51
|
Oizumi T, Mayanagi T, Toya Y, Sugai T, Matsumoto T, Sobue K. NLRP3 Inflammasome Inhibitor OLT1177 Suppresses Onset of Inflammation in Mice with Dextran Sulfate Sodium-Induced Colitis. Dig Dis Sci 2022; 67:2912-2921. [PMID: 34345943 DOI: 10.1007/s10620-021-07184-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS NLRP3 inflammasomes have been reported to have a key role in the initiation and perpetuation of inflammatory bowel diseases (IBD). Here we investigated the effects of OLT1177, a selective inhibitor of NLRP3 inflammasomes, in mice with dextran sulfate sodium (DSS)-induced colitis. METHODS C57BL/6J mice were given drinking water containing 3% DSS for 5 days. OLT1177 was administered for 5 days during the induction phase (simultaneously with DSS treatment) or the recovery phase (after the DSS treatment ended). The body weight and disease activity index were monitored daily. The mice were sacrificed 10 days after the start of the experiment, and the severity of inflammation in the colon was determined based on histological and biochemical analyses. RESULTS Administration of OLT1177 during the induction phase effectively suppressed DSS colitis in terms of weight loss, disease activity index, histological score, and expression of inflammatory cytokines compared to the DSS group. In contrast, OLT1177 administration during the recovery phase did not significantly affect the colitis disease course or the results of histological analyses. CONCLUSIONS OLT1177 was effective in preventing the onset of DSS colitis in mice. These results could guide the use of OLT1177 as a therapy for human IBD.
Collapse
Affiliation(s)
- Tomofumi Oizumi
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Shiwa, 028-3695, Japan.
| | - Taira Mayanagi
- Department of Neuroscience, Institute of Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| | - Yosuke Toya
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Shiwa, 028-3695, Japan
| | - Tamotsu Sugai
- Division of Molecular Diagnostic Pathology, Department of Pathology, School of Medicine, Iwate Medical University, Yahaba, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Iwate Medical University, 2-1-1 Idaidori, Yahaba, Shiwa, 028-3695, Japan
| | - Kenji Sobue
- Department of Neuroscience, Institute of Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
52
|
Hassan M, Juanola O, Keller I, Nanni P, Wolski W, Martínez-López S, Caparrós E, Francés R, Moghadamrad S. Paneth Cells Regulate Lymphangiogenesis under Control of Microbial Signals during Experimental Portal Hypertension. Biomedicines 2022; 10:biomedicines10071503. [PMID: 35884808 PMCID: PMC9313283 DOI: 10.3390/biomedicines10071503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Intestinal microbiota can modulate portal hypertension through the regulation of the intestinal vasculature. We have recently demonstrated that bacterial antigens activate Paneth cells (PCs) to secrete products that regulate angiogenesis and portal hypertension. In the present work we hypothesized that Paneth cells regulate the development of lymphatic vessels under the control of intestinal microbiota during experimental portal hypertension. We used a mouse model of inducible PCs depletion (Math1Lox/LoxVilCreERT2) and performed partial portal vein ligation (PPVL) to induce portal hypertension. After 14 days, we performed mRNA sequencing and evaluated the expression of specific lymphangiogenic genes in small intestinal tissue. Intestinal and mesenteric lymphatic vessels proliferation was assessed by immunohistochemistry. Intestinal organoids with or without PCs were exposed to pathogen-associated molecular patterns, and conditioned media (CM) was used to stimulate human lymphatic endothelial cells (LECs). The lymphangiogenic activity of stimulated LECs was assessed by tube formation and wound healing assays. Secretome analysis of CM was performed using label-free proteomics quantification methods. Intestinal immune cell infiltration was evaluated by immunohistochemistry. We observed that the intestinal gene expression pattern was altered by the absence of PCs only in portal hypertensive mice. We found a decreased expression of specific lymphangiogenic genes in the absence of PCs during portal hypertension, resulting in a reduced proliferation of intestinal and mesenteric lymphatic vessels as compared to controls. In vitro analyses demonstrated that lymphatic tube formation and endothelial wound healing responses were reduced significantly in LECs treated with CM from organoids without PCs. Secretome analyses of CM revealed that PCs secrete proteins that are involved in lipid metabolism, cell growth and proliferation. Additionally, intestinal macrophages infiltrated the ileal mucosa and submucosa of mice with and without Paneth cells in response to portal hypertension. Our results suggest that intestinal microbiota signals stimulate Paneth cells to secrete factors that modulate the intestinal and mesenteric lymphatic vessels network during experimental portal hypertension.
Collapse
Affiliation(s)
- Mohsin Hassan
- Department of Hepatology & Gastroenterology, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany;
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Oriol Juanola
- Laboratories for Translational Research, Department of Gastroenterology and Hepatology, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Irene Keller
- Interfaculty Bioinformatics Unit, Swiss Institute of Bioinformatics, University of Bern, 3008 Bern, Switzerland;
| | - Paolo Nanni
- Functional Genomics Center Zurich, University/ETH Zurich, 8057 Zurich, Switzerland; (P.N.); (W.W.)
| | - Witold Wolski
- Functional Genomics Center Zurich, University/ETH Zurich, 8057 Zurich, Switzerland; (P.N.); (W.W.)
| | - Sebastián Martínez-López
- Hepatic and Intestinal Immunobiology Group, Departamento Medicina Clínica, Universidad Miguel Hernández, 03550 Alicante, Spain; (S.M.-L.); (E.C.); (R.F.)
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario, 03010 Alicante, Spain
| | - Esther Caparrós
- Hepatic and Intestinal Immunobiology Group, Departamento Medicina Clínica, Universidad Miguel Hernández, 03550 Alicante, Spain; (S.M.-L.); (E.C.); (R.F.)
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario, 03010 Alicante, Spain
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Departamento Medicina Clínica, Universidad Miguel Hernández, 03550 Alicante, Spain; (S.M.-L.); (E.C.); (R.F.)
- Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario, 03010 Alicante, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, 03207 Elche, Spain
- CIBERehd, Instituto Salud Carlos III, 28029 Madrid, Spain
| | - Sheida Moghadamrad
- Department for Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Laboratories for Translational Research, Department of Gastroenterology and Hepatology, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- University Clinic of Visceral Surgery and Medicine, Inselspital, 3008 Bern, Switzerland
- Correspondence: ; Tel.: +41-58-666-7117
| |
Collapse
|
53
|
Pieters W, Hugenholtz F, Kos K, Cammeraat M, Moliej TC, Kaldenbach D, Klarenbeek S, Davids M, Drost L, de Konink C, Delzenne-Goette E, de Visser KE, te Riele H. Pro-mutagenic effects of the gut microbiota in a Lynch syndrome mouse model. Gut Microbes 2022; 14:2035660. [PMID: 35188867 PMCID: PMC8865281 DOI: 10.1080/19490976.2022.2035660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota strongly impacts the development of sporadic colorectal cancer (CRC), but it is largely unknown how the microbiota affects the pathogenesis of mismatch-repair-deficient CRC in the context of Lynch syndrome. In a mouse model for Lynch syndrome, we found a nearly complete loss of intestinal tumor development when animals were transferred from a conventional "open" animal facility to specific-pathogen-free (SPF) conditions. Using 16S sequencing we detected large changes in microbiota composition between the two facilities. Transcriptomic analyses of tumor-free intestinal tissues showed signs of strong intestinal inflammation in conventional mice. Whole exome sequencing of tumors developing in Msh2-Lynch mice revealed a much lower mutational load in the single SPF tumor than in tumors developing in conventional mice, suggesting reduced epithelial proliferation in SPF mice. Fecal microbiota transplantations with conventional feces altered the immune landscape and gut homeostasis, illustrated by increased gut length and elevated epithelial proliferation and migration. This was associated with drastic changes in microbiota composition, in particular increased relative abundances of different mucus-degrading taxa such as Desulfovibrio and Akkermansia, and increased bacterial-epithelial contact. Strikingly, transplantation of conventional microbiota increased microsatellite instability in untransformed intestinal epithelium of Msh2-Lynch mice, indicating that the composition of the microbiota influences the rate of mutagenesis in MSH2-deficient crypts.
Collapse
Affiliation(s)
- Wietske Pieters
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Kevin Kos
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Oncode Institute, Utrecht, The Netherlands
| | - Maxime Cammeraat
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Teddy C. Moliej
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daphne Kaldenbach
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Sjoerd Klarenbeek
- Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mark Davids
- Microbiota Center Amsterdam, Amsterdam, The Netherlands
| | - Lisa Drost
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Charlotte de Konink
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elly Delzenne-Goette
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Karin E. de Visser
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,Oncode Institute, Utrecht, The Netherlands
| | - Hein te Riele
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands,CONTACT Hein te Riele The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam1066 CX, The Netherlands
| |
Collapse
|
54
|
Komuro M, Nagane M, Endo R, Nakamura T, Miyamoto T, Niwa C, Fukuyama T, Harashima H, Aihara N, Kamiie J, Suzuki R, Yamashita T. Glucosylceramide in T cells regulates the pathology of inflammatory bowel disease. Biochem Biophys Res Commun 2022; 599:24-30. [PMID: 35168060 DOI: 10.1016/j.bbrc.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease in the colon characterized by excessive activation of T cells. Glycosphingolipids (GSLs) are composed of lipid rafts in cellular membranes, and their content is linked to immune cell function. In the present study, we investigated the involvement of GSLs in IBD. Microarray data showed that in IBD patients, the expression of only UDP-glucose ceramide glucosyltransferase (UGCG) decreased among the GSLs synthases. Ad libitum access to dextran sulfate sodium (DSS) resulted in decreased UGCG and glucosylceramide (GlcCer) content in mesenteric lymph nodes and T cells from the spleen. Furthermore, the knockdown of Ugcg in T cells exacerbated the pathogenesis of colitis, which was accompanied by a decrease in Treg levels. Treatment with GlcCer nanoparticles prevented DSS-induced colitis. These results suggested that GlcCer in T cells is involved in the pathogenesis of IBD. Furthermore, GlcCer nanoparticles are a potential efficacious therapeutic target for IBD patients.
Collapse
Affiliation(s)
- Mariko Komuro
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan; Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Kanagawa, Japan.
| | - Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takayoshi Miyamoto
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Chiaki Niwa
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Tomoki Fukuyama
- Laboratory of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoyuki Aihara
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Rimina Suzuki
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
55
|
DeLucia B, Samorezov S, Zangara MT, Markley RL, Osborn LJ, Schultz KB, McDonald C, Claesen J. A 3D-printable device allowing fast and reproducible longitudinal preparation of mouse intestines. Animal Model Exp Med 2022; 5:189-196. [PMID: 35415968 PMCID: PMC9043725 DOI: 10.1002/ame2.12228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Accurate and reproducible analysis of murine small and large intestinal tissue is key for preclinical models involving intestinal pathology. Currently, there is no easily accessible, standardized method that allows researchers of different skill levels to consistently dissect intestines in a time-efficient manner. Here, we describe the design and use of the 3D-printed "Mouse Intestinal Slicing Tool" (MIST), which can be used to longitudinally dissect murine intestines for further analysis. We benchmarked the MIST against a commonly used procedure involving scissors to make a longitudinal cut along the intestines. Use of the MIST halved the time per mouse to prepare the intestines and outperformed alternative methods in smoothness of the cutting edge and overall reproducibility. By sharing the plans for printing the MIST, we hope to contribute a uniformly applicable method for saving time and increasing consistency in studies of the mouse gastrointestinal tract.
Collapse
Affiliation(s)
- Beckey DeLucia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Center for Microbiome and Human Health, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Sergey Samorezov
- Department of Biomedical Engineering, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Megan T. Zangara
- Department of Molecular MedicineCleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandOhioUSA
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Rachel L. Markley
- Department of Cardiovascular and Metabolic Sciences, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Center for Microbiome and Human Health, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Lucas J. Osborn
- Department of Cardiovascular and Metabolic Sciences, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Center for Microbiome and Human Health, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandOhioUSA
| | - Karlee B. Schultz
- Department of Cardiovascular and Metabolic Sciences, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Center for Microbiome and Human Health, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- College of Arts and SciencesJohn Carroll UniversityUniversity HeightsOhioUSA
| | - Christine McDonald
- Department of Molecular MedicineCleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandOhioUSA
- Department of Inflammation and Immunity, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
| | - Jan Claesen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Center for Microbiome and Human Health, Lerner Research InstituteCleveland ClinicClevelandOhioUSA
- Department of Molecular MedicineCleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
56
|
Sofranko A, Wahle T, Kolling J, Heusinkveld HJ, Stahlmecke B, Rosenbruch M, Albrecht C, Schins RPF. Effects of subchronic dietary exposure to the engineered nanomaterials SiO 2 and CeO 2 in C57BL/6J and 5xFAD Alzheimer model mice. Part Fibre Toxicol 2022; 19:23. [PMID: 35337343 PMCID: PMC8957165 DOI: 10.1186/s12989-022-00461-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is an increasing concern about the neurotoxicity of engineered nanomaterials (NMs). To investigate the effects of subchronic oral exposures to SiO2 and CeO2 NMs on Alzheimer's disease (AD)-like pathology, 5xFAD transgenic mice and their C57BL/6J littermates were fed ad libitum for 3 or 14 weeks with control food pellets, or pellets dosed with these respective NMs at 0.1% or 1% (w/w). Behaviour effects were evaluated by X-maze, string suspension, balance beam and open field tests. Brains were analysed for plaque load, beta-amyloid peptide levels, markers of oxidative stress and neuroinflammation. RESULTS No marked behavioural impairments were observed in the mice exposed to SiO2 or CeO2 and neither treatment resulted in accelerated plaque formation, increased oxidative stress or inflammation. In contrast, the 5xFAD mice exposed to 1% CeO2 for 14 weeks showed significantly lower hippocampal Aβ plaque load and improved locomotor activity compared to the corresponding controls. CONCLUSIONS The findings from the present study suggest that long-term oral exposure to SiO2 or CeO2 NMs has no neurotoxic and AD-promoting effects. The reduced plaque burden observed in the mice following dietary CeO2 exposure warrants further investigation to establish the underlying mechanism, given the easy applicability of this administration method.
