51
|
Rawls E, Miskovic V, Lamm C. Delta phase reset predicts conflict-related changes in P3 amplitude and behavior. Brain Res 2020; 1730:146662. [PMID: 31930997 DOI: 10.1016/j.brainres.2020.146662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/05/2019] [Accepted: 01/09/2020] [Indexed: 11/28/2022]
Abstract
When multiple competing responses are activated, we respond more slowly than if only one response is activated (response conflict). Conflict-induced slowing is reduced for consecutive high-conflict stimuli, an effect known as conflict adaptation. Verguts and Notebaert's (2009) adaptation by binding theory suggests this is due to Hebbian learning of cognitive control, potentiated by the response of the locus coeruleus norepinephrine (NE) system. Phasic activity of the NE system can potentially be measured non-invasively in humans by recording the P3 component of the event-related potential (ERP), and the P3 is sensitive to conflict adaptation. Bouret and Sara's (2005) network reset theory suggests that phasic NE might functionally reset ongoing large-scale network activity, generating synchronous neural population activity like the P3. To examine the possibility that network reset contributes to conflict effects in the P3, we recorded high-density EEG data while subjects performed a flanker task. As expected, conflict and conflict adaptation modulated P3 amplitudes. Brain-behavior correlation analyses indicated that activity during the rise of the P3 was related to RT and predicted RT differences due to conflict. More importantly, phase of delta oscillations not only predicted reaction time differences between low-conflict and high-conflict conditions, but delta phase reset also predicted the amplitude of the P3. Delta oscillations exhibited dominant peaks both pre and post-stimulus, and delta at stimulus onset predicted the post-stimulus ERP, in particular the N2 and P3. This result bridges human EEG with basic mechanisms suggested by computational neural models and invasive patient recordings, namely that salient cognitive events might reset ongoing oscillations leading to the generation of the phase-locked evoked potential. We conclude that partial phase reset is a cortical mechanism involved in monitoring the environment for unexpected events, and this response contributes to conflict effects in the ERP. These results are in line with theories that phasic NE release might reset ongoing cortical activity, leading to the generation of ERP components like the P3.
Collapse
Affiliation(s)
- Eric Rawls
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, United States.
| | | | - Connie Lamm
- Department of Psychological Sciences, University of Arkansas, United States.
| |
Collapse
|
52
|
Riecke L, Snipes S, van Bree S, Kaas A, Hausfeld L. Audio-tactile enhancement of cortical speech-envelope tracking. Neuroimage 2019; 202:116134. [DOI: 10.1016/j.neuroimage.2019.116134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 11/25/2022] Open
|
53
|
García-Rosales F, Röhrig D, Weineck K, Röhm M, Lin YH, Cabral-Calderin Y, Kössl M, Hechavarria JC. Laminar specificity of oscillatory coherence in the auditory cortex. Brain Struct Funct 2019; 224:2907-2924. [PMID: 31456067 DOI: 10.1007/s00429-019-01944-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
Empirical evidence suggests that, in the auditory cortex (AC), the phase relationship between spikes and local-field potentials (LFPs) plays an important role in the processing of auditory stimuli. Nevertheless, unlike the case of other sensory systems, it remains largely unexplored in the auditory modality whether the properties of the cortical columnar microcircuit shape the dynamics of spike-LFP coherence in a layer-specific manner. In this study, we directly tackle this issue by addressing whether spike-LFP and LFP-stimulus phase synchronization are spatially distributed in the AC during sensory processing, by performing laminar recordings in the cortex of awake short-tailed bats (Carollia perspicillata) while animals listened to conspecific distress vocalizations. We show that, in the AC, spike-LFP and LFP-stimulus synchrony depend significantly on cortical depth, and that sensory stimulation alters the spatial and spectral patterns of spike-LFP phase-locking. We argue that such laminar distribution of coherence could have functional implications for the representation of naturalistic auditory stimuli at a cortical level.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| | - Dennis Röhrig
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Kristin Weineck
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Mira Röhm
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Yi-Hsuan Lin
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Yuranny Cabral-Calderin
- Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, 60322, Frankfurt/Main, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
54
|
Lindborg A, Baart M, Stekelenburg JJ, Vroomen J, Andersen TS. Speech-specific audiovisual integration modulates induced theta-band oscillations. PLoS One 2019; 14:e0219744. [PMID: 31310616 PMCID: PMC6634411 DOI: 10.1371/journal.pone.0219744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
Speech perception is influenced by vision through a process of audiovisual integration. This is demonstrated by the McGurk illusion where visual speech (for example /ga/) dubbed with incongruent auditory speech (such as /ba/) leads to a modified auditory percept (/da/). Recent studies have indicated that perception of the incongruent speech stimuli used in McGurk paradigms involves mechanisms of both general and audiovisual speech specific mismatch processing and that general mismatch processing modulates induced theta-band (4–8 Hz) oscillations. Here, we investigated whether the theta modulation merely reflects mismatch processing or, alternatively, audiovisual integration of speech. We used electroencephalographic recordings from two previously published studies using audiovisual sine-wave speech (SWS), a spectrally degraded speech signal sounding nonsensical to naïve perceivers but perceived as speech by informed subjects. Earlier studies have shown that informed, but not naïve subjects integrate SWS phonetically with visual speech. In an N1/P2 event-related potential paradigm, we found a significant difference in theta-band activity between informed and naïve perceivers of audiovisual speech, suggesting that audiovisual integration modulates induced theta-band oscillations. In a McGurk mismatch negativity paradigm (MMN) where infrequent McGurk stimuli were embedded in a sequence of frequent audio-visually congruent stimuli we found no difference between congruent and McGurk stimuli. The infrequent stimuli in this paradigm are violating both the general prediction of stimulus content, and that of audiovisual congruence. Hence, we found no support for the hypothesis that audiovisual mismatch modulates induced theta-band oscillations. We also did not find any effects of audiovisual integration in the MMN paradigm, possibly due to the experimental design.
Collapse
Affiliation(s)
- Alma Lindborg
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Lyngby, Denmark
| | - Martijn Baart
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands.,BCBL. Basque Center on Cognition, Brain and Language, Donostia, Spain
| | - Jeroen J Stekelenburg
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jean Vroomen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Tobias S Andersen
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
55
|
Huang Q, Luo H. Saliency-based Rhythmic Coordination of Perceptual Predictions. J Cogn Neurosci 2019; 32:201-211. [PMID: 30633602 DOI: 10.1162/jocn_a_01371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objects, shown explicitly or held in mind internally, compete for limited processing resources. Recent studies have demonstrated that attention samples locations and objects rhythmically. Interestingly, periodic sampling not only operates over objects in the same scene but also occurs for multiple perceptual predictions that are held in attention for incoming inputs. However, how the brain coordinates perceptual predictions that are endowed with different levels of bottom-up saliency information remains unclear. To address the issue, we used a fine-grained behavioral measurement to investigate the temporal dynamics of processing of high- and low-salient visual stimuli, which have equal possibility to occur within experimental blocks. We demonstrate that perceptual predictions associated with different levels of saliency are organized via a theta-band rhythmic course and are optimally processed in different phases within each theta-band cycle. Meanwhile, when the high- and low-salient stimuli are presented in separate blocks and thus not competing with each other, the periodic behavioral profile is no longer present. In summary, our findings suggest that attention samples and coordinates multiple perceptual predictions through a theta-band rhythm according to their relative saliency. Our results, in combination with previous studies, advocate the rhythmic nature of attentional process.
Collapse
|
56
|
García-Rosales F, Beetz MJ, Cabral-Calderin Y, Kössl M, Hechavarria JC. Neuronal coding of multiscale temporal features in communication sequences within the bat auditory cortex. Commun Biol 2018; 1:200. [PMID: 30480101 PMCID: PMC6244232 DOI: 10.1038/s42003-018-0205-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/30/2018] [Indexed: 11/18/2022] Open
Abstract
Experimental evidence supports that cortical oscillations represent multiscale temporal modulations existent in natural stimuli, yet little is known about the processing of these multiple timescales at a neuronal level. Here, using extracellular recordings from the auditory cortex (AC) of awake bats (Carollia perspicillata), we show the existence of three neuronal types which represent different levels of the temporal structure of conspecific vocalizations, and therefore constitute direct evidence of multiscale temporal processing of naturalistic stimuli by neurons in the AC. These neuronal subpopulations synchronize differently to local-field potentials, particularly in theta- and high frequency bands, and are informative to a different degree in terms of their spike rate. Interestingly, we also observed that both low and high frequency cortical oscillations can be highly informative about the listened calls. Our results suggest that multiscale neuronal processing allows for the precise and non-redundant representation of natural vocalizations in the AC.
