliation(s)
- Tanvi Bhatt
- Department of Physical Therapy, College of Applied Health Sciences, Chicago, IL, United States
| | - Prakruti Patel
- Department of Physical Therapy, College of Applied Health Sciences, Chicago, IL, United States
| | - Shamali Dusane
- Department of Physical Therapy, College of Applied Health Sciences, Chicago, IL, United States
| | - Sophie R. DelDonno
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Scott A. Langenecker
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
93
|
Lucas HD, Duff MC, Cohen NJ. The Hippocampus Promotes Effective Saccadic Information Gathering in Humans. J Cogn Neurosci 2018; 31:186-201. [PMID: 30188777 DOI: 10.1162/jocn_a_01336] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is well established that the hippocampus is critical for memory. Recent evidence suggests that one function of hippocampal memory processing is to optimize how people actively explore the world. Here we demonstrate that the link between the hippocampus and exploration extends even to the moment-to-moment use of eye movements during visuospatial memory encoding. In Experiment 1, we examined relationships between study-phase eye movements in healthy individuals and subsequent performance on a spatial reconstruction test. In addition to quantitative measures of viewing behaviors (e.g., how many fixations or saccades were deployed during study), we used the information-theoretic measure of entropy to assess the amount of randomness or disorganization in participants' scanning behaviors. We found that the use of scanpaths during study that were lower in entropy (e.g., more organized, less random) predicted more accurate spatial reconstruction both within and between participants. Scanpath entropy was a better predictor of reconstruction accuracy than were the quantitative measures of viewing. In Experiment 2, we found that individuals with hippocampal amnesia tended to engage in viewing patterns that were higher in entropy (less organized) relative to healthy comparisons. These findings reveal a critical role of the hippocampus in guiding eye movement exploration to optimize visuospatial relational memory.
Collapse
Affiliation(s)
- Heather D Lucas
- Louisiana State University.,University of Illinois Urbana-Champaign
| | | | | |
Collapse
|
94
|
Soman K, Muralidharan V, Chakravarthy VS. A Model of Multisensory Integration and Its Influence on Hippocampal Spatial Cell Responses. IEEE Trans Cogn Dev Syst 2018. [DOI: 10.1109/tcds.2017.2752369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
95
|
Rolls ET. The storage and recall of memories in the hippocampo-cortical system. Cell Tissue Res 2018; 373:577-604. [PMID: 29218403 PMCID: PMC6132650 DOI: 10.1007/s00441-017-2744-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/12/2017] [Indexed: 02/07/2023]
Abstract
A quantitative computational theory of the operation of the hippocampus as an episodic memory system is described. The CA3 system operates as a single attractor or autoassociation network (1) to enable rapid one-trial associations between any spatial location (place in rodents or spatial view in primates) and an object or reward and (2) to provide for completion of the whole memory during recall from any part. The theory is extended to associations between time and object or reward to implement temporal order memory, which is also important in episodic memory. The dentate gyrus performs pattern separation by competitive learning to create sparse representations producing, for example, neurons with place-like fields from entorhinal cortex grid cells. The dentate granule cells generate, by the very small number of mossy fibre connections to CA3, a randomizing pattern separation effect that is important during learning but not recall and that separates out the patterns represented by CA3 firing as being very different from each other. This is optimal for an unstructured episodic memory system in which each memory must be kept distinct from other memories. The direct perforant path input to CA3 is quantitatively appropriate for providing the cue for recall in CA3 but not for learning. The CA1 recodes information from CA3 to set up associatively learned backprojections to the neocortex to allow the subsequent retrieval of information to the neocortex, giving a quantitative account of the large number of hippocampo-neocortical and neocortical-neocortical backprojections. Tests of the theory including hippocampal subregion analyses and hippocampal NMDA receptor knockouts are described and support the theory.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, England.
- Department of Computer Science, University of Warwick, Coventry, England.
| |
Collapse
|
96
|
Brunec IK, Moscovitch M, Barense MD. Boundaries Shape Cognitive Representations of Spaces and Events. Trends Cogn Sci 2018; 22:637-650. [DOI: 10.1016/j.tics.2018.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 12/14/2022]
|
97
|
Lebedev MA, Pimashkin A, Ossadtchi A. Navigation Patterns and Scent Marking: Underappreciated Contributors to Hippocampal and Entorhinal Spatial Representations? Front Behav Neurosci 2018; 12:98. [PMID: 29922134 PMCID: PMC5996749 DOI: 10.3389/fnbeh.2018.00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/25/2018] [Indexed: 11/29/2022] Open
Abstract
According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks.