Collapse
Affiliation(s)
- Adriana Sofranko
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Tina Wahle
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Julia Kolling
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Harm J Heusinkveld
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Burkhard Stahlmecke
- Institute for Energy and Environmental Technology e.V. (IUTA), Duisburg, Germany
| | | | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
- State Office for Consumer Protection Saxony-Anhalt, Stendal, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
57
|
Le Naour J, Montégut L, Joseph A, Garbin K, Vacchelli E, Kroemer G, Pol JG, Maiuri MC. Improved Swiss-rolling method for histological analyses of colon tissue. MethodsX 2022; 9:101630. [PMID: 35242614 PMCID: PMC8861817 DOI: 10.1016/j.mex.2022.101630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/27/2022] [Indexed: 12/01/2022] Open
Abstract
Since the introduction of the Swiss-rolling technique by Reilly and Kirsner in 1965, various methodological approaches have been developed for histological analyses of intestinal tissues. Here, we describe an improved protocol for the processing of freshly harvested murine colons that can be extended to other intestinal tissues. With simple tools, this technique allows to tightly wrap the organ throughout the whole length and to keep it in place before fixation, avoiding excessive stiffness of the tissue. Unlike the original method which relies on frozen samples, processing of the biological samples right after resection preserves epitopes integrity for subsequent immunohistochemical analyses. Ultimately, this method provides a reproducible workflow to capture the entire colon length in a unique histological section in order to assess several features such as intestinal inflammation and tumorigenesis. • Easily include freshly isolated tissues • Shorten preparation time using a few affordable tools • Prevent unrolling and preserve tissue integrity
Collapse
Affiliation(s)
- Julie Le Naour
- Centre de Recherche des Cordeliers, Inserm U1138, Team “Metabolism, Cancer & Immunity” Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, 15 rue de l'Ecole de Médecine, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Inserm U1138, Team “Metabolism, Cancer & Immunity” Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, 15 rue de l'Ecole de Médecine, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Inserm U1138, Team “Metabolism, Cancer & Immunity” Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, 15 rue de l'Ecole de Médecine, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
| | - Kévin Garbin
- CHIC (Histology, Imaging and Cytometry Center), Centre de Recherche des Cordeliers, Paris, France
| | - Erika Vacchelli
- Centre de Recherche des Cordeliers, Inserm U1138, Team “Metabolism, Cancer & Immunity” Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, 15 rue de l'Ecole de Médecine, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Inserm U1138, Team “Metabolism, Cancer & Immunity” Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, 15 rue de l'Ecole de Médecine, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Jonathan G. Pol
- Centre de Recherche des Cordeliers, Inserm U1138, Team “Metabolism, Cancer & Immunity” Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, 15 rue de l'Ecole de Médecine, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Corresponding authors at: Centre de Recherche des Cordeliers, Inserm U1138, Team “Metabolism, Cancer & Immunity” Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, 15 rue de l'Ecole de Médecine, Paris 75006, France.
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Inserm U1138, Team “Metabolism, Cancer & Immunity” Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, 15 rue de l'Ecole de Médecine, Paris 75006, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculty of Medicine Kremlin Bicêtre, Université Paris Saclay, Le Kremlin Bicêtre, France
- Corresponding authors at: Centre de Recherche des Cordeliers, Inserm U1138, Team “Metabolism, Cancer & Immunity” Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, 15 rue de l'Ecole de Médecine, Paris 75006, France.
| |
Collapse
|
58
|
Intestinal Gpr17 deficiency improves glucose metabolism by promoting GLP-1 secretion. Cell Rep 2022; 38:110179. [PMID: 34986353 PMCID: PMC8972502 DOI: 10.1016/j.celrep.2021.110179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/01/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) in intestinal enteroendocrine cells (EECs) respond to nutritional, neural, and microbial cues and modulate the release of gut hormones. Here we show that Gpr17, an orphan GPCR, is co-expressed in glucagon-like peptide-1 (GLP-1)-expressing EECs in human and rodent intestinal epithelium. Acute genetic ablation of Gpr17 in intestinal epithelium improves glucose tolerance and glucose-stimulated insulin secretion (GSIS). Importantly, inducible knockout (iKO) mice and Gpr17 null intestinal organoids respond to glucose or lipid ingestion with increased secretion of GLP-1, but not the other incretin glucose-dependent insulinotropic polypeptide (GIP). In an in vitro EEC model, overexpression or agonism of Gpr17 reduces voltage-gated calcium currents and decreases cyclic AMP (cAMP) production, and these are two critical factors regulating GLP-1 secretion. Together, our work shows that intestinal Gpr17 signaling functions as an inhibitory pathway for GLP-1 secretion in EECs, suggesting intestinal GPR17 is a potential target for diabetes and obesity intervention. Yan et al. locate GPR17 expression in the enteroendocrine cells of human and rodent intestinal epithelium. They find that GPR17 signaling inhibits intracellular rise of cAMP and calcium and that loss of intestinal Gpr17 in rodents leads to better glucose tolerance via increased hormone secretion in response to nutrient ingestion.
Collapse
|
59
|
Saha S, Bai JDK, Montrose DC. Induction and evaluation of murine colitis induced by T cell transfer. Methods Cell Biol 2022; 168:1-17. [DOI: 10.1016/bs.mcb.2021.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Chiloeches ML, Bergonzini A, Frisan T, Martin OCB. Characterization of macrophage infiltration and polarization by double fluorescence immunostaining in mouse colonic mucosa. STAR Protoc 2021; 2:100833. [PMID: 34585165 PMCID: PMC8452889 DOI: 10.1016/j.xpro.2021.100833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
We recently characterized the association between DNA damage and immunoresponse in vivo in colonic mucosa of mice infected with a Salmonella Typhimurium strain expressing a genotoxin, known as typhoid toxin. In this protocol, we describe how to assess the extent and features of infiltrating macrophages by double immunofluorescence. Total macrophage population was determined using an F4/80 antibody, whereas the specific M2-like population was assessed using a CD206 antibody. For complete details on the use and execution of this protocol, please refer to Martin et al. (2021).
Collapse
Affiliation(s)
- María López Chiloeches
- Department of Molecular Biology, Umeå University, 90736 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90736 Umeå, Sweden
| | - Anna Bergonzini
- Department of Molecular Biology, Umeå University, 90736 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90736 Umeå, Sweden
| | - Teresa Frisan
- Department of Molecular Biology, Umeå University, 90736 Umeå, Sweden.,Umeå Centre for Microbial Research (UCMR), Umeå University, 90736 Umeå, Sweden
| | | |
Collapse
|
61
|
Chuang DJ, Pethaperumal S, Siwakoti B, Chien HJ, Cheng CF, Hung SC, Lien TS, Sun DS, Chang HH. Activating Transcription Factor 3 Protects against Restraint Stress-Induced Gastrointestinal Injury in Mice. Cells 2021; 10:3530. [PMID: 34944038 PMCID: PMC8700235 DOI: 10.3390/cells10123530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/11/2022] Open
Abstract
Psychological stress increases the risk of gastrointestinal (GI) tract diseases, which involve bidirectional communication of the GI and nerves systems. Acute stress leads to GI ulcers; however, the mechanism of the native cellular protection pathway, which safeguards tissue integrality and maintains GI homeostasis, remains to be investigated. In a mouse model of this study, restraint stress induced GI leakage, abnormal tight junction protein expression, and cell death of gut epithelial cells. The expression of activating transcription factor 3 (ATF3), a stress-responsive transcription factor, is upregulated in the GI tissues of stressed animals. ATF3-deficient mice displayed an exacerbated phenotype of GI injuries. These results suggested that, in response to stress, ATF3 is part of the native cellular protective pathway in the GI system, which could be a molecular target for managing psychological stress-induced GI tract diseases.
Collapse
Affiliation(s)
- Dun-Jie Chuang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Subhashree Pethaperumal
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Bijaya Siwakoti
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| |
Collapse
|
62
|
Martín-Alonso M, Iqbal S, Vornewald PM, Lindholm HT, Damen MJ, Martínez F, Hoel S, Díez-Sánchez A, Altelaar M, Katajisto P, Arroyo AG, Oudhoff MJ. Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage. Nat Commun 2021; 12:6741. [PMID: 34795242 PMCID: PMC8602650 DOI: 10.1038/s41467-021-26904-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
Smooth muscle is an essential component of the intestine, both to maintain its structure and produce peristaltic and segmentation movements. However, very little is known about other putative roles that smooth muscle cells may have. Here, we show that smooth muscle cells may be the dominant suppliers of BMP antagonists, which are niche factors essential for intestinal stem cell maintenance. Furthermore, muscle-derived factors render epithelium reparative and fetal-like, which includes heightened YAP activity. Mechanistically, we find that the membrane-bound matrix metalloproteinase MMP17, which is exclusively expressed by smooth muscle cells, is required for intestinal epithelial repair after inflammation- or irradiation-induced injury. Furthermore, we propose that MMP17 affects intestinal epithelial reprogramming after damage indirectly by cleaving diffusible factor(s) such as the matricellular protein PERIOSTIN. Together, we identify an important signaling axis that establishes a role for smooth muscle cells as modulators of intestinal epithelial regeneration and the intestinal stem cell niche.
Collapse
Affiliation(s)
- Mara Martín-Alonso
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sharif Iqbal
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia M Vornewald
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard T Lindholm
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirjam J Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Fernando Martínez
- Bioinformatics Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Sigrid Hoel
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alberto Díez-Sánchez
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alicia G Arroyo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
63
|
Zentrich E, Talbot SR, Bleich A, Häger C. Automated Home-Cage Monitoring During Acute Experimental Colitis in Mice. Front Neurosci 2021; 15:760606. [PMID: 34744621 PMCID: PMC8570043 DOI: 10.3389/fnins.2021.760606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
For ethical and legal reasons it is necessary to assess the severity of procedures in animal experimentation. To estimate the degree of pain, suffering, distress or lasting harm, objective methods that provide gradebale parameters need to be tested and validated for various models. In this context, automated home-cage monitoring becomes more important as a contactless, objective, continuous and non-invasive method. The aim of this study was to examine a recently developed large scale automated home-cage monitoring system (Digital Ventilated Cage, DVC®) with regard to the applicability and added value for severity assessment in a frequently used acute colitis mouse model. Acute colitis was induced in female C57BL/6J mice by varying doses of DSS (1.5 and 2.5%), matched controls received water only (0%). Besides DVC® activity monitoring and nest scoring, model specific parameters like body weight, clinical colitis score, and intestinal histo-pathology were used. In a second approach, we questioned whether DVC® can be used to detect an influence of different handling methods on the behavior of mice. Therefore, we compared activity patterns of mice that underwent tunnel vs. tail handling for routine animal care procedures. In DSS treated mice, disease specific parameters confirmed induction of a graded colitis. In line with this, DVC® revealed reduced activity in these animals. Furthermore, the system displayed stress-related activity changes due to the restraining procedures necessary in DSS-treatment groups. However, no significant differences between tunnel vs. tail handling procedures were detected. For further analysis of the data, a binary classifier was applied to categorize two severity levels (burdened vs. not burdened) based on activity and body weight. In all DSS-treatment groups data points were allocated to the burdened level, in contrast to a handling group. The fraction of "burdened" animals reflected well the course of colitis development. In conclusion, automated home-cage monitoring by DVC® enabled severity assessment in a DSS-induced colitis model equally well as gold standard clinical parameters. In addition, it revealed changes in activity patterns due to routine handling procedures applied in experimental model work. This indicates that large scale home-cage monitoring can be integrated into routine severity assessment in biomedical research.
Collapse
Affiliation(s)
- Eva Zentrich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Steven R Talbot
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
64
|
Wahida A, Müller M, Hiergeist A, Popper B, Steiger K, Branca C, Tschurtschenthaler M, Engleitner T, Donakonda S, De Coninck J, Öllinger R, Pfautsch MK, Müller N, Silva M, Usluer S, Thiele Orberg E, Böttcher JP, Pfarr N, Anton M, Slotta-Huspenina JB, Nerlich AG, Madl T, Basic M, Bleich A, Berx G, Ruland J, Knolle PA, Rad R, Adolph TE, Vandenabeele P, Kanegane H, Gessner A, Jost PJ, Yabal M. XIAP restrains TNF-driven intestinal inflammation and dysbiosis by promoting innate immune responses of Paneth and dendritic cells. Sci Immunol 2021; 6:eabf7235. [PMID: 34739338 DOI: 10.1126/sciimmunol.abf7235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deficiency in X-linked inhibitor of apoptosis protein (XIAP) is the cause for X-linked lymphoproliferative syndrome 2 (XLP2). About one-third of these patients suffer from severe and therapy-refractory inflammatory bowel disease (IBD), but the exact cause of this pathogenesis remains undefined. Here, we used XIAP-deficient mice to characterize the mechanisms underlying intestinal inflammation. In Xiap−/− mice, we observed spontaneous terminal ileitis and microbial dysbiosis characterized by a reduction of Clostridia species. We showed that in inflamed mice, both TNF receptor 1 and 2 (TNFR1/2) cooperated in promoting ileitis by targeting TLR5-expressing Paneth cells (PCs) or dendritic cells (DCs). Using intestinal organoids and in vivo modeling, we demonstrated that TLR5 signaling triggered TNF production, which induced PC dysfunction mediated by TNFR1. TNFR2 acted upon lamina propria immune cells. scRNA-seq identified a DC population expressing TLR5, in which Tnfr2 expression was also elevated. Thus, the combined activity of TLR5 and TNFR2 signaling may be responsible for DC loss in lamina propria of Xiap−/− mice. Consequently, both Tnfr1−/−Xiap−/− and Tnfr2−/−Xiap−/− mice were rescued from dysbiosis and intestinal inflammation. Furthermore, RNA-seq of ileal crypts revealed that in inflamed Xiap−/− mice, TLR5 signaling was abrogated, linking aberrant TNF responses with the development of a dysbiosis. Evidence for TNFR2 signaling driving intestinal inflammation was detected in XLP2 patient samples. Together, these data point toward a key role of XIAP in mediating resilience of TLR5-expressing PCs and intestinal DCs, allowing them to maintain tissue integrity and microbiota homeostasis.