Collapse
Affiliation(s)
- Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany.
| | - M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany
- Department of Zoology II, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Yuranny Cabral-Calderin
- MEG Labor, Brain Imaging Center, Goethe-Universität, 60528, Frankfurt/M., Germany
- German Resilience Center, University Medical Center Mainz, 55131, Mainz, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, 60438, Frankfurt/M., Germany.
| |
Collapse
|
57
|
García-Rosales F, Martin LM, Beetz MJ, Cabral-Calderin Y, Kössl M, Hechavarria JC. Low-Frequency Spike-Field Coherence Is a Fingerprint of Periodicity Coding in the Auditory Cortex. iScience 2018; 9:47-62. [PMID: 30384133 PMCID: PMC6214842 DOI: 10.1016/j.isci.2018.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/20/2018] [Accepted: 10/10/2018] [Indexed: 11/04/2022] Open
Abstract
The extraction of temporal information from sensory input streams is of paramount importance in the auditory system. In this study, amplitude-modulated sounds were used as stimuli to drive auditory cortex (AC) neurons of the bat species Carollia perspicillata, to assess the interactions between cortical spikes and local-field potentials (LFPs) for the processing of temporal acoustic cues. We observed that neurons in the AC capable of eliciting synchronized spiking to periodic acoustic envelopes were significantly more coherent to theta- and alpha-band LFPs than their non-synchronized counterparts. These differences occurred independently of the modulation rate tested and could not be explained by power or phase modulations of the field potentials. We argue that the coupling between neuronal spiking and the phase of low-frequency LFPs might be important for orchestrating the coding of temporal acoustic structures in the AC. Auditory cortical neurons can track periodic sounds via synchronized spiking Neuronal synchronization ability is well marked by theta-alpha spike-LFP coherence Spike-LFP coherence patterns are independent of the stimulus' periodicity Theta-alpha LFPs may orchestrate phase-locked neuronal responses to periodic sounds
Collapse
Affiliation(s)
- Francisco García-Rosales
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| | - Lisa M Martin
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - M Jerome Beetz
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Yuranny Cabral-Calderin
- MEG Labor, Brain Imaging Center, Goethe-Universität, 60528 Frankfurt am Main, Germany; German Resilience Center, University Medical Center Mainz, Mainz, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
58
|
He Y, Nagels A, Schlesewsky M, Straube B. The Role of Gamma Oscillations During Integration of Metaphoric Gestures and Abstract Speech. Front Psychol 2018; 9:1348. [PMID: 30104995 PMCID: PMC6077537 DOI: 10.3389/fpsyg.2018.01348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 07/13/2018] [Indexed: 11/13/2022] Open
Abstract
Metaphoric (MP) co-speech gestures are commonly used during daily communication. They communicate about abstract information by referring to gestures that are clearly concrete (e.g., raising a hand for “the level of the football game is high”). To understand MP co-speech gestures, a multisensory integration at semantic level is necessary between abstract speech and concrete gestures. While semantic gesture-speech integration has been extensively investigated using functional magnetic resonance imaging, evidence from electroencephalography (EEG) is rare. In the current study, we set out an EEG experiment, investigating the processing of MP vs. iconic (IC) co-speech gestures in different contexts, to reveal the oscillatory signature of MP gesture integration. German participants (n = 20) viewed video clips with an actor performing both types of gestures, accompanied by either comprehensible German or incomprehensible Russian (R) speech, or speaking German sentences without any gestures. Time-frequency analysis of the EEG data showed that, when gestures were accompanied by comprehensible German speech, MP gestures elicited decreased gamma band power (50–70 Hz) between 500 and 700 ms in the parietal electrodes when compared to IC gestures, and the source of this effect was localized to the right middle temporal gyrus. This difference is likely to reflect integration processes, as it was reduced in the R language and no-gesture conditions. Our findings provide the first empirical evidence suggesting the functional relationship between gamma band oscillations and higher-level semantic processes in a multisensory setting.
Collapse
Affiliation(s)
- Yifei He
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Marburg Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Arne Nagels
- Department of General Linguistics, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Schlesewsky
- School of Psychology, Social Work and Social Policy, University of South Australia, Adelaide, SA, Australia
| | - Benjamin Straube
- Translational Neuroimaging Lab, Department of Psychiatry and Psychotherapy, Marburg Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
59
|
Kragel PA, Koban L, Barrett LF, Wager TD. Representation, Pattern Information, and Brain Signatures: From Neurons to Neuroimaging. Neuron 2018; 99:257-273. [PMID: 30048614 PMCID: PMC6296466 DOI: 10.1016/j.neuron.2018.06.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
Human neuroimaging research has transitioned from mapping local effects to developing predictive models of mental events that integrate information distributed across multiple brain systems. Here we review work demonstrating how multivariate predictive models have been utilized to provide quantitative, falsifiable predictions; establish mappings between brain and mind with larger effects than traditional approaches; and help explain how the brain represents mental constructs and processes. Although there is increasing progress toward the first two of these goals, models are only beginning to address the latter objective. By explicitly identifying gaps in knowledge, research programs can move deliberately and programmatically toward the goal of identifying brain representations underlying mental states and processes.
Collapse
Affiliation(s)
- Philip A Kragel
- Department of Psychology and Neuroscience and the Institute of Cognitive Science, University of Colorado, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Leonie Koban
- Department of Psychology and Neuroscience and the Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience and the Institute of Cognitive Science, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
60
|
Neural tracking of auditory motion is reflected by delta phase and alpha power of EEG. Neuroimage 2018; 181:683-691. [PMID: 30053517 DOI: 10.1016/j.neuroimage.2018.07.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022] Open
Abstract
It is of increasing practical interest to be able to decode the spatial characteristics of an auditory scene from electrophysiological signals. However, the cortical representation of auditory space is not well characterized, and it is unclear how cortical activity reflects the time-varying location of a moving sound. Recently, we demonstrated that cortical response measures to discrete noise bursts can be decoded to determine their origin in space. Here we build on these findings to investigate the cortical representation of a continuously moving auditory stimulus using scalp recorded electroencephalography (EEG). In a first experiment, subjects listened to pink noise over headphones which was spectro-temporally modified to be perceived as randomly moving on a semi-circular trajectory in the horizontal plane. While subjects listened to the stimuli, we recorded their EEG using a 128-channel acquisition system. The data were analysed by 1) building a linear regression model (decoder) mapping the relationship between the stimulus location and a training set of EEG data, and 2) using the decoder to reconstruct an estimate of the time-varying sound source azimuth from the EEG data. The results showed that we can decode sound trajectory with a reconstruction accuracy significantly above chance level. Specifically, we found that the phase of delta (<2 Hz) and power of alpha (8-12 Hz) EEG track the dynamics of a moving auditory object. In a follow-up experiment, we replaced the noise with pulse train stimuli containing only interaural level and time differences (ILDs and ITDs respectively). This allowed us to investigate whether our trajectory decoding is sensitive to both acoustic cues. We found that the sound trajectory can be decoded for both ILD and ITD stimuli. Moreover, their neural signatures were similar and even allowed successful cross-cue classification. This supports the notion of integrated processing of ILD and ITD at the cortical level. These results are particularly relevant for application in devices such as cognitively controlled hearing aids and for the evaluation of virtual acoustic environments.
Collapse
|
61
|
Spatial–temporal dynamics of gesture–speech integration: a simultaneous EEG-fMRI study. Brain Struct Funct 2018; 223:3073-3089. [DOI: 10.1007/s00429-018-1674-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/27/2018] [Indexed: 11/30/2022]
|
62
|
Hauswald A, Lithari C, Collignon O, Leonardelli E, Weisz N. A Visual Cortical Network for Deriving Phonological Information from Intelligible Lip Movements. Curr Biol 2018; 28:1453-1459.e3. [PMID: 29681475 PMCID: PMC5956463 DOI: 10.1016/j.cub.2018.03.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/25/2018] [Accepted: 03/20/2018] [Indexed: 11/26/2022]
Abstract
Successful lip-reading requires a mapping from visual to phonological information [1]. Recently, visual and motor cortices have been implicated in tracking lip movements (e.g., [2]). It remains unclear, however, whether visuo-phonological mapping occurs already at the level of the visual cortex-that is, whether this structure tracks the acoustic signal in a functionally relevant manner. To elucidate this, we investigated how the cortex tracks (i.e., entrains to) absent acoustic speech signals carried by silent lip movements. Crucially, we contrasted the entrainment to unheard forward (intelligible) and backward (unintelligible) acoustic speech. We observed that the visual cortex exhibited stronger entrainment to the unheard forward acoustic speech envelope compared to the unheard backward acoustic speech envelope. Supporting the notion of a visuo-phonological mapping process, this forward-backward difference of occipital entrainment was not present for actually observed lip movements. Importantly, the respective occipital region received more top-down input, especially from left premotor, primary motor, and somatosensory regions and, to a lesser extent, also from posterior temporal cortex. Strikingly, across participants, the extent of top-down modulation of the visual cortex stemming from these regions partially correlated with the strength of entrainment to absent acoustic forward speech envelope, but not to present forward lip movements. Our findings demonstrate that a distributed cortical network, including key dorsal stream auditory regions [3-5], influences how the visual cortex shows sensitivity to the intelligibility of speech while tracking silent lip movements.