Collapse
Affiliation(s)
- Mikhail A. Lebedev
- Department of Neurobiology, Duke University, Durham, NC, United States
- Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
| | - Alexey Pimashkin
- Laboratory of Neuroengineering, Center of Translational Technologies, Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod, Russia
| | - Alexei Ossadtchi
- Center for Bioelectric Interfaces of the Institute for Cognitive Neuroscience of the National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
98
|
Jacobson A, Chen Z, Milford M. Leveraging variable sensor spatial acuity with a homogeneous, multi-scale place recognition framework. BIOLOGICAL CYBERNETICS 2018; 112:209-225. [PMID: 29353330 DOI: 10.1007/s00422-017-0745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
Most robot navigation systems perform place recognition using a single-sensor modality and one, or at most two heterogeneous map scales. In contrast, mammals perform navigation by combining sensing from a wide variety of modalities including vision, auditory, olfactory and tactile senses with a multi-scale, homogeneous neural map of the environment. In this paper, we develop a multi-scale, multi-sensor system for mapping and place recognition that combines spatial localization hypotheses at different spatial scales from multiple different sensors to calculate an overall place recognition estimate. We evaluate the system's performance over three repeated 1.5-km day and night journeys across a university campus spanning outdoor and multi-level indoor environments, incorporating camera, WiFi and barometric sensory information. The system outperforms a conventional camera-only localization system, with the results demonstrating not only how combining multiple sensing modalities together improves performance, but also how combining these sensing modalities over multiple scales further improves performance over a single-scale approach. The multi-scale mapping framework enables us to analyze the naturally varying spatial acuity of different sensing modalities, revealing how the multi-scale approach captures each sensing modality at its optimal operation point where a single-scale approach does not, and enables us to then weight sensor contributions at different scales based on their utility for place recognition at that scale.
Collapse
Affiliation(s)
- Adam Jacobson
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Australia.
| | - Zetao Chen
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Australia
| | - Michael Milford
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
99
|
Linear Self-Motion Cues Support the Spatial Distribution and Stability of Hippocampal Place Cells. Curr Biol 2018; 28:1803-1810.e5. [PMID: 29779876 DOI: 10.1016/j.cub.2018.04.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 01/15/2023]
Abstract
The vestibular system provides a crucial component of place-cell and head-direction cell activity [1-7]. Otolith signals are necessary for head-direction signal stability and associated behavior [8, 9], and the head-direction signal's contribution to parahippocampal spatial representations [10-14] suggests that place cells may also require otolithic information. Here, we demonstrate that self-movement information from the otolith organs is necessary for the development of stable place fields within and across sessions. Place cells in otoconia-deficient tilted mice showed reduced spatial coherence and formed place fields that were located closer to environmental boundaries, relative to those of control mice. These differences reveal an important otolithic contribution to place-cell functioning and provide insight into the cognitive deficits associated with otolith dysfunction.
Collapse
|
100
|
Abstract
Nothing is more intuitive, yet more complex, than the concepts of space and time. In contrast to spacetime in physics, space and time in neuroscience remain separate coordinates to which we attach our observations. Investigators of navigation and memory relate neuronal activity to position, distance, time point, and duration and compare these parameters to units of measuring instruments. Although spatial-temporal sequences of brain activity often correlate with distance and duration measures, these correlations may not correspond to neuronal representations of space or time. Neither instruments nor brains sense space or time. Neuronal activity can be described as a succession of events without resorting to the concepts of space or time. Instead of searching for brain representations of our preconceived ideas, we suggest investigating how brain mechanisms give rise to inferential, model-building explanations.
Collapse
Affiliation(s)
- György Buzsáki
- Neuroscience Institute, Departments of Physiology, Neurology, and Psychiatry, and Center for Neural Science, New York University, New York, NY 10016, USA.
| | - Rodolfo Llinás
- Neuroscience Institute, Departments of Physiology, Neurology, and Psychiatry, and Center for Neural Science, New York University, New York, NY 10016, USA
| |
Collapse
|