Collapse
MESH Headings
- Animals
- Dendritic Cells/immunology
- Dysbiosis/immunology
- Humans
- Immunity, Innate/immunology
- Inflammation/immunology
- Intestines/immunology
- Mice
- Mice, Knockout
- Paneth Cells/immunology
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/immunology
- Toll-Like Receptor 5/immunology
- X-Linked Inhibitor of Apoptosis Protein/deficiency
- X-Linked Inhibitor of Apoptosis Protein/immunology
Collapse
Affiliation(s)
- Adam Wahida
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
| | - Madeleine Müller
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Katja Steiger
- Institute of Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology and Digital Pathology, Institute for Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany
| | - Caterina Branca
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
| | - Markus Tschurtschenthaler
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sainitin Donakonda
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Jordy De Coninck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Rupert Öllinger
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Marie K Pfautsch
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Nicole Müller
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Miguel Silva
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Erik Thiele Orberg
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Nicole Pfarr
- Institute of Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany
| | - Martina Anton
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia B Slotta-Huspenina
- Institute of Pathology and Pathological Anatomy, Technical University of Munich, Munich, Germany
| | - Andreas G Nerlich
- Institute of Pathology, Academic Clinic Munich-Bogenhausen, Munich, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| | - Jürgen Ruland
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Roland Rad
- TranslaTUM, Center for Translational Cancer Research, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Timon E Adolph
- Department of Internal Medicine I for Gastroenterology, Hepatology, and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peter Vandenabeele
- Cell Death and Inflammation Unit, VIB-Center for Inflammation Research (IRC), VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Philipp J Jost
- Medical Department III for Hematology and Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Monica Yabal
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
65
|
Brischetto C, Krieger K, Klotz C, Krahn I, Kunz S, Kolesnichenko M, Mucka P, Heuberger J, Scheidereit C, Schmidt-Ullrich R. NF-κB determines Paneth versus goblet cell fate decision in the small intestine. Development 2021; 148:273388. [PMID: 34751748 PMCID: PMC8627599 DOI: 10.1242/dev.199683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Although the role of the transcription factor NF-κB in intestinal inflammation and tumor formation has been investigated extensively, a physiological function of NF-κB in sustaining intestinal epithelial homeostasis beyond inflammation has not been demonstrated. Using NF-κB reporter mice, we detected strong NF-κB activity in Paneth cells, in ‘+4/+5’ secretory progenitors and in scattered Lgr5+ crypt base columnar stem cells of small intestinal (SI) crypts. To examine NF–κB functions in SI epithelial self-renewal, mice or SI crypt organoids (‘mini-guts’) with ubiquitously suppressed NF-κB activity were used. We show that NF-κB activity is dispensable for maintaining SI epithelial proliferation, but is essential for ex vivo organoid growth. Furthermore, we demonstrate a dramatic reduction of Paneth cells in the absence of NF-κB activity, concomitant with a significant increase in goblet cells and immature intermediate cells. This indicates that NF-κB is required for proper Paneth versus goblet cell differentiation and for SI epithelial homeostasis, which occurs via regulation of Wnt signaling and Sox9 expression downstream of NF-κB. The current study thus presents evidence for an important role for NF-κB in intestinal epithelial self-renewal. Summary: The transcription factor NF-κB, together with downstream Wnt and Sox9, is required for Paneth and goblet cell fate decisions and for maintenance of the small intestinal stem cell niche.
Collapse
Affiliation(s)
- Cristina Brischetto
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Karsten Krieger
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Christian Klotz
- Unit for Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute (RKI), 13353 Berlin, Germany
| | - Inge Krahn
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Séverine Kunz
- CF Electron Microscopy, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Marina Kolesnichenko
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Patrick Mucka
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Julian Heuberger
- Signal Transduction in Development and Cancer, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany.,Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, 13353 Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ruth Schmidt-Ullrich
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany
| |
Collapse
|
66
|
Cao Q, Lin Y, Yue C, Wang Y, Quan F, Cui X, Bi R, Tang X, Yang Y, Wang C, Li X, Gao X. IL-6 deficiency promotes colitis by recruiting Ly6C hi monocytes into inflamed colon tissues in a CCL2-CCR2-dependent manner. Eur J Pharmacol 2021; 904:174165. [PMID: 33979652 DOI: 10.1016/j.ejphar.2021.174165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
Interleukin 6 (IL-6) is a pleiotropic cytokine that is elevated in inflammatory bowel disease. However, the role of IL-6 deficiency in colitis is not well-defined. Some IL-6 and IL-6 receptor antagonists are associated with severe gastrointestinal immune adverse effects, but the mechanisms of the effects are not clear. This study aimed to investigate the effect of IL-6 in ulcerative colitis in Il6-/- mice. Results indicated that physiological deficiency of IL-6 promoted the development of colitis. Moreover, IL-6 deficiency significantly increased the mRNA levels of monocytes chemokine Ccl2 and its receptor Ccr2 in colon tissues. Similarly, the percentage of Ly6Chigh monocytes and neutrophils were increased in the colon of Il6-/- mice. Intestinal crypts more strongly increased the migration of Il6-/- macrophages than wild-type ones. Moreover, Il6-/- macrophages promoted the migration of neutrophils. Most importantly, RS102895, an antagonist of CCR2, diminished chemotaxis of macrophages and inhibited colitis in Il6-/- mice. Collectively, these results indicate that Il6-/- macrophages migrate to inflamed colon tissues and recruit neutrophils, thereby promoting the effect of Il6-/- on colitis. This study expands our understanding on the effect of IL-6 deficiency in colitis and the development of gastrointestinal immune adverse effects.
Collapse
Affiliation(s)
- Qiuhua Cao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yanting Lin
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Chongxiu Yue
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yue Wang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Fei Quan
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Xinmeng Cui
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Ran Bi
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Xinying Tang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China; School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| | - Xianjing Li
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| | - Xinghua Gao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| |
Collapse
|
67
|
Arnesen H, Müller MHB, Aleksandersen M, Østby GC, Carlsen H, Paulsen JE, Boysen P. Induction of colorectal carcinogenesis in the C57BL/6J and A/J mouse strains with a reduced DSS dose in the AOM/DSS model. Lab Anim Res 2021; 37:19. [PMID: 34315530 PMCID: PMC8317392 DOI: 10.1186/s42826-021-00096-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/01/2021] [Indexed: 12/21/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide and thus mouse models of CRC are of significant value to study the pathogenesis. The Azoxymethane/Dextran sulfate sodium (AOM/DSS) model is a widely used, robust initiation-promotion model for chemical induction of colitis-associated CRC in rodents. However, the dosage of chemicals, treatment regimens and outcome measures vary greatly among studies employing this model. Thus, the aim of this study was to examine an AOM/DSS model involving a reduced (1%) dose of DSS for induction of carcinogenesis in A/J and C57BL/6J (B6) mice. Results We show that colonic preneoplastic lesions can be reliably detected in A/J and B6 mice by use of a AOM/DSS model involving a single injection of 10 mg/kg AOM followed by three 7-day cycles of a low-dose (1%) DSS administration. Supporting existing evidence of A/J mice exhibiting higher susceptibility to AOM than B6 mice, our AOM/DSS-treated A/J mice developed the highest number of large colonic lesions. Clinical symptoms in both strains subjected to the AOM/DSS treatment did not persist in-between treatment cycles, demonstrating that the animals tolerated the treatment well. Conclusions Our findings suggest that a reduced dose of DSS in the AOM/DSS model can be considered in future studies of early phase colorectal carcinogenesis in the A/J and B6 mouse strains using preneoplastic lesions as an outcome measure, and that such regimen may reduce the risk of early trial terminations to accommodate human endpoints. Overall, our data emphasize the importance of devoting attention towards choice of protocol, outcome measures and mouse strain in studies of CRC in mice according to the study purpose. Supplementary Information The online version contains supplementary material available at 10.1186/s42826-021-00096-y.
Collapse
Affiliation(s)
- Henriette Arnesen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway. .,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Mette Helen Bjørge Müller
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jan Erik Paulsen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Preben Boysen
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| |
Collapse
|
68
|
Shrestha KS, Aska EM, Tuominen MM, Kauppi L. Tissue-specific reduction in MLH1 expression induces microsatellite instability in intestine of Mlh1 +/- mice. DNA Repair (Amst) 2021; 106:103178. [PMID: 34311271 DOI: 10.1016/j.dnarep.2021.103178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/28/2022]
Abstract
Tumors of Lynch syndrome (LS) patients display high levels of microsatellite instability (MSI), which results from complete loss of DNA mismatch repair (MMR), in line with Knudson's two-hit hypothesis. Why some organs, in particular those of the gastrointestinal (GI) tract, are prone to tumorigenesis in LS remains unknown. We hypothesized that MMR is haploinsufficient in certain tissues, compromising microsatellite stability in a tissue-specific manner before tumorigenesis. Using mouse genetics, we tested how levels of MLH1, a central MMR protein, affect age- and tissue-specific microsatellite stability in vivo and whether elevated MSI is detectable prior to loss of MMR function and to neoplastic growth. To assess putative tissue-specific MMR haploinsufficiency, we determined relevant molecular phenotypes (MSI, Mlh1 promoter methylation status, MLH1 protein and RNA levels) in jejuna of Mlh1+/- mice and compared them to those in spleen, as well as to MMR-proficient and -deficient controls (Mlh1+/+ and Mlh1-/- mice). While spleen MLH1 levels of Mlh1+/- mice were, as expected, approximately 50 % compared to wildtype mice, MLH1 levels in jejunum varied substantially between individual Mlh1+/- mice and moreover, decreased with age. Mlh1+/- mice with soma-wide Mlh1 promoter methylation often displayed severe MLH1 depletion in jejunum. Reduced (but still detectable) MLH1 levels correlated with elevated MSI in Mlh1+/- jejunum. MSI in jejunum increased with age, while in spleens of the same mice, MLH1 levels and microsatellites remained stable. Thus, MLH1 expression levels are particularly labile in intestine of Mlh1+/- mice, giving rise to tissue-specific MSI long before neoplasia. A similar mechanism likely also operates also in the human GI epithelium and could explain the wide range in age-of-onset of LS-associated tumorigenesis.
Collapse
Affiliation(s)
- Kul S Shrestha
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Doctoral Program in Integrative Life Sciences, University of Helsinki, Helsinki, Finland; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elli-Mari Aska
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Doctoral Program in Integrative Life Sciences, University of Helsinki, Helsinki, Finland; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Minna M Tuominen
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liisa Kauppi
- Systems Oncology (ONCOSYS) Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
69
|
Effects of mineral oil administration on the pharmacokinetics, metabolism and pharmacodynamics of atorvastatin and pravastatin in mice and dogs. Eur J Pharm Sci 2021; 161:105776. [PMID: 33667667 DOI: 10.1016/j.ejps.2021.105776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
We investigated the effects of mineral oil on statin pharmacokinetics and inflammatory markers in animal models. A new synthesis strategy produced regioisomers that facilitated the characterization of the main metabolite (M1) of atorvastatin, a lipophilic statin, in C57BL/6NCrl mice. The chemical structure of M1 in mice was confirmed as ortho-hydroxy β-oxidized atorvastatin. Atorvastatin and M1 pharmacokinetics and inflammatory markers were assessed in C57BL6/J mice given atorvastatin 5 mg/kg/day or 10 mg/kg/day, as a single dose or for 21 days, with or without 10 µL or 30 µL mineral oil. No consistent differences in plasma exposure of atorvastatin or M1 were observed in mice after single or repeat dosing of atorvastatin with or without mineral oil. However, mice administered atorvastatin 10 mg/kg with 30 µL mineral oil for 21 days had significantly increased plasma levels of serum amyloid A (mean 9.6 µg/mL vs 7.9 µg/mL without mineral oil; p < 0.01) and significantly increased proportions of C62Lhigh B cells (mean 18% vs 12% without mineral oil; p = 0.04). There were no statistically significant differences for other inflammatory markers assessed. In dogs, pharmacokinetics of atorvastatin, its two hydroxy metabolites and pravastatin (a hydrophilic statin) were evaluated after single administration of atorvastatin 10 mg plus pravastatin 40 mg with or without 2 g mineral oil. Pharmacokinetics of atorvastatin, hydroxylated atorvastatin metabolites or pravastatin were not significantly different after single dosing with or without mineral oil in dogs. Collectively, the results in mice and dogs indicate that mineral oil does not affect atorvastatin or pravastatin pharmacokinetics, but could cause low-grade inflammation with chronic oral administration, which warrants further investigation.