Collapse
Affiliation(s)
- Anne Hauswald
- Centre for Cognitive Neurosciences, University of Salzburg, Salzburg 5020, Austria; CIMeC, Center for Mind/Brain Sciences, Università degli studi di Trento, Trento 38123, Italy.
| | - Chrysa Lithari
- Centre for Cognitive Neurosciences, University of Salzburg, Salzburg 5020, Austria; CIMeC, Center for Mind/Brain Sciences, Università degli studi di Trento, Trento 38123, Italy
| | - Olivier Collignon
- CIMeC, Center for Mind/Brain Sciences, Università degli studi di Trento, Trento 38123, Italy; Institute of Research in Psychology & Institute of NeuroScience, Université catholique de Louvain, Louvain 1348, Belgium
| | - Elisa Leonardelli
- CIMeC, Center for Mind/Brain Sciences, Università degli studi di Trento, Trento 38123, Italy
| | - Nathan Weisz
- Centre for Cognitive Neurosciences, University of Salzburg, Salzburg 5020, Austria; CIMeC, Center for Mind/Brain Sciences, Università degli studi di Trento, Trento 38123, Italy.
| |
Collapse
|
63
|
Keitel A, Gross J, Kayser C. Perceptually relevant speech tracking in auditory and motor cortex reflects distinct linguistic features. PLoS Biol 2018. [PMID: 29529019 PMCID: PMC5864086 DOI: 10.1371/journal.pbio.2004473] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During online speech processing, our brain tracks the acoustic fluctuations in speech at different timescales. Previous research has focused on generic timescales (for example, delta or theta bands) that are assumed to map onto linguistic features such as prosody or syllables. However, given the high intersubject variability in speaking patterns, such a generic association between the timescales of brain activity and speech properties can be ambiguous. Here, we analyse speech tracking in source-localised magnetoencephalographic data by directly focusing on timescales extracted from statistical regularities in our speech material. This revealed widespread significant tracking at the timescales of phrases (0.6–1.3 Hz), words (1.8–3 Hz), syllables (2.8–4.8 Hz), and phonemes (8–12.4 Hz). Importantly, when examining its perceptual relevance, we found stronger tracking for correctly comprehended trials in the left premotor (PM) cortex at the phrasal scale as well as in left middle temporal cortex at the word scale. Control analyses using generic bands confirmed that these effects were specific to the speech regularities in our stimuli. Furthermore, we found that the phase at the phrasal timescale coupled to power at beta frequency (13–30 Hz) in motor areas. This cross-frequency coupling presumably reflects top-down temporal prediction in ongoing speech perception. Together, our results reveal specific functional and perceptually relevant roles of distinct tracking and cross-frequency processes along the auditory–motor pathway. How we comprehend speech—and how the brain encodes information from a continuous speech stream—is of interest for neuroscience, linguistics, and research on language disorders. Previous work that examined dynamic brain activity has addressed the issue of comprehension only indirectly, by contrasting intelligible speech with unintelligible speech or baseline activity. Recent work, however, suggests that brain areas can show similar stimulus-driven activity but differently contribute to perception or comprehension. To directly address the perceptual relevance of dynamic brain activity for speech encoding, we used a straightforward, single-trial comprehension measure. Furthermore, previous work has been vague regarding the analysed timescales. We therefore base our analysis directly on the timescales of phrases, words, syllables, and phonemes of our speech stimuli. By incorporating these two conceptual innovations, we demonstrate that different areas of the brain track acoustic information at the time-scales of words and phrases. Moreover, our results suggest that the motor cortex uses a cross-frequency coupling mechanism to predict the timing of phrases in ongoing speech. Our findings suggest spatially and temporally distinct brain mechanisms that directly shape our comprehension.
Collapse
Affiliation(s)
- Anne Keitel
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Christoph Kayser
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
- Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
64
|
Atilgan H, Town SM, Wood KC, Jones GP, Maddox RK, Lee AKC, Bizley JK. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding. Neuron 2018; 97:640-655.e4. [PMID: 29395914 PMCID: PMC5814679 DOI: 10.1016/j.neuron.2017.12.034] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/28/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022]
Abstract
How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Visual stimuli can shape how auditory cortical neurons respond to sound mixtures Temporal coherence between senses enhances sound features of a bound multisensory object Visual stimuli elicit changes in the phase of the local field potential in auditory cortex Vision-induced phase effects are lost when visual cortex is reversibly silenced
Collapse
Affiliation(s)
- Huriye Atilgan
- The Ear Institute, University College London, London, UK
| | - Stephen M Town
- The Ear Institute, University College London, London, UK
| | | | - Gareth P Jones
- The Ear Institute, University College London, London, UK
| | - Ross K Maddox
- Department of Biomedical Engineering and Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY, USA; Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | - Adrian K C Lee
- Institute for Learning and Brain Sciences and Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
65
|
Borges AFT, Giraud AL, Mansvelder HD, Linkenkaer-Hansen K. Scale-Free Amplitude Modulation of Neuronal Oscillations Tracks Comprehension of Accelerated Speech. J Neurosci 2018; 38:710-722. [PMID: 29217685 PMCID: PMC6596185 DOI: 10.1523/jneurosci.1515-17.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/24/2017] [Accepted: 11/20/2017] [Indexed: 01/17/2023] Open
Abstract
Speech comprehension is preserved up to a threefold acceleration, but deteriorates rapidly at higher speeds. Current models posit that perceptual resilience to accelerated speech is limited by the brain's ability to parse speech into syllabic units using δ/θ oscillations. Here, we investigated whether the involvement of neuronal oscillations in processing accelerated speech also relates to their scale-free amplitude modulation as indexed by the strength of long-range temporal correlations (LRTC). We recorded MEG while 24 human subjects (12 females) listened to radio news uttered at different comprehensible rates, at a mostly unintelligible rate and at this same speed interleaved with silence gaps. δ, θ, and low-γ oscillations followed the nonlinear variation of comprehension, with LRTC rising only at the highest speed. In contrast, increasing the rate was associated with a monotonic increase in LRTC in high-γ activity. When intelligibility was restored with the insertion of silence gaps, LRTC in the δ, θ, and low-γ oscillations resumed the low levels observed for intelligible speech. Remarkably, the lower the individual subject scaling exponents of δ/θ oscillations, the greater the comprehension of the fastest speech rate. Moreover, the strength of LRTC of the speech envelope decreased at the maximal rate, suggesting an inverse relationship with the LRTC of brain dynamics when comprehension halts. Our findings show that scale-free amplitude modulation of cortical oscillations and speech signals are tightly coupled to speech uptake capacity.SIGNIFICANCE STATEMENT One may read this statement in 20-30 s, but reading it in less than five leaves us clueless. Our minds limit how much information we grasp in an instant. Understanding the neural constraints on our capacity for sensory uptake is a fundamental question in neuroscience. Here, MEG was used to investigate neuronal activity while subjects listened to radio news played faster and faster until becoming unintelligible. We found that speech comprehension is related to the scale-free dynamics of δ and θ bands, whereas this property in high-γ fluctuations mirrors speech rate. We propose that successful speech processing imposes constraints on the self-organization of synchronous cell assemblies and their scale-free dynamics adjusts to the temporal properties of spoken language.
Collapse
Affiliation(s)
- Ana Filipa Teixeira Borges
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands, and
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Biotech Campus, Geneva 1211, Switzerland
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands, and
| | - Klaus Linkenkaer-Hansen
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam, Netherlands,
- Amsterdam Neuroscience, Amsterdam, Netherlands, and
| |
Collapse
|
66
|
Van Ackeren MJ, Barbero FM, Mattioni S, Bottini R, Collignon O. Neuronal populations in the occipital cortex of the blind synchronize to the temporal dynamics of speech. eLife 2018; 7:e31640. [PMID: 29338838 PMCID: PMC5790372 DOI: 10.7554/elife.31640] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/16/2018] [Indexed: 11/13/2022] Open
Abstract
The occipital cortex of early blind individuals (EB) activates during speech processing, challenging the notion of a hard-wired neurobiology of language. But, at what stage of speech processing do occipital regions participate in EB? Here we demonstrate that parieto-occipital regions in EB enhance their synchronization to acoustic fluctuations in human speech in the theta-range (corresponding to syllabic rate), irrespective of speech intelligibility. Crucially, enhanced synchronization to the intelligibility of speech was selectively observed in primary visual cortex in EB, suggesting that this region is at the interface between speech perception and comprehension. Moreover, EB showed overall enhanced functional connectivity between temporal and occipital cortices that are sensitive to speech intelligibility and altered directionality when compared to the sighted group. These findings suggest that the occipital cortex of the blind adopts an architecture that allows the tracking of speech material, and therefore does not fully abstract from the reorganized sensory inputs it receives.
Collapse
Affiliation(s)
| | - Francesca M Barbero
- Institute of research in PsychologyUniversity of LouvainLouvainBelgium
- Institute of NeuroscienceUniversity of LouvainLouvainBelgium
| | | | - Roberto Bottini
- Center for Mind/Brain StudiesUniversity of TrentoTrentoItaly
| | - Olivier Collignon
- Center for Mind/Brain StudiesUniversity of TrentoTrentoItaly
- Institute of research in PsychologyUniversity of LouvainLouvainBelgium
- Institute of NeuroscienceUniversity of LouvainLouvainBelgium
| |
Collapse
|
67
|
Riecke L, Formisano E, Sorger B, Başkent D, Gaudrain E. Neural Entrainment to Speech Modulates Speech Intelligibility. Curr Biol 2017; 28:161-169.e5. [PMID: 29290557 DOI: 10.1016/j.cub.2017.11.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/26/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023]
Abstract
Speech is crucial for communication in everyday life. Speech-brain entrainment, the alignment of neural activity to the slow temporal fluctuations (envelope) of acoustic speech input, is a ubiquitous element of current theories of speech processing. Associations between speech-brain entrainment and acoustic speech signal, listening task, and speech intelligibility have been observed repeatedly. However, a methodological bottleneck has prevented so far clarifying whether speech-brain entrainment contributes functionally to (i.e., causes) speech intelligibility or is merely an epiphenomenon of it. To address this long-standing issue, we experimentally manipulated speech-brain entrainment without concomitant acoustic and task-related variations, using a brain stimulation approach that enables modulating listeners' neural activity with transcranial currents carrying speech-envelope information. Results from two experiments involving a cocktail-party-like scenario and a listening situation devoid of aural speech-amplitude envelope input reveal consistent effects on listeners' speech-recognition performance, demonstrating a causal role of speech-brain entrainment in speech intelligibility. Our findings imply that speech-brain entrainment is critical for auditory speech comprehension and suggest that transcranial stimulation with speech-envelope-shaped currents can be utilized to modulate speech comprehension in impaired listening conditions.