Collapse
|
70
|
Hamminger P, Marchetti L, Preglej T, Platzer R, Zhu C, Kamnev A, Rica R, Stolz V, Sandner L, Alteneder M, Kaba E, Waltenberger D, Huppa JB, Trauner M, Bock C, Lyck R, Bauer J, Dupré L, Seiser C, Boucheron N, Engelhardt B, Ellmeier W. Histone deacetylase 1 controls CD4 + T cell trafficking in autoinflammatory diseases. J Autoimmun 2021; 119:102610. [PMID: 33621930 DOI: 10.1016/j.jaut.2021.102610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/13/2023]
Abstract
CD4+ T cell trafficking is a fundamental property of adaptive immunity. In this study, we uncover a novel role for histone deacetylase 1 (HDAC1) in controlling effector CD4+ T cell migration, thereby providing mechanistic insight into why a T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis (EAE). HDAC1-deficient CD4+ T cells downregulated genes associated with leukocyte extravasation. In vitro, HDAC1-deficient CD4+ T cells displayed aberrant morphology and migration on surfaces coated with integrin LFA-1 ligand ICAM-1 and showed an impaired ability to arrest on and to migrate across a monolayer of primary mouse brain microvascular endothelial cells under physiological flow. Moreover, HDAC1 deficiency reduced homing of CD4+ T cells into the intestinal epithelium and lamina propria preventing weight-loss, crypt damage and intestinal inflammation in adoptive CD4+ T cell transfer colitis. This correlated with reduced expression levels of LFA-1 integrin chains CD11a and CD18 as well as of selectin ligands CD43, CD44 and CD162 on transferred circulating HDAC1-deficient CD4+ T cells. Our data reveal that HDAC1 controls T cell-mediated autoimmunity via the regulation of CD4+ T cell trafficking into the CNS and intestinal tissues.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Biomarkers
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Adhesion
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Endothelial Cells
- Gene Expression Profiling
- Gene Expression Regulation
- Histone Deacetylase 1/genetics
- Histone Deacetylase 1/metabolism
- Immunohistochemistry
- Inflammation/diagnosis
- Inflammation/etiology
- Inflammation/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Knockout
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Current Address: Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - René Platzer
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ci Zhu
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Elisa Kaba
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Darina Waltenberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Johannes B Huppa
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Austria.
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France.
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | | | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
71
|
Stephens CE, Whittamore JM, Hatch M. The role of NHE3 (Slc9a3) in oxalate and sodium transport by mouse intestine and regulation by cAMP. Physiol Rep 2021; 9:e14828. [PMID: 33904662 PMCID: PMC8077127 DOI: 10.14814/phy2.14828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal oxalate transport involves Cl−/HCO3− exchangers but how this transport is regulated is not currently known. NHE3 (Slc9a3), an apical Na+/H+ exchanger, is an established target for regulation of electroneutral NaCl absorption working in concert with Cl−/HCO3− exchangers. To test whether NHE3 could be involved in regulation of intestinal oxalate transport and renal oxalate handling we compared urinary oxalate excretion rates and intestinal transepithelial fluxes of 14C‐oxalate and 22Na+ between NHE3 KO and wild‐type (WT) mice. NHE3 KO kidneys had lower creatinine clearance suggesting reduced GFR, but urinary oxalate excretion rates (µmol/24 h) were similar compared to the WT but doubled when expressed as a ratio of creatinine. Intestinal transepithelial fluxes of 14C‐oxalate and 22Na+ were measured in the distal ileum, cecum, and distal colon. The absence of NHE3 did not affect basal net transport rates of oxalate or sodium across any intestinal section examined. Stimulation of intracellular cAMP with forskolin (FSK) and 3‐isobutyl‐1‐methylxanthine (IBMX) led to an increase in net oxalate secretion in the WT distal ileum and cecum and inhibition of sodium absorption in the cecum and distal colon. In NHE3 KO cecum, cAMP stimulation of oxalate secretion was impaired suggesting the possibility of a role for NHE3 in this process. Although, there is little evidence for a role of NHE3 in basal intestinal oxalate fluxes, NHE3 may be important for cAMP stimulation of oxalate in the cecum and for renal handling of oxalate.
Collapse
Affiliation(s)
- Christine E Stephens
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jonathan M Whittamore
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
72
|
Firestone RS, Feng M, Basu I, Peregrina K, Augenlicht LH, Schramm VL. Transition state analogue of MTAP extends lifespan of APC Min/+ mice. Sci Rep 2021; 11:8844. [PMID: 33893330 PMCID: PMC8065027 DOI: 10.1038/s41598-021-87734-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 01/03/2023] Open
Abstract
A mouse model of human Familial Adenomatous Polyposis responds favorably to pharmacological inhibition of 5'-methylthioadenosine phosphorylase (MTAP). Methylthio-DADMe-Immucillin-A (MTDIA) is an orally available, transition state analogue inhibitor of MTAP. 5'-Methylthioadenosine (MTA), the substrate for MTAP, is formed in polyamine synthesis and is recycled by MTAP to S-adenosyl-L-methionine (SAM) via salvage pathways. MTDIA treatment causes accumulation of MTA, which inhibits growth of human head and neck (FaDu) and lung (H359, A549) cancers in immunocompromised mouse models. We investigated the efficacy of oral MTDIA as an anti-cancer therapeutic for intestinal adenomas in immunocompetent APCMin/+ mice, a murine model of human Familial Adenomatous Polyposis. Tumors in APCMin/+ mice were decreased in size by MTDIA treatment, resulting in markedly improved anemia and doubling of mouse lifespan. Metabolomic analysis of treated mice showed no changes in polyamine, methionine, SAM or ATP levels when compared with control mice but indicated an increase in MTA, the MTAP substrate. Generation of an MTDIA-resistant cell line in culture showed a four-fold amplification of the methionine adenosyl transferase (MAT2A) locus and expression of this enzyme. MAT2A is downstream of MTAP action and catalyzes synthesis of the SAM necessary for methylation reactions. Immunohistochemical analysis of treated mouse intestinal tissue demonstrated a decrease in symmetric dimethylarginine, a PRMT5-catalyzed modification. The anti-cancer effects of MTDIA indicate that increased cellular MTA inhibits PRMT5-mediated methylations resulting in attenuated tumor growth. Oral dosing of MTDIA as monotherapy has potential for delaying the onset and progression of colorectal cancers in Familial Adenomatous Polyposis (FAP) as well as residual duodenal tumors in FAP patients following colectomy. MTDIA causes a physiologic inactivation of MTAP and may also have efficacy in combination with inhibitors of MAT2A or PRMT5, known synthetic-lethal interactions in MTAP-/- cancer cell lines.
Collapse
Affiliation(s)
- Ross S Firestone
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mu Feng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Indranil Basu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Karina Peregrina
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Leonard H Augenlicht
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
73
|
Nishikawa T, Maeda K, Nakamura M, Yamamura T, Sawada T, Mizutani Y, Ito T, Ishikawa T, Furukawa K, Ohno E, Miyahara R, Kawashima H, Honda T, Ishigami M, Yamamoto T, Matsumoto S, Hotta Y, Fujishiro M. Filtrated Adipose Tissue-Derived Mesenchymal Stem Cell Lysate Ameliorates Experimental Acute Colitis in Mice. Dig Dis Sci 2021; 66:1034-1044. [PMID: 32488819 DOI: 10.1007/s10620-020-06359-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic, persistent, and intractable enteritis; however, an effective treatment strategy is yet to be established. Mesenchymal stem cells (MSCs) and their paracrine factors exhibit anti-inflammatory actions and have been proposed as a new therapeutic candidate for IBD treatment, although the efficacy of MSC lysate on enteritis is unclear. AIMS Here, we examined the efficacy and appropriate regimen of filtrated murine adipose-derived mesenchymal stem cell lysate (FADSTL) in an acute colitis mouse model as a novel cell-free MSC therapy. METHODS To confirm the clinical effects of FADSTL, survival rate, body weight, and disease activity index (DAI) were investigated in the DSS-induced colitis mouse model. Further, differences in efficacy with dosing frequency were assessed to optimize the proper regimen. Colon length, histological findings, gene expression of inflammatory mediators and tight junction proteins in colon tissues, and anti-apoptotic effects were also compared in 3-day continuous FADSTL administration and PBS groups. RESULTS Three-day continuous FADSTL administration significantly improved weight loss and DAI score compared to those in the PBS-treated group, whereas the effect was not observed with single administration. Additionally, colon shortening and histological inflammation were suppressed in the FADSTL-treated group. Further, this treatment decreased gene expression of inflammatory mediators, maintained expression of tight junction proteins in the colon, and showed anti-apoptotic effects. CONCLUSIONS FADSTL effects were dependent on its administration frequency, suggesting the requirement of continuous FADSTL administration. FADSTL improved colitis by maintaining the intestinal barrier function through its anti-inflammatory and anti-apoptotic actions.
Collapse
Affiliation(s)
- Takahiro Nishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Keiko Maeda
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takeshi Yamamura
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takanori Ito
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Kawashima
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tokunori Yamamoto
- Laboratory for Clinical Application of Adipose-Derived Regenerative Cells, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
- Clinical Research Support Center, Asahikawa Medical University Hospital, 2-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Seiji Matsumoto
- Clinical Research Support Center, Asahikawa Medical University Hospital, 2-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
- Center for Advanced Research and Education, Asahikawa Medical University, 2-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yuji Hotta
- Department of Hospital Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 1-3 Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
74
|
A novel histidine-tryptophan-ketoglutarate formulation ameliorates intestinal injury in a cold storage and ex vivo warm oxygenated reperfusion model in rats. Biosci Rep 2021; 40:222289. [PMID: 32129456 DOI: 10.1042/bsr20191989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/03/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
AIM The present study aims to evaluate protective effects of a novel histidine-tryptophan-ketoglutarate solution (HTK-N) and to investigate positive impacts of an additional luminal preservation route in cold storage-induced injury on rat small bowels. METHODS Male Lewis rats were utilized as donors of small bowel grafts. Vascular or vascular plus luminal preservation were conducted with HTK or HTK-N and grafts were stored at 4°C for 8 h followed by ex vivo warm oxygenated reperfusion with Krebs-Henseleit buffer for 30 min. Afterwards, intestinal tissue and portal vein effluent samples were collected for evaluation of morphological alterations, mucosal permeability and graft vitality. RESULTS The novel HTK-N decreased ultrastructural alterations but otherwise presented limited effect on protecting small bowel from ischemia-reperfusion injury in vascular route. However, the additional luminal preservation led to positive impacts on the integrity of intestinal mucosa and vitality of goblet cells. In addition, vascular plus luminal preservation route with HTK significantly protected the intestinal tissue from edema. CONCLUSION HTK-N protected the intestinal mucosal structure and graft vitality as a luminal preservation solution. Additional luminal preservation route in cold storage was shown to be promising.
Collapse
|
75
|
Law EK, Levin-Klein R, Jarvis MC, Kim H, Argyris PP, Carpenter MA, Starrett GJ, Temiz NA, Larson LK, Durfee C, Burns MB, Vogel RI, Stavrou S, Aguilera AN, Wagner S, Largaespada DA, Starr TK, Ross SR, Harris RS. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med 2021; 217:152061. [PMID: 32870257 PMCID: PMC7953736 DOI: 10.1084/jem.20200261] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.
Collapse
Affiliation(s)
- Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Rena Levin-Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Hyoung Kim
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Prokopios P Argyris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Gabriel J Starrett
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN
| | - Lindsay K Larson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Cameron Durfee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Michael B Burns
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN.,Department of Biology, Loyola University, Chicago, IL
| | - Rachel I Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Spyridon Stavrou
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Alexya N Aguilera
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Sandra Wagner
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
76
|
CD8 T cell-Derived Perforin and TNF-α Are Crucial Mediators of Neuronal Destruction in Experimental Autoimmune Enteric Ganglionitis. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1064-1076. [PMID: 33713685 DOI: 10.1016/j.ajpath.2021.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 12/22/2022]
Abstract
In neuron-specific ovalbumin-transgenic CKTAC mice, antigen-specific OT-I CD8 T cells home to the enteric nervous system, where they attack and destroy neurons of the myenteric and submucosal plexus. Clinically, experimental autoimmune enteric ganglionitis (EAEG) manifests with gastrointestinal dysmotility and rapidly progresses to lethal ileus. Although interferon-γ has been identified as capable of damaging neurons in EAEG, the role of perforin, Fas/FasL, and tumor necrosis factor-α (TNF-α) in this disease is still a matter of debate. Thus, CKTAC mice were adoptively transferred with either perforin-/- or wild-type OT-I CD8 T cells. In addition, CKTAC mice that had received wild-type OT-I CD8 T cells were treated by either anti-TNF-α or anti-FasL. Furthermore, wild-type OT-I CD8 T cells were adoptively transferred into CKTAC mice with neuron-specific deletion of Fas. Although neither inactivation of enteric neuronal Fas nor anti-FasL treatment improved the disease, the absence of perforin from OT-I CD8 T cells and anti-TNF-α treatment significantly ameliorated EAEG and prevented lethal ileus by rescue of enteric neurons. Thus, these experiments identify perforin and TNF-α as important in the pathogenesis of EAEG.
Collapse
|
77
|
The food additive EDTA aggravates colitis and colon carcinogenesis in mouse models. Sci Rep 2021; 11:5188. [PMID: 33664327 PMCID: PMC7933154 DOI: 10.1038/s41598-021-84571-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/04/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease is a group of conditions with rising incidence caused by genetic and environmental factors including diet. The chelator ethylenediaminetetraacetate (EDTA) is widely used by the food and pharmaceutical industry among numerous other applications, leading to a considerable environmental exposure. Numerous safety studies in healthy animals have revealed no relevant toxicity by EDTA. Here we show that, in the presence of intestinal inflammation, EDTA is surprisingly capable of massively exacerbating inflammation and even inducing colorectal carcinogenesis at doses that are presumed to be safe. This toxicity is evident in two biologically different mouse models of inflammatory bowel disease, the AOM/DSS and the IL10−/− model. The mechanism of this effect may be attributed to disruption of intercellular contacts as demonstrated by in vivo confocal endomicroscopy, electron microscopy and cell culture studies. Our findings add EDTA to the list of food additives that might be detrimental in the presence of intestinal inflammation, but the toxicity of which may have been missed by regulatory safety testing procedures that utilize only healthy models. We conclude that the current use of EDTA especially in food and pharmaceuticals should be reconsidered. Moreover, we suggest that intestinal inflammatory models should be implemented in the testing of food additives to account for the exposure of this primary organ to environmental and dietary stress.
Collapse
|
78
|
Bonfiglio R, Galli F, Varani M, Scimeca M, Borri F, Fazi S, Cicconi R, Mattei M, Campagna G, Schönberger T, Raymond E, Wunder A, Signore A, Bonanno E. Extensive Histopathological Characterization of Inflamed Bowel in the Dextran Sulfate Sodium Mouse Model with Emphasis on Clinically Relevant Biomarkers and Targets for Drug Development. Int J Mol Sci 2021; 22:2028. [PMID: 33670766 PMCID: PMC7923003 DOI: 10.3390/ijms22042028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
This study aims to develop a reliable and reproducible inflammatory bowel disease (IBD) murine model based on a careful spatial-temporal histological characterization. Secondary aims included extensive preclinical studies focused on the in situ expression of clinically relevant biomarkers and targets involved in IBD. C57BL/6 female mice were used to establish the IBD model. Colitis was induced by the oral administration of 2% Dextran Sulfate Sodium (DSS) for 5 days, followed by 2, 4 or 9 days of water. Histological analysis was performed by sectioning the whole colon into rings of 5 mm each. Immunohistochemical analyses were performed for molecular targets of interest for monitoring disease activity, treatment response and predicting outcome. Data reported here allowed us to develop an original scoring method useful as a tool for the histological assessment of preclinical models of DSS-induced IBD. Immunohistochemical data showed a significant increase in TNF-α, α4β7, VEGFRII, GR-1, CD25, CD3 and IL-12p40 expression in DSS mice if compared to controls. No difference was observed for IL-17, IL-23R, IL-36R or F480. Knowledge of the spatial-temporal pattern distribution of the pathological lesions of a well-characterized disease model lays the foundation for the study of the tissue expression of meaningful predictive biomarkers, thereby improving translational success rates of preclinical studies for a personalized management of IBD patients.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
| | - Filippo Galli
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Michela Varani
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Manuel Scimeca
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
- San Raffaele University, via di Val Cannuta 247, 00166 Rome, Italy
- Saint Camillus International University of Health Sciences, via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Filippo Borri
- UOC Anatomia Patologica, Department of Oncology, USL Toscana Sud-Est, San Donato Hospital, 52100 Arezzo, Italy;
| | - Sara Fazi
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
| | - Rosella Cicconi
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.C.); (M.M.)
| | - Maurizio Mattei
- Interdepartmental Center for Comparative Medicine, Alternative Techniques and Aquaculture (CIMETA), University of Rome “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.C.); (M.M.)
- Department of Biology, University of Rome “Tor Vergata”, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Giuseppe Campagna
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Tanja Schönberger
- Divison of Target Discovery Research and Target Validation Technologies, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Ernest Raymond
- Immunology and Respiratory Department, Boehringer Ingelheim Pharma GmbH & Co. KG, Ridgefield, CT 06877, USA;
| | - Andreas Wunder
- Division of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 88387 Biberach an der Riss, Germany;
| | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00161 Rome, Italy; (F.G.); (M.V.); (G.C.); (A.S.)
| | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, via Montpellier 1, 00133 Rome, Italy; (R.B.); (M.S.); (S.F.)
- “Diagnostica Medica” and “Villa dei Platani”, Neuromed Group, 83100 Avellino, Italy
| |
Collapse
|
79
|
Ivashenka A, Wunder C, Chambon V, Sandhoff R, Jennemann R, Dransart E, Podsypanina K, Lombard B, Loew D, Lamaze C, Poirier F, Gröne HJ, Johannes L, Shafaq-Zadah M. Glycolipid-dependent and lectin-driven transcytosis in mouse enterocytes. Commun Biol 2021; 4:173. [PMID: 33564097 PMCID: PMC7873212 DOI: 10.1038/s42003-021-01693-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
Glycoproteins and glycolipids at the plasma membrane contribute to a range of functions from growth factor signaling to cell adhesion and migration. Glycoconjugates undergo endocytic trafficking. According to the glycolipid-lectin (GL-Lect) hypothesis, the construction of tubular endocytic pits is driven in a glycosphingolipid-dependent manner by sugar-binding proteins of the galectin family. Here, we provide evidence for a function of the GL-Lect mechanism in transcytosis across enterocytes in the mouse intestine. We show that galectin-3 (Gal3) and its newly identified binding partner lactotransferrin are transported in a glycosphingolipid-dependent manner from the apical to the basolateral membrane. Transcytosis of lactotransferrin is perturbed in Gal3 knockout mice and can be rescued by exogenous Gal3. Inside enterocytes, Gal3 is localized to hallmark structures of the GL-Lect mechanism, termed clathrin-independent carriers. These data pioneer the existence of GL-Lect endocytosis in vivo and strongly suggest that polarized trafficking across the intestinal barrier relies on this mechanism.
Collapse
Affiliation(s)
- Alena Ivashenka
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, Paris, France
| | - Christian Wunder
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, Paris, France
| | - Valerie Chambon
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, Paris, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Richard Jennemann
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Estelle Dransart
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, Paris, France
| | - Katrina Podsypanina
- Institut Curie, Université PSL, UMR144 CNRS, Cell Biology and Cancer, Paris, France
| | - Bérangère Lombard
- Institut Curie, Université PSL, Mass Spectrometry and Proteomics Facility, Paris, France
| | - Damarys Loew
- Institut Curie, Université PSL, Mass Spectrometry and Proteomics Facility, Paris, France
| | - Christophe Lamaze
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Membrane Dynamics and Mechanics of Intracellular Signaling Team, Paris, France
| | - Francoise Poirier
- Institut Jacques Monod, UMR 7592 CNRS - Université Paris Diderot, 15 rue Hélène Brion, Paris, France
| | | | - Ludger Johannes
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, Paris, France.
| | - Massiullah Shafaq-Zadah
- Institut Curie, Université PSL, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, Paris, France.
| |
Collapse
|
80
|
Wijnen HJ, van den Brand H, Lammers A, van Roovert-Reijrink IAM, van der Pol CW, Kemp B, Molenaar R. Effects of eggshell temperature pattern during incubation on primary immune organ development and broiler immune response in later life. Poult Sci 2020; 99:6619-6629. [PMID: 33248577 PMCID: PMC7705051 DOI: 10.1016/j.psj.2020.09.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
Eggshell temperature (EST) during incubation greatly affects embryo development, chick quality at hatch, and subsequently various broiler physiological systems. Until now, a constant EST of 37.8°C seems optimal. Data on effects of EST patterns on immune organ development and subsequent broiler immune response are, however, scarce. A higher EST of 38.9°C in week 2 and/or a lower EST of 36.7°C in week 3 of incubation potentially positively affect embryo immune organ development and broiler immune response post hatch. Broiler eggs (n = 468) were incubated at 4 different EST patterns (n = 117 eggs/treatment) from week 2 of incubation onward. Week 1 (embryonic age (E)0 < E7) EST was 37.8°C for all eggs. Week 2 (E7 < E14) EST was either 37.8°C (Control) or 38.9°C (Higher), and week 3 (E14 - /hatch) EST was either Control or 36.7°C (Lower). At hatch, histology of bursal follicles and jejunum villi and crypts were determined as well as heterophil to lymphocyte ratio (H:L) (n = 49). Posthatch, both sexes were grown in 8 pens/treatment for 6 wk (n = 320). Natural antibodies (NAb) were determined at day 14, 22, and slaughter (day 41 or 42) as an indicator of immunocompetence and response to a Newcastle disease (NCD) vaccination was determined by antibody levels at day 22 and slaughter (n = 128). Results showed no interaction EST week 2 × EST week 3, except for jejunum histology. Higher EST in week 2 resulted in lower cell density within bursal follicles (P = 0.02) and a tendency for lower H:L (P = 0.07) at hatch, and higher NCD titers at slaughter (P = 0.02) than Control EST. Lower EST in week 3 resulted at hatch in higher cell density within bursal follicles, higher H:L (both P < 0.05), and a tendency for a higher posthatch mortality rate than control EST (P = 0.10). In conclusion, higher EST in week 2 during incubation may benefit embryonic immune organ development and posthatch broiler immunocompetence, while lower EST in week 3 showed opposite indications.
Collapse
Affiliation(s)
- H J Wijnen
- Research Department, Hatchtech BV, 3900 AG Veenendaal, The Netherlands; Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands.
| | - H van den Brand
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - A Lammers
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
| | | | - C W van der Pol
- Research Department, Hatchtech BV, 3900 AG Veenendaal, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - R Molenaar
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
81
|
Vila-Julià F, Cabrera-Pérez R, Cámara Y, Molina-Berenguer M, Lope-Piedrafita S, Hirano M, Mingozzi F, Torres-Torronteras J, Martí R. Efficacy of adeno-associated virus gene therapy in a MNGIE murine model enhanced by chronic exposure to nucleosides. EBioMedicine 2020; 62:103133. [PMID: 33232869 PMCID: PMC7689515 DOI: 10.1016/j.ebiom.2020.103133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Preclinical studies have shown that gene therapy is a feasible approach to treat mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). However, the genetic murine model of the disease (Tymp/Upp1 double knockout, dKO) has a limited functional phenotype beyond the metabolic imbalances, and so the studies showing efficacy of gene therapy have relied almost exclusively on demonstrating correction of the biochemical phenotype. Chronic oral administration of thymidine (dThd) and deoxyuridine (dUrd) to dKO mice deteriorates the phenotype of the animals, providing a better model to test therapy approaches. METHODS dKO mice were treated with both dThd and dUrd in drinking water from weaning until the end of the study. At 8 - 11 weeks of age, mice were treated with several doses of adeno-associated virus (AAV) serotype 8 vector carrying the human TYMP coding sequence under the control of different liver-specific promoters (TBG, AAT, or HLP). The biochemical profile and functional phenotype were studied over the life of the animals. FINDINGS Nucleoside exposure resulted in 30-fold higher plasma nucleoside levels in dKO mice compared with non-exposed wild type mice. AAV-treatment provided elevated TP activity in liver and lowered systemic nucleoside levels in exposed dKO mice. Exposed dKO mice had enlarged brain ventricles (assessed by magnetic resonance imaging) and motor impairment (rotarod test); both were prevented by AAV treatment. Among all promoters tested, AAT showed the best efficacy. INTERPRETATION Our results show that AAV-mediated gene therapy restores the biochemical homeostasis in the murine model of MNGIE and, for the first time, demonstrate that this treatment improves the functional phenotype. FUNDING This work was funded in part by the Spanish Instituto de Salud Carlos III, and the Generalitat de Catalunya. The disclosed funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Raquel Cabrera-Pérez
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Miguel Molina-Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain
| | - Silvia Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Cerdanyola del Vallès, Catalonia, Spain
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Neuromuscular Research Center, Columbia University Irving Medical Center, New York, NY, United States
| | | | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain.
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Catalonia, Spain.
| |
Collapse
|
82
|
Melo-Hanchuk TD, Colleti C, Saito Â, Mendes MCS, Carvalheira JBC, Vassallo J, Kobarg J. Intracellular hyaluronic acid-binding protein 4 (HABP4): a candidate tumor suppressor in colorectal cancer. Oncotarget 2020; 11:4325-4337. [PMID: 33245729 PMCID: PMC7679031 DOI: 10.18632/oncotarget.27804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic Acid-binding protein 4 (HABP4) is a regulatory protein of 57 kDa that is functionally involved in transcription regulation and RNA metabolism and shows several characteristics common to oncoproteins or tumor suppressors, including altered expression in cancer tissues, nucleus/cytoplasm shuttling, intrinsic lack of protein structure, complex interactomes and post translational modifications. Its gene has been found in a region on chromosome 9q22.3-31, which contains SNP haplotypes occurring in individuals with a high risk for familial colon cancer. To test a possible role of HABP4 in tumorigenesis we generated knockout mice by the CRISPR/Cas9 method and treated the animals with azoxymethane (AOM)/dextran sodium sulfate (DSS) for induction of colon tumors. HABP4-/- mice, compared to wild type mice, had more and larger tumors, and expressed more of the proliferation marker proteins Cyclin-D1, CDK4 and PCNA. Furthermore, the cells of the bottom of the colon crypts in the HABP4-/- mice divided more rapidly. Next, we generated also HABP4-/- HCT 116 cells, in cell culture and found again an increased proliferation in clonogenic assays in comparison to wild-type cells. Our study of the protein expression levels of HABP4 in human colon cancer samples, through immunohistochemistry assays, showed, that 30% of the tumors analyzed had low expression of HABP4. Our data suggest that HABP4 is involved in proliferation regulation of colon cells in vitro and in vivo and that it is a promising new candidate for a tumor suppressor protein that can be explored both in the diagnosis and possibly therapy of colon cancer.
Collapse
Affiliation(s)
- Talita Diniz Melo-Hanchuk
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- These authors contributed equally to this work
| | - Carolina Colleti
- School of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- These authors contributed equally to this work
| | - Ângela Saito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- These authors contributed equally to this work
| | - Maria Carolina Santos Mendes
- Division of Oncology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - José Barreto Campello Carvalheira
- Division of Oncology, Department of Internal Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Jose Vassallo
- Laboratory of Investigative Pathology, CIPED, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Jörg Kobarg
- School of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
83
|
Montrose DC, Makino T, Basu S, Ito N, Dannenberg AJ. Induction of colitis-associated neoplasia in mice using azoxymethane and dextran sodium sulfate. Methods Cell Biol 2020; 163:123-135. [PMID: 33785161 DOI: 10.1016/bs.mcb.2020.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Long-standing inflammatory bowel diseases (IBD) increase the risk for the development of colorectal cancer (CRC). This increase is due in large part to chronic intestinal inflammation which exposes the epithelium to pro-carcinogenic factors. Moreover, enhanced mucosal proliferation associated with repetitive wound healing events following an inflammatory episode, further enhance this pro-tumorigenic environment. Although multiple factors involved in IBD pathogenesis and its associated neoplasia have been identified, more work is needed to develop and improve therapies to ameliorate disease and thus reduce CRC risk. Murine models have served as useful tools to identify factors involved in the pathogenesis of colitis-associated neoplasia and test therapies. These include both chemically-induced and genetic engineering approaches, resulting in chronic inflammation and tumor development. Here, we present a step-by-step method of inducing inflammation-associated colon neoplasia by combining administration of azoxymethane and dextran sodium sulfate in mice. A detailed description of this methodology will facilitate its use in the scientific community with the goals of further elucidating the mechanisms underlying colitis-associated tumorigenesis and developing risk reducing interventions.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States; Stony Brook Cancer Center, Stony Brook, NY, United States.