Collapse
Affiliation(s)
- Lars Riecke
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands.
| | - Elia Formisano
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 EV Maastricht, the Netherlands
| | - Deniz Başkent
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Etienne Gaudrain
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, the Netherlands; CNRS UMR 5292, Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics, Inserm UMRS 1028, Université Claude Bernard Lyon 1, Université de Lyon, 69366 Lyon Cedex 07, France
| |
Collapse
|
68
|
Meyer L. The neural oscillations of speech processing and language comprehension: state of the art and emerging mechanisms. Eur J Neurosci 2017; 48:2609-2621. [PMID: 29055058 DOI: 10.1111/ejn.13748] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022]
Abstract
Neural oscillations subserve a broad range of functions in speech processing and language comprehension. On the one hand, speech contains-somewhat-repetitive trains of air pressure bursts that occur at three dominant amplitude modulation frequencies, physically marking the linguistically meaningful progressions of phonemes, syllables and intonational phrase boundaries. To these acoustic events, neural oscillations of isomorphous operating frequencies are thought to synchronise, presumably resulting in an implicit temporal alignment of periods of neural excitability to linguistically meaningful spectral information on the three low-level linguistic description levels. On the other hand, speech is a carrier signal that codes for high-level linguistic meaning, such as syntactic structure and semantic information-which cannot be read from stimulus acoustics, but must be acquired during language acquisition and decoded for language comprehension. Neural oscillations subserve the processing of both syntactic structure and semantic information. Here, I synthesise a mapping from each linguistic processing domain to a unique set of subserving oscillatory mechanisms-the mapping is plausible given the role ascribed to different oscillatory mechanisms in different subfunctions of cortical information processing and faithful to the underlying electrophysiology. In sum, the present article provides an accessible and extensive review of the functional mechanisms that neural oscillations subserve in speech processing and language comprehension.
Collapse
Affiliation(s)
- Lars Meyer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany
| |
Collapse
|
69
|
Iotzov I, Fidali BC, Petroni A, Conte MM, Schiff ND, Parra LC. Divergent neural responses to narrative speech in disorders of consciousness. Ann Clin Transl Neurol 2017; 4:784-792. [PMID: 29159190 PMCID: PMC5682119 DOI: 10.1002/acn3.470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022] Open
Abstract
Objective Clinical assessment of auditory attention in patients with disorders of consciousness is often limited by motor impairment. Here, we employ intersubject correlations among electroencephalography responses to naturalistic speech in order to assay auditory attention among patients and healthy controls. Methods Electroencephalographic data were recorded from 20 subjects with disorders of consciousness and 14 healthy controls during of two narrative audio stimuli, presented both forwards and time‐reversed. Intersubject correlation of evoked electroencephalography signals were calculated, comparing responses of both groups to those of the healthy control subjects. This analysis was performed blinded and subsequently compared to the diagnostic status of each patient based on the Coma Recovery Scale‐Revised. Results Subjects with disorders of consciousness exhibit significantly lower intersubject correlation than healthy controls during narrative speech. Additionally, while healthy subjects had higher intersubject correlation values in forwards versus backwards presentation, neural responses did not vary significantly with the direction of playback in subjects with disorders of consciousness. Increased intersubject correlation values in the backward speech condition were noted with improving disorder of consciousness diagnosis, both in cross‐sectional analysis and in a subset of patients with longitudinal data. Interpretation Intersubject correlation of neural responses to narrative speech audition differentiates healthy controls from patients and appears to index clinical diagnoses in disorders of consciousness.
Collapse
Affiliation(s)
| | - Brian C Fidali
- Laboratory of Cognitive Neuromodulation The Feil Family Brain and Mind Research Institute Weill Cornell Medicine New York New York
| | | | - Mary M Conte
- Laboratory of Cognitive Neuromodulation The Feil Family Brain and Mind Research Institute Weill Cornell Medicine New York New York
| | - Nicholas D Schiff
- Laboratory of Cognitive Neuromodulation The Feil Family Brain and Mind Research Institute Weill Cornell Medicine New York New York
| | | |
Collapse
|
70
|
Spatial localization of sound elicits early responses from occipital visual cortex in humans. Sci Rep 2017; 7:10415. [PMID: 28874681 PMCID: PMC5585168 DOI: 10.1038/s41598-017-09142-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Much evidence points to an interaction between vision and audition at early cortical sites. However, the functional role of these interactions is not yet understood. Here we show an early response of the occipital cortex to sound that it is strongly linked to the spatial localization task performed by the observer. The early occipital response to a sound, usually absent, increased by more than 10-fold when presented during a space localization task, but not during a time localization task. The response amplification was not only specific to the task, but surprisingly also to the position of the stimulus in the two hemifields. We suggest that early occipital processing of sound is linked to the construction of an audio spatial map that may utilize the visual map of the occipital cortex.
Collapse
|
71
|
Eye Can Hear Clearly Now: Inverse Effectiveness in Natural Audiovisual Speech Processing Relies on Long-Term Crossmodal Temporal Integration. J Neurosci 2017; 36:9888-95. [PMID: 27656026 DOI: 10.1523/jneurosci.1396-16.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/03/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Speech comprehension is improved by viewing a speaker's face, especially in adverse hearing conditions, a principle known as inverse effectiveness. However, the neural mechanisms that help to optimize how we integrate auditory and visual speech in such suboptimal conversational environments are not yet fully understood. Using human EEG recordings, we examined how visual speech enhances the cortical representation of auditory speech at a signal-to-noise ratio that maximized the perceptual benefit conferred by multisensory processing relative to unisensory processing. We found that the influence of visual input on the neural tracking of the audio speech signal was significantly greater in noisy than in quiet listening conditions, consistent with the principle of inverse effectiveness. Although envelope tracking during audio-only speech was greatly reduced by background noise at an early processing stage, it was markedly restored by the addition of visual speech input. In background noise, multisensory integration occurred at much lower frequencies and was shown to predict the multisensory gain in behavioral performance at a time lag of ∼250 ms. Critically, we demonstrated that inverse effectiveness, in the context of natural audiovisual (AV) speech processing, relies on crossmodal integration over long temporal windows. Our findings suggest that disparate integration mechanisms contribute to the efficient processing of AV speech in background noise. SIGNIFICANCE STATEMENT The behavioral benefit of seeing a speaker's face during conversation is especially pronounced in challenging listening environments. However, the neural mechanisms underlying this phenomenon, known as inverse effectiveness, have not yet been established. Here, we examine this in the human brain using natural speech-in-noise stimuli that were designed specifically to maximize the behavioral benefit of audiovisual (AV) speech. We find that this benefit arises from our ability to integrate multimodal information over longer periods of time. Our data also suggest that the addition of visual speech restores early tracking of the acoustic speech signal during excessive background noise. These findings support and extend current mechanistic perspectives on AV speech perception.
Collapse
|
72
|
θ-Band and β-Band Neural Activity Reflects Independent Syllable Tracking and Comprehension of Time-Compressed Speech. J Neurosci 2017; 37:7930-7938. [PMID: 28729443 DOI: 10.1523/jneurosci.2882-16.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
Recent psychophysics data suggest that speech perception is not limited by the capacity of the auditory system to encode fast acoustic variations through neural γ activity, but rather by the time given to the brain to decode them. Whether the decoding process is bounded by the capacity of θ rhythm to follow syllabic rhythms in speech, or constrained by a more endogenous top-down mechanism, e.g., involving β activity, is unknown. We addressed the dynamics of auditory decoding in speech comprehension by challenging syllable tracking and speech decoding using comprehensible and incomprehensible time-compressed auditory sentences. We recorded EEGs in human participants and found that neural activity in both θ and γ ranges was sensitive to syllabic rate. Phase patterns of slow neural activity consistently followed the syllabic rate (4-14 Hz), even when this rate went beyond the classical θ range (4-8 Hz). The power of θ activity increased linearly with syllabic rate but showed no sensitivity to comprehension. Conversely, the power of β (14-21 Hz) activity was insensitive to the syllabic rate, yet reflected comprehension on a single-trial basis. We found different long-range dynamics for θ and β activity, with β activity building up in time while more contextual information becomes available. This is consistent with the roles of θ and β activity in stimulus-driven versus endogenous mechanisms. These data show that speech comprehension is constrained by concurrent stimulus-driven θ and low-γ activity, and by endogenous β activity, but not primarily by the capacity of θ activity to track the syllabic rhythm.SIGNIFICANCE STATEMENT Speech comprehension partly depends on the ability of the auditory cortex to track syllable boundaries with θ-range neural oscillations. The reason comprehension drops when speech is accelerated could hence be because θ oscillations can no longer follow the syllabic rate. Here, we presented subjects with comprehensible and incomprehensible accelerated speech, and show that neural phase patterns in the θ band consistently reflect the syllabic rate, even when speech becomes too fast to be intelligible. The drop in comprehension, however, is signaled by a significant decrease in the power of low-β oscillations (14-21 Hz). These data suggest that speech comprehension is not limited by the capacity of θ oscillations to adapt to syllabic rate, but by an endogenous decoding process.
Collapse
|
73
|
Abstract
Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language <5 Hz, peaking at [Formula: see text]1 Hz. Coherence to sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.
Collapse
|
74
|
Simon DM, Wallace MT. Rhythmic Modulation of Entrained Auditory Oscillations by Visual Inputs. Brain Topogr 2017; 30:565-578. [PMID: 28341920 DOI: 10.1007/s10548-017-0560-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
Temporal structure is ubiquitous in sensory signals, and the brain has been shown to robustly represent information about temporal structure in the phase of low frequency neural oscillations. In a related construct, the integration of information across the different senses has been proposed to be at least partly due to the phase resetting of these low frequency oscillations. As a consequence, oscillations represent a potential contributor to the encoding of complex multisensory signals with informative temporal structures. Here we investigated these interactions using electroencephalography (EEG). We entrained low frequency (3 Hz) delta oscillations using a repetitive auditory stimulus-broadband amplitude modulated noise. Following entrainment, we presented auditory and audiovisual stimuli at variable delays. We examined whether the power of oscillations at the entrained frequency was dependent on the delay (and thus, potentially, phase) at which subsequent stimulation was delivered, and whether this relationship was different for subsequent multisensory (i.e., audiovisual) stimuli when compared with auditory stimuli alone. Our findings demonstrate that, when the subsequent stimuli are solely auditory, the power of oscillations at the entrained frequency is rhythmically modulated by when the stimulus was delivered. For audiovisual stimuli, however, no such dependency is present, yielding consistent power modulations. These effects indicate that reciprocal oscillatory mechanisms may be involved in the continuous encoding of complex temporally structured multisensory inputs such as speech.
Collapse
Affiliation(s)
- David M Simon
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA. .,Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA. .,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA. .,Department of Psychiatry, Vanderbilt University, Nashville, TN, USA. .,Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
75
|
Ravignani A, Sonnweber R. Chimpanzees process structural isomorphisms across sensory modalities. Cognition 2017; 161:74-79. [PMID: 28135575 PMCID: PMC5348109 DOI: 10.1016/j.cognition.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 12/27/2016] [Accepted: 01/08/2017] [Indexed: 01/01/2023]
Abstract
Chimpanzees had learnt to choose structurally symmetric patterns on a touchscreen. Playback of asymmetric sounds increased latency to choose symmetric visual patterns. Chimpanzees form cross-modal isomorphisms between visual and acoustic structures. Untrained skills for structural analogies can arise spontaneously in nonhuman animals.
Evolution has shaped animal brains to detect sensory regularities in environmental stimuli. In addition, many species map one-dimensional quantities across sensory modalities, such as conspecific faces to voices, or high-pitched sounds to bright light. If basic patterns like repetitions and identities are frequently perceived in different sensory modalities, it could be advantageous to detect cross-modal isomorphisms, i.e. develop modality-independent representations of structural features, exploitable in visual, tactile, and auditory processing. While cross-modal mappings are common in the animal kingdom, the ability to map similar (isomorphic) structures across domains has been demonstrated in humans but no other animals. We tested cross-modal isomorphisms in two chimpanzees (Pan troglodytes). Individuals were previously trained to choose structurally ‘symmetric’ image sequences (two identical geometrical shapes separated by a different shape) presented beside ‘edge’ sequences (two identical shapes preceded or followed by a different one). Here, with no additional training, the choice between symmetric and edge visual sequences was preceded by playback of three concatenated sounds, which could be symmetric (mimicking the symmetric structure of reinforced images) or edge. The chimpanzees spontaneously detected a visual-auditory isomorphism. Response latencies in choosing symmetric sequences were shorter when presented with (structurally isomorphic) symmetric, rather than edge, sound triplets: The auditory stimuli interfered, based on their structural properties, with processing of the learnt visual rule. Crucially, the animals had neither been exposed to the acoustic sequences before the experiment, nor were they trained to associate sounds to images. Our result provides the first evidence of structure processing across modalities in a non-human species. It suggests that basic cross-modal abstraction capacities transcend linguistic abilities and might involve evolutionary ancient neural mechanisms.
Collapse
Affiliation(s)
- Andrea Ravignani
- AI Lab, Vrije Universiteit Brussel, Brussels 1050, Belgium; Department of Cognitive Biology, University of Vienna, Vienna 1090, Austria; Language and Cognition Department, Max Planck Institute for Psycholinguistics, Nijmegen 6525, The Netherlands.
| | - Ruth Sonnweber
- Department of Cognitive Biology, University of Vienna, Vienna 1090, Austria; Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| |
Collapse
|
76
|
Cutini S, Szűcs D, Mead N, Huss M, Goswami U. Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia. Neuroimage 2016; 143:40-49. [PMID: 27520749 PMCID: PMC5139981 DOI: 10.1016/j.neuroimage.2016.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023] Open
Abstract
Phase entrainment of neuronal oscillations is thought to play a central role in encoding speech. Children with developmental dyslexia show impaired phonological processing of speech, proposed theoretically to be related to atypical phase entrainment to slower temporal modulations in speech (<10Hz). While studies of children with dyslexia have found atypical phase entrainment in the delta band (~2Hz), some studies of adults with developmental dyslexia have shown impaired entrainment in the low gamma band (~35-50Hz). Meanwhile, studies of neurotypical adults suggest asymmetric temporal sensitivity in auditory cortex, with preferential processing of slower modulations by right auditory cortex, and faster modulations processed bilaterally. Here we compared neural entrainment to slow (2Hz) versus faster (40Hz) amplitude-modulated noise using fNIRS to study possible hemispheric asymmetry effects in children with developmental dyslexia. We predicted atypical right hemisphere responding to 2Hz modulations for the children with dyslexia in comparison to control children, but equivalent responding to 40Hz modulations in both hemispheres. Analyses of HbO concentration revealed a right-lateralised region focused on the supra-marginal gyrus that was more active in children with dyslexia than in control children for 2Hz stimulation. We discuss possible links to linguistic prosodic processing, and interpret the data with respect to a neural 'temporal sampling' framework for conceptualizing the phonological deficits that characterise children with developmental dyslexia across languages.
Collapse
Affiliation(s)
- Simone Cutini
- Department of Developmental Psychology, University of Padova, Italy
| | - Dénes Szűcs
- Centre for Neuroscience in Education, Department of Psychology, Downing Street, Cambridge CB2 3EB, UK
| | - Natasha Mead
- Centre for Neuroscience in Education, Department of Psychology, Downing Street, Cambridge CB2 3EB, UK
| | - Martina Huss
- Centre for Neuroscience in Education, Department of Psychology, Downing Street, Cambridge CB2 3EB, UK
| | - Usha Goswami
- Centre for Neuroscience in Education, Department of Psychology, Downing Street, Cambridge CB2 3EB, UK.
| |
Collapse
|
77
|
Neural oscillations in the temporal pole for a temporally congruent audio-visual speech detection task. Sci Rep 2016; 6:37973. [PMID: 27897244 PMCID: PMC5126633 DOI: 10.1038/srep37973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022] Open
Abstract
Though recent studies have elucidated the earliest mechanisms of processing in multisensory integration, our understanding of how multisensory integration of more sustained and complicated stimuli is implemented in higher-level association cortices is lacking. In this study, we used magnetoencephalography (MEG) to determine how neural oscillations alter local and global connectivity during multisensory integration processing. We acquired MEG data from 15 healthy volunteers performing an audio-visual speech matching task. We selected regions of interest (ROIs) using whole brain time-frequency analyses (power spectrum density and wavelet transform), then applied phase amplitude coupling (PAC) and imaginary coherence measurements to them. We identified prominent delta band power in the temporal pole (TP), and a remarkable PAC between delta band phase and beta band amplitude. Furthermore, imaginary coherence analysis demonstrated that the temporal pole and well-known multisensory areas (e.g., posterior parietal cortex and post-central areas) are coordinated through delta-phase coherence. Thus, our results suggest that modulation of connectivity within the local network, and of that between the local and global network, is important for audio-visual speech integration. In short, these neural oscillatory mechanisms within and between higher-level association cortices provide new insights into the brain mechanism underlying audio-visual integration.
Collapse
|
78
|
Sameiro-Barbosa CM, Geiser E. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation. Front Neurosci 2016; 10:361. [PMID: 27559306 PMCID: PMC4978719 DOI: 10.3389/fnins.2016.00361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022] Open
Abstract
The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.
Collapse
Affiliation(s)
- Catia M Sameiro-Barbosa
- Service de Neuropsychologie et de Neuroréhabilitation, Centre Hospitalier Universitaire Vaudois Lausanne, Switzerland
| | - Eveline Geiser
- Service de Neuropsychologie et de Neuroréhabilitation, Centre Hospitalier Universitaire VaudoisLausanne, Switzerland; The Laboratory for Investigative Neurophysiology, Department of Radiology, Centre Hospitalier Universitaire VaudoisLausanne, Switzerland; Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
| |
Collapse
|
79
|
Goswami U. Educational neuroscience: neural structure-mapping and the promise of oscillations. Curr Opin Behav Sci 2016. [DOI: 10.1016/j.cobeha.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
80
|
Cogan GB. I see what you are saying. eLife 2016; 5. [PMID: 27278639 PMCID: PMC4900797 DOI: 10.7554/elife.17693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 11/13/2022] Open
Abstract
The motor cortex in the brain tracks lip movements to help with speech perception.