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Srijani Basu
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Naotake Ito
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | | |
Collapse
|
84
|
Pastor‐Arroyo EM, Knöpfel T, Imenez Silva PH, Schnitzbauer U, Poncet N, Biber J, Wagner CA, Hernando N. Intestinal epithelial ablation of Pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D 3 upon dietary restriction of phosphate. Acta Physiol (Oxf) 2020; 230:e13526. [PMID: 32564464 DOI: 10.1111/apha.13526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
AIM Several Na+ -dependent phosphate cotransporters, namely NaPi-IIb/SLC34A2, Pit-1/SLC20A1 and Pit-2/SLC20A2, are expressed at the apical membrane of enterocytes but their contribution to active absorption of phosphate is unclear. The aim of this study was to compare their pattern of mRNA expression along the small and large intestine and to analyse the effect of intestinal depletion of Pit-2 on phosphate homeostasis. METHODS Intestinal epithelial Pit-2-deficient mice were generated by crossing floxed Pit-2 with villin-Cre mice. Mice were fed 2 weeks standard or low phosphate diets. Stool, urine, plasma and intestinal and renal tissue were collected. Concentration of electrolytes and hormones, expression of mRNAs and proteins and intestinal transport of tracers were analysed. RESULTS Intestinal mRNA expression of NaPi-IIb and Pit-1 is segment-specific, whereas the abundance of Pit-2 mRNA is more homogeneous. In ileum, NaPi-IIb mRNA expression is restricted to enterocytes, whereas Pit-2 mRNA is found in epithelial and non-epithelial cells. Overall, their mRNA expression is not regulated by dietary phosphate. The absence of Pit-2 from intestinal epithelial cells does not affect systemic phosphate homeostasis under normal dietary conditions. However, in response to dietary phosphate restriction, Pit-2-deficient mice showed exacerbated hypercalciuria and sustained elevation of 1,25(OH)2 vitamin D3 . CONCLUSIONS In mice, the intestinal Na+ /phosphate cotransporters are not coexpressed in all segments. NaPi-IIb but not Pit-2 mRNA is restricted to epithelial cells. Intestinal epithelial Pit-2 does not contribute significantly to absorption of phosphate under normal dietary conditions. However, it may play a more significant role upon dietary phosphate restriction.
Collapse
Affiliation(s)
| | - Thomas Knöpfel
- Institute of Physiology University of Zürich Zürich Switzerland
| | | | | | - Nadège Poncet
- Institute of Physiology University of Zürich Zürich Switzerland
| | - Jürg Biber
- Institute of Physiology University of Zürich Zürich Switzerland
| | | | - Nati Hernando
- Institute of Physiology University of Zürich Zürich Switzerland
| |
Collapse
|
85
|
Kobia FM, Preusse K, Dai Q, Weaver N, Hass MR, Chaturvedi P, Stein SJ, Pear WS, Yuan Z, Kovall RA, Kuang Y, Eafergen N, Sprinzak D, Gebelein B, Brunskill EW, Kopan R. Notch dimerization and gene dosage are important for normal heart development, intestinal stem cell maintenance, and splenic marginal zone B-cell homeostasis during mite infestation. PLoS Biol 2020; 18:e3000850. [PMID: 33017398 PMCID: PMC7561103 DOI: 10.1371/journal.pbio.3000850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/15/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cooperative DNA binding is a key feature of transcriptional regulation. Here we examined the role of cooperativity in Notch signaling by CRISPR-mediated engineering of mice in which neither Notch1 nor Notch2 can homo- or heterodimerize, essential for cooperative binding to sequence-paired sites (SPS) located near many Notch-regulated genes. Although most known Notch-dependent phenotypes were unaffected in Notch1/2 dimer-deficient mice, a subset of tissues proved highly sensitive to loss of cooperativity. These phenotypes include heart development, compromised viability in combination with low gene dose, and the gut, developing ulcerative colitis in response to 1% dextran sulfate sodium (DSS). The most striking phenotypes-gender imbalance and splenic marginal zone B-cell lymphoma-emerged in combination with gene dose reduction or when challenged by chronic fur mite infestation. This study highlights the role of the environment in malignancy and colitis and is consistent with Notch-dependent anti-parasite immune responses being compromised in Notch dimer-deficient animals.
Collapse
Affiliation(s)
- Francis M. Kobia
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Kristina Preusse
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Quanhui Dai
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Nicholas Weaver
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew R. Hass
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Praneet Chaturvedi
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sarah J. Stein
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Warren S. Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhenyu Yuan
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yi Kuang
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Natanel Eafergen
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Sciences Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Eric W. Brunskill
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
86
|
Awad MM, Hutton ML, Quek AJ, Klare WP, Mileto SJ, Mackin K, Ly D, Oorschot V, Bosnjak M, Jenkin G, Conroy PJ, West N, Fulcher A, Costin A, Day CJ, Jennings MP, Medcalf RL, Sanderson-Smith M, Cordwell SJ, Law RHP, Whisstock JC, Lyras D. Human Plasminogen Exacerbates Clostridioides difficile Enteric Disease and Alters the Spore Surface. Gastroenterology 2020; 159:1431-1443.e6. [PMID: 32574621 DOI: 10.1053/j.gastro.2020.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS The protease plasmin is an important wound healing factor, but it is not clear how it affects gastrointestinal infection-mediated damage, such as that resulting from Clostridioides difficile. We investigated the role of plasmin in C difficile-associated disease. This bacterium produces a spore form that is required for infection, so we also investigated the effects of plasmin on spores. METHODS C57BL/6J mice expressing the precursor to plasmin, the zymogen human plasminogen (hPLG), or infused with hPLG were infected with C difficile, and disease progression was monitored. Gut tissues were collected, and cytokine production and tissue damage were analyzed by using proteomic and cytokine arrays. Antibodies that inhibit either hPLG activation or plasmin activity were developed and structurally characterized, and their effects were tested in mice. Spores were isolated from infected patients or mice and visualized using super-resolution microscopy; the functional consequences of hPLG binding to spores were determined. RESULTS hPLG localized to the toxin-damaged gut, resulting in immune dysregulation with an increased abundance of cytokines (such as interleukin [IL] 1A, IL1B, IL3, IL10, IL12B, MCP1, MP1A, MP1B, GCSF, GMCSF, KC, TIMP-1), tissue degradation, and reduced survival. Administration of antibodies that inhibit plasminogen activation reduced disease severity in mice. C difficile spores bound specifically to hPLG and active plasmin degraded their surface, facilitating rapid germination. CONCLUSIONS We found that hPLG is recruited to the damaged gut, exacerbating C difficile disease in mice. hPLG binds to C difficile spores, and, upon activation to plasmin, remodels the spore surface, facilitating rapid spore germination. Inhibitors of plasminogen activation might be developed for treatment of C difficile or other infection-mediated gastrointestinal diseases.
Collapse
Affiliation(s)
- Milena M Awad
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Melanie L Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Adam J Quek
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia
| | - William P Klare
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Steven J Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Kate Mackin
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Diane Ly
- Illawarra health and Medical Research Institute, Wollongong, Australia; School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Viola Oorschot
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia; Monash Micro Imaging, Monash University, Clayton, Australia
| | - Marijana Bosnjak
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Grant Jenkin
- Monash Infectious Diseases, Monash Health, Clayton, Australia
| | - Paul J Conroy
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia
| | - Nick West
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Australia
| | - Alex Fulcher
- Monash Micro Imaging, Monash University, Clayton, Australia
| | - Adam Costin
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia
| | | | | | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Martina Sanderson-Smith
- Illawarra health and Medical Research Institute, Wollongong, Australia; School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Ruby H P Law
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia
| | - James C Whisstock
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging and Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Clayton, Australia; European Molecular Biology Laboratory Australia, Monash University, Clayton, Australia; South East University-Monash Joint Institute, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
87
|
Andersen L, Gülich AF, Alteneder M, Preglej T, Orola MJ, Dhele N, Stolz V, Schebesta A, Hamminger P, Hladik A, Floess S, Krausgruber T, Faux T, Andrabi SBA, Huehn J, Knapp S, Sparwasser T, Bock C, Laiho A, Elo LL, Rasool O, Lahesmaa R, Sakaguchi S, Ellmeier W. The Transcription Factor MAZR/PATZ1 Regulates the Development of FOXP3 + Regulatory T Cells. Cell Rep 2020; 29:4447-4459.e6. [PMID: 31875552 DOI: 10.1016/j.celrep.2019.11.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 10/24/2019] [Accepted: 11/21/2019] [Indexed: 01/22/2023] Open
Abstract
Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.
Collapse
Affiliation(s)
- Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Franziska Gülich
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maria Jonah Orola
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Narendra Dhele
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Schebesta
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stefan Floess
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Faux
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Syed Bilal Ahmad Andrabi
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sylvia Knapp
- Laboratory of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tim Sparwasser
- Department of Medical Microbiology and Hygiene, Medical Center of the Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Asta Laiho
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Omid Rasool
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Riitta Lahesmaa
- Molecular Systems Immunology, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
88
|
Rajendran A, Poncet N, Oparija-Rogenmozere L, Herzog B, Verrey F. Tissue-specific deletion of mouse basolateral uniporter LAT4 (Slc43a2) reveals its crucial role in small intestine and kidney amino acid transport. J Physiol 2020; 598:5109-5132. [PMID: 32841365 PMCID: PMC7693055 DOI: 10.1113/jp280234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023] Open
Abstract
Key points LAT4 is a broadly expressed uniporter selective for essential branched chain amino acids, methionine and phenylalanine, which are involved in epithelial transport. Its global deletion leads to an early malnutrition‐like phenotype and death within 10 days after birth. Here, we tested the impact of deleting LAT4 selectively in the mouse intestine. This affected slightly the absorption of amino acids (AAs) and delayed gastrointestinal motility; however, it had no major phenotypic effect, even when combined with aromatic AA uniporter TAT1 knockout (KO). Conversely, kidney tubule‐selective deletion of LAT4 led to a substantial aminoaciduria that strongly increased under a high protein diet. Combining a partial tubular LAT4 deletion with TAT1 KO implicated their synergistic action on AA reabsorption. These results show that LAT4 plays an important role for kidney AA reabsorption, but that its functional role in intestinal AA absorption is largely dispensable.
Abstract Amino acid (AA) transporter LAT4 (Slc43a2) functions as facilitated diffusion uniporter for essential neutral AAs and is highly expressed at the basolateral membrane of small intestine (SI) and kidney tubule epithelia. Previously, we showed that LAT4 global knockout (KO) mice were born at the expected Mendelian ratio but died within 10 days. Their failure to gain weight and a severe malnutrition‐like phenotype contrasted with apparently normal feeding, suggesting a severe intestinal AA absorption defect. In the present study, using conditional global and tissue‐specific LAT4 KO mouse models, we nullified this hypothesis, demonstrating that the selective lack of intestinal LAT4 does not impair postnatal development, although it leads to an absorption defect accompanied by delayed gastrointestinal motility. Kidney tubule‐specific LAT4 KO led to a substantial aminoaciduria as a result of a reabsorption defect of AAs transported by LAT4 and of other AAs that are substrates of the antiporter LAT2, demonstrating, in vivo, the functional co‐operation of these two transporters. The major role played by basolateral uniporters in the kidney was further supported by the observation that, in mice lacking TAT1, another neutral AA uniporter, a partial LAT4 KO led to a synergistic increase of urinary AA loss. Surprisingly in the SI, the same combined KO induced no major effect, suggesting yet unknown compensatory mechanisms. Taken together, the lethal malnutrition‐like phenotype observed previously in LAT4 global KO pups is suggested to be the consequence of a combinatorial effect of LAT4 deletion in the SI, kidney and presumably other tissues. LAT4 is a broadly expressed uniporter selective for essential branched chain amino acids, methionine and phenylalanine, which are involved in epithelial transport. Its global deletion leads to an early malnutrition‐like phenotype and death within 10 days after birth. Here, we tested the impact of deleting LAT4 selectively in the mouse intestine. This affected slightly the absorption of amino acids (AAs) and delayed gastrointestinal motility; however, it had no major phenotypic effect, even when combined with aromatic AA uniporter TAT1 knockout (KO). Conversely, kidney tubule‐selective deletion of LAT4 led to a substantial aminoaciduria that strongly increased under a high protein diet. Combining a partial tubular LAT4 deletion with TAT1 KO implicated their synergistic action on AA reabsorption. These results show that LAT4 plays an important role for kidney AA reabsorption, but that its functional role in intestinal AA absorption is largely dispensable.