Collapse
Affiliation(s)
- Gregory B Cogan
- Department of Biomedical Engineering, Duke University, Durham, United States
| |
Collapse
|
81
|
Park H, Kayser C, Thut G, Gross J. Lip movements entrain the observers' low-frequency brain oscillations to facilitate speech intelligibility. eLife 2016; 5. [PMID: 27146891 PMCID: PMC4900800 DOI: 10.7554/elife.14521] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/03/2016] [Indexed: 12/02/2022] Open
Abstract
During continuous speech, lip movements provide visual temporal signals that facilitate speech processing. Here, using MEG we directly investigated how these visual signals interact with rhythmic brain activity in participants listening to and seeing the speaker. First, we investigated coherence between oscillatory brain activity and speaker’s lip movements and demonstrated significant entrainment in visual cortex. We then used partial coherence to remove contributions of the coherent auditory speech signal from the lip-brain coherence. Comparing this synchronization between different attention conditions revealed that attending visual speech enhances the coherence between activity in visual cortex and the speaker’s lips. Further, we identified a significant partial coherence between left motor cortex and lip movements and this partial coherence directly predicted comprehension accuracy. Our results emphasize the importance of visually entrained and attention-modulated rhythmic brain activity for the enhancement of audiovisual speech processing. DOI:http://dx.doi.org/10.7554/eLife.14521.001 People are able communicate effectively with each other even in very noisy places where it is difficult to actually hear what others are saying. In a face-to-face conversation, people detect and respond to many physical cues – including body posture, facial expressions, head and eye movements and gestures – alongside the sound cues. Lip movements are particularly important and contain enough information to allow trained observers to understand speech even if they cannot hear the speech itself. It is known that brain waves in listeners are synchronized with the rhythms in a speech, especially the syllables. This is thought to establish a channel for communication – similar to tuning a radio to a certain frequency to listen to a certain radio station. Park et al. studied if listeners’ brain waves also align to the speaker’s lip movements during continuous speech and if this is important for understanding the speech. The experiments reveal that a part of the brain that processes visual information – called the visual cortex – produces brain waves that are synchronized to the rhythm of syllables in continuous speech. This synchronization was more precise in a complex situation where lip movements would be more important to understand speech. Park et al. also found that the area of the observer’s brain that controls the lips (the motor cortex) also produced brain waves that were synchronized to lip movements. Volunteers whose motor cortex was more synchronized to the lip movements understood speech better. This supports the idea that brain areas that are used for producing speech are also important for understanding speech. Future challenges include understanding how synchronization of brain waves with the rhythms of speech helps us to understand speech, and how the brain waves produced by the visual and motor areas interact. DOI:http://dx.doi.org/10.7554/eLife.14521.002
Collapse
Affiliation(s)
- Hyojin Park
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Christoph Kayser
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Gregor Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
82
|
Zhang Q, Hu X, Luo H, Li J, Zhang X, Zhang B. Deciphering phonemes from syllables in blood oxygenation level-dependent signals in human superior temporal gyrus. Eur J Neurosci 2016; 43:773-81. [DOI: 10.1111/ejn.13164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Qingtian Zhang
- Tsinghua National Laboratory for Information Science and Technology (TNList); Department of Computer Science and Technology; Tsinghua University; Room 4-504, FIT Building Beijing 100084 China
| | - Xiaolin Hu
- Tsinghua National Laboratory for Information Science and Technology (TNList); Department of Computer Science and Technology; Tsinghua University; Room 4-504, FIT Building Beijing 100084 China
- Center for Brain-Inspired Computing Research (CBICR); Tsinghua University; Beijing China
| | - Huan Luo
- Department of Psychology; Peking University; Beijing China
- IDG/McGovern Institute for Brain Research; Peking University; Beijing China
| | - Jianmin Li
- Tsinghua National Laboratory for Information Science and Technology (TNList); Department of Computer Science and Technology; Tsinghua University; Room 4-504, FIT Building Beijing 100084 China
| | - Xiaolu Zhang
- Tsinghua National Laboratory for Information Science and Technology (TNList); Department of Computer Science and Technology; Tsinghua University; Room 4-504, FIT Building Beijing 100084 China
| | - Bo Zhang
- Tsinghua National Laboratory for Information Science and Technology (TNList); Department of Computer Science and Technology; Tsinghua University; Room 4-504, FIT Building Beijing 100084 China
- Center for Brain-Inspired Computing Research (CBICR); Tsinghua University; Beijing China
| |
Collapse
|
83
|
Venezia JH, Thurman SM, Matchin W, George SE, Hickok G. Timing in audiovisual speech perception: A mini review and new psychophysical data. Atten Percept Psychophys 2016; 78:583-601. [PMID: 26669309 PMCID: PMC4744562 DOI: 10.3758/s13414-015-1026-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent influential models of audiovisual speech perception suggest that visual speech aids perception by generating predictions about the identity of upcoming speech sounds. These models place stock in the assumption that visual speech leads auditory speech in time. However, it is unclear whether and to what extent temporally-leading visual speech information contributes to perception. Previous studies exploring audiovisual-speech timing have relied upon psychophysical procedures that require artificial manipulation of cross-modal alignment or stimulus duration. We introduce a classification procedure that tracks perceptually relevant visual speech information in time without requiring such manipulations. Participants were shown videos of a McGurk syllable (auditory /apa/ + visual /aka/ = perceptual /ata/) and asked to perform phoneme identification (/apa/ yes-no). The mouth region of the visual stimulus was overlaid with a dynamic transparency mask that obscured visual speech in some frames but not others randomly across trials. Variability in participants' responses (~35 % identification of /apa/ compared to ~5 % in the absence of the masker) served as the basis for classification analysis. The outcome was a high resolution spatiotemporal map of perceptually relevant visual features. We produced these maps for McGurk stimuli at different audiovisual temporal offsets (natural timing, 50-ms visual lead, and 100-ms visual lead). Briefly, temporally-leading (~130 ms) visual information did influence auditory perception. Moreover, several visual features influenced perception of a single speech sound, with the relative influence of each feature depending on both its temporal relation to the auditory signal and its informational content.
Collapse
Affiliation(s)
- Jonathan H Venezia
- Department of Cognitive Sciences, University of California, Irvine, CA, 92697, USA.
| | - Steven M Thurman
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - William Matchin
- Department of Linguistics, University of Maryland, Baltimore, MD, USA
| | - Sahara E George
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
84
|
Congruent Visual Speech Enhances Cortical Entrainment to Continuous Auditory Speech in Noise-Free Conditions. J Neurosci 2016; 35:14195-204. [PMID: 26490860 DOI: 10.1523/jneurosci.1829-15.2015] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Congruent audiovisual speech enhances our ability to comprehend a speaker, even in noise-free conditions. When incongruent auditory and visual information is presented concurrently, it can hinder a listener's perception and even cause him or her to perceive information that was not presented in either modality. Efforts to investigate the neural basis of these effects have often focused on the special case of discrete audiovisual syllables that are spatially and temporally congruent, with less work done on the case of natural, continuous speech. Recent electrophysiological studies have demonstrated that cortical response measures to continuous auditory speech can be easily obtained using multivariate analysis methods. Here, we apply such methods to the case of audiovisual speech and, importantly, present a novel framework for indexing multisensory integration in the context of continuous speech. Specifically, we examine how the temporal and contextual congruency of ongoing audiovisual speech affects the cortical encoding of the speech envelope in humans using electroencephalography. We demonstrate that the cortical representation of the speech envelope is enhanced by the presentation of congruent audiovisual speech in noise-free conditions. Furthermore, we show that this is likely attributable to the contribution of neural generators that are not particularly active during unimodal stimulation and that it is most prominent at the temporal scale corresponding to syllabic rate (2-6 Hz). Finally, our data suggest that neural entrainment to the speech envelope is inhibited when the auditory and visual streams are incongruent both temporally and contextually. SIGNIFICANCE STATEMENT Seeing a speaker's face as he or she talks can greatly help in understanding what the speaker is saying. This is because the speaker's facial movements relay information about what the speaker is saying, but also, importantly, when the speaker is saying it. Studying how the brain uses this timing relationship to combine information from continuous auditory and visual speech has traditionally been methodologically difficult. Here we introduce a new approach for doing this using relatively inexpensive and noninvasive scalp recordings. Specifically, we show that the brain's representation of auditory speech is enhanced when the accompanying visual speech signal shares the same timing. Furthermore, we show that this enhancement is most pronounced at a time scale that corresponds to mean syllable length.
Collapse
|
85
|
Abstract
The role of oscillatory phase for perceptual and cognitive processes is being increasingly acknowledged. To date, little is known about the direct role of phase in categorical perception. Here we show in two separate experiments that the identification of ambiguous syllables that can either be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as measured with EEG and sensory entrainment to rhythmic stimuli. The measured phase difference in which perception is biased toward /da/ or /ga/ exactly matched the different temporal onset delays in natural audiovisual speech between mouth movements and speech sounds, which last 80 ms longer for /ga/ than for /da/. These results indicate the functional relationship between prestimulus phase and syllable identification, and signify that the origin of this phase relationship could lie in exposure and subsequent learning of unique audiovisual temporal onset differences.
Collapse
|
86
|
Zoefel B, VanRullen R. The Role of High-Level Processes for Oscillatory Phase Entrainment to Speech Sound. Front Hum Neurosci 2015; 9:651. [PMID: 26696863 PMCID: PMC4667100 DOI: 10.3389/fnhum.2015.00651] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
Constantly bombarded with input, the brain has the need to filter out relevant information while ignoring the irrelevant rest. A powerful tool may be represented by neural oscillations which entrain their high-excitability phase to important input while their low-excitability phase attenuates irrelevant information. Indeed, the alignment between brain oscillations and speech improves intelligibility and helps dissociating speakers during a “cocktail party”. Although well-investigated, the contribution of low- and high-level processes to phase entrainment to speech sound has only recently begun to be understood. Here, we review those findings, and concentrate on three main results: (1) Phase entrainment to speech sound is modulated by attention or predictions, likely supported by top-down signals and indicating higher-level processes involved in the brain’s adjustment to speech. (2) As phase entrainment to speech can be observed without systematic fluctuations in sound amplitude or spectral content, it does not only reflect a passive steady-state “ringing” of the cochlea, but entails a higher-level process. (3) The role of intelligibility for phase entrainment is debated. Recent results suggest that intelligibility modulates the behavioral consequences of entrainment, rather than directly affecting the strength of entrainment in auditory regions. We conclude that phase entrainment to speech reflects a sophisticated mechanism: several high-level processes interact to optimally align neural oscillations with predicted events of high relevance, even when they are hidden in a continuous stream of background noise.
Collapse
Affiliation(s)
- Benedikt Zoefel
- Université Paul Sabatier Toulouse, France ; Centre de Recherche Cerveau et Cognition (CerCo), CNRS, UMR5549, Pavillon Baudot CHU Purpan Toulouse, France
| | - Rufin VanRullen
- Université Paul Sabatier Toulouse, France ; Centre de Recherche Cerveau et Cognition (CerCo), CNRS, UMR5549, Pavillon Baudot CHU Purpan Toulouse, France
| |
Collapse
|
87
|
Low-Frequency Cortical Entrainment to Speech Reflects Phoneme-Level Processing. Curr Biol 2015; 25:2457-65. [DOI: 10.1016/j.cub.2015.08.030] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/27/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
|
88
|
Ahveninen J, Huang S, Ahlfors SP, Hämäläinen M, Rossi S, Sams M, Jääskeläinen IP. Interacting parallel pathways associate sounds with visual identity in auditory cortices. Neuroimage 2015; 124:858-868. [PMID: 26419388 DOI: 10.1016/j.neuroimage.2015.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/26/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022] Open
Abstract
Spatial and non-spatial information of sound events is presumably processed in parallel auditory cortex (AC) "what" and "where" streams, which are modulated by inputs from the respective visual-cortex subsystems. How these parallel processes are integrated to perceptual objects that remain stable across time and the source agent's movements is unknown. We recorded magneto- and electroencephalography (MEG/EEG) data while subjects viewed animated video clips featuring two audiovisual objects, a black cat and a gray cat. Adaptor-probe events were either linked to the same object (the black cat meowed twice in a row in the same location) or included a visually conveyed identity change (the black and then the gray cat meowed with identical voices in the same location). In addition to effects in visual (including fusiform, middle temporal or MT areas) and frontoparietal association areas, the visually conveyed object-identity change was associated with a release from adaptation of early (50-150ms) activity in posterior ACs, spreading to left anterior ACs at 250-450ms in our combined MEG/EEG source estimates. Repetition of events belonging to the same object resulted in increased theta-band (4-8Hz) synchronization within the "what" and "where" pathways (e.g., between anterior AC and fusiform areas). In contrast, the visually conveyed identity changes resulted in distributed synchronization at higher frequencies (alpha and beta bands, 8-32Hz) across different auditory, visual, and association areas. The results suggest that sound events become initially linked to perceptual objects in posterior AC, followed by modulations of representations in anterior AC. Hierarchical what and where pathways seem to operate in parallel after repeating audiovisual associations, whereas the resetting of such associations engages a distributed network across auditory, visual, and multisensory areas.
Collapse
Affiliation(s)
- Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | - Samantha Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Seppo P Ahlfors
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA; Department of Neuroscience and Biomedical Engineering, Aalto University, School of Science, Espoo, Finland
| | - Stephanie Rossi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Mikko Sams
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Iiro P Jääskeläinen
- Brain and Mind Laboratory, Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
89
|
Abstract
It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ∼500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop.
Collapse
|
90
|
Cumming R, Wilson A, Goswami U. Basic auditory processing and sensitivity to prosodic structure in children with specific language impairments: a new look at a perceptual hypothesis. Front Psychol 2015. [PMID: 26217286 PMCID: PMC4498019 DOI: 10.3389/fpsyg.2015.00972] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Children with specific language impairments (SLIs) show impaired perception and production of spoken language, and can also present with motor, auditory, and phonological difficulties. Recent auditory studies have shown impaired sensitivity to amplitude rise time (ART) in children with SLIs, along with non-speech rhythmic timing difficulties. Linguistically, these perceptual impairments should affect sensitivity to speech prosody and syllable stress. Here we used two tasks requiring sensitivity to prosodic structure, the DeeDee task and a stress misperception task, to investigate this hypothesis. We also measured auditory processing of ART, rising pitch and sound duration, in both speech (“ba”) and non-speech (tone) stimuli. Participants were 45 children with SLI aged on average 9 years and 50 age-matched controls. We report data for all the SLI children (N = 45, IQ varying), as well as for two independent SLI subgroupings with intact IQ. One subgroup, “Pure SLI,” had intact phonology and reading (N = 16), the other, “SLI PPR” (N = 15), had impaired phonology and reading. Problems with syllable stress and prosodic structure were found for all the group comparisons. Both sub-groups with intact IQ showed reduced sensitivity to ART in speech stimuli, but the PPR subgroup also showed reduced sensitivity to sound duration in speech stimuli. Individual differences in processing syllable stress were associated with auditory processing. These data support a new hypothesis, the “prosodic phrasing” hypothesis, which proposes that grammatical difficulties in SLI may reflect perceptual difficulties with global prosodic structure related to auditory impairments in processing amplitude rise time and duration.
Collapse
Affiliation(s)
- Ruth Cumming
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge Cambridge, UK
| | - Angela Wilson
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge Cambridge, UK
| | - Usha Goswami
- Department of Psychology, Centre for Neuroscience in Education, University of Cambridge Cambridge, UK
| |
Collapse
|
91
|
The effect of visual cues on top-down restoration of temporally interrupted speech, with and without further degradations. Hear Res 2015; 328:24-33. [PMID: 26117407 DOI: 10.1016/j.heares.2015.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 11/21/2022]
Abstract
In complex listening situations, cognitive restoration mechanisms are commonly used to enhance perception of degraded speech with inaudible segments. Profoundly hearing-impaired people with a cochlear implant (CI) show less benefit from such mechanisms. However, both normal hearing (NH) listeners and CI users do benefit from visual speech cues in these listening situations. In this study we investigated if an accompanying video of the speaker can enhance the intelligibility of interrupted sentences and the phonemic restoration benefit, measured by an increase in intelligibility when the silent intervals are filled with noise. Similar to previous studies, restoration benefit was observed with interrupted speech without spectral degradations (Experiment 1), but was absent in acoustic simulations of CIs (Experiment 2) and was present again in simulations of electric-acoustic stimulation (Experiment 3). In all experiments, the additional speech information provided by the complementary visual cues lead to overall higher intelligibility, however, these cues did not influence the occurrence or extent of the phonemic restoration benefit of filler noise. Results imply that visual cues do not show a synergistic effect with the filler noise, as adding them equally increased the intelligibility of interrupted sentences with or without the filler noise.
Collapse
|
92
|
Hanke M, Halchenko YO. A communication hub for a decentralized collaboration on studying real-life cognition. F1000Res 2015; 4:62. [PMID: 26097689 PMCID: PMC4457109 DOI: 10.12688/f1000research.6229.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2015] [Indexed: 11/25/2022] Open
Abstract
Studying the brain’s behavior in situations of real-life complexity is crucial for an understanding of brain function as a whole. However, methodological difficulties and a general lack of public resources are hindering scientific progress in this domain. This channel will serve as a communication hub to collect relevant resources and curate knowledge about working paradigms, available resources, and analysis techniques.
Collapse
Affiliation(s)
- Michael Hanke
- Department of Psychology, University of Magdeburg, Magdeburg, Germany ; Center for Behavioral Brain Sciences, Magdeburg, Germany ; INCF Data-sharing taskforce, Karolinska Institute, Stockholm, Sweden
| | - Yaroslav O Halchenko
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA ; INCF Data-sharing taskforce, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
93
|
Cortical Response Similarities Predict which Audiovisual Clips Individuals Viewed, but Are Unrelated to Clip Preference. PLoS One 2015; 10:e0128833. [PMID: 26030422 PMCID: PMC4452623 DOI: 10.1371/journal.pone.0128833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022] Open
Abstract
Cortical responses to complex natural stimuli can be isolated by examining the relationship between neural measures obtained while multiple individuals view the same stimuli. These inter-subject correlation’s (ISC’s) emerge from similarities in individual’s cortical response to the shared audiovisual inputs, which may be related to their emergent cognitive and perceptual experience. Within the present study, our goal is to examine the utility of using ISC’s for predicting which audiovisual clips individuals viewed, and to examine the relationship between neural responses to natural stimuli and subjective reports. The ability to predict which clips individuals viewed depends on the relationship of the EEG response across subjects and the nature in which this information is aggregated. We conceived of three approaches for aggregating responses, i.e. three assignment algorithms, which we evaluated in Experiment 1A. The aggregate correlations algorithm generated the highest assignment accuracy (70.83% chance = 33.33%) and was selected as the assignment algorithm for the larger sample of individuals and clips within Experiment 1B. The overall assignment accuracy was 33.46% within Experiment 1B (chance = 06.25%), with accuracies ranging from 52.9% (Silver Linings Playbook) to 11.75% (Seinfeld) within individual clips. ISC’s were significantly greater than zero for 15 out of 16 clips, and fluctuations within the delta frequency band (i.e. 0-4 Hz) primarily contributed to response similarities across subjects. Interestingly, there was insufficient evidence to indicate that individuals with greater similarities in clip preference demonstrate greater similarities in cortical responses, suggesting a lack of association between ISC and clip preference. Overall these results demonstrate the utility of using ISC’s for prediction, and further characterize the relationship between ISC magnitudes and subjective reports.