Collapse
Affiliation(s)
| | - Nadège Poncet
- Institute of Physiology University of Zurich, Zurich, Switzerland
| | | | - Brigitte Herzog
- Institute of Physiology University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology University of Zurich, Zurich, Switzerland.,NCCR Kidney. CH, University of Zurich, Zurich, Switzerland
| |
Collapse
|
89
|
Hollemans MS, van Baal J, de Vries Reilingh G, Kemp B, Lammers A, de Vries S. Intestinal epithelium integrity after delayed onset of nutrition in broiler chickens. Poult Sci 2020; 99:6818-6827. [PMID: 33248597 PMCID: PMC7704972 DOI: 10.1016/j.psj.2020.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Fasting older broiler chickens (>7 d of age) enlarges the intestinal tight junction (TJ) pore size, resulting in high paracellular intestinal permeability. Broiler chickens often do not receive feed and water (nutrition) directly after hatch, which may result in fasting up to 72 h of age. Whether perinatal fasting affects intestinal permeability is minimally studied. We therefore investigated whether delayed access to nutrition after hatch increases intestinal permeability, compared with broilers receiving early access to nutrition. Therefore, 432 hatched broilers received nutrition 72 h after hatch (delayed nutrition [DN]) or directly after hatch (early nutrition [EN]) and were reared under similar conditions until 14 d of age. Two hours after application of an oral pulse dose (3.85 mg) of fluorescein isothiocyanate-dextran (4000 Da) at 4, 10, and 14 d of age, blood plasma concentrations of the marker were measured in 24 to 36 broilers per treatment and time point. Marker concentration in plasma did not differ between DN and EN broilers at any age. The villus width measured in at least 8 broilers per treatment was smaller in DN than in EN broilers at 4 d for both the ileum (92 ± 3 μm vs. 121 ± 4; P < 0.001) and colon (100 ± 3 vs. 120 ± 4; P < 0.01). Real-time quantitative PCR revealed that the expression of TJ protein claudin 3 in the ceca was elevated in DN, compared with EN broilers at 4 d of age, whereas that of zonula occludens 1 in the ileum was reduced. Expression of host defense-related genes was reduced in DN, compared with EN broilers, in the ileum (cyclo-oxygenase 2, mucin 2) and ceca (interleukin 1β, cyclo-oxygenase 2). We conclude that 72-hour DN reduced the BW up to 14 d of age, coinciding with transient effects on the villus width in the ileum and colon, and divergent expression of genes involved in TJ formation and host defense. These effects likely reflect the delayed onset of intestinal and immune development in DN, compared with EN broilers, while DN does not fundamentally alter intestinal permeability.
Collapse
Affiliation(s)
- M S Hollemans
- Innovation Team, Coppens Diervoeding B.V., NL-5700AB Helmond, The Netherlands; Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands; Animal Nutrition Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands.
| | - J van Baal
- Animal Nutrition Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - G de Vries Reilingh
- Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - A Lammers
- Adaptation Physiology Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| | - S de Vries
- Animal Nutrition Group, Wageningen University & Research, NL-6700AH Wageningen, The Netherlands
| |
Collapse
|
90
|
Marcon CF, Ferreira PTM, Franco PS, Ribeiro M, Silva RJ, Sousa RAP, Oliveira CJF, Rodrigues Junior V, Gomes MLM, Lazo Chica JE, Mineo TWP, Mineo JR, Barbosa BF, Ferro EAV, Gomes AO. Macrophage migration inhibitory factor (MIF) and pregnancy may impact the balance of intestinal cytokines and the development of intestinal pathology caused by Toxoplasma gondii infection. Cytokine 2020; 136:155283. [PMID: 32947151 DOI: 10.1016/j.cyto.2020.155283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Toxoplasma gondii (T. gondii) is an intracellular parasite responsible for causing toxoplasmosis. When infection occurs during pregnancy, it can produce severe congenital infection with ocular and neurologic damage to the infant. From the oral infection parasite reaches the intestine, causing inflammatory response, damage in tissue architecture and systemic dissemination. Macrophage migration inhibition factor (MIF) is a cytokine secreted from both immune and non-immune cells, including gut epithelial cells. MIF is described to promote inflammatory responses, to be associated in colitis pathogenesis and also to play role in maintaining the intestinal barrier. The aim of the present study was to evaluate the influence of the pregnancy and MIF deficiency on T. gondii infection in the intestinal microenvironment and to address how these factors can impact on the intestinal architecture and local cytokine profile. For this purpose, small intestine of pregnant and non-pregnant C57BL/6 MIF deficient mice (MIF-/-) and Wild-type (WT) orally infected with 5 cysts of ME-49 strain of T. gondii were collected on day 8th of infection. Intestines were processed for morphological and morphometric analyses, parasite quantification and for cytokines mensuration. Our results showed that the absence of MIF and pregnancy caused an increase in T. gondii infection index. T. gondii immunolocalization demonstrated that segments preferentially infected with T. gondii were duodenum and ileum. The infection caused a reduction in the size of the intestinal villi, whereas, infection associated with pregnancy caused an increase in villi size due to edema caused by the infection. Also, the goblet cell number was increased in the ileum of MIF-/- mice, when compared to the corresponding WT group. Analyses of cytokine production in the small intestine showed that MIF was up regulated in the gut of pregnant WT mice due to infection. Also, infection provoked an intense Th1 response that was more exacerbated in pregnant MIF-/- mice. We also detected that the Th2/Treg response was more pronounced in MIF-/- mice. Altogether, our results demonstrated that pregnancy and MIF deficiency interferes in the balance of the intestinal cytokines and favors a Th1-immflamatory profile, which in turn, impact in the development of pathology caused by T. gondii infection in the intestinal microenvironment.
Collapse
Affiliation(s)
- Camila Ferreira Marcon
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Paula Tatiana Mutão Ferreira
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Priscila Silva Franco
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Mayara Ribeiro
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Rafaela José Silva
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Roberto Augusto Pereira Sousa
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Lucca Moreira Gomes
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Javier Emílio Lazo Chica
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Angelica Oliveira Gomes
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
91
|
Hassan M, Moghadamrad S, Sorribas M, Muntet SG, Kellmann P, Trentesaux C, Fraudeau M, Nanni P, Wolski W, Keller I, Hapfelmeier S, Shroyer NF, Wiest R, Romagnolo B, De Gottardi A. Paneth cells promote angiogenesis and regulate portal hypertension in response to microbial signals. J Hepatol 2020; 73:628-639. [PMID: 32205193 DOI: 10.1016/j.jhep.2020.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/27/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS Paneth cells (PCs) synthesize and secrete antimicrobial peptides that are key mediators of host-microbe interactions, establishing a balance between intestinal microflora and enteric pathogens. We observed that their number increases in experimental portal hypertension and aimed to investigate the mechanisms by which these cells can contribute to the regulation of portal pressure. METHODS We first treated Math1Lox/LoxVilcreERT2 mice with tamoxifen to induce the complete depletion of intestinal PCs. Subsequently, we performed partial portal vein or bile duct ligation. We then studied the effects of these interventions on hemodynamic parameters, proliferation of blood vessels and the expression of genes regulating angiogenesis. Intestinal organoids were cultured and exposed to different microbial products to study the composition of their secreted products (by proteomics) and their effects on the proliferation and tube formation of endothelial cells (ECs). In vivo confocal laser endomicroscopy was used to confirm the findings on blood vessel proliferation. RESULTS Portal hypertension was significantly attenuated in PC-depleted mice compared to control mice and was associated with a decrease in portosystemic shunts. Depletion of PCs also resulted in a significantly decreased density of blood vessels in the intestinal wall and mesentery. Furthermore, we observed reduced expression of intestinal genes regulating angiogenesis in Paneth cell depleted mice using arrays and next generation sequencing. Tube formation and wound healing responses were significantly decreased in ECs treated with conditioned media from PC-depleted intestinal organoids exposed to intestinal microbiota-derived products. Proteomic analysis of conditioned media in the presence of PCs revealed an increase in factors regulating angiogenesis and additional metabolic processes. In vivo endomicroscopy showed decreased vascular proliferation in the absence of PCs. CONCLUSIONS These results suggest that in response to intestinal flora and microbiota-derived factors, PCs secrete not only antimicrobial peptides, but also pro-angiogenic signaling molecules, thereby promoting intestinal and mesenteric angiogenesis and regulating portal hypertension. LAY SUMMARY Paneth cells are present in the lining of the small intestine. They prevent the passage of bacteria from the intestine into the blood circulation by secreting substances to fight bacteria. In this paper, we discovered that these substances not only act against bacteria, but also increase the quantity of blood vessels in the intestine and blood pressure in the portal vein. This is important, because high blood pressure in the portal vein may result in several complications which could be targeted with novel approaches.
Collapse
Affiliation(s)
- Mohsin Hassan
- Department for Biomedical Research, Hepatology, University of Bern, Switzerland
| | - Sheida Moghadamrad
- Department for Biomedical Research, Hepatology, University of Bern, Switzerland; Inselspital, Hepatology, University of Bern, Switzerland (Clinic of Visceral Surgery and Medicine, Inselspital, Berne, Switzerland)
| | - Marcel Sorribas
- Department for Biomedical Research, Gastroenterology, University of Bern, Switzerland
| | - Sergi G Muntet
- Department for Biomedical Research, Hepatology, University of Bern, Switzerland
| | - Philipp Kellmann
- Department for Biomedical Research, Hepatology, University of Bern, Switzerland
| | - Coralie Trentesaux
- INSERM, U106, Institut Cochin, F-75014 Paris, France; CNRS, UMR8104, F-75014 Paris, France; Université paris Descartes Sorbonne paris Cité, Paris, France
| | - Marie Fraudeau
- INSERM, U106, Institut Cochin, F-75014 Paris, France; CNRS, UMR8104, F-75014 Paris, France; Université paris Descartes Sorbonne paris Cité, Paris, France
| | - Paolo Nanni
- Functional Genomic Centre, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Witold Wolski
- Functional Genomic Centre, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Irene Keller
- Department for Biomedical Research and Swiss Institute of Bioinformatics, University of Bern, Switzerland
| | | | - Noah F Shroyer
- Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - Reiner Wiest
- Department for Biomedical Research, Gastroenterology, University of Bern, Switzerland; Inselspital, Hepatology, University of Bern, Switzerland (Clinic of Visceral Surgery and Medicine, Inselspital, Berne, Switzerland)
| | - Beatrice Romagnolo
- INSERM, U106, Institut Cochin, F-75014 Paris, France; CNRS, UMR8104, F-75014 Paris, France; Université paris Descartes Sorbonne paris Cité, Paris, France
| | - Andrea De Gottardi
- Department for Biomedical Research, Hepatology, University of Bern, Switzerland; Inselspital, Hepatology, University of Bern, Switzerland (Clinic of Visceral Surgery and Medicine, Inselspital, Berne, Switzerland); Gastroenterology and Hepatology, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|
92
|
Johanson SM, Swann JR, Umu ÖCO, Aleksandersen M, Müller MHB, Berntsen HF, Zimmer KE, Østby GC, Paulsen JE, Ropstad E. Maternal exposure to a human relevant mixture of persistent organic pollutants reduces colorectal carcinogenesis in A/J Min/+ mice. CHEMOSPHERE 2020; 252:126484. [PMID: 32199166 DOI: 10.1016/j.chemosphere.2020.126484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
An increased risk of developing colorectal cancer has been associated with exposure to persistent organic pollutants (POPs) and alteration in the gut bacterial community. However, there is limited understanding about the impact of maternal exposure to POPs on colorectal cancer and gut microbiota. This study characterized the influence of exposure to a human relevant mixture of POPs during gestation and lactation on colorectal cancer, intestinal metabolite composition and microbiota in the A/J Min/+ mouse model. Surprisingly, the maternal POP exposure decreased colonic tumor burden, as shown by light microscopy and histopathological evaluation, indicating a restriction of colorectal carcinogenesis. 1H nuclear magnetic resonance spectroscopy-based metabolomic analysis identified alterations in the metabolism of amino acids, lipids, glycerophospholipids and energy in intestinal tissue. In addition, 16S rRNA sequencing of gut microbiota indicated that maternal exposure modified fecal bacterial composition. In conclusion, the results showed that early-life exposure to a mixture of POPs reduced colorectal cancer initiation and promotion, possibly through modulation of the microbial and biochemical environment. Further studies should focus on the development of colorectal cancer after combined maternal and dietary exposures to environmentally relevant low-dose POP mixtures.
Collapse
Affiliation(s)
- Silje M Johanson
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Jonathan R Swann
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, SW7 2AZ, United Kingdom.
| | - Özgün C O Umu
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Mette H B Müller
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Hanne F Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, NO-0304, Oslo, Norway.
| | - Karin E Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Gunn C Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Jan E Paulsen
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 369 Sentrum, NO-0102, Oslo, Norway.
| |
Collapse
|
93
|
Sulforaphane Elicits Protective Effects in Intestinal Ischemia Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21155189. [PMID: 32707886 PMCID: PMC7432940 DOI: 10.3390/ijms21155189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal ischemia reperfusion injury (IRI) is an inherent, unavoidable event of intestinal transplantation, contributing to allograft failure and rejection. The inflammatory state elicited by intestinal IRI is characterized by heightened leukocyte recruitment to the gut, which is amplified by a cross-talk with platelets at the endothelial border. Sulforaphane (SFN), a naturally occurring isothiocyanate, exhibits anti-inflammatory characteristics and has been shown to reduce platelet activation and block leukocyte adhesion. Thus, the aim of this study was to investigate protective effects and mechanism of action of SFN in a murine model of intestinal IRI. Intestinal IRI was induced by superior mesenteric artery occlusion for 30 min, followed by reperfusion for 2 h, 8 h or 24 h. To investigate cellular interactions, leukocytes were in vivo stained with rhodamine and platelets were harvested from donor animals and ex vivo stained. Mice (C57BL/6J) were divided into three groups: (1) control, (2) SFN treatment 24 h prior to reperfusion and (3) SFN treatment 24 h prior to platelet donation. Leukocyte and platelet recruitment was analyzed via intravital microscopy. Tissue was analyzed for morphological alterations in intestinal mucosa, barrier permeability, and leukocyte infiltration. Leukocyte rolling and adhesion was significantly reduced 2 h and 8 h after reperfusion. Mice receiving SFN treated platelets exhibited significantly decreased leukocyte and platelet recruitment. SFN showed protection for intestinal tissue with less damage observed in histopathological and ultrastructural evaluation. In summary, the data presented provide evidence for SFN as a potential therapeutic strategy against intestinal IRI.