Collapse
|
94
|
Hyafil A, Fontolan L, Kabdebon C, Gutkin B, Giraud AL. Speech encoding by coupled cortical theta and gamma oscillations. eLife 2015; 4:e06213. [PMID: 26023831 PMCID: PMC4480273 DOI: 10.7554/elife.06213] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding. DOI:http://dx.doi.org/10.7554/eLife.06213.001 Some people speak twice as fast as others, while people with different accents pronounce the same words in different ways. However, despite these differences between speakers, humans can usually follow spoken language with remarkable ease. The different elements of speech have different frequencies: the typical frequency for syllables, for example, is about four syllables per second in speech. Phonemes, which are the smallest elements of speech, appear at a higher frequency. However, these elements are all transmitted at the same time, so the brain needs to be able to process them simultaneously. The auditory cortex, the part of the brain that processes sound, produces various ‘waves’ of electrical activity, and these waves also have a characteristic frequency (which is the number of bursts of neural activity per second). One type of brain wave, called the theta rhythm, has a frequency of three to eight bursts per second, which is similar to the typical frequency of syllables in speech, and the frequency of another brain wave, the gamma rhythm, is similar to the frequency of phonemes. It has been suggested that these two brain waves may have a central role in our ability to follow speech, but to date there has been no direct evidence to support this theory. Hyafil et al. have now used computer models of neural oscillations to explore this theory. Their simulations show that, as predicted, the theta rhythm tracks the syllables in spoken language, while the gamma rhythm encodes the specific features of each phoneme. Moreover, the two rhythms work together to establish the sequence of phonemes that makes up each syllable. These findings will support the development of improved speech recognition technologies. DOI:http://dx.doi.org/10.7554/eLife.06213.002
Collapse
Affiliation(s)
- Alexandre Hyafil
- INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Lorenzo Fontolan
- INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Claire Kabdebon
- INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Boris Gutkin
- INSERM U960, Group for Neural Theory, Département d'Etudes Cognitives, Ecole Normale Supérieure, Paris, France
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| |
Collapse
|
95
|
Behavioral oscillation in priming: competing perceptual predictions conveyed in alternating theta-band rhythms. J Neurosci 2015; 35:2830-7. [PMID: 25673869 DOI: 10.1523/jneurosci.4294-14.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The brain constantly creates perceptual predictions about forthcoming stimuli to guide perception efficiently. Abundant studies have demonstrated that perceptual predictions modulate sensory activities depending on whether the actual inputs are consistent with one particular prediction. In real-life contexts, however, multiple and even conflicting predictions might concurrently exist to be tested, requiring a multiprediction coordination process. It remains largely unknown how multiple hypotheses are conveyed and harmonized to guide moment-by-moment perception. Based on recent findings revealing that multiple locations are sampled alternatively in various phase of attentional rhythms, we hypothesize that this oscillation-based temporal organization mechanism may also underlie the multiprediction coordination process. To address the issue, we used well established priming paradigms in combination with a time-resolved behavioral approach to investigate the fine temporal dynamics of the multiprediction harmonization course in human subjects. We first replicate classical priming effects in slowly developing trends of priming time courses. Second, after removing the typical priming patterns, we reveal a new theta-band (∼4 Hz) oscillatory component in the priming behavioral data regardless of whether the prime was masked. Third, we show that these theta-band priming oscillations triggered by congruent and incongruent primes are in an out-of-phase relationship. These findings suggest that perceptual predictions return to low-sensory areas not continuously but recurrently in a theta-band rhythm (every 200-300 ms) and that multiple predictions are dynamically coordinated in time by being conveyed in different phases of the theta-band oscillations to achieve dissociated but temporally organized neural representations.
Collapse
|
96
|
Combined MEG and EEG show reliable patterns of electromagnetic brain activity during natural viewing. Neuroimage 2015; 114:49-56. [PMID: 25842290 DOI: 10.1016/j.neuroimage.2015.03.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 03/05/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022] Open
Abstract
Naturalistic stimuli such as movies are increasingly used to engage cognitive and emotional processes during fMRI of brain hemodynamic activity. However, movies have been little utilized during magnetoencephalography (MEG) and EEG that directly measure population-level neuronal activity at a millisecond resolution. Here, subjects watched a 17-min segment from the movie Crash (Lionsgate Films, 2004) twice during simultaneous MEG/EEG recordings. Physiological noise components, including ocular and cardiac artifacts, were removed using the DRIFTER algorithm. Dynamic estimates of cortical activity were calculated using MRI-informed minimum-norm estimation. To improve the signal-to-noise ratio (SNR), principal component analyses (PCA) were employed to extract the prevailing temporal characteristics within each anatomical parcel of the Freesurfer Desikan-Killiany cortical atlas. A variety of alternative inter-subject correlation (ISC) approaches were then utilized to investigate the reliability of inter-subject synchronization during natural viewing. In the first analysis, the ISCs of the time series of each anatomical region over the full time period across all subject pairs were calculated and averaged. In the second analysis, dynamic ISC (dISC) analysis, the correlation was calculated over a sliding window of 200 ms with 3.3 ms steps. Finally, in a between-run ISC analysis, the between-run correlation was calculated over the dynamic ISCs of the two different runs after the Fisher z-transformation. Overall, the most reliable activations occurred in occipital/inferior temporal visual and superior temporal auditory cortices as well as in the posterior cingulate, precuneus, pre- and post-central gyri, and right inferior and middle frontal gyri. Significant between-run ISCs were observed in superior temporal auditory cortices and inferior temporal visual cortices. Taken together, our results show that movies can be utilized as naturalistic stimuli in MEG/EEG similarly as in fMRI studies.
Collapse
|
97
|
Jochaut D, Lehongre K, Saitovitch A, Devauchelle AD, Olasagasti I, Chabane N, Zilbovicius M, Giraud AL. Atypical coordination of cortical oscillations in response to speech in autism. Front Hum Neurosci 2015; 9:171. [PMID: 25870556 PMCID: PMC4376066 DOI: 10.3389/fnhum.2015.00171] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/11/2015] [Indexed: 01/26/2023] Open
Abstract
Subjects with autism often show language difficulties, but it is unclear how they relate to neurophysiological anomalies of cortical speech processing. We used combined EEG and fMRI in 13 subjects with autism and 13 control participants and show that in autism, gamma and theta cortical activity do not engage synergistically in response to speech. Theta activity in left auditory cortex fails to track speech modulations, and to down-regulate gamma oscillations in the group with autism. This deficit predicts the severity of both verbal impairment and autism symptoms in the affected sample. Finally, we found that oscillation-based connectivity between auditory and other language cortices is altered in autism. These results suggest that the verbal disorder in autism could be associated with an altered balance of slow and fast auditory oscillations, and that this anomaly could compromise the mapping between sensory input and higher-level cognitive representations.
Collapse
Affiliation(s)
- Delphine Jochaut
- Department of Neurosciences, University of Geneva Geneva, Switzerland
| | - Katia Lehongre
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, INSERM UMRS 975 - CNRS UMR 7225, Hôpital de la Pitié-Salpêtrière Paris, France
| | - Ana Saitovitch
- Unité Inserm 1000, Service de Radiologie Pédiatrique, Hôpital Necker - Enfants-Malades, AP-HP, Université Paris V René-Descartes Paris, France
| | | | - Itsaso Olasagasti
- Department of Neurosciences, University of Geneva Geneva, Switzerland
| | - Nadia Chabane
- Unité Multidisciplinaire pour la Santé des Adolescents, Centre Cantonal de l'Autisme, Centre Hospitalier Universitaire Vaudois Lausanne, Switzerland
| | - Monica Zilbovicius
- Unité Inserm 1000, Service de Radiologie Pédiatrique, Hôpital Necker - Enfants-Malades, AP-HP, Université Paris V René-Descartes Paris, France
| | - Anne-Lise Giraud
- Department of Neurosciences, University of Geneva Geneva, Switzerland
| |
Collapse
|
98
|
Prediction and constraint in audiovisual speech perception. Cortex 2015; 68:169-81. [PMID: 25890390 DOI: 10.1016/j.cortex.2015.03.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/28/2015] [Accepted: 03/08/2015] [Indexed: 11/23/2022]
Abstract
During face-to-face conversational speech listeners must efficiently process a rapid and complex stream of multisensory information. Visual speech can serve as a critical complement to auditory information because it provides cues to both the timing of the incoming acoustic signal (the amplitude envelope, influencing attention and perceptual sensitivity) and its content (place and manner of articulation, constraining lexical selection). Here we review behavioral and neurophysiological evidence regarding listeners' use of visual speech information. Multisensory integration of audiovisual speech cues improves recognition accuracy, particularly for speech in noise. Even when speech is intelligible based solely on auditory information, adding visual information may reduce the cognitive demands placed on listeners through increasing the precision of prediction. Electrophysiological studies demonstrate that oscillatory cortical entrainment to speech in auditory cortex is enhanced when visual speech is present, increasing sensitivity to important acoustic cues. Neuroimaging studies also suggest increased activity in auditory cortex when congruent visual information is available, but additionally emphasize the involvement of heteromodal regions of posterior superior temporal sulcus as playing a role in integrative processing. We interpret these findings in a framework of temporally-focused lexical competition in which visual speech information affects auditory processing to increase sensitivity to acoustic information through an early integration mechanism, and a late integration stage that incorporates specific information about a speaker's articulators to constrain the number of possible candidates in a spoken utterance. Ultimately it is words compatible with both auditory and visual information that most strongly determine successful speech perception during everyday listening. Thus, audiovisual speech perception is accomplished through multiple stages of integration, supported by distinct neuroanatomical mechanisms.
Collapse
|
99
|
|
100
|
Nozaradan S. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130393. [PMID: 25385771 PMCID: PMC4240960 DOI: 10.1098/rstb.2013.0393] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain.
Collapse
Affiliation(s)
- Sylvie Nozaradan
- Institute of Neuroscience (Ions), Université catholique de Louvain (UCL), 53, Avenue Mounier-UCL 53.75, Bruxelles 1200, Belgium International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada H3C 3J7
| |
Collapse
|