Collapse
|
94
|
Marcon CF, Ferreira PTM, Franco PS, Ribeiro M, Silva RJ, Sousa RAP, Oliveira CJF, Junior VR, Gomes MLM, Chica JEL, Mineo TWP, Mineo JR, Barbosa BF, Ferro EAV, Gomes AO. WITHDRAWN: Macrophage migration inhibitory factor (MIF) and pregnancy may impact the balance of intestinal cytokines and the development of intestinal pathology caused by Toxoplasma gondii infection. Cytokine X 2020; 2:100034. [PMID: 33604559 PMCID: PMC7885889 DOI: 10.1016/j.cytox.2020.100034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Camila Ferreira Marcon
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Paula Tatiana Mutão Ferreira
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Priscila Silva Franco
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Mayara Ribeiro
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Rafaela José Silva
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Roberto Augusto Pereira Sousa
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Lucca Moreira Gomes
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Javier Emílio Lazo Chica
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratório de Imunoparasitologia, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratório de Imunofisiologia da Reprodução, Instituto de Ciências Biomédicas (ICBIM), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| | - Angelica Oliveira Gomes
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
95
|
Kobayashi N, Arihiro S, Shimada K, Hoshino A, Saijo H, Oka N, Saruta M, Kondo K. Activating transcription factor 3 (ATF3) as a perspective biomarker of Crohn’s disease. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220929790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the intestinal tract. Known types are Crohn’s disease (CD) and ulcerative colitis (UC), but their cause remains unclear and there is no convenient biomarker for IBD. The present study aimed to demonstrate an association between the onset of CD and activating transcription factor 3 (ATF3); as a new biomarker, measurement of blood ATF3 mRNA would be useful for distinguishing between CD and UC. Methods: First, in a mouse model of IBD in which damage to the intestinal mucosa was chemically induced with dextran sulfate sodium (DSS), intestinal ATF3 mRNA was evaluated. Next, in human subjects, CD and UC patients, blood ATF3 mRNA and intestinal ATF3 protein production were evaluated. Results: In the mouse model of IBD, intestinal ATF3 mRNA was elevated compared with the control ( P < 0.0001). In CD patients, blood ATF3 mRNA was elevated as compared with normal controls (NCs) and UC patients ( P < 0.05). In addition, we observed an increase in ATF3 production in the intestinal tract specific to CD. Conclusion: ATF3 is involved in the onset of CD, and blood ATF3 mRNA measurements would be useful for distinguishing it from UC.
Collapse
Affiliation(s)
- Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Seiji Arihiro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University Katsushika Medical Center, Katsushika-ku, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Atsushi Hoshino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Hiroki Saijo
- Department of Anatomy, The Jikei University School of Medicine, Minato-ku, Japan
| | - Naomi Oka
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, Minato-ku, Japan
| |
Collapse
|
96
|
Kim Y, Hwang SW, Kim S, Lee YS, Kim TY, Lee SH, Kim SJ, Yoo HJ, Kim EN, Kweon MN. Dietary cellulose prevents gut inflammation by modulating lipid metabolism and gut microbiota. Gut Microbes 2020; 11:944-961. [PMID: 32138587 PMCID: PMC7524403 DOI: 10.1080/19490976.2020.1730149] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A Western diet comprising high fat, high carbohydrate, and low fiber content has been suggested to contribute to an increased prevalence of colitis. To clarify the effect of dietary cellulose (an insoluble fiber) on gut homeostasis, for 3 months mice were fed a high-cellulose diet (HCD) or a low-cellulose diet (LCD) based on the AIN-93G formulation. Histologic evaluation showed crypt atrophy and goblet cell depletion in the colons of LCD-fed mice. RNA-sequencing analysis showed a higher expression of genes associated with immune system processes, especially those of chemokines and their receptors, in the colon tissues of LCD-fed mice than in those of HCD-fed mice. The HCD was protective against dextran sodium sulfate-induced colitis in mice, while LCD exacerbated gut inflammation; however, the depletion of gut microbiota by antibiotic treatment diminished both beneficial and non-beneficial effects of the HCD and LCD on colitis, respectively. A comparative analysis of the cecal contents of mice fed the HCD or the LCD showed that the LCD did not influence the diversity of gut microbiota, but it resulted in a higher and lower abundance of Oscillibacter and Akkermansia organisms, respectively. Additionally, linoleic acid, nicotinate, and nicotinamide pathways were most affected by cellulose intake, while the levels of short-chain fatty acids were comparable in HCD- and LCD-fed mice. Finally, oral administration of Akkermansia muciniphila to LCD-fed mice elevated crypt length, increased goblet cells, and ameliorated colitis. These results suggest that dietary cellulose plays a beneficial role in maintaining gut homeostasis through the alteration of gut microbiota and metabolites.
Collapse
Affiliation(s)
- Yeji Kim
- Mucosal Immunology Laboratory, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Mucosal Immunology Laboratory, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea,Department of Gastroenterology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Seungil Kim
- Mucosal Immunology Laboratory, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Yong-Soo Lee
- Mucosal Immunology Laboratory, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Tae-Young Kim
- Mucosal Immunology Laboratory, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Su-Hyun Lee
- Mucosal Immunology Laboratory, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Su Jung Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Eun Na Kim
- Department of Pathology, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea,CONTACT Mi-Na Kweon Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
97
|
Raposo TP, Alfahed A, Nateri AS, Ilyas M. Tensin4 (TNS4) is upregulated by Wnt signalling in adenomas in multiple intestinal neoplasia (Min) mice. Int J Exp Pathol 2020; 101:80-86. [PMID: 32567731 PMCID: PMC7370848 DOI: 10.1111/iep.12352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/18/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
ApcMin/+ mice are regarded as a standard animal model of colorectal cancer (CRC). Tensin4 (TNS4 or Cten) is a putative oncogene conferring features of stemness and promoting motility. Our objective was to assess TNS4 expression in intestinal adenomas and determine whether TNS4 is upregulated by Wnt signalling. ApcMin/+ mice (n = 11) were sacrificed at approximately 120 days old at the onset of anaemia signs. Small intestines were harvested, and Swiss roll preparations were tested for TNS4 expression by immunohistochemistry (IHC). Individual polyps were also separately collected (n = 14) and tested for TNS4 mRNA expression and Kras mutation. The relationship between Wnt signalling and TNS4 expression was tested by Western blotting in the human CRC cell line HCT116 after inhibition of β-catenin activity with MSAB or its increase by transfection with a Flag β-catenin expression vector. Overall, 135/148 (91.2%) of the total intestinal polyps were positive for TNS4 expression by IHC, whilst adjacent normal areas were negative. RT-qPCR analysis showed approximately 5-fold upregulation of TNS4 mRNA in the polyps compared to adjacent normal tissue and no Kras mutations were detected. In HCT116, β-catenin inhibition resulted in reduced TNS4 expression, and conversely, β-catenin overexpression resulted in increased TNS4 expression. In conclusion, this is the first report linking aberrant Wnt signalling to upregulation of TNS4 both during initiation of intestinal adenomas in mice and in in vitro models. The exact contribution of TNS4 to adenoma development remains to be investigated, but the ApcMin/+ mouse represents a good model to study this.
Collapse
Affiliation(s)
- Teresa P Raposo
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| | - Abdulaziz Alfahed
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK.,Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdolrahman S Nateri
- Cancer Genetics and Stem Cell Group, Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammad Ilyas
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| |
Collapse
|
98
|
Holland RL, Bosi KD, Harpring GH, Luo J, Wallig M, Phillips H, Blanke SR. Chronic in vivo exposure to Helicobacter pylori VacA: Assessing the efficacy of automated and long-term intragastric toxin infusion. Sci Rep 2020; 10:9307. [PMID: 32518315 PMCID: PMC7283276 DOI: 10.1038/s41598-020-65787-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (Hp) secrete VacA, a diffusible pore-forming exotoxin that is epidemiologically linked to gastric disease in humans. In vitro studies indicate that VacA modulates gastric epithelial and immune cells, but the in vivo contributions of VacA as an important determinant of Hp colonization and chronic infection remain poorly understood. To identify perturbations in the stomachs of C57BL/6 or BALB/C mice that result specifically from extended VacA exposure, we evaluated the efficacy of administering purified toxin using automated infusion via surgically-implanted, intragastric catheters. At 3 and 30 days of interrupted infusion, VacA was detected in association with gastric glands. In contrast to previously-reported tissue damage resulting from short term exposure to Hp extracts administered by oral gavage, extended infusion of VacA did not damage stomach, esophageal, intestinal, or liver tissue. However, several alterations previously reported during Hp infection were detected in animals infused with VacA, including reduction of the gastric mucus layer, and increased vacuolation of parietal cells. VacA infusion invoked an immune response, as indicated by the detection of circulating VacA antibodies. These foundational studies support the use of VacA infusion for identifying gastric alterations that are unambiguously attributable to long-term exposure to toxin.
Collapse
Affiliation(s)
- Robin L Holland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristopher D Bosi
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Gregory H Harpring
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jiayi Luo
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Matthew Wallig
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Heidi Phillips
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Steven R Blanke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
99
|
Oparija-Rogenmozere L, Rajendran A, Poncet N, Camargo SMR, Verrey F. Phosphorylation of mouse intestinal basolateral amino acid uniporter LAT4 is controlled by food-entrained diurnal rhythm and dietary proteins. PLoS One 2020; 15:e0233863. [PMID: 32470053 PMCID: PMC7259769 DOI: 10.1371/journal.pone.0233863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022] Open
Abstract
Adaptive regulation of epithelial transporters to nutrient intake is essential to decrease energy costs of their synthesis and maintenance, however such regulation is understudied. Previously we demonstrated that the transport function of the basolateral amino acid uniporter LAT4 (Slc43a2) is increased by dephosphorylation of serine 274 (S274) and nearly abolished by dephosphorylation of serine 297 (S297) when expressed in Xenopus oocytes. Phosphorylation changes in the jejunum of food-entrained mice suggested an increase in LAT4 transport function during food expectation. Thus, we investigated further how phosphorylation, expression and localization of mouse intestinal LAT4 respond to food-entrained diurnal rhythm and dietary protein content. In mice entrained with 18% protein diet, LAT4 mRNA was not submitted to diurnal regulation, unlike mRNAs of luminal symporters and antiporters. Only in duodenum, LAT4 protein expression increased during food intake. Concurrently, S274 phosphorylation was decreased in all three small intestinal segments, whereas S297 phosphorylation was increased only in jejunum. Interestingly, during food intake, S274 phosphorylation was nearly absent in ileum and accompanied by strong phosphorylation of mTORC1 target S6. Entraining mice with 8% protein diet provoked a shift in jejunal LAT4 localization from the cell surface to intracellular stores and increased S274 phosphorylation in both jejunum and ileum during food anticipation, suggesting decreased transport function. In contrast, 40% dietary protein content led to increased LAT4 expression in jejunum and its internalization in ileum. Ex vivo treatments of isolated intestinal villi fraction demonstrated that S274 phosphorylation was stimulated by protein kinase A. Rapamycin-sensitive insulin treatment and amino acids increased S297 phosphorylation, suggesting that the response to food intake might be regulated via the insulin-mTORC1 pathway. Ghrelin, an oscillating orexigenic hormone, did not affect phosphorylation of intestinal LAT4. Overall, we show that phosphorylation, expression and localization of intestinal mouse LAT4 responds to diurnal and dietary stimuli in location-specific manner.
Collapse
Affiliation(s)
- Lalita Oparija-Rogenmozere
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Anuradha Rajendran
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nadège Poncet
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Simone M R Camargo
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,NCCR Kidney.CH, Zurich, Switzerland
| |
Collapse
|
100
|
Choi H, Bae SJ, Choi G, Lee H, Son T, Kim JG, An S, Lee HS, Seo JH, Kwon HB, Jeon S, Oh GT, Surh YJ, Kim KW. Ninjurin1 deficiency aggravates colitis development by promoting M1 macrophage polarization and inducing microbial imbalance. FASEB J 2020; 34:8702-8720. [PMID: 32385864 DOI: 10.1096/fj.201902753r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/20/2022]
Abstract
Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization and dysbiosis contributes to inflammatory bowel disease (IBD) pathogenesis. However, the molecular factors mediating colonic homeostasis are not well characterized. Here, we found that Ninjurin1 (Ninj1) limits colon inflammation by regulating macrophage polarization and microbiota composition under homeostatic conditions and during colitis development. Ninj1 deletion in mice induced hypersusceptibility to colitis, with increased prevalence of colitogenic Prevotellaceae strains and decreased immunoregulatory Lachnospiraceae strains. Upon co-housing (CoH) with WT mice, Ninj1-/- mice showed increased Lachnospiraceae and decreased Prevotellaceae abundance, with subsequent improvement of colitis. Under homeostatic conditions, M1 macrophage frequency was higher in the Ninj1-/- mouse colons than wild-type (WT) mouse colons, which may contribute to increased basal colonic inflammation and microbial imbalance. Following colitis induction, Ninj1 expression was increased in macrophages; meanwhile Ninj1-/- mice showed severe colitis development and impaired recovery, associated with decreased M2 macrophages and escalated microbial imbalance. In vitro, Ninj1 knockdown in mouse and human macrophages activated M1 polarization and restricted M2 polarization. Finally, the transfer of WT macrophages ameliorated severe colitis in Ninj1-/- mice. These findings suggest that Ninj1 mediates colonic homeostasis by modulating M1/M2 macrophage balance and preventing extensive dysbiosis, with implications for IBD prevention and therapy.
Collapse
Affiliation(s)
- Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sung-Jin Bae
- Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, Korea
| | - Garam Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Hyunseung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Taekwon Son
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jeong-Gyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sunho An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Hye Shin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, Korea
| | - Hyouk-Bum Kwon
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Sejin Jeon
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Goo Taeg Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - Young-Joon Surh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.,Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|